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Abstract. The increase in demand for rare earth metals and the depletion of natural resources inevitably causes the need 
to search for alternative unconventional sources of rare metal raw materials. The article presents the results of a study 
of the composition and properties of the beneficiation tailings of currently produced loparite ores. Sieve, mineralogical, 
chemical, and radionuclide analyses were carried out. The average content of loparite in tailings was determined. Using 
scanning electron microscopy, minerals-concentrators of rare earth elements in the loparite ore beneficiation tailings 
were diagnosed. The distribution of valuable components and thorium in the tailings was determined depending on the 
particle size class. The radium-thorium nature of radioactivity was established, the values of the effective specific 
activity of the samples were calculated. We concluded that it is necessary to develop an integrated technology for 
processing the beneficiation tailings of loparite ore, due to the complex and heterogeneous mineral and chemical com-
position of the tailings material. 
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Introduction. Rare earth elements (REE) are widely used in high technology as a raw material 
for the production of superconductors, automotive catalytic converters, camera and telescope lenses, 
powerful magnets used in computer technology and the production of wind turbines, X-ray scanning 
systems and many other industries [1, 2]. Obtaining rare-metal raw materials is mainly based on the 
processing of complex ores with small dissemination of valuable components. The application of 
widely used magnetic and gravity separation at the first stages of beneficiation cannot ensure the 
complete extraction of heavy minerals, which leads to significant losses of valuable components with 
tailings [3, 4]. 

The depletion of the raw material base, the insufficient efficiency of existing beneficiation cir-
cuits, and the dynamics of supply and demand in the world metal markets increase interest in the 
search for unconventional and alternative sources of rare metal raw materials [5]. In recent years, the 
possibility of extracting REE from permanent magnets, fluorescent lamps, and electronics waste has 
been actively explored [6-8]. A large number of works are devoted to the processing of industrial 
waste: metallurgical production – phosphogypsum, bauxite residue (red mud), metallurgical slag and 
industrial and processing residues from thermal treatment facilities (coal ash, ash from waste incine-
ration plants), wastewater from mining enterprises [4, 9-12]. 
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The development of technologies for the extraction of rare earth elements from tailings of rare 

metal ore beneficiation has a number of advantages: processing of tailings can be carried out on the 

basis of the existing infrastructure using part of the equipment installed at the dressing plants, the 

need for crushing large pieces of ore is eliminated, which makes it possible to reduce grinding costs. 

As is known, grinding and classification of ore by size classes using mills and crushers is a significant 

part of the cost in ore processing circuits [13-15]. 

In addition to the significant energy and material consumption during production, waste from 

the beneficiation of ores containing REE can have a significant impact on the biosphere [16]. Stored 

solid mineral wastes are a source of serious pollution in the atmosphere, soils, surface and ground 

waters with a wide range of pollutants [17-19] due to dusting of loose dumps and tailings and migra-

tion of soluble forms of pollutants with natural waters [20, 21]. Special attention is drawn to storage 

facilities for wastes of rare metal ores due to the content of radioactive thorium in the tailings, which 

isomorphically replaces rare earth elements. 

Thus, the involvement of final tailings in processing with the extraction of rare earth minerals 

can become a way to obtain a valuable commercial product, while simultaneously reducing the envi-

ronmental hazard. The purpose of the work was to substantiate the prospects for the development of 

technology for the additional extraction of rare earth elements from the beneficiation tailings of cur-

rently produced loparite ores. 

Methodology. The only enterprise in Russia that develops a deposit of loparite ores is in the 

central Kola Peninsula. At the mine, ore is extracted and beneficiated to obtain loparite concentrate. 

Beneficiation of loparite ores occurs in three stages: gravity separation, flotation recleaning, electro-

magnetic and electrostatic separation. The total accumulated volume of loparite ore tailings reaches 

18 Mt with an annual increment of about 400-450 Kt, the average content of loparite varies from 0.64 

to 0.96 % [22]. 

As previously noted, the differentiation of tailings material by particle size and material compo-

sition occurs already at the stage of storage [23], therefore, for this study, samples of tailings were 

taken from the sump at the dressing plant. 

The particle size distribution in the tailings was determined using a Shimadzu SALD 201V laser 

particle size analyser. Samples were analysed in accordance with the international standard ISO 

13320-1:1999 “Particle size analysis – Laser diffraction methods”. The silicate and mineralogical 

analyses were carried out in accredited laboratories of JSC “Kola Geological Information Analytical 

Centre” according to the established methods. 

The qualitative composition of the samples was diagnosed by X-ray phase analysis (DRON-2.0 

diffractometer, CuK radiation, PDF2 database) and scanning electron microscopy (SEM LEO-420 

(Carl Zeiss), Aztec Oxford Instruments system) at the Geological Institute of the Kola Science Centre 

of the Russian Academy of Sciences. 

The content of light rare earth elements in the tailings was determined by inductively coupled 

plasma mass spectrometry at the Centre for Collective Use of the Institute of North Industrial Ecology 

Problems, Kola Science Centre of the Russian Academy of Sciences (ELAN 9000, PerkinElmer, 

USA). An average sample of tailings and samples sieved on sieves with a mesh size of 0.071, 0.1, 

0.25, and 0.5 mm were submitted for analysis. 

Radionuclide analysis using a scintillation γ-spectrometer with the “Progress” software was car-

ried out for an average sample of tailings, finely dispersed material, and sieved fraction of +0.071 

mm at the I.V.Tananaev Institute of Chemistry and Technology of Rare Elements and Mineral Raw 

Materials, Kola Science Centre of the Russian Academy of Sciences. The values of the specific activi-

ties of 226Ra, 232Th and 40K in tailings samples were calculated in accordance with GOST 30108-94 

“Construction materials and products. Determination of specific effective activity of natural ra-

dionuclides”. 
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Discussion of the results. Graphical results of the analysed particle size composition of the bene-

ficiation tailings of currently produced loparite ores are shown in Fig.1. 

According to the lithological classification, tailings belong to fine and medium-grained sands, 

the predominant fractions are 0.05-0.1 and 0.1-0.25 mm. 

Chemical composition of the tailings in the current production, wt.%: SiO2 – 48.53, ТiO2 – 1.35, 

Al2O3 – 22.40, Fe2O3 – 5.12, FeO – 0.66, MnO – 0.25, CaO – 1.42, MgO – 0.38, K2O – 4.24, 

Na2O – 13.43, P2O5 – 0.68, SrO – 0.35, F – 0.08, SO3 – 0.11. 

In the tailings, the predominant minerals are nepheline (Na,K)AlSiO4 (62.2 %), feldspars 

(Na,K)AlSi3O8 (16.5 %), and aegirine NaFe3+(Si2O6) (18.7 %). Apatite Ca10(PO4)6(OH, F, Cl)2 

(1.03 %), lomonosovite Na10Ti4(Si2O7)2(PO4)2O4 (0.19 %), sodalite Na4Si3Fl3O12Cl (0.17 %), and 

lamprophyllite (Sr, Ba)2(Na, Ti)4Ti2O(Si2O7)2(O, OH, F)2 (0.15 %) were also found. The average 

content of loparite (Na, Ce, Ca, Sr, Th)(Ti, Nb, Fe)O3 was 0.98 %. 

X-ray phase analysis is consistent with the established mineral composition of tailings. Fig.2 

shows a micrograph of a sample of current production tailings. Samples of strontium apatite, loparite, 

and eudialyte are distinguished separately. 
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Fig.1. Particle size composition of the beneficiation tailings of currently produced loparite ores 
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Fig.2. Micrograph of a sample of current production tailings: a – Lop (loparite), Ap (strontium apatite); b – Eud (eudialyte) 
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The main REE concentrating minerals in tailings are: loparite, strontium apatite 

((Sr, Ca)5(PO4)3(OH, F), eudialyte Na4(Ca, Ce, Fe, Mn)2Zr, Si6O17(OH, Cl)2. Vitusite (Ce) 

(Na3(Ce, La, Nd)(PO4)2 was also diagnosed. Substitution of calcium by strontium in the composition 

of strontium apatite leads to an increase in the unit cell parameters of Sr-apatite due to the larger ionic 

radius of strontium and a higher specific weight of Sr-apatite in comparison with pure apatite [24]. 

Particles of minerals containing rare-earth elements mainly have a smaller grain size than particles of 

aegirine, apatite, and potassium feldspars. 

Thus, valuable minerals are mainly represented by hard-to-recover oxides (loparite), silicates 

(eudialyte), and phosphates (Sr-apatite, Ce-vitusite, etc.). 

Results of the chemical analysis of the average sample and sieved fractions of the loparite ore 

tailings are shown in Fig.3. 

One can note an increased content of light REE and thorium in the –0.071 mm fraction, which 

naturally exceeds the average content in the Earth's crust (lanthanum 30-35 mg/kg, cerium  

64-66 mg/kg, praseodymium 7.1-9.1, neodymium 26-40, samarium 4.5-7) [25, 26]. The distribution 

of REE contents correlates with the Oddo-Harkins rule, the concentrations of elements with even 

ordinal numbers of the periodic table are higher than elements with odd ones [27]. 

Comparison of the content of valuable components in the loparite ore tailings with similar sites 

in the world showed commensurate results with stored ore beneficiation tailings in China and the 

USA. Thus, in the tailing dam in Ganzhou, Jiangxi Province in southern China, the concentration of 

the total rare earth elements is 747±50 mg/kg, in the Mountain Pass mine tailings, the content of rare 

earth oxides reaches 5 % [4, 28, 29]. A higher 

REE content was noted for ore processing 

waste from the Bayan-Obo deposit, where a 

significant amount of REE and niobium was 

lost due to the imperfect processing cycle, 

which led to a low recovery factor (about 

10 %) of REE [29]. 

Radionuclide analysis of the currently 

produced loparite ore tailings (Fig.4) estab-

lished the radium-thorium nature of radio-

activity, which is consistent with the pre-

viously determined for stale beneficiation 

tailings [29]. 

Effective specific activity (Aeff) of na-tu-

ral radionuclides in the studied average tai-

lings samples varies from 814 to 1168 Bq/kg, 
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Fig.3. Distribution of light rare earth elements and thorium in the tailings material by size classes 
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which makes it possible to classify tailings as waste category I with a calculated value of Aeff less 

than 1500 Bq/kg in accordance with clause 6.2. SanPiN 2.6.1.2800-10 “Hygienic requirements to 

limit public exposure due to natural sources of ionizing radiation”. Industrial wastes in category 

I can be sent for disposal to industrial waste disposal sites without restrictions on the radiation 

factor. According to clause 5.3.4. NRB 99/2009 building materials, as well as industrial waste 

used for the manufacture of building materials and finished products with Aeff of natural radio-

nuclides more than 740 Bq/kg, but less than 1500 Bq/kg can be used in road construction outside 

settlements (III class building materials according to Aeff). According to SanPiN 2.6.1.2800-10 

(clause 5.2), the feedstock belongs to II class materials according to Aeff and is a mineral raw 

material with increased content of natural radionuclides. 

In samples of finely dispersed tailings material (–0.071 mm), Aeff is in the range of 1697-

1825 Bq/kg. As beneficiation tailings, –0.071 mm fraction samples belong to waste category II 

(Aeff more than 1500, but less than 10,000 Bq/kg) in accordance with clause 6.2. SanPiN 

2.6.1.2800-10. According to clause 6.4. SanPiN 2.6.1.2800-10, industrial waste of category II is 

sent for disposal to specially designated areas in industrial waste disposal sites. As a stock for 

building materials, fine tailings belong to class IV. According to clause 5.3.4. NRB 99/2009, the 

issue of using materials with Aeff of natural radionuclides more than 1500 Bq/kg, but less than 

4000 Bq/kg is decided in each case separately based on the sanitary and epidemiological conclu-

sion of the federal executive body authorized to carry out state sanitary and epidemiological sur-

veillance. 

In samples of screened tailings with a fraction of +0.071 mm, Aeff is in the range of  

613-681 Bq/kg. As beneficiation tailings, +0.071 mm fraction samples belong to waste category I 

(less than 1500 Bq/kg) in accordance with clause 6.2. SanPiN 2.6.1.2800-10, as stock for building 

materials, they belong to class II. According to clause 5.3.4. NRB 99/2009, building materials, as 

well as industrial waste used for the manufacture of building materials and finished products with 

Aeff of natural radionuclides more than 370 Bq/kg but less than 740 Bq/kg (Class II), can be used in 

road construction within settlements and zones of promising development, as well as during the con-

struction of industrial facilities. According to clause 4.5.2. SanPiN 2.6.1.2800-10, the use of materials 

and products in communal conditions and everyday life, except for building materials and materials 

containing only natural radionuclides with an effective specific activity of less than 740 Bq/kg, is 

allowed without restrictions on the radiation factor. 

In general, the REE extraction consists of three main stages: mining and grinding, beneficiation 

(gravity separation, magnetic and electrostatic separation, flotation, etc.), and hydrometallurgical 

methods for extracting metals, including leaching, neutralization and precipitation, separation and 

purification methods [30]. The development of technology for the processing of current beneficiation 

tailings is associated with the selection of optimal methods that allow levelling the negative impact 

of the high content of the silicate component in the tailings, the presence of radioactive elements, the 

presence of target components in the composition of hard-to-recover rare-earth oxides and phos-

phates, the need for targeted extraction of components with a high content of interfering impurities 

in the productive solution. 

The use of widespread treatment of tailings with inorganic acids and their mixtures, due to the 

high content of aluminosilicates in the tailings, in particular nepheline and feldspar, leads to the for-

mation of silicic acid sols in the solution, which greatly complicates further processing of the produc-

tive solution. This factor can be overcome in several ways. In [31, 32], the interfering effect of silicic 

acid is eliminated by preliminary alkaline recovery of silicates and removal of silicon by aqueous 

leaching of soluble alkali metal silicates. Extraction of the total REE associated with the aluminosi-

licate glassy phase from the finely dispersed residues of coal combustion [31] increased from 20 % 

when leaching with inorganic acids (HCl, H2SO4, HNO3) without pre-annealing to 79 and 89 % when 

annealing with NaOH and Na2CO3, respectively. Removal of dissolved silicates is possible by coag-

ulation with polyacrylamide. In [33], purification of the productive solution during the processing of 
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black aluminium slag by coagulation with polyacrylamide made it possible to obtain aluminium hy-

droxide of 99 % purity and achieve complete removal of silicates from the solution. 

In the studies [34, 35] devoted to the processing of apatite-nepheline production tailings similar 

in material and particle size composition, nepheline was separated according to the flotation-magnetic 

circuit. Nepheline was separated by reverse flotation from deslimed tailings, then the flotation con-

centrate entered the wet two-stage electromagnetic separation, strong magnetic minerals, mainly ti-

tanomagnetite, were removed in a strong field, and aegirine was removed in a weak field. The circuit 

used [34] made it possible to obtain a nepheline concentrate with a content of 28.5-29.2 % Al2O3 

from the wastes of the apatite-nepheline factories ANOF-1 and ANOF-2, while extracting from the 

initial raw material at the level of 57.7-71 %. 

Jigging of nepheline and potassium feldspars from the loparite ore tailings can also be carried 

out using the gravity-magnetic technology proposed in [36], which includes size classification, screw 

separation to separate mainly large aggregates of aegirine and loparite, table concentration and elec-

tromagnetic separation. The proposed technology was tested on the Karnasurt plant tailings with the 

production of a nepheline concentrate containing 28.3-28.5 % Al2O3 with an extraction of 86.9 %, 

and on the Umbozero plant tailings with the production of a nepheline concentrate with an Al2O3 

content of about 25 %. An obstacle to obtaining a higher quality concentrate was the high content of 

feldspars in the sample [36]. It was noted in [37, 38] that the use of gravity and magnetic methods of 

preconcentration can remove a significant part of gangue minerals, increasing the selectivity of REE 

extraction and reducing the consumption of reagents for both flotation and subsequent leaching. 

Promising reagents for the subsequent flotation of a preconcentrated rare metal product is a class 

of complexing agents based on hydroxamic acids, which makes it possible to efficiently carry out the 

joint flotation of loparite and aegirine [35, 39]. The effect of exposure to hydroxamic acids was tested 

[35] during the flotation of slime products of loparite ore beneficiation, making it possible to obtain 

a 3.7 % concentrate of niobium oxide with an initial content of 0.17 % in slimes. 

During hydrochemical conversion, thorium, which isomorphically replaces rare earth elements 

in a number of minerals, will inevitably pass into the productive solution along with ions of rare earth 

elements. Considering the diverse mineral composition of the ores mined in the Lovozero massif [40], 

it can be assumed that thorium will be mainly concentrated in Na-Th silicates, vitusite-(Ce), and 

loparite. In addition, a significant presence of thorium can be found in minerals of the rhabdophane 

group, titanite [41], pyrochlore, stensrupine, apatites (belovite-(Ce), fluorine- and strontioapatites), 

etc. Selective leaching of thorium is a complex technical problem due to the close properties of tho-

rium and REE. The classical option of coprecipitation of thorium and REE from acidic solutions by 

adding oxalic acid is possible [42, 43]. The resulting oxalates of tetravalent cerium and thorium are 

subjected to ignition, repeated acid treatment, and extraction with tributyl phosphate. Dissolved rare 

earth elements remain in the aqueous solution, and thorium in the organic solution. According to [43], 

30 % concentrated oxalic acid precipitates 99 % thorium and 98 % REE at 30 °C. 

The multi-stage and complexity of the loparite ore tailings processing requires the use of new 

innovative technologies and further in-depth study of the tailings material, however, interest in this 

topic does not weaken. Recent technologies for bioleaching [44], flotation agents, etc. are being de-

veloped. Improvement in the technology of tailings pre-concentration and subsequent hydrometallur-

gical processing will reduce the number of necessary stages and the resources expended. Involvement 

of tailings in the processing can not only reduce the amount of accumulated waste and the damage 

they cause to the environment, but also obtain an additional commercial product, implementing the 

principle of transition to a sustainable economy in the mining industry. 

Conclusion. The study investigated the composition and properties of the beneficiation tailings 

of currently produced loparite ores. The predominant fractions are 0.05-0.1 and 0.1-0.25 mm. The 

average content of loparite in the tailings is 0.98 %. Considering the volume of waste accumulated over 

the years of operation of the enterprise, the loparite ore tailings are of interest as a source of rare metal 

raw materials. 
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Using the method of scanning electron microscopy, REE concentrating minerals in the loparite 

ore tailings were diagnosed: loparite, eudialyte, strontium apatite. An analysis of the sieved fractions 

revealed the concentration of REE and thorium in the finely dispersed material of the beneficiation 

tailings. Based on the radionuclide analysis, the values of the effective specific activity of samples 

were calculated and the radium-thorium character of radioactivity was established. 

The features of loparite ore beneficiation waste considered in this article are of immense im-

portance in the development of modern economically and environmentally feasible processing tech-

nologies. Thus, the concentration of light REE and thorium in the fine tailings fraction, confirmed, 

among other things, by the higher effective specific activity of the fraction of less than 0.071 mm, 

provides for the inclusion of the stages of gravity-magnetic and flotation separation in the developed 

technology. This fact attracts attention in connection with the increased migration activity of the silty 

fraction of the tailings, which leads to an increase in the level of environmental risk for the areas 

adjacent to the tailing dams. A commodity product obtained at the initial stage of processing can be 

nepheline and potassium-spar concentrate, used as a raw material for the production of alumina, ce-

ment, potash, soda. The crude REE-containing concentrate can be further processed by the hydromet-

allurgical method. The productive solution is subjected to precipitation with the output of the total 

REE and thorium, or extraction with organic solvents to obtain individual metals. However, the sep-

aration of thorium, which provides the main part of the material radioactivity, remains the least de-

veloped issue. The introduction of the stage of thorium separation from REE at the current level of 

technology development will lead to a noticeable increase in production costs and an increase in the 

volume of associated waste. Finding an effective way to overcome this problem will entail a signifi-

cant increase in the range of applications for waste from the loparite ore processing. 

Considering tailings as manufactured deposits with a low content of valuable components, but a 

significant amount of material leads to the need to develop specific treatment procedures that provide 

not only a valuable commercial product, but also reduce environmental damage. 
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