
IACR Transactions on Cryptographic Hardware and Embedded Systems
ISSN 2569-2925, Vol. 2022, No. 4, pp. 188–227. DOI:10.46586/tches.v2022.i4.188-227

Randomness Optimization for Gadget
Compositions in Higher-Order Masking

Jakob Feldtkeller1 , David Knichel1 , Pascal Sasdrich1 ,
Amir Moradi2 and Tim Güneysu1,3

1 Ruhr University Bochum, Horst Görtz Institute for IT Security, Bochum, Germany
firstname.lastname@rub.de

2 University of Cologne, Institute for Computer Science, Germany
firstname.lastname@uni-koeln.de

3 DFKI, Bremen, Germany

Abstract. Physical characteristics of electronic devices, leaking secret and sensitive
information to an adversary with physical access, pose a long-known threat to cryp-
tographic hardware implementations. Among a variety of proposed countermeasures
against such Side-Channel Analysis attacks, masking has emerged as a promising, but
often costly, candidate. Furthermore, the manual realization of masked implementa-
tions has proven error-prone and often introduces flaws, possibly resulting in insecure
circuits. In the context of automatic masking, a new line of research emerged, aiming
to replace each physical gate with a secure gadget that fulfills well-defined properties,
guaranteeing security when interconnected to a large circuit. Unfortunately, those
gadgets introduce a significant amount of additional overhead into the design, in
terms of area, latency, and randomness requirements.
In this work, we present a novel approach to reduce the demands for randomness in
such gadget-composed circuits by reusing randomness across gadgets while maintaining
security in the probing adversary model. To this end, we embedded the corresponding
optimization passes into an Electronic Design Automation toolchain, able to construct,
optimize, and implement masked circuits, starting from an unprotected design. As
such, our security-aware optimization offers an additional building block for existing
or new Electronic Design Automation frameworks, where security is considered a
first-class design constraint.
Keywords: Masking · Probing Security · Strong Non-Interference · Probe Isolating
Non-Interference · Security-Aware Optimization · Security-Aware EDA

1 Introduction
In 1999, Paul Kocher introduced Differential Power Analysis (DPA) as a powerful threat
to the security of cryptographic hardware and devices [KJJ99]. In the aftermath, this
remarkable work sparked interest and innovation in entirely new branches of research
dealing with Side-Channel Analysis (SCA), showing that the observation of physical
characteristics of an electronic device, such as timing behavior [Koc96], instantaneous
power consumption [KJJ99], electromagnetic (EM) radiations [GMO01], or temperature
and heat dissipation [HS13], can reveal secret and sensitive information to any observer and
adversary with physical access. Over the last two decades, researchers, among other things,
pursued research covering the development of novel side-channel attacks, the enhancement
of analysis techniques, and the design and implementation of effective countermeasures.

In this context, masking (based on the concepts of secret sharing) has been established
as the most promising candidate for protection against SCA due to its theoretical and

Licensed under Creative Commons License CC-BY 4.0.
Received: 2022-04-15 Accepted: 2022-06-15 Published: 2022-08-31

https://doi.org/10.46586/tches.v2022.i4.188-227
https://orcid.org/0000-0001-9797-1257
https://orcid.org/0000-0002-2510-8881
https://orcid.org/0000-0002-5443-626X
https://orcid.org/0000-0002-4032-7433
https://orcid.org/0000-0002-3293-4989
mailto:jakob.feldkeller@rub.de, david.knichel@rub.de pascal.sasdrich@rub.de, amir.moradi@rub.de, tim.gueneysu@rub.de
mailto:amir.moradi@uni-koeln.de
http://creativecommons.org/licenses/by/4.0/

J. Feldtkeller, D.Knichel, P. Sasdrich, A. Moradi and T. Güneysu 189

sound security foundations [CJRR99]. Consequently, many different schemes and variants
have been proposed and implemented in hardware over the last years [ISW03, Tri03,
NRS11, RBN+15, GMK17, GM18], of which not a few have been shown to be insecure
due to design flaws or inaccurate assumptions, e.g., [MMSS19]. Even today, the design
and implementation of secure hardware is still a mostly manual and error-prone process,
requiring long-standing expertise in hardware design and security. Consequently, recent
research focuses on novel approaches and concepts facilitating the implementation of
security in hardware through accurate models and consolidated security notions.

Security and Composability Notions. In the context of hardware masking, the simple
and abstract Ishai-Sahai-Wagner (ISW) t-probing adversary and security model [ISW03]
provides strong theoretical foundations and clear formal models for adversaries and physical
execution environments of modern hardware devices. In its basic form, the t-probing
model grants an adversary access to up to t intermediate values of an ideal circuit during
the processing of sensitive information. Extended with unconsidered and unintentional
physical effects, including glitches [MPG05, MS06], transitions [CGP+12, BGG+14], and
couplings [CBG+17], the robust t-probing model [FGP+18] provides an accurate verification
model to reason about the security of masked digital logic circuits. Unfortunately, the
design and implementation of masked circuits is a non-trivial problem, as complexity
increases with the design size, and the combination and composition of masked circuits
may result in insecure constructions.

Accordingly, modern approaches endeavor to extend security to larger circuits through
the composition of atomic masked circuits, often denoted as gadgets, guaranteeing security in
the t-probing model when interconnected. To this end, novel security notions, such as Non-
Interference (NI) [BBD+15], Strong Non-Interference (SNI) [BBD+16], and Probe Isolating
Non-Interference (PINI) [CS20], have been proposed recently, defining gadget-contained
properties that enable secure composition. Although the security and composability notions
assist in the construction and verification of secure circuits, each gadget instantiation comes
with additional overhead in terms of latency increase, area occupation, and randomness
demand. More specifically, the local overhead for each gadget, introduced through the
composability notions, accumulates for the entire circuit and often results in non-optimal
solutions.

Security-Aware Construction and Optimization. Even beyond performance and area
overhead, the composed constructions are often more secure than strictly required, as
composability properties are often maintained even for the combined circuit, although
eventually, only security against the t-probing adversary is required. For this, modern
security-aware Electronic Design Automation (EDA) tools should not only assist designers
in the construction of secure circuits through combining and composing masked gadgets
but also provide ways and means to optimize the final construction in terms of area or
performance while maintaining the desired level of security. This becomes even more
important and pronounced for higher-order masking, as the performance and area penalty
usually grows exponentially in the security order.

While there are already some initial concepts and tools to design and verify composed
circuits [BGR18, CGLS21, KMMS22], all of the given tools maintain gadget barriers and
boundaries without further optimization and improvement of the final masked circuits.
Consequently, this leads to the question, whether dissolving gadget barriers and bound-
aries can help to share resources and, hence, decrease the overhead introduced through
conservative security notions.

Our Contributions. Given these observations and research questions, we present a novel
approach to optimize and reduce the final randomness consumption and requirements

190 Randomness Optimization for Gadget Compositions in Higher-Order Masking

of masked circuits created through the composition of securely masked gadgets. Set
within this context, we attempt to use a holistic view of the composed circuit to identify
clusters of gadgets that can share and re-use randomness while maintaining an appropriate
level of security under the t-probing adversary model. More precisely, our approach is
designed and well-suited for higher-order masking (i.e., t ≥ 2) using state-of-the-art gadget
constructions created under the SNI and PINI composability notions. Embedded into an
efficient EDA flow, using the Multi-Level Intermediate Representation (MLIR) framework
as a fundamental basis, we present novel optimization strategies and passes that allow
constructing, optimizing, and implementing masked circuits, starting from an unprotected
design. Depending on the context and application scenario, our optimization strategies
allow reduction of the randomness demand of a masked AES-128 by up to 13% when
utilizing state-of-the-art PINI gadgets and up to 94% when using SNI gadgets.

Outline. We first provide some core concepts and definitions used throughout the paper in
Section 2. Then, in the main part of this paper, we introduce our optimization techniques
for both SNI and PINI compositions in Section 3 and Section 4, respectively. In Section 5
we describe the implementation and integration of our optimization passes into an EDA
toolchain for construction and optimization of masked circuits while we evaluate the
performance and assess the practical security of our randomness reduction techniques in
Section 6. Section 7 discusses existing and related work as well as possible extensions for
the future, before we conclude in Section 8.

2 Preliminaries
In the following, we introduce necessary notations and recall the most important definitions
from the literature required throughout the paper.

2.1 Notations
In Table 1, we provide a summary of important notation and variables used throughout
this work. Further, calligraphic fonts are used to denote sets while we use superscripts to
indicate the index of a gadget within a set, while subscripts are used for indices of shares
and random bits.

2.2 Modeling and Masking Circuits
Any logic circuit realizing a Boolean function F : Fu2 7→ Fw2 , can be abstracted as a
graph [ISW03, FGP+18]. More formally, any stateful and deterministic circuit C can be
modeled as a Directed Acyclic Graph (DAG) DC = {V, E}, with vertices v ∈ V describing
either combinatorial gates or synchronization elements, i.e., registers, and edges e ∈ E
describing wires carrying elements drawn from F2.

Boolean Masking. Boolean masking splits a secret x ∈ Fu2 into d > 1 independent and
uniformly distributed shares xi ∈ Fu2 , 0 ≤ i < d, such that x =

⊕d−1
i=0 xi. For this, each xi

for 0 ≤ i < d− 1 is usually sampled from a uniform random distribution over Fu2 , while
the remaining share is derived as xd−1 =

⊕d−2
i=0 xi ⊕ x.

Encoded Circuit Model. The secure computation of y = C(x) can be formally defined
through a circuit compiler [AIS18] consisting of three algorithms, i.e., COMPILE, ENCODE,
and DECODE.

J. Feldtkeller, D.Knichel, P. Sasdrich, A. Moradi and T. Güneysu 191

Table 1: Summary of notation and variables.
n Number of gadgets
t Security order
d Number of shares
m Number of random elements required for one gadget
m̂ Number of random elements overall
Rk Ordered set of random elements used in the k’th gadget
ri i’th randomness element of overall randomness
rk

i i’th randomness element usd in the k’th gadget
rk

i,j Randomness used to mask products between share index i and j in the k’th gadget
T (Simplified) computation tree
V Set of vertices in T
E Set of edges in T, i.e., shares of intermediate values
Ē Set of unshared edges in T, i.e., intermediate values
Ēi,j Unshared edge in T between i ∈ V and j ∈ V
P̄ i,j Unshared path in T between i ∈ V and j ∈ V
ak Left-hand-side input to the k’th gadget
bk Right-hand-side input to the k’th gadget
ck Output the k’th gadget
ak

i i’th share of the left-hand-side input to the k’th gadget
bk

i i’th share of the right-hand-side input to the k’th gadget
ck

i i’th share of the output of the k’th gadget

While COMPILE is a deterministic algorithm which takes a circuit C as input and
outputs a masked circuit1 C̃, the ENCODE algorithm is probabilistic and transforms a secret
x into its masked representation x̃. DECODE is again a deterministic algorithm converting
a masked representation ỹ into the plain value y. Eventually, the secure computation of y
from x is given as the concatenated execution of ENCODE, followed by C̃, terminated with
DECODE.

2.3 ISW t-Probing Model
In the literature, the ISW t-probing model [ISW03] has proven to be an accurate adversary
model enabling the formal verification of masked circuits on the one hand, and construction
of masking schemes on the other.

Probing on Ideal Circuits. In the standard t-probing model, an adversary is granted the
ability to probe up to t arbitrary wires of a masked circuit C̃, without having access to any
information related to ENCODE and DECODE. However, assuming an ideal circuit, probes
are restricted to only observe the current value of the wire. Then, t-probing security is
achieved if an adversary is not able to retrieve any information on the secret given up to t
probes.

Probing in the Presence of Glitches. Since ideal circuits do not capture physical defects
in hardware implementations, i.e., glitches, transitions, and couplings, the t-probing model
was extended to the robust probing model by Faust et al. [FGP+18]. In particular, glitches
are a well-known source of information leakage in logic circuits due to unintentional
activities caused by different signal and switching delays. To accurately capture these
effects, in the glitch-extended robust t-probing model, each adversarial probe is extended
to capture all values up to the last synchronization point (register or primary input),

1Throughout this work, we always assume a Boolean masking scheme.

192 Randomness Optimization for Gadget Compositions in Higher-Order Masking

contributing to the observed value. For this, each standard probe is substituted by a
glitch-extend variant, and security is defined as the adversary not learning any information
on the secret given up to t glitch-extended probes.

Probe Simulation and Propagation. According to Cassiers and Standaert [CS20], a
probe propagates into another wire if the value on this wire is needed to perfectly simulate
the distribution of the probed value, where perfect simulation is defined by Definition 1.
This intuitively means that probes spread backwards through a circuit until they are
stopped by some randomness refreshing. Hence, probes can capture information leakage of
other wires contributing to the computation of the observed value.
Definition 1 (Perfect Probe Simulation). Let P be a set of probes placed on a masked
circuit. Then P is perfectly simulatable by a set X of input shares iff there exist a
probabilistic polynomial time (ppt) simulator sim, such that for any values of the inputs
to the masked circuit, the probability distribution over P and sim(X) are equal.

2.4 Composability Notions
As formal verification and construction of masking schemes are increasingly challenging
for higher security orders and larger circuits, different composability notions have been
established. Each of them aimed at enabling the construction of small, masked sub-circuits,
commonly denoted as gadgets, which provable lead to security in the (robust) t-probing
model when composed to a larger circuit.

For this, all common composability notions restrict probe propagation for single
gadgets, allowing to argue about probe propagation and security in composed circuits.
More precisely, a single (extended) probe placed inside a gadget is restricted to propagate
only to a limited set of input shares of the respective gadget, where the concrete limitation
is specific to the composability notion.

t-Non-Interference. The notion of NI [BBD+15], as defined in Definition 2, restricts
probe propagation without differentiating between internal and output probes. It implies
t-probing security but has proven to be insufficient to guarantee composability.
Definition 2 (Non-Interference). A masked circuit C̃ is t-NI iff for every probe set P
containing t′ ≤ t probes, there exists a set X containing at most t′ shares per input, such
that P can be perfectly simulated by X .

Strong Non-Interference. For the SNI composability notion [BBD+16], an adversary
is allowed to learn partial information on shared inputs when placing probes on wires
inside the gadget. However, for every probe positioned on an output of the gadget, the
adversary is not allowed to learn any additional input shares. More formally, t-SNI is
defined according to Definition 3.
Definition 3 (t-Strong Non-Interference). A single-output, masked circuit C̃ is t-SNI
iff for every probe set P containing t1 internal probes and t2 output probes, such that
t1 + t2 ≤ t, there exists a set X containing at most t1 shares per input, such that P can
be perfectly simulated by X .

As this definition is limited to single-output gadgets, SNI was extended to Multiple-
Output Strong Non-Interference (MO-SNI) by Cassiers and Standaert [CS20] to cover
multiple-output gadgets as well.
Definition 4 (Multiple-Output Strong Non-Interference). A masked circuit C̃ provides
t-MO-SNI iff for every probe set P containing t1 internal probes and up to t2 probes on
each output, such that t1 + t2 ≤ t, there exists a set X containing at most t1 shares per
input, such that P can be perfectly simulated by X .

J. Feldtkeller, D.Knichel, P. Sasdrich, A. Moradi and T. Güneysu 193

Probe Isolating Non-Interference. Since trivial (i.e., share-wise) implementations of
linear operations are not SNI, Cassiers and Standaert introduce the notion of t-PINI [CS20],
enabling trivial implementations by restricting probes to only propagate within a single-
share domain. More formally, t-PINI is defined according to Definition 5.

Definition 5 (Probe Isolating Non-Interference). Let P be a set of t1 internal probes
and some probes on outputs. Further, let IO be the set of share indices assigned to these
output probes in P, with |IO| = t2 and t1 + t2 ≤ t. A masked circuit C̃ is t-PINI iff for
every P , there exists a set of indices II with |II | ≤ t1, such that the distribution observed
by P can be perfectly simulated by input shares corresponding to share domains drawn
from I = II ∪ IO.

2.5 Restricted Composability Notions
In the context of this work, we introduce a variant of MO-SNI and PINI, which restricts
the number of adversarial probes placed on gadget outputs more strictly. More precisely,
our variants only allow t2 adversarial probes placed on all outputs instead of t2 probes
placed at each output.

Definition 6 (t-Restricted Multiple-Output Strong Non-Interference). A masked circuit
C̃ provides t-Restricted Multiple-Output Strong Non-Interference (RMO-SNI) iff for every
probe set P containing t1 internal probes and t2 output probes, such that t1 + t2 ≤ t,
there exists a set X containing at most t1 shares per input, such that P can be perfectly
simulated by X .

Definition 7 (t-Restricted Probe Isolating Non-Interference). Let P be a set of t1 internal
probes and t2 output probes with t1 + t2 ≤ t. Further, let IO be the set of share indices
assigned to the output probes. A masked circuit C̃ provides t-Restricted Probe Isolating
Non-Interference (R-PINI) iff for every P, there exists a set of indices II with |II | ≤ t1,
such that the distribution observed by P can be perfectly simulated by input shares
corresponding to share domains drawn from I = II ∪ IO.

Obviously, these notions do not enable arbitrary compositions but require special care
and construction, ensuring that a set of probes placed onto the composed circuit does
not propagate into more than t output probes of a gadget. These definitions can be used
to make statements about probing security and secure composition even when the full
composability notions do not hold after optimization. We show how those notions can be
ensured and leveraged to optimize the randomness used across gadget boundaries.

Further, we highlight that both RMO-SNI and R-PINI imply NI respectively. The
reason is that both RMO-SNI and R-PINI restrict the adversary to at most t′ < t probes
in total, which are simulated with at most t′ shares of each input. This is exactly the
definition of NI. In other words, if an R-PINI or RMO-SNI simulator exists for P, then
the NI simulator simply runs the same simulation on the same simulation set.

2.6 Computation Tree
In order to perform our cross-gadget optimizations, it is necessary to argue about con-
nections between gadgets. For this, we define further abstractions of our circuit model,
such that vertices in the graph represents gadgets, and each edge represent one share of
an intermediate value. Please note, there always exist t + 1 parallel edges in a masked
computation tree.

Definition 8 (Computation Tree). We define the computation tree of a masked circuit C̃ as
a Directed Acyclic Multigraph (DAMG) T = (V, E), with vertices V = {G0, G1, . . . , Gn−1}
representing all gadgets from C̃ in addition to primary inputs and outputs, while edges
E = {Ei,j

` | i ∈ V, j ∈ V, ` ≤ t} represents all wires between those gadgets in C̃.

194 Randomness Optimization for Gadget Compositions in Higher-Order Masking

Further, following Cassiers et al. [CS20], a simplified computation tree is constructed
according to Definition 9. In essence, the transformation removes the connection between
inputs and outputs of SNI gadgets.

Definition 9 (Simplified Computation Tree). A simplified computation tree is defined
as a computation tree where all SNI gadgets G are divided into two separate parts Gin

and Gout, such that the inputs of G are connected to Gin, and Gout is connected to the
outputs of G. Further, Gin has no outputs and Gout has no inputs.

Since each edge in the (simplified) computation tree represents a wire in the circuit,
each share belonging to one intermediate value is represented with its own edge. For
situations where we only care about the existence of an edge connecting two vertices, we
say an unshared edge is the set of edges belonging to the same unshared intermediate value.
Using this, we can define an unshared path as a collection of connected unshared edges.
Hence, for an unshared path, we only consider the existence of a connection between two
gadgets and not the possible routes over different shares. However, we emphasize that this
is just a formal concept with no impact on the underlying physical implementation.

Definition 10 (Unshared Path). Let T = (V, E) be a (simplified) computation tree.
Further, let Ē be a set of unshared edges such that Ēi,j ∈ Ē iff Ei,j

` ∈ E for some `. Then we
define an unshared path P̄ a,b in T as a sequence of connected edges {Ēa,i1 , Ēi1,i2 , . . . , Ēj1,j2 ,
Ēj2,b}, with Ēi,j ∈ Ē .

3 Randomness Reduction for DOM-Gadget Composition
We first consider gadget compositions based on the notion of SNI. For this, we discuss how
to use properties of SNI to cluster multiple gadgets before we show how to reuse randomness
within such clusters. In the following, we assume a design composed of NI-addition gadgets
and Domain-Oriented Masking (DOM)-multiplication and DOM-refresh gadgets [GMK17]
where only the DOM gadgets require fresh randomness.

3.1 Clustering DOM Gadgets
Our first goal is to divide the set of DOM multiplication and DOM refresh gadgets into
different clusters, such that we can reuse randomness within each cluster, i.e., two gadgets
belonging to the same cluster may share some randomness.

When reusing randomness among different gadgets, it has to be ensured that refreshing
one value does not actually result in the removal of already introduced randomness. Hence,
values dependent on the same randomness need always to be separate from each other.

In addition, sharing and reusing randomness among different gadgets potentially causes
inter-gadget leakage, i.e., a probe placed within one gadget can capture leakage of additional
input shares through the leakage of other gadgets. While the SNI property of a gadget
generally restricts the amount of information that is leaked and captured by a single
probe (i.e., the number of input shares), it does not constrain the source of information
leakage (i.e., the share index). In consequence, to prevent critical cross-gadget leakage from
revealing additional input shares, gadgets that can share and reuse the same randomness
must have inputs independent of each other.

Further, we observe that the essential property of SNI gadgets is a share refreshing
that removes any dependency between the output and the gadget inputs. Basically, this
property is the foundation for SNI composition, introduced by Barthe et al. [BBD+16],
and was generally shown by Belaïd et al. [BGR18]. However, this property allows not only
to cluster parallel gadgets from different paths of the computation tree due to independent
inputs, but also gadgets that lie in different paths within the simplified computation tree
(which can be at the same path in the computation tree).

J. Feldtkeller, D.Knichel, P. Sasdrich, A. Moradi and T. Güneysu 195

(a) Example assignments for Definition 11

(b) Example assignments for Definition 13

Figure 1: Example assignments in different clusters, where nodes represent DOM gadgets
(according to a simplified computation tree) and NI gadgets are left out for brevity (at
intersections or at edges). Matching colors and fill patterns resemble gadgets belonging to
the same cluster and all edges represent unshared edges.

Definition 11 (Clustering of DOM Gadgets). Let T = (V, E) be a simplified computation
tree of vertices V = {G0, G1, . . . , Gn−1} and edges E = {Ei,j

` | i ∈ V, j ∈ V, ` ≤ t}. A
cluster of DOM gadgets is a set C ⊆ V such that:

∀{Gi, Gj} ∈ C2, i 6= j | @G ∈ V : ∃P̄G,Gi

∧ ∃P̄G,Gj

(1)

∀{Gi, Gj} ∈ C2, i 6= j | @P̄Gi,Gj

(2)

∀{Gi, Gj} ∈ C2, i 6= j | @G ∈ V : ∃P̄Gi,G ∧ ∃P̄Gj ,G (3)

∀Gi ∈ C,∀Gj ∈ V, i 6= j | @P̄Gi,Gj

∨ ∃!P̄Gi,Gj

(4)

Here, Property (1) ensures that all inputs to the clusters are independent of each other,
as there is no path from one source to multiple inputs of the cluster. Property (2) requires
that there is no path from an output of the cluster to an input of the same cluster, ensuring
the independence of the contained gadgets. Intuitively, those two properties restrict the
cross-gadget leakage. Property (3) is symmetric to Property (1) in that it ensures that
there is no path from multiple outputs of the cluster to the same sink gadget. This property
is required to restrict the number of probes that can propagate to the outputs of the
cluster. For the same reason, Property (4) restricts the number of paths from one output
to all other gadgets to at most one. However, we included this property for completeness
only, as it is always true for secure compositions of NI and SNI gadgets. The clustering
principle is illustrated in Figure 1a for different scenarios.

We now prove that such a cluster can have at most t (propagated-)probes at outputs
of the containing gadgets, meaning that the cluster requires RMO-SNI only, instead of
MO-SNI, for probing security. We use Properties (3) and (4) from Definition 11 here,
while the other properties are required later to prove Theorem 2.

Theorem 1. Let T = (V, E) be a simplified computation tree with gadgets in V that are
t-NI or t-SNI and let C be a cluster according to Definition 11. Further, let P be a set of
probes on V and E, with |P| ≤ t. Then, there are at most t probes at output shares of C
including probe propagation and glitch extension of probes.

Proof. Assume a cluster C according to Definition 11 within a simplified computation tree
T = (V, E). We further assume a set of probes P on V and E with |P| ≤ t. In general,

196 Randomness Optimization for Gadget Compositions in Higher-Order Masking

G1 G2 G3 G4

r0 r1 r2 r3 r4 r5

(a) 2nd order secure with Definition 12

G1 G2

r0 r1 r2 r3

(b) r1, r2 ∈ R1 ∧ r1, r2 ∈ R2

G1 G2 G3 G4

r8

r0
r1
r0

r2
r3

r4
r5

r6
r7

(c) 2nd order secure with Definition 14

G1 G2 G3 G4

r12 r13 r14 r15 r16 r17

r0
r1
r2

r3
r4
r5

r6
r7
r8

r9
r10
r11

(d) 3nd order secure with Definition 14

Figure 2: Example of randomness assignment for clusters of DOM gadgets, where (2a)
represents a valid assignment. The assignment in (2b) is insecure, as the pair of randomness
{r1, r2} is used both in G1 and G2. In (2c) and (2d) a secure assignments with gadget
unique randomness for 2nd and 3rd order security is shown.

there are two scenarios how the output of a gadget is probed: (1) by directly probing
the corresponding signal or (2) by probe propagation after placing a probe on an internal
signal (for this proof we consider glitch extension of probes as a form of probe propagation).
Assume |P| = t1 + t2 probes, among which t1 probes are placed directly on outputs of C,
and t2 probes elsewhere. It trivially holds that t1 ≤ t. Due to Properties (3) and (4), there
is at most one unshared path from each actual probe to outputs of C. Hence, a probe can
not duplicate during probe propagation through different paths. In addition, the definition
of NI and SNI guarantee that probes can not duplicate within gadgets. Therefore, there are
at most t2 probes capturing the outputs of C derived from probe propagation. This means,
there are t1 + t2 ≤ t probes capturing the outputs of of C, which proofs Theorem 1.

Randomness Assignment for DOM Gadgets. After clustering gadgets according to Defi-
nition 11, the assignment of fresh randomness to gadgets follows a simple rule: Randomness
can be reused between gadgets of the same cluster as long as there is no pair of random
elements {ri, rj} which is used in more than one gadget. In other words, there is no pair
of gadgets that share more than one random element. We provide illustrative examples for
the correct randomness reuse and an incorrect one in Figure 2a and Figure 2b respectively.
Intuitively, this rule ensures that a probe placed in a single gadget can only leak one
additional input share of other gadgets through cross-gadget leakage, as there is at most
one random element that is reused between two gadgets. Definition 12 captures this rule
of correctly reusing randomness for DOM gadgets within a cluster more formally.

Definition 12 (RMO-SNI-Randomness Assignment). Given a cluster C as defined in
Definition 11, for all DOM gadgets Gk ∈ C random elements can be assigned arbitrarily to
Gk as long as the following condition holds:

∀k,∀{ri, rj} ∈ Rk | @k′ 6= k : {ri, rj} ∈ Rk
′
, (5)

where ri stands for the i-th random element and Rk is the set of randomness used for the
gadget Gk.

Security Proof. We now prove that this rule ensures t-RMO-SNI for a cluster of DOM
gadgets. More precisely, we take the gadget variant of Faust et al. [FGP+18], which was
made t-SNI by adding an additional register layer at the output. The description of such

J. Feldtkeller, D.Knichel, P. Sasdrich, A. Moradi and T. Güneysu 197

Algorithm 1: A single cluster, containing n DOM-multiplication gadgets, with
reduced randomness (equal to definition in [FGP+18] for n = 1).

1 function clusterDOM((a0, b0), ..., (an−1, bn−1)):
Require: t ≥ 2
Require: All inputs are independent of each other
Require: ak, bk ∈ Ft+1

2 such that ak : (ak
0 , . . . , ak

t), bk : (bk
0 , . . . , bk

t) with
∑

j
ak

j = ak

and
∑

j
bk

j = bk

// Initialize randomness
2 for k = 0 to n− 1 do
3 Rk =

〈
rk

0 , . . . , rk
m−1

〉
← Distribution according to Definition 12

4 q ← 0
5 for i = 0 to t do
6 for j = i + 1 to t do
7 rk

i,j ← rk
q ; rk

j,i ← rk
q

8 q ← q + 1

// Compute multiplication gadgets
9 for k = 0 to n− 1 do

10 for i = 0 to t do
11 wk

i ← ak
i · bk

i

12 for j = i + 1 to t do
13 uk

i,j ← ak
i · bk

j + rk
i,j

14 uk
j,i ← ak

j · bk
i + rk

j,i

15 for i = 0 to t do
16 sk

i ← Reg[wk
i] +

∑t

j=0,j 6=i
Reg[uk

i,j]
17 ck

i ← Reg[sk
i]

Ensures: ck : (ck
0 , . . . , ck

t) ∈ Ft+1
2 such that

∑
j

ck
j = ak · bk, ∀k

18 return c0, . . . , cn−1

a cluster with n DOM gadgets is given in Algorithm 1. Please note that we can see the
composition of the n DOM gadgets, constructing the cluster, as a new gadget for which
we prove security. Further, we can restrict the argumentation to multiplication gadgets
only, as SNI-refresh gadgets can be trivially constructed by SNI-multiplication gadgets
where one input is a constant Boolean sharing of 1, e.g., 〈1, 0, . . . , 0〉 (cf. [BGR18]).

Theorem 2. clusterDOM, as defined in Algorithm 1, is t-RMO-SNI secure under the
glitch-robust t-probing model.

Proof. Let us denote a set of internal probes PI and a set of output probes PO with
PI ∪ PO ≤ t. Without loss of generality, we restrict the probes to only capture wk

i ,
uki,j , ski , and cki as, due to glitch extension, all other probe positions capture a portion
of these probes. In Algorithm 2, we give an algorithm that, given the set of probes
PI ∪ PO, returns a set of input shares X required to simulate the probes for the gadget
defined in Algorithm 1. In particular, Algorithm 2 returns all inputs such that all required
intermediate values can be computed exactly as in Algorithm 1 except for some ukij . We
first show that, for all possible probe placements, Algorithm 2 adds at most one share of
each input to X for each internal probe. Afterwards, we show that the inputs in X enable
a simulation of the set of probes PI ∪ PO, as required for t-RMO-SNI.

For some probe placed on wk
i it is obvious that Algorithm 2 only adds one share of each

input to X (i.e., aki , bki). The same is true for a probe on ski when @{k′, x, y, j} such that
rk

′

x,y = rki,j with a probe placed on uk
′

x,y or sk
′

x , since then, Line 12 of Algorithm 2 is not

198 Randomness Optimization for Gadget Compositions in Higher-Order Masking

Algorithm 2: Input-share chooser for the simulator of ParDOM multiplication.
1 function ShareChooserclusterDOM(PI ∪ PO):
2 X ← ∅
3 for i = 0 to t do
4 for k = 0 to n− 1 do
5 if wk

i or sk
i is probed then

6 X ← X ∪ {ak
i , bk

i }
7 for j = 0 to t, j 6= i do
8 if uk

ij is probed then
9 X ← X ∪ {ak

i , bk
j }

10 if sk
i and at least one value uk′

x,y or sk′
x such that rk′

xy = rk
i,j is probed then

11 X ← X ∪ {bk
j }

12 return X

reached. However, if there is a probe placed on ski and ∃{k′, x, y, j} such that rk
′

x,y = rki,j
and a probe is placed on uk

′

x,y, then the set
{

aki , bki , bkj , ak
′

x , bk
′

y

}
is added to X . Naturally,

this adds at most two shares of each input (using two probes) if k′ 6= k. For k′ = k, either
y = i or y = j, since rki,j is only used at most twice in each internal gadget, and rki,j = rkj,i.
Hence, again, only at most two shares of each input are added to X (using two probes).
Otherwise, if a probe is placed on ski as well as on some sk

′

x such that ∃{j, y} : rk
′

x,y = rki,j ,
then the set

{
aki , bki , ak

′

x , bk
′

x , bkj , bk
′

y

}
is added to X . With the same argument as before,

this also adds only two shares per input to X (using two probes). In the last case, a probe
is placed on some uki,j but not on some sk

′

x containing the same random value. In this
case, only

{
aki , bkj

}
is added to X . The argumentation holds for any number of probes

placed on values containing the same randomness, as all inputs are independent of each
other (Property 1 from Definition 11) and two probes placed on values containing the
same randomness already reveal all shares required for the actual computation. Please
note, that a probe placed on some output share (i.e., cki) does not add any item to X , as
required by RMO-SNI.

We now show that the input shares contained in X are sufficient to simulate the probes
PI ∪ PO. For this, we compute all required intermediate values exactly as in the gadget
(Algorithm 1) by replacing all values uki,j , that can not be computed, by some fresh random
value. For probes placed on output shares cki where aki , bki 6∈ X we ignore wk

i and compute
only the sum of the corresponding uki,j ,∀j. This ensures that all required intermediate
values wk

i , uki,j , ski and output shares cki are well defined in the simulator.
Finally, in order to prove Theorem 2, we only need to show that the above defined

simulator has the same output distribution for the probes PI ∪ PO as a computation of
the probes with Algorithm 1. This is true for the following reason. All intermediate values
are computed exactly the same for both the simulator and Algorithm 1, except for some
uki,j which are replaced by fresh random values, and some output shares cki .

Let us assume we replace some uki,j with randomness, then this value is not directly
probed, as otherwise aki , bkj ∈ X according to Algorithm 2 and uki,j can be computed, but
a probe is placed on either ski or cki as those are the only values requiring uki,j . Let us take
a closer look into these cases in the following.

Case I. Assume a probe is placed on ski . From Algorithm 2 it follows that aki ∈ X
(Line 7), hence, bkj 6∈ X , as otherwise uki,j can be computed. From this and Algorithm 2
it also follows that @{k′, x, y} with rki,j = rk

′

x,y such that a probe is placed on uk
′

x,y or sk
′

x

(Line 12). If, on the one hand, there is no probe placed at any output ck
′

x , k′ 6= k that

J. Feldtkeller, D.Knichel, P. Sasdrich, A. Moradi and T. Güneysu 199

contains rki,j , then rki,j is only observable through uki,j (in the computation for ski) and
replacing uki,j with fresh randomness does not change the output distribution (a probe
placed on cki does not reveal any additional information to ski). If, on the other hand, a
probe is placed on some ck

′

x , k′ 6= k that also contains rki,j , then ck
′

x also contains t − 1
other random values. From Definition 12 it follows that any two probes placed in different
gadgets can have at most one random value in common. As there is no other internal
probe containing rki,j and again as bkj 6∈ X , there is no probe on sk

′

x , which is the only value
sharing more than one random value with ck

′

x . Hence, t− 1 more probes are required to
remove all uniform random behavior from ck

′

x , but only t− 2 probes are left. Therefore,
rki,j is still only observable through uki,j and replacing uki,j with fresh randomness does not
change the output distribution.

Case II. Now, assume a probe is placed on cki . If there is some probe placed on some
sk

′

x which contains rki,j , we can use the argumentation of Case I. Therefore, we assume
only probes on output shares containing the randomness rki,j . If cki is the only output
depending on rki,j , this random value is only observable through uki,j and replacing uki,j
with fresh randomness does not change the output distribution. If there are at least two
output probes that contain rki,j then again we require t− 1 probes to remove all uniform
random behavior from cki but only t− 2 probes are left. Hence, rki,j is not observable at all
and replacing uki,j with fresh randomness does not change the output distribution.

Therefore, replacing some uki,j with fresh randomness does not change the output
distribution of the probes PI ∪ PO. If there is a probe placed on some cki , and wk

i cannot
be computed as either aki 6∈ C or bki 6∈ X , then there are no probes placed on wk

i , or ski .
Hence, there is no probe placed on a value that shares more than one random value with
cki , again as the only such probe would be one placed at ski . Hence, t more probes are
required to remove all randomness from cki but only t− 1 probes are left. Therefore, wk

i

has no influence on the distribution of cki and removing it from the computation does not
change the output distribution.

We conclude that the simulator is able to fully simulate Algorithm 1 with input shares
X , which proves Theorem 2.

We emphasize that the resulting cluster is RMO-SNI and hence, special care needs to
be taken when composing gadgets belonging to different clusters. We envision the usage of
this approach during optimization of an already-secure design, where the clusters can be
selected such that the required composition properties hold (given in Definition 11). As a
result, this transformation leads to an overall design that is at most RMO-SNI. Hence,
probing secure and NI secure designs will maintain their properties, but SNI designs are
potentially weakened. To maintain SNI security, it is necessary to ensure that on the path
from each output of a cluster to an output of the circuit, there is at least one SNI gadget.

3.2 Relaxed Clustering of DOM Gadgets
In Definition 11, we used a strong notion of clustering that requires an information flow
analysis for both the inputs and the outputs of each gadget. The resulting small clusters
offer high potential for randomness optimization, i.e., all randomness bits can be potentially
reused, but also have the potential of weakening the notion of composition, i.e., RMO-SNI
instead of MO-SNI. A cluster that sustains the stronger notion of MO-SNI can be built
by adding more restrictions to the randomness reuse within the cluster. In particular,
some randomness is required to be unique, hiding randomness being reused at the outputs.
More specifically, we need to ensure that the only combination of probes that can remove
all randomness from an output share are probes placed on all shares of that output. Then,
due to the stronger notion of composition, the clustering rules can be relaxed by omitting
the information flow analysis of the gadget outputs and focusing solely on the gadget

200 Randomness Optimization for Gadget Compositions in Higher-Order Masking

inputs. More formally, only Property (1) and (2) from Definition 11 are required while
Property (3) and (4) can be dropped.

Definition 13 (Relaxed Clustering of DOM Gadgets). Let T = (V, E) be a simplified
computation graph of vertices V = {G0, G1, . . . , Gn−1} and edges E = {Ei,j

` | i ∈ V, j ∈
V, ` ≤ t}. A cluster of DOM gadgets is a set C ⊆ V such that:

∀{Gi, Gj} ∈ C2, i 6= j | @G ∈ V : ∃P̄G,Gi

∧ ∃P̄G,Gj

(1)

∀{Gi, Gj} ∈ C2, i 6= j | @P̄Gi,Gj

(2)

An illustration of the relaxed clustering is given in Figure 1b. In contrast to clustering,
the assignment of randomness to gadgets within a cluster is more restricted and, hence,
the formal definition requires additional properties compared to Definition 12.

Definition 14 (MO-SNI-Randomness Assignment). Given a cluster C as defined in
Definition 13, for all DOM gadgets Gk ∈ C random elements can be assigned to Gk as
long as the following conditions hold:

∀k, ∀{ri, rj} ∈ Rk | @k′ 6= k : {ri, rj} ∈ Rk
′

(5)

∀k, ∀ri ∈ R̂k | @k′ 6= k : ri ∈ R̂k
′
∨ ri ∈ Rk

′
(6)

∃i,∀j 6= i | ri,j ∈ R̂k, (7)

where R̂k is the set of unique randomness used by gadget Gk, Rk is the set of random
values used for the gadget Gk, that are potentially shared with other gadgets, and ri,j is
the random element blinding the cross domain (i, j), i.e., the product of shares from i and
j (e.g., rki,j in Algorithm 1).

Intuitively, Property (6) resembles the unique usage of randomness in each gadget,
Property (7) ensures that one output share is blinded completely by gadget-specific fresh
randomness, ensuring that all output shares are required to remove the gadget-unique
randomness of one output share, while Property (5) is already used in Definition 12 and
determines how to reuse randomness between gadgets of the same cluster. Illustrative
examples are given in Figure 2c and Figure 2d.

Using Definition 13 and Definition 14 together with the same DOM gadget implemen-
tation as before, we now prove MO-SNI-security of a corresponding cluster.

Theorem 3. clusterDOM as defined in Algorithm 1, where Definition 14 is used as a
replacement for Definition 12 in Line 3, is t-MO-SNI under the glitch-robust probing model.

The only difference between Theorem 3 and Theorem 2 is the security property, i.e.,
MO-SNI instead of RMO-SNI, and the randomness assignment. In particular, an adversary
is allowed to place t2 ≤ t probes on each output instead of t2 ≤ t for all outputs together.
Now we show that the same simulator as used in the proof of Theorem 2 can be used to
proof Theorem 3.

Proof. Assume the same simulator as used in the proof of Theorem 2. In particular, the
required input shares are determined using Algorithm 2 and all values are computed
exactly as in Algorithm 1, except for some uki,j and some cki . Without loss of generality,
we assume that the first t− 1 random values assigned to each gadget are unique to this
gadget, resulting in the first output share being only masked with unique randomness
while all other output shares being masked with exactly one unique random value.

As before, we restrict our analysis to probes placed on wk
i , uki,j , ski , and cki , as other

probes are strictly less powerful. Again, we need to show that the above defined simulator
results in the same output distribution for the probes PI ∪ PO as the computation of

J. Feldtkeller, D.Knichel, P. Sasdrich, A. Moradi and T. Güneysu 201

the probes with Algorithm 1. The only values computed differently in the simulator and
Algorithm 1 are some uki,j and cki .

Recall, that if some value uki,j is replaced by randomness, then there is a probe placed
on either ski or cki , as those are the only values requiring the value uki,j .

Case I. Assume ski is probed. If this (and optionally a probe on cki , which gives
no additional information) is the only probe containing rki,j , then this random value is
observable only through uki,j and the output distribution does not change by replacing
uki,j with fresh randomness. If ∃{k′ 6= k, x, y} : rki,j = rk

′

x,y, and a probe is placed on ck
′

x ,
then it follows from Property (7) that ck

′

x also contains some random value unique to the
k′-th gadget. Removing the masking with a random value which is unique to the gadget,
requires either some internal probe (e.g., the randomness itself) or a probe on ck

′

0 , which
itself is masked with t− 2 additional random values unique to the gadget. Removing them
requires either one internal probe (e.g., sk

′

0) or all other output shares. Hence, removing
some gadget’s unique randomness from an output share requires either some internal
probe or all t + 1 shares of that particular output, where the later is prohibited by the
number of available probes for each output (≤ t). In addition to the gadget’s unique
randomness, ck

′

x also contains t− 2 random values that are potentially shared with other
gadgets. Property (5) ensures that two different gadgets do not share more than one
random value. Hence, the only value sharing more than one random value with ck

′

x is sk
′

x ,
where no probe is placed as otherwise aki ∈ X (Line 6 in Algorithm 2) and bkj ∈ X (Line 11
in Algorithm 2) which means uki,j can be computed. Therefore, at least one additional
probe is required to remove one reused random value in ck

′

x . This probe can either be an
internal probe or an output probe, which itself is masked by some unique randomness
different to the unique randomness in ck

′

x . Therefore, to remove all random behavior except
rki,j from ck

′

x at least t− 1 probes are required, but only at most t− 2 probes are left to
the adversary, since there is already a probe on ski and ck

′

x . Hence, the randomness rki,j
is observable only through uki,j in ski and replacing uki,j with fresh randomness does not
change the output distribution.

Case II. Now, assume a probe placed on cki and rki,j is only captured by probes on
outputs. If there is a probe on some sk

′

x such that rki,j = rk
′

x,y, then the arguments from Case
I hold. If cki is the only output probe containing rki,j , then this random value is observable
only through uki,j and replacing that value by fresh randomness does not change the output
distribution. If ∃{k′ 6= k, x, y} : rki,j = rk

′

x,y and a probe is placed on ck
′

x , then cki and ck
′

x

share at most one random value (rki,j), due to Property (5), while both contain at least one
gadget-unique random value and t−2 random values potentially shared with other gadgets.
Removing the random behavior of one of the two outputs requires t− 1 internal probes
(with the same argument as above) but at most t− 2 probes are left to the adversary, since
cki and ck

′

x are already probed. Hence, the randomness rki,j is not observable at all and
replacing uki,j by fresh randomness does not change the output distribution.

In conclusion, uki,j can be perfectly simulated by a random value. Now, assume a
probe placed on some cki , where wk

i can not be computed, i.e., either aki 6∈ X or bki 6∈ X .
From Line 6 in Algorithm 2 follows that there is no probe placed on ski , which is the only
value sharing more than one random value with cki . Hence, with the same argument as
above, t internal probes are required to remove all random behavior from cki but only t− 1
probes are left to the adversary. Therefore, wk

i is not observable and ignoring it during
computation of cki does not change the distribution.

We conclude, that the simulator fully simulates PI ∪ PO which proves Theorem 3.

Note, however, that this optimization does not change the security properties of the
original circuit, as the cluster remains MO-SNI.

202 Randomness Optimization for Gadget Compositions in Higher-Order Masking

(a) Example assignments for Definition 15

(b) Example assignments for Definition 17

Figure 3: Example assignments in different clusters, where nodes represents an HPC2
gadget. Matching colors and fill patterns resemble gadgets belonging to the same cluster.
The graphs represent the simplified computation tree (here equal to the computation tree)
where all edges are represented unshared.

4 Randomness Reduction in HPC2 Composition
As the second notion of composition, we consider PINI. Again, we first discuss how
gadgets can be clustered in the context of PINI, i.e., within designs composed from HPC2
gadgets [CGLS21], before we show how to reuse randomness within such clusters.

4.1 Clustering HPC2 Gadgets.
In contrast to SNI, the essential property of PINI is the isolation of leakage within share
domains, i.e., one probe can only cause the leakage of values within one share domain. As
this must also hold for cross-gadget leakage caused by shared randomness, gadgets within
one cluster are now allowed to have dependent inputs, effectively removing the requirement
of Property (1). At the same time, a probe propagating through the design, using different
paths but reaching the same gadget output, always results in only one probed output
share, i.e., at the share index, the actual probe was placed. Hence, Property (4) is obsolete
in the context of PINI. This results in the following formal definition:

Definition 15 (Clustering of HPC2 Gadgets). Let T = (V, E) be a simplified computation
tree of vertices V = {G0, G1, ..., Gn−1} and edges E = {Ei,j

` | i ∈ V, j ∈ V, ` ≤ t}. A
cluster of HPC2 gadgets is a set C ⊆ V such that:

∀{Gi, Gj} ∈ C2, i 6= j | @P̄Gi,Gj

(2)

∀{Gi, Gj} ∈ C2, i 6= j | @G ∈ V : ∃P̄Gj ,G ∧ ∃P̄Gi,G (3)

As in Definition 11, Property (2) ensures that gadgets within one cluster are independent
of each other, while Property (3) guarantees that one probe cannot propagate to multiple
probes at the outputs of the cluster.

We emphasize that PINI does not enforce a refreshing layer rendering the gadget output
independent of the input and, hence, due to Property (3), PINI gadgets from the same
path in the computation tree cannot be clustered together. The clustering can still be
done based on a simplified computation tree, however, a PINI gadget does not split a path
on its own.

Again, such a cluster can have at most t (propagated-)probes at outputs of the cluster,
meaning that the cluster requires to be R-PINI only, instead of PINI, for probing security.

J. Feldtkeller, D.Knichel, P. Sasdrich, A. Moradi and T. Güneysu 203

G1 G2 G3 G4

r0 r1 r2 r3 r4 r5

(a) 2nd order secure with Definition 16

G1 G2

r0 r1 r2 r3

(b) r0, r1 ∈ R1 ∧ r0, r1 ∈
R2

G1 G2

r0 r1 r2 r3 r4

(c) r2 = r1
2 = r2

0

G1 G2 G3 G4

r8

r0
r1
r0

r2
r3

r4
r5

r6
r7

(d) 2nd order secure with Definition 18

G1 G2 G3 G4

r12 r13 r14 r15 r16 r17

r0
r1
r2

r3
r4
r5

r6
r7
r8

r9
r10
r11

(e) 3rd order secure with Definition 18

Figure 4: Example of randomness assignment for clusters of HPC2 gadgets, where (4e)
represents a valid assignment. The assignment in (4b) is insecure, as the pair of randomness
{r0, r1} is used both in G1 and G2, and the assignment in (4c) is insecure as r2 is used both
in position 2 and 0. In (4e) and (4e) a secure assignment with gadget unique randomness
for 2nd and 3rd order security is shown.

Theorem 4. Let T = (V, E) be a simplified computation tree with gadgets in V that are
t-PINI and let C be a cluster according to Definition 15. Further, let P be a set of probes
on V and E, with |P| ≤ t. Then there are at most t probes at output shares of C including
probe propagation and glitch extension of probes.

The corresponding proof follows the same line of arguments as the proof of Theorem 1
with only straight-forward changes related to PINI. Hence, we omit the proof for brevity.

Randomness Distribution for HPC2. The distribution of randomness within clusters of
HPC2 gadgets is a bit more complex than in the case of DOM. First, the same rule as
for DOM is required, namely that no pair of random elements {ri, rj} is used in more
than one gadget. In addition, PINI requires that random elements always mask the same
share indices, i.e., are used at the same position within all gadgets that use this random
element. This ensures the isolation of share domains even for cross-gadget leakage. We
provide illustrative examples of secure and insecure randomness reuse for HPC2 clusters in
Figure 4 (first row) and define the property more formally as follows:

Definition 16 (R-PINI-Randomness Assignment). Given a cluster C as defined in Defini-
tion 15, for all HPC2 gadgets Gk ∈ C, random elements can be assigned arbitrarily to Gk

as long as the following conditions hold:

∀k, ∀{ri, rj} ∈ Rk | @k′ 6= k : {ri, rj} ∈ Rk
′

(5)

∀{k, i, x} : rki = rx | @{k′, j}, k′ 6= k, j 6= i : rk
′

j = rx, (8)

where rx is the x’th randomness element overall, rki is the i’th random element assigned
to gadget Gk, and Rk is the set of random elements assigned to the gadget Gk.

Here, Property (5) is already used in Definition 12 and ensures that no two gadgets
share more than one random element. In contrast, Property (8) is PINI specific, restricting
the position of reused randomness within each gadget. More precisely, a random bit can
only be reused to blind identical share domains. This ensures that cross-gadget leakage
also adheres to the PINI definition.

204 Randomness Optimization for Gadget Compositions in Higher-Order Masking

Algorithm 3: A single cluster, containing n HPC2 gadgets, with reduced ran-
domness (equal to Figure 5 in [CGLS21] for n = 1).

1 function clusterHPC2((a0, b0), ..., (an−1, bn−1)):
Require: t ≥ 2
Require: ak, bk ∈ Ft+1

2 such that ak : (ak
0 , . . . , ak

t), bk : (bk
0 , . . . , bk

t) with
∑

j
ak

j = ak

and
∑

j
bk

j = bk

// Initialize randomness
2 for k = 0 to n− 1 do
3 Rk =

〈
rk

0 , . . . , rk
m−1

〉
← Distribution according to Definition 16

4 q ← 0
5 for i = 0 to t do
6 for j = i + 1 to t do
7 rk

i,j ← rk
q ; rk

j,i ← rk
q

8 q ← q + 1

// Compute HP C2 gadgets
9 for k = 0 to n− 1 do

10 for i = 0 to t do
11 wk

i ← ak
i · Reg[bk

i]
12 for j = 0 to t, j 6= i do
13 uk

i,j ← (ak
i + 1) · Reg[rk

i,j]
14 vk

i,j ← bk
j + rk

i,j

15 zk
i,j ← ak

i · Reg[vk
i,j]

16 for i = 0 to t do
17 ck

i ← Reg[wk
i] +

∑t

j=0,j 6=i
(Reg[uk

i,j] + Reg[zk
i,j])

Ensures: ck : (ck
0 , . . . , ck

t) ∈ Ft+1
2 such that

∑
j

ck
j = ak · bk, ∀k

18 return c0, . . . , cn−1

Security Proof. We now prove that this rule ensures t-R-PINI for a cluster of HPC2
gadgets, of which a description is given in Algorithm 3.

Theorem 5. clusterHPC2 as defined in Algorithm 3 is t-R-PINI secure in the glitch-robust
model.

Our proof follows closely the argumentation of Cassiers et al. for a single HPC2
gadget [CGLS21].

Proof. Let us denote a set of internal probes PI and a set of output probes PO, such that
PI ∪ PO ≤ t. Without loss of generality, we restrict the probes to only capture cki , wk

i ,
uki,j , vki,j , and zki,j as other extended probes are less powerful, due to glitch extension. In
Algorithm 4, we give an algorithm that, given the set of probes PI ∪ PO, returns a set
of input shares X required to simulate the probes for the gadget defined in Algorithm 3.
In particular, Algorithm 4 returns all inputs such that all required intermediate values
can be computed exactly as in Algorithm 3, except for some vki,j . We first show that, for
all possible probe placements, Algorithm 4 adds at most one share index per probe to
X , where the share indices of probes capturing an output are always in X . Afterwards,
we show that the inputs in X enable a simulation of the probes PI ∪ PO, as required for
R-PINI.

From the construction of Algorithm 4 it is obvious that all probes that do not capture
an output cki add at most one share index to X . If all probes in PO capture different share
indices then only Line 6 in Algorithm 4 is activated, which adds the respective share index

J. Feldtkeller, D.Knichel, P. Sasdrich, A. Moradi and T. Güneysu 205

Algorithm 4: Input-share chooser for the simulator of clusterHPC2.
(equal to the description in the proof for Proposition 4 in [CGLS21] for n = 1.)
1 function ShareChooserclusterHPC2 (P):
2 X ← ∅
3 for i = 0 to t do
4 for k = 0 to n− 1 do
5 if wk

i or ck
i is probed then

6 X ← X ∪ {i}
7 for j = 0 to t, j 6= i do
8 if uk

i,j, vk
i,j, or zk

i,j is probed and i ∈ X or j ∈ X then
9 X ← X ∪ {i, j}

10 else if uk
i,j or zk

i,j is probed then
11 X ← X ∪ {i}
12 else if vk

i,j is probed then
13 X ← X ∪ {j}

14 if at least two probes on ck
i , ck′

i with k′ 6= k and rk
i,j = rk′

i,j then
15 X ← X ∪ {j}

16 return X

to X . Now, assume there are multiple probes capturing outputs of the same share index i.
From Property (5) it follows that each pair {cki , ck

′

i }, k 6= k′ of such probes can have at
most one random value in common and Property (8) guaranties that this random value is
used to blind the same two share indices i and j. Hence, all such probes will add the same
share index i to X (Line 6) and all but the first add at most one additional share index
j to X (Line 21). This also holds for combinations of probes capturing up to t output
shares, as this can always be reduced to multiple pairs of probes which add redundant
share indices to X . Therefore, Algorithm 4 adds at most one share index per probe, where,
for each share index i of an output captured by a probe, Line 6 guaranties i ∈ X . We
emphasize that this is not true for standard PINI, where an entire output share index is
probed at once and, hence, an attacker gets combination of output probes for free.

We now show that the share indices in X are sufficient to simulate the probes PI ∪PO.
For this we compute all required intermediate values exactly as defined by the gadget
(Algorithm 3) by replacing all values vki,j , that cannot be computed by some fresh random
value. Hence, all extended probes capturing wk

i , uki,j , and vki,j can be directly computed
by construction of Algorithm 4, and probes capturing cki , or zki,j , where some share index
j 6∈ X exists, are computed by replacing the corresponding intermediate value vki,j by fresh
randomness.

This simulator results in the same output distribution for the probes PI ∪ PO as a
computation of the probes with Algorithm 3, for the following reason: All values are
computed exactly the same for both, the simulator and Algorithm 3, except for some
vki,j which are replaced by fresh random values. Let us assume we replace some vki,j with
randomness, then it holds that either i 6∈ X or j 6∈ X and a value depending on vki,j is
probed (vki,j , zki,j , or cki).

If a probe is placed directly on vki,j then j ∈ X , according to Algorithm 4, which means
i 6∈ X . Therefore, there cannot be any other probe placed on some uk

′

i,j , uk
′

j,i, vk
′

i,j , vk
′

j,i,
zk

′

i,j , zk
′

j,i, ck
′

i , or ck
′

j for all k′. However, from Property (8) and Algorithm 3 it follows that
those are the only values that can dependent on the random value rki,j , which means rki,j is
only observable through vki,j and replacing vki,j with fresh randomness does not change the

206 Randomness Optimization for Gadget Compositions in Higher-Order Masking

output distribution.
Otherwise, if a probe is placed on zki,j or cki then i ∈ X , according to Algorithm 4,

which means j 6∈ X . Therefore, there cannot be any other probe placed on some uk
′

j,i, vk
′

i,j ,
zk

′

j,i, or ck
′

j for all k′. Similar, there is at most one probe placed on uk
′

i,j , vk
′

j,i, zk
′

i,j or ck
′

i ,
with rki,j = rk

′

i,j , for all k′. Again, those are all possible values dependent on rki,j and, hence,
there is exactly one probe placed on a value depending on rki,j , which is either zki,j or cki .

Case I: Assuming there is a probe placed on zki,j , the corresponding extended probe is
{aki , vki,j , zki,j}, which contains the only values through which rki,j can be observed (with
the argumentation from above). Therefore, replacing vki,j with fresh randomness does not
change the output distribution.

Case II: Assuming there is a probe placed on cki , the only observations depending on
rki,j can be made via the extended probe of cki (with the same argumentation as above), in
particular, through the values uki,j or zki,j . If aki = 0, then it holds that zki,j = aki · vki,j = 0
independent of vki,j , which means replacing vki,j with fresh randomness is not observable.
Otherwise, if aki = 1, it holds that uki,j = (aki +1) ·rki,j = 0 independent of rki,j , which means
rki,j is only observable through vki,j and, thus, replacing this value by fresh randomness
does not change the output distribution.

Therefore, replacing some vki,j with a random value does not change the output distribu-
tion of the probes PI ∪ PO and, hence, the simulator is able to fully simulate Algorithm 3
with share indices in X , which proves Theorem 5.

We emphasize that the resulting cluster is R-PINI which requires special care when
composing gadgets belonging to different clusters. As in the case of RMO-SNI, we envision
the usage during optimization of an already-secure design, where the clusters can be
selected such that the required composition properties hold (given in Definition 15).
This transformation leads to an overall design that is at most R-PINI, and in contrast
to RMO-SNI, there is no natural way within the context of PINI to recover the PINI
properties.

4.2 Relaxed Clustering
The rules for clustering defined in Definition 15 are quite restrictive, especially as PINI
gadgets do not split any path in the simplified computation tree. Hence, even when the
defined clustering allows a high level of randomness reuse within a cluster, for most designs
only small clusters can be created. This effect is even stronger than for SNI. In addition,
we have a weakening of the resulting notion of composition. Unfortunately, as PINI does
not stop probe propagation from outside a gadget to the inside, the clustering cannot be
relaxed in the same manner for PINI-only gadgets as described in Section 3.2 for SNI.
The reason is that some gadget-unique randomness cannot hide the reusable randomness
completely at the outputs.

In the case of HPC2 gadgets, this can be fixed by adding a register layer at the output,
effectively making the gadget SNI as well. More precisely, we add some dki ← Reg[cki] to
the algorithm (as Line 18), which is then considered the output share i of the k’th gadget.
We call this gadget version HPC+

2 .
The resulting rules for clustering and randomness reuse are similar to Definition 13

and Definition 14 but integrate the considerations made so far for HPC2. As the resulting
gadget is SNI, the corresponding path is split in the simplified computation tree, and the
resulting clusters are both MO-SNI and PINI, however, at the cost of additional area and
latency. More formally, we can define the relaxed clustering of HPC+

2 gadgets as follows:

J. Feldtkeller, D.Knichel, P. Sasdrich, A. Moradi and T. Güneysu 207

Definition 17 (Relaxed Clustering of HPC+
2 Gadgets). Let T = (V, E) be a simplified

computation tree of vertices V = {G0, G1, ..., Gn−1} and edges E = {Ei,j
` | i ∈ V, j ∈

V, ` ≤ t}. A cluster of HPC+
2 gadgets is a set C ⊆ V such that:

∀{Gi, Gj} ∈ C2 | @P̄Gi,Gj

. (2)

Hence, only Property (2), which ensures independence of the gadgets within a cluster, is
required, and all other clustering properties can be dropped. For such a clustering, we can
utilize the same randomness assignment as given in Definition 14, where we additionally
ensure that randomness is only reused at the same position within different gadgets, i.e.,
Property (8).

Definition 18 (PINI-SNI-Randomness Assignment). Given a cluster C as defined in
Definition 17, for HPC+

2 gadgets Gk ∈ C random elements can be assigned arbitrarily to
Gk as long as the following conditions hold:

∀k, ∀{ri, rj} ∈ Rk | @k′ 6= k : {ri, rj} ∈ Rk
′

(5)

∀k, ∀ri ∈ R̂k | @k′ 6= k : ri ∈ R̂k
′
∨ ri ∈ Rk

′
(6)

∃i,∀j 6= i | ri,j ∈ R̂k (7)

∀{k, i, x} : rki = rx | @{k′, j}, k′ 6= k, j 6= i : rk
′

j = rx, (8)

where ri is the i’th random element overall, ri,j is a random element hiding share indices i

and j, R̂k is the set of unique randomness used for the gadget Gk, and Rk is the set of
randomness used for the gadget Gk that is potentially reused by other gadgets.

Using Definition 17 and Definition 18 together with the HPC+
2 gadget we now prove

PINI for the corresponding cluster.

Theorem 6. clusterHPC2 as defined in Algorithm 3, where Definition 18 is used as a
replacement for Definition 16 in Line 3 and an output register (dki ← Reg[cki]) is added, is
t-PINI secure in the glitch-robust model.

Proof. Assume the same simulator as used in the proof of Theorem 5, where we extend
Algorithm 4 such that X ← X ∪ {i} when there is a probe placed on dki . In particular, the
simulator computes all values exactly as specified in Algorithm 3, except for some vki,j and
the extension of dki . Without loss of generality, we assume the first t− 1 random values
assigned to each gadget are unique to this gadget, resulting in the output share index 0
being only masked with unique randomness while all other output shares being masked
with exactly one unique random value.

As before, we restrict our analysis to probes placed on wk
i , uki,j , vki,j , zki,j , cki , as other

probes only provide a subset of information. In addition, an attacker can probe an output
share index i, which reveals the set {dk′

i | ∀k′}. Again, we need to show that the above
defined simulator results in the same output distribution for the probes PI ∪ PO as the
computation of the probes with Algorithm 3 extended by the computation of dki . The only
values computed differently in the simulator and Algorithm 3 are some vki,j .

Recall, that if some vki,j is replaced by randomness, then either i 6∈ X or j 6∈ X . For
j ∈ X , the only probes that can depend on rki,j are a probe placed on vki,j (see proof of
Theorem 5) and/or a probe placed on the output share index j. Otherwise, if i ∈ X , there
is exactly one probe placed on either zki,j , or cki (see proof of Theorem 5) and/or a probe
placed on the output share index i.

Case I. Assume exactly one probe is placed on either vki,j , zki,j , or cki and no probe is
placed on the output share indices i and j. Then the output distribution of the simulator
and the gadget are equal following same argument as in the proof of Theorem 5.

208 Randomness Optimization for Gadget Compositions in Higher-Order Masking

Case II. Assume there is no probe on vki,j , zki,j , or cki , but a probe placed on the outputs
share index i. Each dk

′

i is masked by at least one random value unique to the k′-th gadget.
Removing the masking with a random value, which is unique to the gadget, requires either
one internal probe (e.g., the randomness itself) or a probe on the output share index 0.
Each dk

′

0 has t random values unique to the k′-th gadget and removing those masks requires
either one internal probe (e.g., ck

′

0), or probes placed on all output share indices (which
would require t+1 probes). Hence, removing the random behavior introduced by a random
value unique to a gadget requires at least one internal probe. In addition, each dk

′

i is
masked by up to t− 1 random values that are also used by other gadgets. Property (5)
ensures that the only value having more than one random value in common with dk

′

i

is ck
′

i (which is not probed). Therefore, removing one random value, shared with other
gadgets, requires either some internal probe (e.g., the randomness itself) or some output
share, which itself is masked by some gadget-unique randomness that requires at least one
internal probe do be removed. The output distribution only changes if the randomness
rki,j is observable through more than one output share (otherwise it is only observable
through vki,j). Removing all random behavior, except rki,j , from one output share, requires
at least t− 1 internal probes, which means an adversary has no probes left to remove the
gadget-unique randomness of some other output share. Therefore, the output distribution
equals the one corresponding to the gadget.

Case III. Assume a probe is placed on vki,j and on the output share index j. Then
dki does not reveal new information and any output share dk

′

j with rki,j = rk
′

j,i, k′ 6= k is
masked by t− 1 other random values and removing them requires t− 1 internal probes
(with the same argument as above). As only t − 2 probes are left to the adversary, rki,j
is only observable through vki,j , and replacing vki,j with randomness does not change the
output distribution.

Case IV. There is exactly one probe placed on either zki,j or cki and the output share
index i is probed. This case is similar to the last case, in that the output dki does not
reveal any additional information and all other outputs shares are masked with t− 1 other
random values and removing those requires t − 1 probes (with the same argument as
above). Again the adversary has only t− 2 probes left, which means rki,j is only observable
through vki,j and, hence, the output distribution is not changed by the simulator.

We conclude, that there exists a simulator for the probes PI ∪ PO which proves
Theorem 6.

This optimization does not change the security property of the original circuit, as the
cluster remains PINI. However, the latency and area impact is higher than using HPC2
gadgets.

4.3 Double SNI Gadgets

Of course, our optimization techniques can also be used for DoubleSNI [CS20], i.e., PINI
gadgets composed from an SNI refresh and an SNI multiplication gadget. As ultimately this
is a composition of SNI gadgets, the proceeding follows the methods outlined in Section 3,
where the resulting circuit is only PINI if the relaxed clustering with gadget-unique
randomness is used (Section 3.2).

When using the DOM multiplication gadget and the corresponding refresh gadget,
used in Section 3, PINI security follows directly from the proof of clusterDOM (given in
Section 3) and the proof of DoubleSNI (given in [CS20]).

J. Feldtkeller, D.Knichel, P. Sasdrich, A. Moradi and T. Güneysu 209

Frontend
Gadget
Placing

Randomness
Optimization

Gadget
Logic Insertion Backend

design.lo.fir

design.v

Figure 5: Structure of our MLIR-based tool for randomness optimization.

5 Implementation
To analyze the practical impact of the proposed randomness optimization, we implemented
a software tool based on the compiler framework MLIR [LAB+21]. For this, we created an
Intermediate Representation (IR) dialect, called SecFIR, which is closely related to the
FIRRTL [IKL+17] dialect of MLIR. Eventually, our tool2 allows transforming an insecure
gate-level design into a side-channel-secure one with optimized randomness reuse.

Tool Flow. The general tool structure is shown in Figure 5, where all passes can be
enabled and controlled by command-line arguments. Following a pass-based structure and
using a dedicated IR results in a flexible tool that is well equipped for further extensions
and integration into modern EDA tools. As a first step, and as part of the frontend, a
parser reads a design in FIRRTL and translates it to our internal IR (SecFIR). A FIRRTL
design can be generated from Chisel using a dedicated compiler [IKL+17] or from Verilog
utilizing Yosis [yos]. Please note, we currently support designs consisting of a single module
with registers and Boolean operators, i.e., a gate-level netlist. Afterward, as a second step
within the frontend, multiple passes are applied sequentially to prepare the design for
masking and optimization. This includes a transformation of combinational logic to an
XOR-AND Graph (XAG), i.e., a logic only consisting of XOR, AND, and NOT gates. At
its core, our tool consists of three passes performing the actual masking and randomness
optimization before a backend pass outputs a protected design in Verilog.

5.1 Gadget Placing
The first pass identifies positions within the design where side-channel secure gadgets
need to be placed. Precisely, nonlinear AND gates are replaced by masked gadgets and
refreshing gadgets are inserted where necessary, while linear gates (i.e., XOR and NOT)
remain unaffected. As discussed before, we either support DOM [CGLS21] (cf. Section 3)
or HPC2 gadgets [CGLS21] (cf. Section 4), targeting different notions of composition and
impacting the performance and properties of the resulting design.

Probing Security. When composing for probing security as the final security notion, we
replace all AND gates with DOM multiplication gadgets. Then additional DOM refresh
gadgets are added where required according to the tightPROVE algorithm [BGR18].

Strong Non-Interference. For SNI, we again replace all AND gates with DOM multi-
plication gadgets. However, afterward, we insert DOM refresh gadgets for all gates with
fan-out larger than one, namely one refresh gadget for all but one fan-out. This ensures
that the design is NI, as shown by Barthe et al. [BBD+16] (share-wise implementations of
XOR and NOT are NI). To ensure SNI, Barthe et al. add an SNI refresh layer on either
the input or the output of the considered circuit. As we know the internal structure of the
design, we can do this in a slightly optimized fashion by ensuring that there is no path

2Available at https://github.com/Chair-for-Security-Engineering/SAIREDA

https://github.com/Chair-for-Security-Engineering/SAIREDA

210 Randomness Optimization for Gadget Compositions in Higher-Order Masking

from an input to an output in the simplified computation tree. This can be ensured by
inserting one SNI refresh gadget when necessary, i.e., only on paths where no SNI gadget
already exists. This is sufficient to remove the dependency between input and output and,
hence, to ensure SNI.

Probe Isolating Non-Interference. Lastly, our tool supports two different methods to
achieve PINI-secure designs. The first method replaces all AND gates with DoubleSNI
gadgets, i.e., an DOM refresh gadget followed by an DOM multiplication gadget [CS20].
For the second method, the tool replaces all AND gates with HPC2 gadgets. PINI is
invariant under composition [CS20]. Hence, since DoubleSNI and HPC2 gadgets offer
composability under the notion of PINI and the trivial, i.e., share-wise, implementations
of linear functions (XOR and NOT) offer the same, the resulting composed circuits are
PINI-secure designs as well.

5.2 Randomness Optimization
The second pass optimizes the use of randomness across gadgets. For this, we first
determine appropriate clusters of gadgets and then optimize the randomness usage within
each such cluster, as outlined in Section 3 and Section 4. Note, that the gadgets we use all
have the same initial requirement of randomness, namely m = t(t+1)

2 random elements per
gadget.

5.2.1 Clustering Gadgets

Naturally, the algorithm assigning gadgets to different clusters impacts the overall result
of the optimization pass. Intuitively, larger clusters allow more sharing of randomness and,
hence, provide more efficient solutions (more details are given in Section 6). It is, therefore,
desirable to include as many gadgets as possible in one cluster, which in itself is a non-trivial
optimization problem, that is highly dependent on the design structure. For example,
a clear hierarchical design, with many parallel paths in the simplified computation tree,
allows for larger clusters than a design structure with strong interdependencies between
gadgets. Moreover, when considering the combination of differently-sized clusters, it is not
clear that optimizing each cluster yields a global optimum. Sometimes, creating multiple
medium-sized clusters instead of a single large and plenty of small clusters may result in a
better solution. Hence, given these constraints, the complexity of the original optimization
problem increases.

Our implementation is rooted in the simple but heuristic approach of going through
the gadgets one by one (in order of the design specification) and assigning them to the
first suitable cluster. If no such cluster exists, the algorithm creates a new one. For
this, we determine gadgets that obey the clustering rules outlined before, leveraging a
simple information flow analysis. Here, SNI gadgets stop the backtracking through the
computation tree, while for all other gates (including PINI gadgets), the search continues
with all inputs or outputs, in accordance with the simplified computation tree.

5.2.2 Randomness Assignment

After achieving clustering, finding efficient randomness assignments within a single cluster
of gadgets poses an additional optimization problem. For this, we present three different
optimization algorithms: (i) a heuristic algorithm for DOM gadgets, (ii) a heuristic
algorithm for HPC2 gadgets, and (iii) a Satisfiability Modulo Theories (SMT) solver
based algorithm for DOM gadgets. Further, in cases where gadgets require some unique
randomness (i.e., in case of relaxed clustering), we first assign those unique random values
and then run the assignment algorithms for the remaining fresh randomness only.

J. Feldtkeller, D.Knichel, P. Sasdrich, A. Moradi and T. Güneysu 211

Algorithm 5: Heuristic randomness-assignment algorithm for DOM gadgets.
1 function HeuristicDOM(C):

Require: n = |C| ≥ 2
2 m̂← m = t(t+1)

2
3 R0 ← 〈r0, . . . , rm−1〉
4 for k = 1 to n− 1 do
5 for i = 0 to m̂ do
6 Rk ← ri

7 for j = i + 1 to m̂ do
8 if {R0, . . . ,Rk−1,Rk ∪ rj} fulfills Property (5) then
9 Store state of algorithm

10 Rk ←Rk ∪ rj

11 if |Rk| = m then
12 Continue with next gadget (Line 4)
13 if j = m̂− 1 then
14 Return to last stored state in algorithm (Line 9)

15 if i = m̂− 1 then
16 m̂← m̂ + 1
17 Start again with same gadget (Line 5)

18 return {R0, . . . ,Rn−1}

Heuristic DOM Algorithm. The first algorithm is outlined in Algorithm 5 and finds a
randomness assignment following the rules from Definition 14, i.e., a distribution where no
two gadgets share more than one random element. Here, we first initialize the number
of available random elements m̂, the number of randomness each gadget requires, and
assign the first m random elements to the first gadget. Afterward, we iteratively search
for an assignment Rk, that together with the already found assignments, does not violate
Definition 14. If no such assignment can be found, the number of available random elements
m̂ is incremented.

Heuristic HPC2 Algorithm. The second algorithm has the same working principle as
the first. However, in order to follow the rules from Definition 18, it is necessary to keep
track of the cross domains at which a random element is used. Hence, when searching
for a new random element at position i, i.e., for a certain cross-domain of a gadget, the
algorithm only needs to search in the set of random elements already used at position i.
This reduces the search space, which in turn makes the search more efficient. If no valid
assignment for position i exists, the algorithm assigns a random element to this position
that is not already part of any previous assignments.

SMT-based DOM Algorithm. The last algorithm uses the SMT solver Z3 [dMB08] and
returns either a valid assignment of m̂ random elements for n gadgets, or false if no
such assignment exits. We encode the rule of Definition 14 with two sets of Boolean
variables, where uk,i = 1 indicates that the random element ri is used in the gadget Gk,
and sk,k′,i = 1 indicates that the gadgets Gk and Gk′ share the random element ri, for
0 ≤ k, k′ < n and 0 ≤ i < m̂. Further, we use three constraints to ensure that each gadget
has m random elements assigned (Equation (9)), and each pair of gadgets only shares at

212 Randomness Optimization for Gadget Compositions in Higher-Order Masking

most one random element (Equation (10) and Equation (11)).

0 ≤ k < n :
m̂−1∑
i=0

uk,i = m (9)

0 ≤ k < k′ < n :
m̂−1∑
i=0

sk,k′,i ≤ 1 (10)

n−1∧
k=0

n−1∧
k′=k+1

m̂−1∧
i=0

(uk,i ∧ uk′,i ∧ sk,k′,i) ∨ (uk,i ∧ uk′,i ∧ sk,k′,i) (11)

To solve the optimization problem this approach starts by requesting a solution with m
random elements and increases the number of random elements until the solver returns a
valid assignment. In theory, this algorithm returns an optimal solution, however, it may
take a long time to find it. In order to make the application practicable, we set a timeout
for the SMT solver of 5 minutes, after which it continues with a higher number of random
elements. Hence it is not guaranteed that the found solution is optimal but well enough to
serve as a baseline for comparison. We determined the timeout experimentally to keep the
timing practical while still achieving good results.

5.3 Gadget Logic Insertion
Finally, the last pass replaces the gadget instructions with the actual logic of the cor-
responding gadget for a given security order t. In addition, the transformation pass
replaces all XOR gates with a share-wise XOR and all NOT gates with an inversion of the
corresponding first share. Hence, the result is a masked design adhering to the specified
order and security notion.

6 Evaluation
In the following, we first evaluate the general effectiveness of the outlined strategies
for randomness reduction before considering concrete, real-world implementations of
cryptographic designs.

6.1 Randomness-Distribution Algorithms
Given the randomness assignment rules for RMO-SNI and R-PINI, as defined in Defini-
tion 12 and Definition 16 respectively, there is no closed formula for the optimal number
of required randomness. Instead, we compare the randomness requirements identified by
the three algorithms described in Section 5.2.2 and the standard state-of-the-art assign-
ment, as shown in Figure 6a (exemplarily for clusters of 3rd order gadgets). While the
standard assignment has a linear slope, the outlined optimization strategies only increase
logarithmically, resulting in a significant reduction for larger clusters. However, dealing
with randomness assignment within the relaxed clustering, we further notice that, even
though the same algorithms are used for the random elements shared between gadgets,
the number of gadget-unique randomness increases linearly with the number of gadgets,
dominating the requirement. This results in a nearly-linear increase for the overall required
randomness, as shown in Figure 6b (again, exemplarily for clusters of 3rd-order gadgets).
Hence, much larger clusters are required to have a comparable reduction to the strict
clustering.

When comparing the three assignment algorithms for different cluster sizes, we notice
that both algorithms for DOM gadgets provide similar results for the amount of randomness.

J. Feldtkeller, D.Knichel, P. Sasdrich, A. Moradi and T. Güneysu 213

DOM SMT DOM Heuristic HPC2 Heuristic Standard

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
0

50

100

150

Number of Gadgets n

B
it
s
of

R
an

do
m
ne
ss

m̂

(a) 3rd Order (strict clustering)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
0

50

100

150

Number of Gadgets n

B
it
s
of

R
an

do
m
ne
ss

m̂

(b) 3rd Order (relaxed clustering)

Figure 6: Randomness requirements for clusters of different sizes. The numbers are
determined by the three algorithms described in Section 5.2.2 and the standard assignment,
where all gadgets get unique randomness only.

In contrast, the third algorithm, specifically targeting HPC2, results in a slightly higher
randomness requirement due to the additional constraint with regards to cross domains.
However, according to the graphics shown in Figure 6, we can conclude that both heuristic
algorithms also result in near-optimal assignments while simultaneously being orders of
magnitude faster, as shown in Table 2.

6.2 Real-World S-boxes

The results shown in Figure 6 indicate a clear reduction in the amount of fresh randomness
for large clusters; however, up to now, it remains unclear to which extend clusters can be
created in practical designs. Hence, to evaluate the impact of our randomness optimization
for practical designs, we selected multiple cryptographic S-boxes commonly considered for
side-channel secure implementations. Namely, we analyze S-boxes of PRESENT [BKL+07],
Keccak [BDPvA11], PRINCE [BCG+12], and two variants of AES [Can05, BP12]. More
precisely, we use implementations that are optimized for masking in the sense that each
construction requires a minimal amount of cascaded multiplication gadgets [CGLS21, BP12].
Further, we consider the security orders t = 2, 3, 4 for each case study while applying the
four strategies for gadget placing discussed in Section 5.1 for both the strict and relaxed

214 Randomness Optimization for Gadget Compositions in Higher-Order Masking

Table 2: Execution time for the three algorithms described in Section 5.2.2 running on a
system with a 2.6 GHz CPU and 32 GB RAM. Values are given in milliseconds, seconds,
and minutes for easier comprehension.

2nd Order 3rd Order 4th Order

n = 10 n = 15 n = 10 n = 15 n = 10 n = 15

DOM SMT 10.515 ms 30.541 ms 106.759 ms 140.971 ms 343.838 ms 446.273 ms
DOM Heuristic 0.106 ms 0.153 ms 8.158 ms 15.465 ms 5.594 s 21.857 s
HPC2 Heuristic 0.106 ms 0.139 ms 0.910 ms 1.136 ms 126.245 ms 156.870 ms

Table 3: Optimization opportunities for cryptographic S-boxes, using the strict and relaxed
clustering methods with different gadget-placing strategies (Section 5.1). Here, t indicates
the security order, and n the number of multiplication and refresh gadgets, while Std and
Opt refer to without and with optimization, respectively, and Red gives the reduction of
randomness in percent.

Probing Security SNI PINI - DoulbeSNI PINI - HP C2

t n Std Opt Red n Std Opt Red n Std Opt Red n Std Opt Red

P
R

E
SE

N
T

[CGLS21] 2 4 12 11 8.3% 6 93 51 45.2% 8 24 17 29.2% 4 12 11 8.3%
strict* 3 4 24 23 4.2% 6 186 136 26.9% 8 48 41 14.6% 4 24 23 4.2%

4 4 40 39 2.5% 6 310 260 16.1% 8 80 73 8.8% 4 40 39 2.5%

[CGLS21] 2 4 12 10 16.7% 7 93 69 25.8% 8 24 18 25.0% 4 12 10 16.7%
relaxed 3 4 24 22 8.3% 7 186 133 28.5% 8 48 36 25.0% 4 24 22 8.3%

4 4 40 38 5.0% 7 310 237 23.5% 8 80 68 15.0% 4 40 38 5.0%

K
ec

ca
k

[BDPvA11] 2 5 15 11 26.7% 5 45 21 53.3% 10 30 14 53.3% 5 15 8 46.7%
strict* 3 5 30 26 13.3% 5 90 60 33.3% 10 60 40 33.3% 5 30 21 30.0%

4 5 50 46 8.0% 5 150 120 20.0% 10 100 80 20.0% 5 50 40 20.0%

[BDPvA11] 2 5 15 12 20.0% 5 45 33 26.7% 10 30 22 26.7% 5 15 11 26.7%
relaxed 3 5 30 26 13.3% 5 90 66 26.7% 10 60 44 26.7% 5 30 23 23.3%

4 5 50 46 8.0% 5 150 120 20.0% 10 100 80 20.0% 5 50 41 18.0%

P
R

IN
C

E

[CGLS21] 2 6 18 17 5.6% 8 108 48 55.6% 12 36 24 33.3% 6 18 18 0.0%
strict* 3 6 36 35 2.8% 8 216 132 38.9% 12 72 56 22.2% 6 36 36 0.0%

4 6 60 59 1.7% 8 360 272 24.4% 12 120 104 13.3% 6 60 60 0.0%

[CGLS21] 2 6 18 14 22.2% 10 108 78 27.8% 12 36 27 25.0% 6 18 14 22.2%
relaxed 3 6 36 29 19.4% 10 216 151 30.1% 12 72 53 26.4% 6 36 29 19.4%

4 6 60 53 11.7% 10 360 260 27.8% 12 120 95 20.8% 6 60 53 11.7%

A
E

S

[Can05] 2 40 120 87 27.5% 29 492 114 76.8% 80 240 101 57.9% 40 120 116 3.3%
strict* 3 40 240 207 13.8% 29 984 284 71.1% 80 480 257 46.5% 40 240 236 1.7%

4 40 400 367 8.2% 29 1640 622 62.1% 80 800 516 35.5% 40 400 396 1.0%

[BP12] 2 34 102 85 16.7% 28 486 123 74.7% 68 204 108 47.1% 34 102 95 6.9%
strict* 3 34 204 187 8.3% 28 972 303 68.8% 68 408 275 32.6% 34 204 197 3.4%

4 34 340 323 5.0% 28 1620 664 59.0% 68 680 531 21.9% 34 340 333 2.1%

[Can05] 2 40 120 90 25.0% 46 492 337 31.5% 80 240 167 30.4% 40 120 83 30.8%
relaxed 3 40 240 180 25.0% 46 984 597 39.3% 80 480 309 35.6% 40 240 155 35.4%

4 40 400 322 19.5% 46 1640 913 44.3% 80 800 495 38.1% 40 400 246 38.5%

[BP12] 2 34 102 79 22.5% 42 486 333 31.5% 68 204 146 28.4% 34 102 72 29.4%
relaxed 3 34 204 165 19.1% 42 972 589 39.4% 68 408 282 30.9% 34 204 141 30.9%

4 34 340 301 11.5% 42 1620 901 44.4% 68 680 481 29.3% 34 340 235 30.9%
*Design results in weaker composability notion (RMO-SNI or R-PINI).

J. Feldtkeller, D.Knichel, P. Sasdrich, A. Moradi and T. Güneysu 215

clustering methods. The results are presented in Table 3.3
We first observe that for most of the designs, we achieve a significant reduction in the

amount of required fresh randomness while implementations with high initial randomness
requirements benefit the most. The only design where our method results in no optimization
at all is the PRINCE S-box when selecting strict clustering and HPC2 gadgets, due to a
design structure without any parallelism and, hence, no clusters following Definition 15.
Contrary, the Keccak S-box has a mostly parallel structure, allowing significant reduction
even with HPC2 gadgets. In terms of optimization opportunities, the SNI composition
strategy performs best, with up to 76.8% for the 2nd-order AES implementation. This large
reduction can be achieved due to the high number of available gadgets (SNI composition
requires by far the highest number of gadgets) and the SNI-specific clustering rules (i.e., the
independence property of inputs and outputs). However, even this gain cannot compensate
for the high initial randomness demand and, hence, even when optimized, the randomness
requirements remain larger than that of the probing secure and HPC2 standard variants.
However, this also means that the composition of SNI gadgets initially contains the most
(unnecessary) overhead in terms of randomness. The lowest randomness requirement is
generally achieved by the relaxed clustering in combination with HPC2 (with additional
output registers). This also achieves the strongest notion of composition, i.e., both SNI
and PINI. However, the implementation achieving probing security without the need for
additional registers is nearly as effective, but the final result does not adhere to any notion
of composition. Nevertheless, this is a viable option for a cipher implementation where
every component is only used once and where no feedback loops exist.

Besides, when comparing the strict and relaxed clustering methods, none of them
consistently results in the lowest number of random elements. While the strict clustering
method always outperforms the relaxed clustering in an SNI-composition or DoubleSNI
implementation, the situation is nearly vise versa for probing security and implementations
composed from HPC2. We also observe a decrease of optimization potential with increasing
security order in the strict version, while the opportunities can also increase in the relaxed
version. The reason for this is a fixed set of clusters across security orders, providing
less randomness reuse opportunities without violating the requirement that each pair of
gadgets is not allowed to share more than one random element. The relaxed clustering has
the same requirement; however, with increasing security order, the number of reusable
random elements increases proportionally to the set of gadget-unique elements.

6.3 Parallel S-box Structures
Hardware implementations often use parallel structures to trade area for performance. The
same holds for cryptographic ciphers, where often multiple S-box instances are implemented
in parallel. Such parallel structures are a natural fit for the optimization strategies presented
in this work, and we, therefore, extend our analysis of the AES S-box [BP12] for various
levels of parallelism4. In Figure 7, we show the proportion of the used randomness in the
optimized case with respect to the unoptimized variant, i.e., where every gadget receives
unique fresh randomness and where there is no cross-gadget randomness re-usage. For the
strict clustering (Figures 7a to 7c), the optimization opportunities increase significantly with
each additional parallel S-box instance. More precisely, the results indicate a logarithmic
increase in the number of random elements that can be removed with each additional S-box
instance. This means that adding only a few parallel structures can already result in huge
gains. In contrast, the gain is much smaller for the relaxed clustering (Figures 7d to 7f)

3Excluding the area required for the generation of fresh randomness, our optimization has no impact
on the required area or latency of the design, except for the relaxed clustering in combination with HPC2,
where we require n · t additional registers compared to the usual HPC2 gadget composition.

4Parallel structures of smaller S-boxes result in a similar, but slightly less pronounced behavior as the
analyzed AES S-box and we omit the corresponding data for brevity.

216 Randomness Optimization for Gadget Compositions in Higher-Order Masking

PINI - HPC2 Probing Security PINI - DoubleSNI SNI

1 2 4 8 16
0

0.5

1

Number of Sboxes

R
an

do
m
ne
ss

U
sa
ge

(a) 2rd Order AES

1 2 4 8 16
0

0.5

1

Number of Sboxes

(b) 3rd Order AES

1 2 4 8 16
0

0.5

1

Number of Sboxes

(c) 4rd Order AES

1 2 4 8 16
0

0.5

1

Number of Sboxes

R
an

do
m
ne
ss

U
sa
ge

(d) 2rd Order AES

1 2 4 8 16
0

0.5

1

Number of Sboxes

(e) 3rd Order AES

1 2 4 8 16
0

0.5

1

Number of Sboxes

(f) 4rd Order AES

Figure 7: Proportion of used random elements when optimized compared to the standard
variant in parallel implementations of the AES S-box. The first row shows the results
corresponding to the strict clustering while the second row to the relaxed clustering.

as a large portion of random elements are used uniquely by one gadget. Interestingly,
the gain is nearly constant in the 2nd-order case but improves with increasing security
order due to the rise in the amount of reusable random values. This indicates that the
(unnecessary) overhead caused by gadget composition in terms of randomness accumulates
and impairs with increasing security order.

The difference between the strict and relaxed clustering methods is even more obvious
when considering absolute numbers. In Figure 8, we show the randomness requirement per S-
box when implementing multiple instances in parallel. For strict clustering (Figures 8a to 8d)
the significant reduction from Figure 7 translates to numbers that match or surpass the
randomness requirements of a standard 1st-order implementation in some cases. For
the relaxed clustering (Figures 8e to 8h), we observe a nearly constant requirement for
2nd-order, and a logarithmic behavior for 3rd- and 4th-order security, which indicates that
higher-order security converges to a randomness requirement higher than the 1st order.

6.4 Full AES Cipher
Finally, we analyze a complete AES-128 implementation to evaluate the optimization
opportunities over multiple rounds, including permutation layers. In Table 4, we show the
number of required randomness for an unrolled AES implementation, where the S-box is
implemented either using the version of Canright [Can05], or Boyar and Peralta [BP12].
For the implementation using the Canright S-box, the tightPROVE algorithm [BGR18] did
not finish within 48 hours, after which we canceled the computation.

For the strict clustering in combination with 4th order SNI composition, the randomness-
assignment algorithm (Algorithm 5) did not finish within 7 days (most of the other
configurations finished within minutes, others within hours). Hence, we introduced a

J. Feldtkeller, D.Knichel, P. Sasdrich, A. Moradi and T. Güneysu 217

1st Order 2nd Order 3rd Order 4th Order

x-Axis: Number of Sboxes y-Axis: Number of Random Bits

1 2 4 8 16

100

200

300

400

500

600

(a) Probing Security

1 2 4 8 16

100

200

300

400

500

600

(b) SNI

1 2 4 8 16

100

200

300

400

500

600

(c) DoubleSNI

1 2 4 8 16

100

200

300

400

500

600

(d) HP C2

1 2 4 8 16

100
200
300
400
500
600
700
800

(e) Probing Security

1 2 4 8 16

100
200
300
400
500
600
700
800

(f) SNI

1 2 4 8 16

100
200
300
400
500
600
700
800

(g) DoubleSNI

1 2 4 8 16

100
200
300
400
500
600
700
800

(h) HP C2

Figure 8: Randomness requirements per S-box (in average) when implementing multiple
AES S-box instances in parallel. The first row shows the results corresponding to the strict
clustering while the second row to the relaxed clustering. The data corresponding to 1st
order is drawn from the standard randomness assignment and shown for comparison.

maximum cluster size of 1750 gadgets, leading to a randomness-assignment time of roughly
55 hours. This results in an optimization/time trade-off since larger clusters allow better
optimization but require more time.

In general, we see that strict clustering works much better than relaxed clustering,
except for compositions using HPC2 gadgets. This is in contrast to the already discussed
data from smaller designs, where the best clustering method was more dependent on the
overall structure and used composition strategy. The reason is that while the randomness
reduction opportunities increase with the cluster size, the number of required unique
randomness increases with the number of gadgets. SNI gadgets remove dependencies in the
simplified computation tree and, hence, a higher number of SNI gadgets generally results
in larger clusters. However, even as the relaxed clustering results in larger clusters than the
strict clustering, the difference is not large enough to compensate for the required unique
randomness. The reverse is true when using HPC2 gadgets since PINI does not remove
any dependencies and, hence, more gadgets do not necessarily increase the cluster size. In
fact, due to the permutation layer of AES, nearly all gadgets depend on all other gadgets,
resulting in an average cluster size of 1.2 gadgets. In contrast, HPC2 in combination with
relaxed clustering can leverage the SNI property of HPC+

2 .
Interestingly, the Canright S-box, in combination with strict clustering and DoubleSNI

gadgets, achieves the best result, highlighting the fact that the most efficient implementa-
tion, in terms of area and latency, is not necessarily best suited for optimizing randomness.

218 Randomness Optimization for Gadget Compositions in Higher-Order Masking

Table 4: Randomness requirements in number of bits for AES-128 (without key schedule)
for different optimization strategies.

Probing Security SNI PINI - DoulbeSNI PINI - HP C2

t Std Opt Std Opt Std Opt Std Opt

st
ri
ct

[Can05]∗ 1 † N/A 31 712 N/A 12 800 N/A 6 400 N/A
2 † † 95 136 2 596 38 400 2 169 19 200 16 782
3 † † 190 272 6 205 76 800 5 235 38 400 34 860
4 † † 3 171 120 13 302?? 128 000 10 405 64 000 59 388

[BP12]∗ 1 5 440 N/A 31 392 N/A 10 880 N/A 5 440 N/A
2 16 320 2 329 94 176 2 389 32 640 2 725 16 320 14 250
3 32 640 5 822 188 352 5 731 65 280 6 713 32 640 29 559
4 54 400 12 483 313 920 11 927?? 108 800 14 204 54 400 50 286

re
la
xe
d

[Can05]∗ 1 † N/A 31 712 N/A 12 800 N/A 6400 N/A
2 † † 95 136 63 446 38 400 25 612 19 200 12 803
3 † † 190 272 97 064 76 800 39 382 38 400 19 636
4 † † 3 171 120 131 499 128 000 53 578 64 000 29 270

[BP12]∗ 1 5 440 N/A 31 392 N/A 10 880 N/A 5 440 N/A
2 16 320 10 898 94 176 62 806 32 640 21 775 16 320 10 886
3 32 640 17 159 188 352 96 067 65 280 33 634 32 640 16 903
4 54 400 23 791 313 920 130 142 108 800 45 943 54 400 25 165

∗Referenced S-box is embedded in an unrolled AES-128; † tightPROVE did not finish in 48h.
??Maximum cluster size restricted to 1750 gadgets.

The most efficient implementation, considering area or latency, results from the Boyar
and Peralta S-box, in combination with the probing-secure composition or HPC2 gadgets,
respectively. However, those implementations have a higher 1st-order randomness demand
than the best-optimized 3rd-order implementation. The best optimization of the version
using the Boyar and Peralta S-box is achieved by the combination of strict clustering with
the composition achieving probing security via the tightPROVE algorithm for 2nd-order
security and the SNI composition for 3rd- and 4th-order security.

6.5 Experimental Analysis
For the sake of completeness in assessing the security of our optimized construction, we
further performed experimental analysis by conducting a leakage assessment on SCA traces
measured from an FPGA prototype. To this end, and in order to be consistent with the
state-of-the-art, we mainly followed the procedure explained by Knichel et al. [KMMS22].
More precisely, we implemented our designs on an SCA-evaluation toolkit board and
measured the power consumption traces when the target design was fed with either fixed
or random input (in both cases, masked inputs). Then, we analyzed the collected 100
million traces with fixed-versus-random t-tests in both univariate and multi-variate forms
for first and higher orders.

As the setup, we used a SAKURA-X [HKSS12], where a Kintex-7 FPGA is embed-
ded. The measurements of the power consumption traces were conducted with a digital
oscilloscope at the sampling rate of 500MS/s and an FPGA clocked at a frequency of
3MHz. For this case study, we analyzed the 2nd-order design consisting of 16 parallel
AES S-boxes with relaxed clustering in combination with HPC2 gadgets. This represents
the entire SubBytes operation suitable for a round-based implementation of the AES
encryption. The design requires 1092 fresh random bits and has a latency of 8 clock cycles.
Hence, we again followed Knichel et al. [KMMS22] for an FPGA-friendly implementation

J. Feldtkeller, D.Knichel, P. Sasdrich, A. Moradi and T. Güneysu 219

0 1 2 3 4 5
Time [s]

P
ow

er

(a) A sample trace

0 1 2 3 4 5
Time [s]

-4

-2

0

2

4

t-
st

at
is

tic
s

(b) 1st-order t-test

0 1 2 3 4 5
Time [s]

-4

-2

0

2

4

t-
st

at
is

tic
s

(c) 2nd-order t-test

0 1 2 3 4 5
Time [s]

0

5

10

t-
st

at
is

tic
s

(d) 3rd-order t-test

0 1 2 3 4 5
Time [s]

0

1

2

3

4

5

T
im

e
[

s]

1

2

3

4

t-
st

at
is

tic
s

(e) 2nd-order multi-variate t-test

Figure 9: Experimental analysis, fixed-versus-random t-test, of 2nd-order 16 parallel AES
S-boxes with relaxed clustering in combination with HPC2 gadgets, using 100 million
traces.

of a 31-bit Linear Feedback Shift Register (LFSR) for each required fresh random bit,
updated at every clock cycle. A sample power trace (covering the entire 8 clock cycles)
and the result of t-tests are depicted in Figure 9. The results indeed confirm our claim, i.e.,
security up to 2nd order. More precisely, our optimization methods, re-using randomness
between gadgets, do not degrade the security order. Note that for the univariate t-tests,
we continued the analyses up to the 3rd-order. However, as 3rd-order leakage is already
detected in the univariate t-test, we did omit the univariate analyzes for 3rd-order.

7 Related and Future Works
To the best of our knowledge, this is the first work elaborating global randomness opti-
mization for side-channel-secure gadget compositions through cross-gadget randomness
re-usage targeting hardware. Existing work analyses randomness reduction in software
through different means as described below. We give a quantitative comparison based on

220 Randomness Optimization for Gadget Compositions in Higher-Order Masking

Table 5: Comparison of randomness requirements for AES-128 with different optimization
techniques for software (S) and hardware (H) implementations.

Bits of Randomness

t = 1 t = 2 t = 3 t = 4 S/H Base Approach

[RP10] 7 680 23 040 46 080 76 800 S - Hand-crafted
[Can05]* 6 400 19 200 38 400 64 000 S,H - Tower field, PINI
[BP12]* 5 440 16 320 32 640 54 400 S,H - Depth reduction, PINI

[BBP+16] 7 680 20 480 40 960 64 000 S [RP10] Optimized gadgets
[BGR18] 5 440 16 320 32 640 54 400 S,H [BP12] Gadget reduction, SNI
[WGS+20] 3 456 9 088 16 896 26 880 S [RP10] Multiple-operation gadgets
[FPS17] 16 3 984 7 968 27 888 S [RP10] Randomness reuse
This work N/A 2 329 5 822 12 483 H [BP12] Randomness reuse
This work N/A 2 169 5 235 10 405 H [Can05] Randomness reuse
[CGZ20] N/A 384 864 1 536 S [RP10] Randomness expansion
*Referenced S-box is masked using HPC2 gadgets and embedded in an unrolled AES-128.

an AES-128 implementation without key schedule in Table 5. As a baseline for comparison,
we use the standard masked software implementation from Rivain and Prouff [RP10] and
two unrolled hardware versions using the S-box implementations from Canright [Can05]
and Boyar and Peralta [BP12], both with HPC2 gadgets [CGLS21] for side-channel security.

Gadget Reduction. In the first line of research, Belaïd et al. [BGR18] reduce the number
of SNI-refresh gadgets required to achieve probing security. The proposed algorithm
tightPROVE either verifies probing security or indicates positions within the circuit where
SNI-refresh gadgets are required. We evaluated the combination of tightPROVE with our
approach in Section 6. The introduction of PINI [CS20] can also be seen as a contribution
in this direction, as it allows a trivial implementation of linear gadgets, removing the need
for SNI-refresh gadgets entirely. PINI gadgets are used to derive the two baseline hardware
implementations in Table 5.

Gadget Optimization. Gadgets themselves can be optimized with regard to randomness
as well. Belaïd et al. [BBP+16] analyze the theoretical minimum of required randomness
for a t-order probing-secure multiplication gadget (t + 1 bit for t ≥ 3, and t bit otherwise)
and give concrete instances for t = 2, 3, 4. In addition, they provide a multiplication gadget
for arbitrary order that requires t2

4 + t random bits when t is even and t2−1
4 + t random

bits when t is odd, compared to t(t+1)
2 random bits for the DOM gadget. However, their

gadgets are only NI instead of SNI, and special care needs to be taken when composing
them. Similarly, Cassiers and Standaert present a PINI gadget with a reduced randomness
requirement for higher-order masking [CS19]. Their gadget requires b t

2

4 c + 2t + 1 bits
of randomness instead of t(t+1)

2 bits for HPC2, which is beneficial for t ≥ 7. We omit
this work in Table 5 as it is not beneficial for the compared security orders. Wang et
al. [WGS+20] construct gadgets that perform multiple multiplications in parallel and
thus are able to optimize the gadget even further based on randomized linear codes.
For n parallel multiplications their scheme requires 2t2 + t(t+1)

2 random bits, however,
the resulting gadget supports a weaker composability notion than MO-SNI (similar but
not equivalent to RMO-SNI). Currently, there exists no glitch-robust version of those
randomness-reduced gadgets, and, hence, the cost in terms of area and latency is yet
unknown.

We expect our approach to also apply to gadgets with reduced randomness requirements
but leave a thorough analysis for future work.

J. Feldtkeller, D.Knichel, P. Sasdrich, A. Moradi and T. Güneysu 221

Global Randomness Reuse. The work most similar to ours was provided by Faust et
al. [FPS17], in which they also reuse randomness in different gadgets. For this, they
introduce a new composability notion (Secure with Common Randomness (SCR)), where
randomness can be shared entirely between gadgets (or blocks of gadgets), however,
requiring independent inputs and only achieving NI. Hence, additional refreshing is
required. To fulfill SCR, they construct a new multiplication gadget based on non-
completeness. The resulting t-order gadget requires b t2c

2 +b t2c+1 shares for t > 3 and t+1
shares otherwise. In addition, t·n2 + n random elements are required. Again, there exists no
glitch-robust version yet, and, hence, the cost in terms of area and latency is unknown. In
contrast, we rely on the widely used DOM and HPC2 gadgets without additional refreshing,
however, also introduce more complex rules.

In addition, and in contrast to our work, they also analyzed the special case of t = 1
and provided a scheme for 1st-order security of arbitrary circuits with only two random
elements. For this, all gadgets need to be adapted, including linear ones. Please note,
that their AES implementation is based on F28 , resulting in 16 bits of randomness. In
theory, an implementation based on F2 could achieve 1st-order security with only 2 bits of
randomness.

Randomness Expansion. All the above methods (including ours) focus on reducing the
number of random elements used to refresh the intermediate values of the computation.
Ishai et al. [IKL+13] added an entirely different layer to the analysis by including the quality
of randomness, stating that not all required randomness needs to be true randomness.
By introducing a locality parameter `, which indicates the maximum number of random
elements any wire depends on, they observe that security is given if all subsets of ` · t
random elements are uniformly and independently distributed. Hence, the quality of the
randomness can be reduced to (` · t)-wise independent pseudo randomness, as long as the
Pseudo-Random Number Generator (PRNG) is secure against a t-probing attack, i.e., is
robust. To reduce the locality of a design, they introduce a locality refreshing placed after
each multiplication gadget, achieving a locality of ` = O(t2) and a total true-randomness
requirement of Õ(t3+ε). We omit this work in Table 5 as they do not provide concrete
numbers for an AES-128 implementation. This approach was further improved by Coron
et al. [CGZ20] in two steps: (i) They reduce the locality of any given private circuit to
` = O(t) by doing gadget-internal locality refreshing. (ii) They use multiple PRNGs
instead of one, effectively removing the requirement for the robustness of the PRNG
and reducing the locality with respect to a single PRNG to ` = O(1). In combination,
this reduces the number of required true randomness to Õ(t2). Only recently, Goyal et
al. [GIS22] further improved the asymptotic randomness requirement of private circuits
to Õ(t) by shifting the view from secret sharing to masking of values carried by wires.
However, this approach increases the circuit size from O(t2s) to O(t3s), where s is the size
of the original (unprotected) circuit. Again, we omit this work in Table 5 as no concrete
numbers for an AES-128 implementation are provided.

Arguably, this line of research establishes the state-of-the-art when it comes to the
reduction of required true randomness of a complete design. More specific, our work requires
roughly 6× more randomness than Coron et al. [CGZ20] for an AES-128 implementation.
However, we see this line of research as orthogonal to our work in that it reduces the
number of random elements that can influence any given set of probes. In contrast, our
work shows that not all randomness influencing a set of probes need to be independent.
Therefore, we expect additional gains when combining inter-gadget randomness sharing
with locality reduction and randomness expansion but leave this for future work.

Future Work. In this work, we analyzed optimization opportunities in a spatial dimension
only, i.e., optimizing the randomness required to evaluate a single input once by each

222 Randomness Optimization for Gadget Compositions in Higher-Order Masking

hardware component. When using a round-based implementation or processing multiple
inputs, a fresh set of random values is required. Hence, a natural extension of our work
is an optimization across rounds or inputs, essentially adding the dimension of time to
the optimization. With regards to gadgets, the focus of this work lies on the widely used
DOM and HPC2 gadgets, which both require the same amount of randomness. We believe
our rules to be applicable also to other gadgets, however, currently security proofs need to
be made one-by-one. Therefore, an interesting direction for future research is to first apply
(and potentially extend) the presented rules to gadgets using more or less randomness,
and then to prove the security for arbirary gadgets, i.e., make a general statement for
SNI and PINI. We also focused on the reuse of randomness within clusters and – as
described in Section 5.2.1 – restricted our considerations to a simple clustering algorithm.
However, as already mentioned, building optimal clusters is an optimization problem in its
own right, and utilizing better clustering algorithms is expected to improve the overall
result. Going one step further, the design representation itself can be optimized to enable
more optimal clusters, as the possible clusters are highly restricted by the specific design
representation. A different representation may lead to larger clusters and, hence, reduced
randomness requirements. Ideally, the entire process described in this paper works in
an integrated manner, i.e., a clustering algorithm should already consider the resulting
randomness reduction and construct clusters that lead to a global optimum. Whether this
can be reached by always searching for the largest clusters is an open question. Of course,
randomness optimization is not the only constraint when designing side-channel secure
hardware, and integration in the larger context of EDA requires the combination with other
constraints like area, latency, or speed. For this, it is essential to provide a cost function
of each possible optimization step and to consider the necessary notion of composition.
Currently, our optimization strategies have no additional costs, with the only exception
being the relaxed clustering in combination with HPC2 gadgets, where additional registers
are required. Further optimization may change this, e.g., when a design is dynamically
changed to yield an optimal clustering. An important but still unknown piece is the cost
function of fresh randomness with regard to other design constraints. A dense integration
of side-channel-related security awareness into the EDA design flow ultimately requires
that function.

In general, our techniques and proofs also hold in the standard model, which is usually
associated with software implementations, since it is strictly weaker than the glitch-
extended model. Nevertheless, the specific leakage behavior of the microarchitecture under
consideration needs to be taken into account to guarantee the security of software running
on a Central Processing Unit (CPU). Hence, an interesting line of research could evaluate
and potentially adopt the presented optimization techniques for software targets.

8 Conclusions
In this work, we introduced different methodologies for reducing the randomness con-
sumption in composed, masked circuits. By identifying well-defined clusters of gadgets
with opportunities of cross-gadget randomness re-use, we mitigate the disadvantage of
higher-order masking compositions, rooted in the atomic nature of composable gadgets
and their (often unnecessary) requirement of individual fresh randomness.

We gave a thorough theoretic proof of security in the glitch-robust t-probing model for
all outlined optimization techniques. Furthermore, we presented an extensive comparison of
all our optimization methods with respect to their randomness reduction when applied to a
variety of real-world cryptographic designs. Our results indicate a significant optimization
of randomness consumption for compositions of SNI gadgets. PINI compositions seem to
have no benefit for optimizing randomness other than minimizing the number of gadgets
through trivial composition. In general, optimization opportunities are highly dependent

J. Feldtkeller, D.Knichel, P. Sasdrich, A. Moradi and T. Güneysu 223

on the design structure and the required level of security.
Finally, we developed MLIR-based EDA passes, which are easily extendable and well

equipped for integration into a security-aware EDA framework.

Acknowledgments
The work described was funded by the Deutsche Forschungsgemeinschaft (DFG, German
Research Foundation) under Germany’s Excellence Strategy - EXC 2092 CASA - 390781972,
and through the project 393207943 GreenSec.

References
[AIS18] Prabhanjan Ananth, Yuval Ishai, and Amit Sahai. Private Circuits: A Modu-

lar Approach. In Hovav Shacham and Alexandra Boldyreva, editors, Advances
in Cryptology - CRYPTO 2018 - 38th Annual International Cryptology Con-
ference, Santa Barbara, CA, USA, August 19-23, 2018, Proceedings, Part III,
volume 10993 of Lecture Notes in Computer Science, pages 427–455. Springer,
2018.

[BBD+15] Gilles Barthe, Sonia Belaïd, François Dupressoir, Pierre-Alain Fouque, Ben-
jamin Grégoire, and Pierre-Yves Strub. Verified Proofs of Higher-Order
Masking. In Elisabeth Oswald and Marc Fischlin, editors, Advances in Cryp-
tology - EUROCRYPT 2015 - 34th Annual International Conference on the
Theory and Applications of Cryptographic Techniques, Sofia, Bulgaria, April
26-30, 2015, Proceedings, Part I, volume 9056 of Lecture Notes in Computer
Science, pages 457–485. Springer, 2015.

[BBD+16] Gilles Barthe, Sonia Belaïd, François Dupressoir, Pierre-Alain Fouque, Ben-
jamin Grégoire, Pierre-Yves Strub, and Rébecca Zucchini. Strong Non-
Interference and Type-Directed Higher-Order Masking. In Proceedings of the
2016 ACM SIGSAC Conference on Computer and Communications Security,
Vienna, Austria, October 24-28, 2016, pages 116–129, 2016.

[BBP+16] Sonia Belaïd, Fabrice Benhamouda, Alain Passelègue, Emmanuel Prouff,
Adrian Thillard, and Damien Vergnaud. Randomness Complexity of Private
Circuits for Multiplication. In Advances in Cryptology - EUROCRYPT 2016
- 35th Annual International Conference on the Theory and Applications of
Cryptographic Techniques, Vienna, Austria, May 8-12, 2016, Proceedings,
Part II, pages 616–648, 2016.

[BCG+12] Julia Borghoff, Anne Canteaut, Tim Güneysu, Elif Bilge Kavun, Miroslav
Knezevic, Lars R. Knudsen, Gregor Leander, Ventzislav Nikov, Christof Paar,
Christian Rechberger, Peter Rombouts, Søren S. Thomsen, and Tolga Yalçin.
PRINCE - A Low-Latency Block Cipher for Pervasive Computing Applications
- Extended Abstract. In Advances in Cryptology - ASIACRYPT 2012 - 18th
International Conference on the Theory and Application of Cryptology and
Information Security, Beijing, China, December 2-6, 2012. Proceedings, pages
208–225, 2012.

[BDPvA11] Guido Bertoni, Joan Daemen, Michaël Peeters, and Gilles van Assche. The
Keccak Reference. https://keccak.team/files/Keccak-reference-3.0.
pdf, 2011.

https://keccak.team/files/Keccak-reference-3.0.pdf
https://keccak.team/files/Keccak-reference-3.0.pdf

224 Randomness Optimization for Gadget Compositions in Higher-Order Masking

[BGG+14] Josep Balasch, Benedikt Gierlichs, Vincent Grosso, Oscar Reparaz, and
François-Xavier Standaert. On the Cost of Lazy Engineering for Masked
Software Implementations. In Marc Joye and Amir Moradi, editors, Smart
Card Research and Advanced Applications - 13th International Conference,
CARDIS 2014, Paris, France, November 5-7, 2014. Revised Selected Papers,
volume 8968 of Lecture Notes in Computer Science, pages 64–81. Springer,
2014.

[BGR18] Sonia Belaïd, Dahmun Goudarzi, and Matthieu Rivain. Tight Private Cir-
cuits: Achieving Probing Security with the Least Refreshing. In Advances
in Cryptology - ASIACRYPT 2018 - 24th International Conference on the
Theory and Application of Cryptology and Information Security, Brisbane,
QLD, Australia, December 2-6, 2018, Proceedings, Part II, pages 343–372,
2018.

[BKL+07] Andrey Bogdanov, Lars R. Knudsen, Gregor Leander, Christof Paar, Axel
Poschmann, Matthew J. B. Robshaw, Yannick Seurin, and C. Vikkelsoe.
PRESENT: An Ultra-Lightweight Block Cipher. In Cryptographic Hardware
and Embedded Systems - CHES 2007, 9th International Workshop, Vienna,
Austria, September 10-13, 2007, Proceedings, pages 450–466, 2007.

[BP12] Joan Boyar and René Peralta. A Small Depth-16 Circuit for the AES S-Box.
In Information Security and Privacy Research - 27th IFIP TC 11 Information
Security and Privacy Conference, SEC 2012, Heraklion, Crete, Greece, June
4-6, 2012. Proceedings, pages 287–298, 2012.

[Can05] David Canright. A Very Compact S-Box for AES. In Cryptographic Hardware
and Embedded Systems - CHES 2005, 7th International Workshop, Edinburgh,
UK, August 29 - September 1, 2005, Proceedings, pages 441–455, 2005.

[CBG+17] Thomas De Cnudde, Begül Bilgin, Benedikt Gierlichs, Ventzislav Nikov, Svetla
Nikova, and Vincent Rijmen. Does Coupling Affect the Security of Masked
Implementations? In Sylvain Guilley, editor, Constructive Side-Channel
Analysis and Secure Design - 8th International Workshop, COSADE 2017,
Paris, France, April 13-14, 2017, Revised Selected Papers, volume 10348 of
Lecture Notes in Computer Science, pages 1–18. Springer, 2017.

[CGLS21] Gaëtan Cassiers, Benjamin Grégoire, Itamar Levi, and François-Xavier Stan-
daert. Hardware Private Circuits: From Trivial Composition to Full Verifica-
tion. IEEE Trans. Computers, 70(10):1677–1690, 2021.

[CGP+12] Jean-Sébastien Coron, Christophe Giraud, Emmanuel Prouff, Soline Renner,
Matthieu Rivain, and Praveen Kumar Vadnala. Conversion of Security Proofs
from One Leakage Model to Another: A New Issue. In Werner Schindler and
Sorin A. Huss, editors, Constructive Side-Channel Analysis and Secure Design
- Third International Workshop, COSADE 2012, Darmstadt, Germany, May
3-4, 2012. Proceedings, volume 7275 of Lecture Notes in Computer Science,
pages 69–81. Springer, 2012.

[CGZ20] Jean-Sébastien Coron, Aurélien Greuet, and Rina Zeitoun. Side-Channel
Masking with Pseudo-Random Generator. In Advances in Cryptology - EU-
ROCRYPT 2020 - 39th Annual International Conference on the Theory and
Applications of Cryptographic Techniques, Zagreb, Croatia, May 10-14, 2020,
Proceedings, Part III, pages 342–375, 2020.

J. Feldtkeller, D.Knichel, P. Sasdrich, A. Moradi and T. Güneysu 225

[CJRR99] Suresh Chari, Charanjit S. Jutla, Josyula R. Rao, and Pankaj Rohatgi. To-
wards Sound Approaches to Counteract Power-Analysis Attacks. In Michael J.
Wiener, editor, Advances in Cryptology - CRYPTO ’99, 19th Annual Interna-
tional Cryptology Conference, Santa Barbara, California, USA, August 15-19,
1999, Proceedings, volume 1666 of Lecture Notes in Computer Science, pages
398–412. Springer, 1999.

[CS19] Gaëtan Cassiers and François-Xavier Standaert. Towards Globally Optimized
Masking: From Low Randomness to Low Noise Rate: or Probe Isolating
Multiplications with Reduced Randomness and Security against Horizontal
Attacks. IACR Transactions on Cryptographic Hardware and Embedded
Systems, 2019(2):162–198, Feb. 2019.

[CS20] Gaëtan Cassiers and François-Xavier Standaert. Trivially and Efficiently
Composing Masked Gadgets With Probe Isolating Non-Interference. IEEE
Trans. Inf. Forensics Secur., 15:2542–2555, 2020.

[dMB08] Leonardo Mendonça de Moura and Nikolaj Bjørner. Z3: An Efficient SMT
Solver. In Tools and Algorithms for the Construction and Analysis of Systems,
14th International Conference, TACAS 2008, Held as Part of the Joint Euro-
pean Conferences on Theory and Practice of Software, ETAPS 2008, Budapest,
Hungary, March 29-April 6, 2008. Proceedings, pages 337–340, 2008.

[FGP+18] Sebastian Faust, Vincent Grosso, Santos Merino Del Pozo, Clara Paglialonga,
and François-Xavier Standaert. Composable Masking Schemes in the Presence
of Physical Defaults & the Robust Probing Model. IACR Trans. Cryptogr.
Hardw. Embed. Syst., 2018(3):89–120, 2018.

[FPS17] Sebastian Faust, Clara Paglialonga, and Tobias Schneider. Amortizing Ran-
domness Complexity in Private Circuits. In Advances in Cryptology - ASI-
ACRYPT 2017 - 23rd International Conference on the Theory and Applications
of Cryptology and Information Security, Hong Kong, China, December 3-7,
2017, Proceedings, Part I, pages 781–810, 2017.

[GIS22] Vipul Goyal, Yuval Ishai, and Yifan Song. Private Circuits with Quasilinear
Randomness. IACR Cryptol. ePrint Arch., 2022, 2022.

[GM18] Hannes Groß and Stefan Mangard. A unified masking approach. J. Cryptogr.
Eng., 8(2):109–124, 2018.

[GMK17] Hannes Groß, Stefan Mangard, and Thomas Korak. An Efficient Side-Channel
Protected AES Implementation with Arbitrary Protection Order. In Helena
Handschuh, editor, Topics in Cryptology - CT-RSA 2017 - The Cryptographers’
Track at the RSA Conference 2017, San Francisco, CA, USA, February 14-17,
2017, Proceedings, volume 10159 of Lecture Notes in Computer Science, pages
95–112. Springer, 2017.

[GMO01] Karine Gandolfi, Christophe Mourtel, and Francis Olivier. Electromagnetic
Analysis: Concrete Results. In Çetin Kaya Koç, David Naccache, and Christof
Paar, editors, Cryptographic Hardware and Embedded Systems - CHES 2001,
Third International Workshop, Paris, France, May 14-16, 2001, Proceedings,
volume 2162 of Lecture Notes in Computer Science, pages 251–261. Springer,
2001.

[HKSS12] Y. Hori, T. Katashita, A. Sasaki, and A. Satoh. SASEBO-GIII: A hardware
security evaluation board equipped with a 28-nm FPGA. In IEEE Global
Conference on Consumer Electronics, pages 657–660, 2012.

226 Randomness Optimization for Gadget Compositions in Higher-Order Masking

[HS13] Michael Hutter and Jörn-Marc Schmidt. The Temperature Side Channel
and Heating Fault Attacks. In Aurélien Francillon and Pankaj Rohatgi,
editors, Smart Card Research and Advanced Applications - 12th International
Conference, CARDIS 2013, Berlin, Germany, November 27-29, 2013. Revised
Selected Papers, volume 8419 of Lecture Notes in Computer Science, pages
219–235. Springer, 2013.

[IKL+13] Yuval Ishai, Eyal Kushilevitz, Xin Li, Rafail Ostrovsky, Manoj Prabhakaran,
Amit Sahai, and David Zuckerman. Robust Pseudorandom Generators. In
Automata, Languages, and Programming - 40th International Colloquium,
ICALP 2013, Riga, Latvia, July 8-12, 2013, Proceedings, Part I, pages 576–588,
2013.

[IKL+17] Adam M. Izraelevitz, Jack Koenig, Patrick Li, Richard Lin, Angie Wang, Al-
bert Magyar, Donggyu Kim, Colin Schmidt, Chick Markley, Jim Lawson, and
Jonathan Bachrach. Reusability is FIRRTL ground: Hardware construction
languages, compiler frameworks, and transformations. In 2017 IEEE/ACM
International Conference on Computer-Aided Design, ICCAD 2017, Irvine,
CA, USA, November 13-16, 2017, pages 209–216, 2017.

[ISW03] Yuval Ishai, Amit Sahai, and David A. Wagner. Private Circuits: Securing
Hardware against Probing Attacks. In Dan Boneh, editor, Advances in
Cryptology - CRYPTO 2003, 23rd Annual International Cryptology Conference,
Santa Barbara, California, USA, August 17-21, 2003, Proceedings, volume
2729 of Lecture Notes in Computer Science, pages 463–481. Springer, 2003.

[KJJ99] Paul C. Kocher, Joshua Jaffe, and Benjamin Jun. Differential Power Analysis.
In Michael J. Wiener, editor, Advances in Cryptology - CRYPTO ’99, 19th
Annual International Cryptology Conference, Santa Barbara, California, USA,
August 15-19, 1999, Proceedings, volume 1666 of Lecture Notes in Computer
Science, pages 388–397. Springer, 1999.

[KMMS22] David Knichel, Amir Moradi, Nicolai Müller, and Pascal Sasdrich. Automated
Generation of Masked Hardware. IACR Trans. Cryptogr. Hardw. Embed.
Syst., 2022(1), 2022.

[Koc96] Paul C. Kocher. Timing Attacks on Implementations of Diffie-Hellman, RSA,
DSS, and Other Systems. In Neal Koblitz, editor, Advances in Cryptology
- CRYPTO ’96, 16th Annual International Cryptology Conference, Santa
Barbara, California, USA, August 18-22, 1996, Proceedings, volume 1109 of
Lecture Notes in Computer Science, pages 104–113. Springer, 1996.

[LAB+21] Chris Lattner, Mehdi Amini, Uday Bondhugula, Albert Cohen, Andy Davis,
Jacques A. Pienaar, River Riddle, Tatiana Shpeisman, Nicolas Vasilache,
and Oleksandr Zinenko. MLIR: Scaling Compiler Infrastructure for Domain
Specific Computation. In IEEE/ACM International Symposium on Code
Generation and Optimization, CGO 2021, Seoul, South Korea, February 27 -
March 3, 2021, pages 2–14, 2021.

[MMSS19] Thorben Moos, Amir Moradi, Tobias Schneider, and François-Xavier Stan-
daert. Glitch-Resistant Masking Revisited or Why Proofs in the Robust
Probing Model are Needed. IACR Trans. Cryptogr. Hardw. Embed. Syst.,
2019(2):256–292, 2019.

[MPG05] Stefan Mangard, Thomas Popp, and Berndt M. Gammel. Side-Channel
Leakage of Masked CMOS Gates. In Alfred Menezes, editor, Topics in

J. Feldtkeller, D.Knichel, P. Sasdrich, A. Moradi and T. Güneysu 227

Cryptology - CT-RSA 2005, The Cryptographers’ Track at the RSA Conference
2005, San Francisco, CA, USA, February 14-18, 2005, Proceedings, volume
3376 of Lecture Notes in Computer Science, pages 351–365. Springer, 2005.

[MS06] Stefan Mangard and Kai Schramm. Pinpointing the Side-Channel Leakage
of Masked AES Hardware Implementations. In Louis Goubin and Mitsuru
Matsui, editors, Cryptographic Hardware and Embedded Systems - CHES
2006, 8th International Workshop, Yokohama, Japan, October 10-13, 2006,
Proceedings, volume 4249 of Lecture Notes in Computer Science, pages 76–90.
Springer, 2006.

[NRS11] Svetla Nikova, Vincent Rijmen, and Martin Schläffer. Secure Hardware
Implementation of Nonlinear Functions in the Presence of Glitches. J. Cryptol.,
24(2):292–321, 2011.

[RBN+15] Oscar Reparaz, Begül Bilgin, Svetla Nikova, Benedikt Gierlichs, and Ingrid
Verbauwhede. Consolidating Masking Schemes. In Rosario Gennaro and
Matthew Robshaw, editors, Advances in Cryptology - CRYPTO 2015 - 35th
Annual Cryptology Conference, Santa Barbara, CA, USA, August 16-20, 2015,
Proceedings, Part I, volume 9215 of Lecture Notes in Computer Science, pages
764–783. Springer, 2015.

[RP10] Matthieu Rivain and Emmanuel Prouff. Provably Secure Higher-Order Mask-
ing of AES. In Cryptographic Hardware and Embedded Systems, CHES 2010,
12th International Workshop, Santa Barbara, CA, USA, August 17-20, 2010.
Proceedings, pages 413–427, 2010.

[Tri03] Elena Trichina. Combinational Logic Design for AES SubByte Transformation
on Masked Data. IACR Cryptol. ePrint Arch., page 236, 2003.

[WGS+20] Weijia Wang, Chun Guo, François-Xavier Standaert, Yu Yu, and Gaëtan
Cassiers. Packed Multiplication: How to Amortize the Cost of Side-Channel
Masking? In Advances in Cryptology - ASIACRYPT 2020 - 26th International
Conference on the Theory and Application of Cryptology and Information
Security, Daejeon, South Korea, December 7-11, 2020, Proceedings, Part I,
pages 851–880, 2020.

[yos] Yosys Open Synthesis Suite. http://www.clifford.at/yosys/. Accessed:
13.10.2021.

http://www.clifford.at/yosys/

	Introduction
	Preliminaries
	Notations
	Modeling and Masking Circuits
	ISW t-Probing Model
	Composability Notions
	Restricted Composability Notions
	Computation Tree

	Randomness Reduction for DOM-Gadget Composition
	Clustering DOM Gadgets
	Relaxed Clustering of DOM Gadgets

	Randomness Reduction in HPC2 Composition
	Clustering HPC2 Gadgets.
	Relaxed Clustering
	Double SNI Gadgets

	Implementation
	Gadget Placing
	Randomness Optimization
	Gadget Logic Insertion

	Evaluation
	Randomness-Distribution Algorithms
	Real-World S-boxes
	Parallel S-box Structures
	Full AES Cipher
	Experimental Analysis

	Related and Future Works
	Conclusions

