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Abstract. Compaction in sedimentary basins has been traditionally regarded as a one-dimensional process that ignores 
inelastic deformation in directions orthogonal to the active load. This study presents new experiments with sandstone 
demonstrating the role of three-dimensional inelastic compaction in cyclic true triaxial compression. The experiments 
were carried out on the basis of a triaxial independent loading test system in the Laboratory of Geomechanics of the 
Ishlinsky Institute for Problems in Mechanics of the Russian Academy of Science. The elastic moduli of the material 
were estimated from the stress-strain curves and the elastic deformations of the sample in each of the three directions 
were determined. Subtracting the elastic component from the total deformation allowed to show that inelastic com-
paction of the sandstone is observed in the direction of active loading, whereas in the orthogonal directions there is a 
expansion of the material. To describe the three-dimensional nature of the compaction, a generalization of Athy law 
to the tensor case is proposed, taking into account the role of the stress deviator. The compaction tensor and the 
kinetic equation to describe the evolution of inelastic deformation, starting from the moment of the load application 
are introduced. On the basis of experiments on cyclic multiaxial compression of sandstone, the identification and ver-
ification of the constructed model of tensor compaction were carried out. The possibility of not only qualitative, but 
also quantitative description of changes in inelastic deformation under complex cyclic triaxial compression is shown. 
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Introduction. The key filtration-capacitance characteristic of reservoir rocks is porosity. Dur-

ing changes in stress fields in the rock mass caused by tectonic processes, mining, and a decrease in 
pore pressure, the compaction occurs – inelastic compaction of rocks. Compaction leads to a de-
crease in the porosity of rocks. Most models describing the process of rock compaction during sed-
imentation and lithogenesis are based on Athy law [1] – the empirical law of exponential drop in 
porosity with pressure. The coefficients of the Athy law, as a rule, are selected based on data on 
changes in porosity in boreholes in a particular region, while it is assumed that the distribution of 
porosity with depth depends only on the type of sedimentary rocks. In recent decades, various rela-
tions have been proposed for porosity change with depth, taking into account variations in the litho-
logical composition of rocks and the mineral composition of the fluid saturating them [2]. Athy law 
and other similar relations (Hedberg, Weller, Teodorovich – Chernov, Burst, Beall, Overton and 
Zanier, etc. [2]) consider inelastic compaction as a process controlled by average stress, ignoring 
the possible influence of deviatoric stress components. 

JOURNAL OF MINING INSTITUTE 
Zapiski Gornogo instituta 

 
Journal homepage: pmi.spmi.ru 

 

ISSN 2411-3336; е-ISSN 2541-9404 
 



 

 

Journal of Mining Institute. 2022. Vol. 254. p. 234-243 
© Ivan A. Panteleev, Vladimir Lyakhovsky, Virginiya A. Mubassarova, Vladimir I. Karev, 

Nikolaj I. Shevtsov, Eyal Shalev, 2022 

DOI: 10.31897/PMI.2022.30 

235
This is an open access article under the CC BY 4.0 license

 

Early models used elastic 
and poro-elastic rheology to 
describe rock compaction and 
fluid removal. In these models, 
pore pressure prevents rock 
compaction during fluid expul-
sion, while an abnormally high 
reservoir pressure is created in 
the case of a sufficiently high 
compaction rate (porosity re-
duction). In subsequent studies, 
irreversible compaction was modeled on the basis of viscous [3-5] and visco-plastic rheology [6-8], 
including taking into account temperature effects [9] and large deformations [10]. It should be noted 
that the theoretical results only partially describe the available experimental data [11-13]. Recent studies 
have shown that rock compaction occurs at all stress levels from the very beginning of compression, i.e. 
it is a non-threshold process that does not require the introduction of a yield criteria [14-16]. 

Problem statement. In previous studies of compaction, it was assumed that the deformation 
during compaction can be approximated only by a vertical component (Fig.1, a, b, 1D-compaction). 
Initially, the spherical pore space undergoes vertical irreversible compression with constant hori-
zontal deformation (Fig.1, b). Such a 1D-approximation makes it possible to significantly simplify 
the hydromechanical description of the compaction process [17]. Using this hypothesis, numerical 
calculations of the formation of sedimentary basins in two- and three-dimensional formulations 
were carried out [18-20]. It should be noted that the consequences of such simplification have been 
little studied [17]. 

This paper presents the results of sandstone tests under conditions of true triaxial compression, 
demonstrating that inelastic compaction in the direction of maximum compression is accompanied 
by inelastic decompression in the orthogonal direction (Fig.1, с). To take into account the three-
dimensional nature of the inelastic compaction process, a generalization of the Athy law is proposed 
in the work, linking the equilibrium compaction not only with pressure, but also with the deviatoric 
stress components. The process of uneven compaction observed in the experiment is modeled using 
kinetic relations linking the compaction rate with the applied pressure and the difference between 
the current and equilibrium compaction values. Numerical modeling has shown that the three-
dimensional (tensor) model of inelastic compaction reproduces the main features of the deforma-
tional behavior of sandstone under cyclic loading in three orthogonal directions. 

Methodology of experimental research. To study the compaction process under complex 
three-dimensional loading, the results of experiments on cyclic true triaxial testing of sandstone 
samples are used. A detailed description of the experimental conditions is presented in [21]. 

Polymictic sandstone belonging to the Sheshmin formation of the Ufimian Strata of the Permian 
system was selected for testing. Sandstone is characterized by a layered structure caused by alter-
nating interlayers enriched with epidote and flint fragments. SEM-studies have shown that the distri-
bution of mineral grains by volume is uniform with a size from 150 to 450 microns. The porosity of 
sandstone is 9.5 % and is developed mainly along grain boundaries, which is caused by calcite 
leaching by groundwater. Cubic samples with an edge size of 40 mm were made on a special 
processing complex at the Ishlinsky Institute for Problems in Mechanics of the Russian Acade-
my of Sciences with high accuracy, the non-parallelism of the faces did not exceed 20 microns. 

Mechanical tests were carried out on the triaxial independent loading testing system (TILTS) in 
the laboratory of geomechanics [22-24]. Independent loading in three orthogonal directions is carried 
out due to the original kinematic scheme applied in the design of the loading unit, which allows the 
pressure plates to converge in three directions without interfering with each other [25, 26]. Before the 

Fig.1. Schematic representation of the pore space compaction  
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tests, thin fluoroplastic gaskets with grease were in-
stalled between the sample faces and the tips of the 
pressure plates to minimize friction during compres-
sion of the sample (Fig.2). The automated TILTS 
control and data acquisition system includes LVDT 
displacement sensors and force sensors with a reso-
lution of 0.2 microns and 0.03 MPa. Measurements 
of forces and displacements are carried out inde-
pendently on all three loading axes with a sampling 
frequency of 1 Hz. 

To study the process of compaction of sand-
stone, two programs of cyclic triaxial load were im-
plemented (Fig.3). The first test program consisted 
of three pairs of loading–unloading cycles and a 

comprehensive compression up to 10 MPa preceding them. In the first cycle, active compression 
was performed along the X axis to a pressure of xx = 60 MPa, followed by unloading to 
xx = 10 MPa while keeping the stresses constant along the other two axes yy = zz = 10 MPa. In 
the second cycle, the load was carried out in the same direction up to xx = 80 MPa, followed by 
unloading up to 10 MPa. Then the same pair of cycles followed with active compression along the Y 
axis with the control of constant stresses in the other two directions, then in the direction of the Z 
axis (Fig.3, a). The rate of active loading and unloading in each of the six cycles is constant and 
equal to 31 kPa/s. 

The second test program was an extended version of the first program and consisted of three tri-
ples of cycles (Fig.3, b). The first cycle of each triple was compression in two of the three directions 
up to 58 MPa, followed by unloading up to 10 MPa while keeping the pressure in the third direction at 
10 MPa. In the second and third cycles, active compression (up to the stress level of 78 MPa) and un-
loading (up to 10 MPa) were carried out in each of the two selected directions, while maintaining con-
stant stresses in the two remaining directions. The first three represented a loading – unloading cycle 
in the X and Y directions, a loading – unloading cycle in the X direction (stress holding along the Y, Z 
axes), a loading – unloading cycle in the Y direction (stress holding along the X, Z axes). The second 
three was a loading – unloading cycle in the Z and Y directions, a loading – unloading cycle in the Z 
direction (stress holding along the Y, X axes), a loading – unloading cycle in the Y direction (stress 
holding along the X, Z axes). Finally, the third three are loading – unloading cycles in the Z and X 
directions, followed by successive loading – unloading cycles in the X and Z directions. 

Fig.2. Sample in TILTS after stopping the triaxial 
disproportionate compression test 

 

Fig.3. The first (a) and second (b) programs of cyclic triaxial testing of sandstone samples 
(blue solid line – compression in the X direction, red dotted line – compression in the Y direction, 

green dashed – compression in the Z direction) 
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The results of the first test program were used to 
determine the material properties of the rock, including 
elastic moduli and parameters controlling the compac-
tion of the rock. The results of the second test program 
were used to verify the tensor compaction model. 

Figure 4 shows the deformation curves separately 
for each pair of cycles when testing sandstone accord-
ing to the first program. Analysis of the unloading path 
in each pair of cycles allowed to estimate the Young's 
modulus Е~10 GPa and the Poisson coefficient ν~0.2. 
The modulus variations from pair to pair of cycles do 
not exceed 15 %, so we will consider the rock isotropic, 
neglecting the anisotropy of elastic properties and the 
degradation of elastic modulus during loading. 

Using the estimated elastic moduli, we calculate the 
elastic strain component in each of the three directions 
in each of the six loading cycles. Subtracting the elastic 
strain from the total deformation allows to estimate the 
contribution of the inelastic component to the defor-
mation response in every direction (Fig.5). The arrows 
in Fig.5 indicate the tendency of inelastic strain to 
change: compaction or expansion. The experimental 
results clearly show that compaction in the direction of 
the active load (an increase in inelastic deformation) is 
always associated with expansion in the orthogonal di-
rection (a decrease in inelastic deformation). During the 
active load in the X direction (blue line), the compaction increases unevenly during both cycles, 
while other components of inelastic deformation (red and green lines) show a clear tendency to ex-
pansion. With the onset of the active load in the Y direction, this trend changes, the inelastic defor-
mation in the direction of active compression begins to grow (red line) against the background of a 
decrease in the other two components. A similar change takes place in the third pair of loading cy-
cles corresponding to compression in the Z direction. 

The presented dependences 
show that all three components 
of inelastic deformation accu-
mulate in the process of true tri-
axial compression of sandstone, 
demonstrating both a tendency 
to compaction and expansion. 
With triaxial compression, com-
paction in one direction leads to 
expansion in perpendicular di-
rections. This extension (expan-
sion) includes a slight elastic 
extension (in accordance with 
the Poisson's ratio) and a signif-
icant inelastic extension (Fig.5), 
which is basically irreversible 
(see Fig.4). 

Fig.4. Deformation curves for compression in the 
direction of the axis X (a), Y (b), Z (c) 
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Methodology of theoretical research. The general deformation of the material under an arbi-
trary scheme of application of loads can be represented by a superposition of elastic and inelastic 
components. At the same time, different physical mechanisms may be responsible for the develop-
ment of the inelastic component. In this paper, inelastic deformation of a porous material is under-
stood as compaction (changes in the volume and structure of the porous space), starting from the 
very moment of loading. Since elastic modules practically do not change during loading, inelastic 
deformation caused by the development of damage is negligible. The compaction is partially re-
stored during unloading (Fig.5). Compaction is not necessarily isotropic, loading in one direction is 
accompanied by expansion in other directions (see Fig.1, c, Fig.5). To quantify this process, we de-
fine the compaction tensor Fij. An important feature of compaction in comparison with other mech-
anisms of inelastic deformation is that, under constant load, its value approaches a certain equilibrium 
value, at which the rock ceases to deform. If the deformation of the rock grains is neglected, the 
change in its volume is determined by the change in porosity. The compaction of the medium is of-
ten approximated by the empirical Athy law [1], which describes the change in porosity caused by 
the acting pressure and ignores the contribution of non-isotropic mechanisms determined by the 
components of the stress deviator: 

 φ  exp ,eq
PP A
B

   
 

 (1) 

where  φeq P  – pressure-dependent equilibrium porosity; Р – pressure,  1 2 3
1 σ σ σ
3

P     , posi-

tive value – compression;  A and B – material parameters determined as a result of borehole measu-
rements. 

The applicability of relation (1) has been demonstrated in various experiments (for example, 
[15, 16]). Porosity change (volumetric deformation) associated with an increase in pressure from 
zero to a certain value of P, 

   φ 0 φ 1 expeq eq
PP A
B

         
. (2) 

By analogy with Athy law (1), equation (2) describes the change in the volume of the material, 
without taking into account the amount of deformation change in different directions. We propose 
to extend the relation (2) for the equilibrium tensor of compaction by associating it not only with 
pressure, but also with the deviatory part of the stress tensor )(τ σ δij ij ijP  : 

   0

1 2

τ
F F δ  exp δ

  
      

  

ijeq
ij ij ij ij

PA
B B

, (3) 

where  0Fij  – initial value of the compaction tensor,   0F δij ijtr A  – minimum possible porosity of 

compacted rock.  
Instead of the coefficient B in the ratios (1) and (2), two parameters B1 and B2, having the di-

mension of stresses are introduced. Note that the exponential function of a tensor argument is a ten-
sor that for an arbitrary argument X can be represented as a convergent power series [27]: 

 
0

1exp   .
!

X X




  n

n n
 (4) 

The series presented above absolutely converges according to the norm X X X   for any 
tensor argument X and as its scalar analogue can be used to calculate a tensor exponential function 
with any given degree of accuracy. Using (4), it can be shown that in the coordinate system associa-
ted with the directions of the principal stresses, the relation (3) can be rewritten in terms of the prin-
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cipal values of the stress and compaction tensors. In accordance with the properties of the exponen-
tial function of the tensor argument, the compaction tenor will be aligned with the stress tensor: 

   

   

   

0 1
1 1

1 2

0 2
2 2

1 2

0 3
3 3

1 2

F F 1  exp ;

F F 1  exp ;

F F 1  exp .

  
     

  
  










     

  
  

     
  

eq

eq

eq

PA
B B

PA
B B

PA
B B

 (5) 

For a hydrostatic load with zero stress deviator (τ 0)ij  , as well as 2B  , the equation (5) is 
equivalent to (2) and it defines an isotropic compaction. If the deviatory components of the stresses 
is negative (compression), then the compaction increases, while the tensile stress (positive values of 
the stress deviator) leads to suppresses compaction and may even leads to expansion. In relation (3), 
the additional material parameter B2 is responsible for compaction in the direction of the compres-
sive load and expansion in directions perpendicular to it. 

The compaction rate, according to [3, 7], is proportional to the applied pressure multiplied by the 
difference between the equilibrium and current compaction values. We use the same formulation, 
which differs from the kinetic equation for porosity only by the tensor character of the compaction: 

  F
F F ij eq

ij ij

d
CP

dt
, (6) 

where С – positive coefficient, (Pa∙s)–1. Following [15, 16], the multiplier  (F F ) eq
ij ijC  can be conside-

red as the inverse of viscosity, having different values for compaction and expansion. At constant load, 
the slow relaxation of the deformation of the compaction to an equilibrium value can be considered 
as creep. Since the equilibrium compaction is proportional to the exponential of the stress deviator (3), 
the rate of accumulation of inelastic deformation (creep) will also be proportional to this value. The 
exponential dependence of the creep rate on the differential stress is confirmed by multiple laboratory 
experiments [28-30], which indicates the consistency with the proposed kinetic equation (6). 

In the case of tensor formulation for inelastic deformation of the compaction, the total de-
formation of the material can be represented as the sum of elastic deformation and the compaction 
(changes in the tensor of the compaction): 

(0) .(F F )   tot el
ij ij i ijj  (7) 

Equation (6) together with the expression for the components of the compaction tensor (3) al-
low calculating the inelastic deformation of the material under arbitrary applied loads. Adding the 
calculated elastic deformation for the known elastic modules of the material, we obtain the total de-
formation (7) measured during the loading of the sample. 

Results. Let us identify the proposed tensor compaction model using experimental data on cy-
clic triaxial compression of sandstone. For a six-cycle loading program, dependences of the change 
in the principal components of the inelastic deformation tensor on time were previously constructed 
(Fig.5). We estimate the material parameters A, B1, B2 and the coefficient С, by minimizing the 
discrepancy between the experimental and calculated data using the developed model 
(3D-compaction) using the dependencies of the principal components of the compaction tensor 
on time. Figure 6 presents theoretical (as a sum of the calculated elastic and inelastic strains) 
and experimental time curves for the components of the total deformation. For comparison, 
curves were also constructed for which the inelastic component was calculated according to 
Athy law (1D-compaction). 
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Figure 6 shows that during the first two cycles, when active loading was carried out in the di-
rection of the X axis, the 1D-model (Athy law) and the 3D-model (compaction tensor) satisfactorily 
describe the experimental curve for the component ε tot

xx . A different situation is observed for the 

other two components ε tot
yy  and ε tot

zz , which show a tendency to decompression, and in general for the 
following pairs of cycles (compression in the Y, Z directions). The tensor compaction model cor-
rectly reproduces the tendency to decrease inelastic deformation (expansion) in orthogonal direc-
tions to the active compression, whereas the 1D-model shows minor variations associated with the 
Poisson effect. Even in the direction of active compression in the second and third pairs of cycles, 
the one-dimensional model gives a deformation that does not correspond to experimental data. This 
is due to its inability to describe the partial reversibility of inelastic deformation during the unloading 
stages. In general, the presented results show the expected disadvantage of the 1D-model using 
Athy law, namely, the inability to describe the change in inelastic deformation in directions orthogo-
nal to the direction of active loading. As a result of the identification of the tensor model of compac-
tion, the following values of the model parameters were obtained: A = 1.2 %, B1 = 49.2 MPa, 
B2 = 19.3 MPa, С = 1.6∙10–5 (Pa∙s)–1. The curves for the 1D-model are obtained for B = 46.8 MPa 
and the same value of parameter A. 

The constrained parameters were used to verify the tensor model of compaction according to 
the data of a nine-cycle experiment simulating a more complex process of compaction of sandstone 
in three orthogonal directions. 

Figure 7 shows the experimental (solid lines) and calculated (dotted lines) dependences of the 
components of the tensor of the total deformation of the sandstone sample tested under the second 
program. Figure 7 shows that the tensor compaction model correctly describes experimental data on 
sandstone deformation in three orthogonal directions. It should be noted that the model qualitatively 
repeats experimental curves both in a situation when compaction occurs in one direction and expan-
sion occurs in the other two, and in a situation when the material is compacted in two directions and 
expands in one. 

Discussion. A widely used approach to describing changes in porosity with depth is the appli-
cation of Athy’s law and its modifications. According to this law, inelastic deformation of the 
compaction accumulates only in the direction of the active load (see Fig.1, b). The results of 
experiments on true triaxial load of porous sandstone presented in this study demonstrate that 
the accumulation of inelastic compaction in the direction of active compression is accompanied 
by significant inelastic expansion in orthogonal directions. In order to take into account the 
three-dimensional nature of the accumulation of elastic deformation, a generalization of Athy 
law to the tensor case in the form (3) was proposed. The introduced compaction tensor in the gene-
ralized formulation depends not only on the pressure, but also on the components of deviatory stress. 
Verification and identification of the constructed tensor model of compaction showed that the ten-
sor formulation significantly improved compliance with experimental data compared to the one-
dimensional model of compaction. The discrepancy between the calculated and experimental curves 
(Figs.6, 7) can be related both to the nonlinear elastic response of the material and to the damage-
induced anisotropy of elastic properties that develops from cycle to cycle. 

The onset of inelastic deformation is usually described by one or another yield criterion [31, 32]. 
However, the results presented here are consistent with recent studies [15, 16], according to which the 
deformation of an inelastic compaction begins at the moment of application of the load. It should be 
noted that the introduced compaction tensor describes only a part of the inelastic deformation that oc-
curs when loading a porous rock and is mainly associated with a change in the volume of the material 
(by analogy with plastic loosening in the Novozhilov model and the dilatancy coefficient in the 
Drucker – Prager – Nikolaevsky model [33]). To account for the inelastic deformation of the shape 
change, it is necessary to introduce a damage tensor of one or another rank, describing both the deg-
radation of the elastic properties of the material and their anisotropy induced by cracking [34]. 
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Under non-hydrostatic load, the deformation rate of the compaction (equation (6) is propor-
tional to the difference between the stress-dependent equilibrium compaction and its current 
value. If the applied load is constant, the compaction rate will be similar to the exponential law 
linking the creep strain rate cr  and the differential stress d: 

 ε ~  exp  σcr cr dB . (8) 
For sandstone, the coefficient crB  varies in the range of 0.1-1.0 MPa–1 [13, 29], which is very 

close to the value 1
2B = 19.3–1, estimated as a result of model identification for sandstone samples. 

By analogy with the permeability – porosity ratio, which, as a rule, is represented as a power-
law [35-37], it is possible to associate a decrease in the components of the permeability tensor kij 
with the components of the compaction tensor Fij  in the form: 

Fig.7. Combined experimental curves of the components of 
the total deformation of sandstone tested under the second 
program (solid lines) and theoretical curves obtained using 
the tensor model (dotted lines); a – ; b – ; c –  
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total deformation of sandstone (solid lines) and theoretical curves 

obtained using tensor (3D-compaction, dotted lines) and scalar 
(1D-compaction, black lines) formulations; 
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~  F  n
ij ijk , (9) 

where n – an exponent, in the approximation of the laminar Poiseuille flow n = 3. 
Under this assumption, the strong anisotropy of permeability in sedimentary basins, when the 

permeability in the vertical and horizontal directions may differ by the orders of magnitude, is ex-
plained by significant vertical compaction and simultaneous horizontal expansion of the medium. 

Conclusion. In the experimental part of the work, the results of cyclic tests of sandstone sam-
ples conducted under two triaxial loading programs are presented. The elastic moduli of the materi-
al were evaluated, which made it possible to divide the total deformation into elastic and inelastic 
components. It is shown that an increase in inelastic deformation in the direction of active compres-
sion (compaction) is accompanied by its decrease in two orthogonal directions (expansion). 

In the theoretical part of the work, the compaction tensor is introduced, which is a generalization 
of Athy’s law in the case of taking into account the components of the stress deviator. A kinetic equa-
tion describing the evolution of the components of the compaction tensor over time is proposed. 
Based on experimental data on the six-cycle loading of sandstone, the identification of the model was 
carried out, the material parameters responsible for the process of compaction and expansion of the 
medium was determined. To verify the model, numerical calculations of the evolution of the compo-
nents of the compaction tensor under complex cyclic compression with a change in both the direction 
of active compression and the number of directions of active compression were carried out. Compari-
son of experimental and calculated curves showed their qualitative and quantitative correspondence. 
As a result of the calculations carried out, it is shown that the tensor compaction model makes it pos-
sible to successfully describe the accumulation of inelastic deformations of compaction and expansion 
in various directions. The applicability of the proposed relations to describe the tensor compaction of 
the material is limited to medium- and highly porous cemented rocks. 
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