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Rate of change in longitudinal
EMG indicates time course of
an individual’s neuromuscular
adaptation in resistance-based
muscle training
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Radhika Mujumdar1, Preethi Sivaswaamy Mohana1

and David Hostler2

1Department of Biomedical Engineering, State University of New York at Buffalo, Buffalo, NY, United
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An individual’s long-term neuromuscular adaptation can be measured through
time-domain analyses of surface electromyograms (EMG) in regular
resistance-based training. The perceived changes in recruitment, such as
those measured during muscle fatigue, can subsequently prolong the
recovery time in rehabilitation applications. Thus, by developing quantifiable
methods for measuring neuromuscular adaptation, adjuvant treatments
applied during neurorehabilitation can be improved to reduce recovery times
and to increase patient quality of care. This study demonstrates a novel
time-domain analysis of long-term changes in EMG captured neuromuscular
activity that we aim to use to develop a quantified performance metric for
muscle-based intervention training and optimization of an individual. We
measure EMG of endurance and hypertrophy-based resistance exercises of
healthy participants over 100 days to identify trends in long-term
neuromuscular adaptation. Particularly, we show that the rate of EMG
amplitude increase (motor recruitment) is dependent on the training
modality of an individual. Particularly, EMG decreases over time with
repetitive training – but the rate of decrease is different in hypertrophy,
endurance, and control exercises. We found that the EMG peak contraction
decreases across all subjects, on average, by 8.23 dB during hypertrophy
exercise and 10.09 dB for endurance exercises over 100 days of training,
while control participants showed negligible change. This represents
approximately 2 dB difference EMG activity when comparing endurance and
hypertrophy exercises, and >8 dB change when comparing to our control
cases. As such, we show that the slope of the long-term EMG activity is
related to the resistance-based exercise. We believe this can be used to
identify person-specific performance metrics, and to create optimized
interventions using a measured performance baseline of an individual.
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Introduction

Neuromuscular activity during muscle training has shown to
be correlated to contraction response, specifically in the
identification of motor recruitment changes and fatigue.
Commonly used biopotential measurement systems such as
surface electromyograms (EMG) have demonstrated use in
these findings, specifically in identifying the patterns of
contractile amplitudes and frequencies during a fatiguing
exercise (1–6). For example, fatiguing muscles show an
increase in EMG contractile amplitude that correlates to the
number of recruited motor neurons, as well as a low-frequency
shift in the raw EMG signal (7–10). These frequency-based
analyses are a popular strategy to measure the presence of
fatigue and adaptation in short-term applications such as on a
set-to-set basis (2, 11, 12). However, they have not yet been
used in measuring the long-term effects from neuroadaptation
(i.e., anti-fatiguing response) due to prolonged regular training.
Thus, it is currently unknown how these behaviors change
over the long-term, and how specific muscle training over
weeks or months impacts these trends.

It is believed that these observations can have an impact on
various neuromuscular training applications such as athletic
training optimization as well as neurorehabilitation therapies
(13–18). It is traditionally observed that the outcomes of these
types of training are strongly correlated with the activity time
(19–26). For example, limitations in muscle performance –

such as neuromuscular fatigue – can significantly impact the
quality of outcome in muscular training. However, current
methods that identify these effects are largely subjective and
driven by qualitative observations of a participant’s
performance (27, 28). As such, enhanced quantitative
methods must be applied to improve performance during
muscular training for optimized training strategies.

Currently, it is understood that muscle fatigue can be
measured in several ways. An increase in the Root Mean
Square (RMS) of the EMG during a fatiguing task is directly
related to the recruitment of additional motor units while
performing the task (29). Similarly, the time-domain increase
in EMG peak amplitude during submaximal fatiguing
contractions has similar increasing trends during additional
motor unit recruitment up to a maximal fatiguing state (30).
Once the motor units reach recruitment limits the muscle
experiences a loss in tension, and the force output of the
muscle decreases. This phenomenon is then measured by a
subsequent decrease in the EMG amplitude during exercise. So,
if the EMG RMS and peak-contractile amplitudes increase with
motor recruitment, and then decrease following motor unit
recruitment limits, it is hypothesized that a quantitative metric
can be developed to ascertain an estimate of the rate of motor
unit recruitment, along with changes in performance over time.

In this study, we will demonstrate that with regular muscle

training the rates of motor recruitment change over time.
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Specifically, we hypothesize that the rate of EMG peak

progression will decrease thereby indicating adaptation to a

specific training strategy. We accomplish this through

endurance-based and hypertrophy-based resistance exercises

using healthy participant (31). We will demonstrate that time-

based EMG activity can capture short-term perceived fatigue

changes (during each set in an exercise), as well as long-term

perceived fatigue or anti-fatiguing changes to muscles over 100

days of regular exercise. These rates of adaptation will be unique

to each participant but will also demonstrate, with caution, a

generalized behavior based on the exercise regimen. As such we

postulate that the rates of change of these EMG slopes will be

exercise dependent (e.g., heavier weight vs. more repetitions).

Ultimately, these observations lead to a novel hypothesis that

suggests muscular contractions in a participant-normalized EMG

(dB/day and ΔdB) can be used to measure long-term changes in

their muscle performance including the identification of rates of

fatigue, performance improvement, and anti-fatiguing response.

The resultant trends may have different rates based on the type

of exercise, but also that those who do not regularly train

(control participants) do not experience the same kind of

adaptation. The work we present herein is part of a larger

study toward building optimized person-specific strategies for

neurorehabilitation therapies, and athletic performance.
Methods

Participant recruitment

Data collection for this study was approved by the Institutional

Review Board (IRB), University at Buffalo. Informed consent was

obtained from all the participants and the data obtained were de-

identified. Participant recruitment was performed based on the

following inclusion and exclusion criteria;

Inclusion criteria:

• The participants must be within the age group 18–30 years.

• Participants must have a BMI in the range of 18.5–24.9.

• Participants must self-report as being healthy and able to lift

low to moderate weights.

Exclusion criteria:

• Participants who have reservations against lifting weight

within a comfortable limit of their own threshold (based

on a 1-repetition benchmark).

• Participants who are undergoing or have previously

undergone treatment for cardiovascular, muscular, or other

health concerns

• Participants who refuse to provide informed consent.

• Individuals actively participating in fitness programs or

currently following an exercise routine at a gym, including

weightlifting.

• Pregnant women.
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A total of 11 participants were recruited, 4 performed the

hypertrophy exercise, 4 performed the endurance exercise, 3

were assigned to the control group (of which 2 performed

modified hypertrophy exercises, and 1 performed a modified

endurance exercise). The selected test participants were

between 23 and 26 years of age, and included males and

females. We would like to identify that due to the length of

the study, particularly in requiring inactive individuals to

participate in regular exercise for over 3 months, it proved

difficult to recruit a larger cohort.
Device

For this study, we developed a wearable EMG sensory device

that collects EMG data, and wirelessly transmits them to a PC

for storage and analysis. Figure 1 shows the electronics used

for acquiring these muscle activity data. The device consists of
FIGURE 1

Data acquisition device schematic during experimentation. An Arduino Pro
wireless data transmission. The Arduino and EMG boards were separately po

Frontiers in Rehabilitation Sciences 03
a microcontroller (Arduino Pro Mini 328, Arduino, Italy),

three rechargeable 9 V batteries, a Bluetooth shield (Bluefruit

EZ-Link Breakout, Adafruit, United States) and an EMG

sensor (Muscle sensor v3, Advancer Technologies LLC, USA).

The microcontroller and the EMG sensor have built in

features for optional signal pre-processing. The microcontroller

is powered externally by a 9 V rechargeable battery and

supplies the Bluetooth shield. The EMG sensor is powered

externally by two 9 V batteries (±9 V required supply). We

used standard wet electrodes for this study that snap into the

Muscle Sensor v3. The same device is used for both endurance

and hypertrophy-based EMG studies.
Experiments

For this study we included two exercise groups of interest –

hypertrophy and endurance. The hypertrophy group included
mini was connected to the EMG sensor, and a Bluetooth device for
wered by 9 V batteries.
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an intermediate level of repetitions (10–12) using a weight that is

approximately 70%–75% of their 1 repetition strength

benchmark (32). The endurance group was required to perform

a higher level of repetitions (∼20) with a lower weight. Our

earlier proof of concept study examined repetitions until failure

with promising results, so we selected a high repetition count

for our endurance study (33). On the first day of testing all

participants were required to perform their maximum weighted

1 repetition bicep curl with qualitatively observed correct form.

This was performed as follows: (1) The participant stands with

feet shoulder width apart, holding the dumbbells with both

hands in a relaxed position (down at the sides); (2) The

participant raises the weights towards the shoulders with palms

facing upwards and elbows tucked closely near the ribs/hips;

(3) The participants shoulders should be relaxed and their

back/posture should not change during the lifting motion; (4)

The weight is returned to the starting position in a relatively

slow and controlled fashion while exhaling.

After completing this each individual was assigned

dumbbell weights (one dumbbell per arm) based on their own

ability. All participants appeared to be of similar capabilities

with similar 1-repetition maximum weight – recall, these are

all participants who have not regularly weight trained. As a

result, all hypertrophy study individuals were assigned 10 lbs,

while the endurance study participants were assigned 5 lbs.

One control participant was assigned a 20 lb weight for

hypertrophy exercises, while the other two control

participants were also assigned 5 lbs. For all experiments, each

participant was required to perform a standing bicep curl

with their assigned weight – this is a contraction of the bicep

toward their face, and then a controlled return back to the

starting position. We selected the bicep curl exercise due to

the ease of isolating a large primary mover in the arm that is

easily accessible for EMG measurements. Additionally, bicep

curls are also easy to control, resulting in fewer motion

artifacts during data recording. The Hypertrophy and

Endurance groups performed their exercises twice per week

for the duration of the study, while the control participants

performed their exercises once per month.

During the recruitment process we instructed participants

that they should go about their regular daily routines and not

introduce any new activities. Since the exclusion criteria

specified that participants should not be engaged in any

fitness activities, the likelihood of variability in

experimentation due to other activities is minimal. However,

we still acknowledge that variability will still be present in

measurements due to daily variation in physiological function,

disposition, or other uncontrollable phenomena.

Hypertrophy based exercise
Hypertrophy experiments were conducted over a period of

up to 100 days. In this exercise group, participants performed

4 sets of bicep curls, 12 repetitions each with a dumbbell.
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Between each set, the participant was given 1 min to rest. The

exercise was performed at a rate of ∼0.4 Hz, which was

controlled using a metronome. The hypertrophy participants

performed this exercise twice a week, every week. Data were

obtained over a period of approximately 100 days.

Endurance exercise routine
A bicep curl exercise using a dumbbell was chosen to isolate

biceps muscle activity for endurance-based exercise. Every

participant was required to perform 20 ± 2 repetitions of 5

sets per exercise schedule with a dumbbell. We used a

metronome set at ∼0.4 Hz to achieve a standardized

repetition rate. They were then allowed take a break for

approximately 1 min, and continued on to their next set. The

endurance participants performed this exercise twice a week,

every week. Data were obtained over a period of

approximately 100 days.

Control exercise routine
Control exercises are meant to be identical to the mentioned

exercises, however performed less often. For example, two

participants performed the hypertrophy control exercise once

a month, while one participant performed the endurance

control exercise once a month. These exercises have the same

number of repetitions and sets as their matched group.
Data acquisition

The Muscle Sensor v3 acquires EMG data using bipolar

electrodes positioned at the center and end of the bicep

muscle body as well as a reference electrode at the elbow

joint. The placement of the poles varies based on participant

morphometry but is typically around 44 mm (<2 inches) as

per the specifications of the system. The electrodes are placed

using the participant’s anatomical landmarks, in an attempt to

minimize variability in electrode placement. For example, the

participant bends the elbow to a 90° position, and the

electrodes are placed about the point which is 1/3 of the

distance from the fossa cubit along the medial acromion-fossa

cubit line.

During exercise, the EMG sensor collected the raw and

filtered data of the muscle activity that were then sent to the

Arduino Pro Mini. These data pins include a 10-bit analog to

digital converter which returns integer values from 0 to 1023.

The microcontroller converts these analog values from a

recorded voltage of 0–5 V. We also included a Bluetooth

module to transmit data wirelessly to a laptop (∼10 m range).

Then, CoolTerm was used as a serial port terminal for data

transfer to collect the data from the Bluetooth shield.

CoolTerm is an open-source software that allows the

exchange of text/ascii and other data between connected

serial ports.
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The Arduino was programmed to begin data collection as

soon as the device was powered on. By enabling the serial

connection, the data were transmitted via Bluetooth to the

laptop/computer. Then, the data were stored in row formatted

text files with voltage values between 0 and 5 V (∼10 mV

resolution), with time stamps (see Figure 2). We loaded these

files into MATLAB for analysis upon which all spurious data

from the start-up and power-off phase of data collection were

trimmed during data post processing. The sampling rate of the

EMG was the standard Arduino rate for analog pins (9,600 Hz).
Data processing

To trim these data, we identify the start and stop times of

the exercise by visually inspecting the cyclical contractions of

the bicep curls (e.g., first peak in cycle to last peak in cycle –

if there are 10 repetitions in an exercise there will be 10

periodic peaks). Once these times are identified visually, we

remove data preceding the first time point, and as well as the

data succeeding the last time point.
FIGURE 2

Typical data recorded in our study showing variability in EMG amplitudes durin
increases with each contraction.

Frontiers in Rehabilitation Sciences 05
For each measurement, a zero-mean rectified EMG was

created by subtracting the mean voltage of the signal noise

floor (Figure 3) – including DC offset – then rectifying. The

rectified EMG is then low-pass filtered to 40 Hz since the

dominant energy of interest in this study is in the low-

frequency bands (34, 35) and we are interested in the

behavior of the contraction waveform, rather than the

switching properties in the muscle (36). Since the bandwidth

of motion for the exercise is low (∼0.4 Hz) this is also well

within the envelope of the rectified EMG signal, and

appropriate for study (35).

The amplitudes, in volts, of the digitally sampled raw and

filtered data were plotted with respect to time (seconds) to

provide information regarding how the EMG amplitudes

change with muscle contraction in an ongoing exercise. These

data allowed us to track EMG peak amplitudes and calculate

the change in peaks over time. Previous studies have indicated

that these peaks increase with fatigue and motor unit

recruitment (37–39), so we wish to measure the rate at which

this occurs in either volts per second, or dB (V/V) per

second. The times were obtained from the device by dividing
g muscle contraction of during exercise. Peak amplitude continuously

frontiersin.org

https://doi.org/10.3389/fresc.2022.981990
https://www.frontiersin.org/journals/rehabilitation-sciences
https://www.frontiersin.org/


FIGURE 3

Standard EMG muscle contraction peaks and the measured noise floor (highlighted area) during muscle relaxation. The noise floor was determined
manually for each recording.
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the data index (which corresponds to the number of samples) in

the time stamp.

The EMG relative peak amplitude in decibels is used to

describe the relative change in the data with respect to the

sensor’s noise floor. As described above, we hypothesize that

this relationship can indicate not only how the EMG signal

changes with respect to repetitions, but also to measure its

long-term performance change with respect to previous

exercise dates. As such, we argue that it is a compelling

relative metric to measure or identify properties in the muscle

in response to fatigue, or anti-fatiguing, due to repetitive

exercise. Thus, the change in the ratio with respect to time

(i.e., the slope of EMG vs. time) can show changes to motor

unit recruitment in the muscle over time (6).

The EMG ratio can be calculated by using the ratio of the

signal and power of a reference signal in decibels. For this

study we define the reference voltage as the noise floor (i.e.,

measurement when the muscle is not flexing) and is expressed as:

EMG dBð Þ ¼ 20 log10
SignalVoltage

Reference Voltage

� �
(1)

where, the signal voltage is the muscle contraction measured at

the skin surface using the EMG sensor in volts, and the
Frontiers in Rehabilitation Sciences 06
reference voltage is the average noise floor as measured by the

sensor for the recording. Thus, data are normalized in each set

recording – the reference voltage can be different in each

recording. So, the EMG ratio (peak to noise floor) in each

recording measures the progression of contraction amplitude

during exercise. For example, if the noise floors are different

across days this does not affect the results since the ratio

records the peak to noise floor relationship, allowing us to

investigate how the EMG amplitude grows during each set of

exercise. Therefore, this allows us to compare EMG amplitude

increases (i.e., fatigue) across each day. To do so, we take the

peaks of the EMG(dB) and average across the set. Then, to

compare across multiple days, we will take the EMG peak ratio

on day 1 (starting day) as the base-line. So, we will subtract the

EMG peak ratio value from all days as a way to normalize the

EMG peak relationship as follows:
EMGn ið Þ ¼ EMGpeaks
avg ið Þ � EMGpeaks

avg baselineð Þ (2)
where i is the ith day of recording, and EMGpeaks
avg is the average

EMG peak value calculated.
frontiersin.org

https://doi.org/10.3389/fresc.2022.981990
https://www.frontiersin.org/journals/rehabilitation-sciences
https://www.frontiersin.org/


Stefanovic et al. 10.3389/fresc.2022.981990
Results

Working with EMG data during exercise poses noteworthy

levels of inherent noise substantiated through motion artifacts

and other phenomena. As a result, when processing data, we

identified several recordings that were unusable and were

discarded from analysis. The recordings that were excluded

exhibited signal saturation, high-levels of noise that obscured

contraction identification, general data corruption, or data

that exhibited exceptionally high noise floors in the recording

that limited measurable contraction peaks. Regardless of this

noise, the majority of captured data from over 100 + days of

testing were still included in the study. In total, the amount of

good hypertrophy data usable for analysis included 281 data

points (81.2%), while the bad data points totaled 65 (18.8%).

The amount of good endurance data used for analysis

included 311 data points (74.9%), while the bad data points
FIGURE 4

Amplitude vs. Time EMG Signal. Typical progression of EMG during exercis
regression fitting of the peaks, while the solid green line shows the EMG RM
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were 104 (25.1%). Similarly, the good control hypertrophy

data included 22 data points (91.7%), while 2 (8.3%) were

unusable. Finally, the control endurance measurements

included 7 (87.5%) good data points, while there was only

one unusable data point (12.5%). As such, despite our

relatively small population, we have a relatively large

intraparticipant data set that allows us to explore trends

longitudinally for each participant.
EMG amplitude changes with exercise

A typical rectified EMG signal that is recorded and

processed for a single exercise set is shown in Figure 4. The

amplitude vs. time plot of the EMG signal shows an

increasing trend in the maximum peak amplitude (orange

line) and RMS (green/red lines) plots. This is stereotypical
e shows an increase in contraction peaks. The orange line shows a
S, and its best linear fit (red line).
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FIGURE 5

(Top) short term EMG plots for hypertrophy (black) and linear regression trendline (red) for a single day, normalized based on the first set; (bottom)
short term EMG plots for endurance (black) and linear regression trendline (red). Notice that these signal sizes are relative for each participant and
depend on noise floor, electrode placement, and physiological differences in participants. We are not interested in these values, but rather the
progression as shown in the tables and figures below.

Stefanovic et al. 10.3389/fresc.2022.981990
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FIGURE 6

Long-term trend of hypertrophy data showing averaged EMG signal in dB (black), and a linear regression trendline (red) for hypertrophy participants 1
to 4 (P1–P4). Here, we show how the contraction ratio changes over 100 days across sets, rather than for a single day’s exercise as per Figure 5. Each
black dot indicates the averaged EMG peak data from the sets in dB.
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across all usable captured data. The peaks correspond to the

maximum contraction for that repetition in a set, while the

minimum value corresponds to the muscle “relaxing” prior to

a repetition. The peak voltage of this rectified EMG signal

generally increases from the first to final repetition. In the

plot shown, the peak size increases from the first to last

contraction by 2.86 V, or 120.74% increase in amplitude. An

increase in signal amplitude corresponds with additional

motor unit recruitment during a fatiguing task, and varies

based on the fatiguing properties of the muscle. We examine

the peak change for all exercises below.
Short term changes in EMG peaks during
exercise

Short-term changes in EMG data refer to intraday or

intraset behaviors (i.e., on a single day). Figure 5 shows the

EMG data using all sets of a day’s exercise to depict signal

trends over multiple sets. Where, the black lines represent the

actual signal amplitude change (first to last contraction) for

each set on that particular day and the red line represents the

linear fit of these data. For example, in Figure 5 (top), the

difference in amplitude from the first contraction to the last

contraction was 1.37 dB. Thus, the trend shows a 0.34 dB/set

increase across the sets. Similarly, the endurance participant 4

(Figure 5 – bottom) shows an increase of 6.11 dB (1.22 dB/set

increase) in EMG signal over the sets performed on the same

day. These general trends were found to be typical across all

participants, and across all experiments which agrees with the

findings in earlier published works (2–5).

We found that this rate of increase in the EMG varied based

on when the exercise was performed (i.e., when comparing the

first day of their exercise routine vs. day 50). So below, we show

this variability in the EMG signal trend by superimposing all

normalized short-term endurance and hypertrophy data in

two plots (Figure 5). On average, we see a 2.38 ± 3.05 dB

increase in EMG signal from endurance participants over 5

sets, while hypertrophy participants show an average of

1.39 ± 3.06 dB increase in EMG signal across 4 sets. These

data are normalized such that 0 dB indicates the baseline of

EMG (first set) used to compare across sets.

TABLE 1 Averaged per month EMG signal – hypertrophy.

Averaged EMG Signal (dB) Signal
change (dB)

Avg. Change
(dB/day)

Month 1 2 3
Participants

1 0 4.72 −8.25 −8.25 −0.083

2 0 4.03 −7.69 −7.69 −0.079

3 0 – −7.71 −7.71 −0.086

4 0 2.33 −9.26 −9.26 −0.101

Average −8.23 ± 0.63 −0.087 ± 0.008
Long-term changes in EMG during
regular exercise

The long-term relative trends in the signal amplitude of the

EMG are shown below to identify interday changes (i.e., over

the 100 day study period) in muscle performance during

regular exercise.
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Hypertrophy based exercise
Figure 6 demonstrates the averaged amplitudes of each

day’s exercise EMG data (each of the 4 sets) for all

participants, over a period up to 100 days, performing

hypertrophy-based exercises. Recall that data are normalized

for each recording using its unique noise floor, and then

subsequently normalized based on the day 1 baseline EMG

amplitude ratio. The plot shows the data points (black dots)

which is the average power in dB of each session consisting of

4 datasets. The “Day 1” data point in the plot corresponds to

the first day of data collection during the exercise routine for

every participant and last data point in the plot corresponds

to the last day of the exercise routine. All data points are

plotted based on the relative day the data were obtained. A

linear regression (red dashed line) is plotted across the data

points to obtain a modeled slope value across the exercise

routine completed by each participant. Table 1 indicates the

averaged change in EMG signal over the period per month, as

well as the total change in relative EMG peak height, and rate

change of the EMG as a slope in decibels per day. Here, it is

seen that the signal changes across all hypertrophy

participants (average of −8.23 dB) indicating a decreasing

trend for the long-term. It is important to note the averaged

slope of these data is −0.087 dB/day. Participants 1,2 and 4

show an increase in EMG peak amplitude approximately 1

month following the start of the exercise, but the long-term

trend persistently decreased.
Endurance exercise
Figure 7 exhibits the average power of each day’s EMG data,

over a period of up to 100 days for endurance exercises. The

EMG signal amplitude is calculated using all five datasets of

each day and plotted over a period of time. The measured

data for each recording (black dots) is provided in dB, while a

linear regression (red dashed line) is provided to show the

trend line. Similar to the data shown in the hypertrophy set,

the plotted data show a decreasing trend in the long-term

EMG contraction peak size relative to noise floor across all

participants. Table 2 shows the averaged change in EMG

signal over the exercise period, providing a slope in decibels

per day. Namely all participants showed an expected
frontiersin.org

https://doi.org/10.3389/fresc.2022.981990
https://www.frontiersin.org/journals/rehabilitation-sciences
https://www.frontiersin.org/


FIGURE 7

Long-term trend of endurance data showing averaged EMG signal in dB (black), and a linear regression trendline (red) for endurance participants 1 to
4 (P1–P4). Each black dot indicates the averaged EMG peak data from a set in dB.
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TABLE 2 Averaged per month EMG signal – endurance.

Averaged EMG Signal (dB) Signal
change
(dB)

Avg. Change
(dB/day)

Month 1 2 3
Participants

1 0 −6.18 −14.43 −14.43 −0.144

2 0 −9.38 −11.48 −11.48 −0.115

3 0 – −8.22 −8.22 −0.093

4 0 −6.21 – −6.21 −0.100

Average −10.09 ± 3.12 −0.113 ± 0.02

Stefanovic et al. 10.3389/fresc.2022.981990
decreasing trend (averaged to −10.09 dB) over the exercise

routine period, or −0.113 dB/day in the peak EMG

contraction size during regular exercise.

The data presented for endurance participant #4 contained

limited Day 1 and late-stage exercise data due to signal noise,

culminating in a reduced Day 1 signal amplitude. Regardless,

the stereotypical decreasing trend in EMG contraction peak

amplitude was observed.
Control exercises
The exercise data for the control participants are plotted in

Figure 8. It is shown that for both control groups there are

significant differences in outcomes when comparing to their

respective exercise groups. Data points collected from each

group are averaged and plotted (black dots), while a linear

regression (red dashed line) is provided to show the trend.

Table 3 summarizes those data, showing the trends for the

two hypertrophy control participants and the endurance

control participant. Where, the average change in EMG

contraction peak size vs. noise floor was −1.57 dB
(−0.017 dB/day) and −0.95 dB (−0.020 dB/day), for the

Hypertrophy and Endurance respectively. When comparing

the control cases to their paired exercise groups, the

Hypertrophy group decreased by 6.66 dB (0.067 dB/day) more

than the control group. Whilst the Endurance group saw a

9.14 dB (0.093 dB/day) greater reduction than the control

group.
Combined data trends

Subsequently, we combined all exercise data into a single

plot to highlight the separability of these data. Due to the

small population size, we first plot the combined data in two

groups (Figure 9 top): (1) the control group; (2) all other

participants. Then we plot the same combined data using all

groups (i.e., control, endurance and hypertrophy) in Figure 9

(bottom), and we fit regression lines for each group. A

comparison of these regression lines is shown in Table 4,

where good fits are highlighted in green, and poor fits are red.

Namely, we used the correlation of determination between
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each group’s set of data and each regression line. In each case,

the R2 was best between a group’s data and regression.

Moreover, the control data did not score well with either

endurance and hypertrophy data sets, while the endurance

and hypertrophy data showed some correlation.
Correlation of the time series data

To further explore the separability of these data we

examined the time progression of the exercise data with

respect to other groups as shown in Figures 6–9. As shown

in Table 5, correlations between endurance and hypertrophy

is significant (R: 0.71, p: 0.000089) while any correlations with

the control data set are weak. This must be interpreted with

some caution, however, since our study population is small.
Discussion

This study demonstrates that long-term changes in EMG

with regular exercise can be used to quantify the training

progression of an individual. Specifically, the rate of change in

the EMG peak amplitude relative to a participant’s initial

baseline can be used to measure adaptation over time.

Notably, these data also suggest that the rates of this change

are also different depending on the exercise modality

(endurance vs. hypertrophy) – however this must be studied

further since our study population is small. Finally, we

demonstrated that when participants do not undergo regular

exercise (control participants), the same long-term changes

are not evident due to limited or negligible muscle adaptation.

It is evident in Figure 5 that our EMG amplitude data

increase across sets within a daily exercise routine. Our data

thus confirms what is supported by the literature in short

term observations, and coincides with expectations that EMG

amplitude increases with muscle fatigue due to the

recruitment of additional motor units. This recruitment is

necessary to maintain tension required by the muscle when

undergoing exercise.

Over a longer period of time, however, as each individual

performed resistance-based exercise over their 100 + day study

period, the maximum EMG peaks and averaged peak size

decreased relative to their Day 1 baseline. It implies that the

effort required to do the same task decreased over-time for

each individual. This therefore suggests an increase in anti-

fatiguing response or other muscle adaptation. For example,

each study participant saw their rate of fatigue decrease from

Day 1 to Day ∼100 (Tables 1–3). It is worthwhile to observe

that the slope of the linear fit of this EMG peak change for

each participant is negative. In other words, as the study

participants performed exercise over the study period, the

EMG saw a slower rate of increase during the fatiguing
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FIGURE 8

Long-term trend of control participant data showing averaged EMG signal in dB (black) for each exercise set, and a linear regression trendline (red).
Each black dot indicates the averaged EMG peak data from a set in dB.
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TABLE 3 Averaged EMG signal - control based exercise.

Averaged EMG Signal (dB) Signal
change
(dB)

Avg. Change
(dB/day)

Month 1 2 3
Participants

1
(Hypertrophy)

0 −1.99 −3.56 −3.56 −0.038

2
(Hypertrophy)

0 +0.31 – +0.31 +0.004

Average −1.57 ± 1.99 −0.017 ± 0.021

3 (Endurance) 0 −0.95 – −0.95 −0.020

Average −0.95 −0.020

Stefanovic et al. 10.3389/fresc.2022.981990
response. This suggests that the muscles did not recruit as many

motor units on the last day of exercise as they did on the first

day. Thus, we show that the slope of the long-term trend can

be used to indicate the rate at which an individual’s muscle

becomes more fatigue resistant with regular training.

What is more, when comparing the hypertrophy and

endurance participants, their rates were different which also

supports our initial hypotheses. For example, when comparing

the two groups, the rate of change for hypertrophy and

endurance were −0.087 dB/day and −0.113 dB/day,
respectively (Tables 1, 2). This means that their slope is

different, indicating that the endurance participants saw a

greater reduction in EMG peak contraction amplitude during

exercise over time relative to the resting EMG amplitude. In

this case, it appears that those performing the endurance-

based exercise become more fatigue resistant as their rate of

motor unit recruitment reduced more over time. This

corresponds to what would be expected from an endurance

resistance-based exercise. Notice that both hypertrophy and

endurance groups exhibit variability over time which can be

due to various conditions such as electrode placement

changes, physiological differences in participants over time,

etc. Similarly, it should be noted that the calculated rates are

not predictive across all humans, since the adaptability will be

dependent on an individual’s unique physiology. Regardless,

the downward trend in consistent across all participants over

time and the steepness of the slopes seem to be related to the

exercise modality.

When comparing these data to the control cases, it shows

that these trends are dependent on the exercise. For example,

the trends that are evident in Figures 6, 7 are not present in

the control participants (Figure 8) since they rarely

participated in resistance training.

The exact differences and trends of a wider population will

be explored as part of future work that includes work to identify

muscle performance changes in neurorehabilitation. These

trends in healthy participants provide an important

observation toward that goal since we demonstrated that the

specific training strategy changes the effect of neuromuscular

adaptation, but more importantly that it can be measured in a
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time-progressing manner. A novel finding in this study

demonstrates that the time-constant of the slope of this curve

represents an individual’s unique change in neuromuscular

adaptation over time. We believe that this muscle adaptation

time-constant can be an important factor in identifying or

predicting training outcomes and identifying an individual’s

unique training response over time.

Our future studies will explore these effects as part of

rehabilitation protocols to improve the quantification of

performance and to decrease the rate of fatigue related to

training. Based on these findings, we predict that based on an

individual’s baseline and desired outcomes, specific

performance goals can be quantified by using this method.

Specifically, the long-term rate of change measures the anti-

fatiguing/adaptation response through regular muscle training,

which can be measured over time. This potential use includes

identification of training interventions when a participant has

reached a performance plateau, or has negligible response due

to a training plan. This is especially valid for applications in

training where fatigue is an overarching limitation. Thus, we

suspect that by measuring how an individual responds to

their training strategy, modifications to the plan can be made

to optimize muscle adaptation and performance (e.g., scaling

difficulty, adjusting frequency of exercise etc.) as shown above.

This study has some limitations that we would like to

identify. Primarily, we acknowledge the small sample size of

this study which includes 8 participants and 3 control

participants. Due to the length of the study, particularly in

requiring inactive individuals to participate in regular exercise

for over 3 months, it proved difficult to recruit a larger

cohort. As a result, we would like to clarify we do not claim

to model generic inter-participant (i.e., population wide)

performance adaptation based on long-term training. Instead,

we believe – due to our relatively large intra-participant data

set (hundreds of data points) – that these behaviors highlight

an individual’s performance adaptation that is unique to their

ability and physiology. However, we do postulate that the

different rates of adaptation are relative to specific training

plans as shown above – hypertrophy vs. endurance – which

also makes sense physiologically (31, 40). In that same vein,

we also omit an analysis that examines the anti-fatiguing or

performance differences between males and females regarding

resistance-based exercise. Since we predict the exact EMG

adaptation trends (change in EMG slope over time) to be

unique to each individual, we believe there will be differences

between men and women as well and plan on exploring this

in the future. Additionally, in this study we omit a wide-

bandwidth frequency domain analysis that can be used for

fatigue detection, since we hypothesized that lower frequency

time-domain responses can be used in identifying the long-

term effects of muscle training. Finally, we would like to state

that EMG data often exhibit considerable amounts of noise

that may skew data, which can create a difficult data capture
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FIGURE 9

(Top) long-term combined data showing control (black) and all other recorded data (red) where endurance and hypertrophy are grouped together.
(Bottom) Long-term combined data showing control (black), endurance (red) and hypertrophy (blue) trends over ∼100 days.
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TABLE 4 Comparing regression lines for each group.

R2 Between Regressions

C Fit E Fit H Fit Variance

Control 0.30 −1.11 −0.03 16.1

Endurance −0.19 0.56 0.35 50.9

Hypertrophy 0.13 0.06 0.36 39.0

MMSEs Between Fits

Control 2.3 4.7 3.0

Endurance 6.4 3.3 4.4

Hypertrophy 4.7 4.6 3.4

TABLE 5 Correlation of long-term data trends.

Correlation of Time Series Data

R – correlation coefficient

Control Endurance Hypertrophy

Control 0.03 −0.02

Endurance 0.03 0.71

Hypertrophy −0.02 0.71

p - value

Control Endurance Hypertrophy

Control 0.89 0.93

Endurance 0.89 8.9 × 10−5

Hypertrophy 0.93 8.9 × 10−5

Stefanovic et al. 10.3389/fresc.2022.981990
environment as we experienced with endurance participant #4.

Colloquially, there are likely some errors present in the above

data due to variations of electrode placement over 100 days of

study.
Conclusion

In this study we presented longitudinal changes to EMG

with regular resistance-based muscle training. Using 11

healthy participants who did not regularly weight train, we

collected data over 100 days in an attempt to quantify an

individual’s resultant neuromuscular adaptation. By using the

slope of an individual’s relative EMG contraction over time,

we demonstrated that the rate of fatigue onset decreases over

time. Specifically, over 100 days the average EMG exercise set

contraction amplitude decreased on average for hypertrophy

and endurance-based exercises by −8.23 dB (−0.083 dB/day)
and −10.09 dB (−0.113 dB/day), respectively. To the best of

our knowledge, this is the first study that demonstrates the

measurement of long-term adaptation in muscular activity
Frontiers in Rehabilitation Sciences 16
with regular exercise. We demonstrated that endurance and

hypertrophy-based exercise both follow similar trends in this

adaptation, but that the rate of change is different. These rates

are also different across participants.

By quantifying this adaptation in the time-domain, we

hypothesize that the measured rate can inform training

strategies for optimization in muscular outcomes. This

includes the time of intervention (i.e., shortened training for a

better outcome) and to identify when training strategies need

to change (i.e., plateauing adaptation effects as shown in our

control group). In addition, we propose that this adaptation

metric can be used in muscular training protocols to improve

interventions in user-customized treatment strategies (healthy

individuals or in rehabilitation protocols). Our future studies

will explore these capabilities in post-stroke participants.
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