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The NAM, ATAF1/2, and CUC2 (NAC) transcription factors, which are members

of a plant-specific gene family, play critical roles during the growth and

development of plants and in their adaption to environmental stress. Few

NAC transcription factors have been functionally characterized in tea plants

(Camellia sinensis). Based on the analysis of the gene structure, motif pattern,

and evolutionary relationship, we identified 104 NAC genes in C. sinensis.

Among them, CsNAC28 is constitutively expressed in all organs, and most

significantly, exhibiting remarkable responsiveness to abscisic acid (ABA)

treatment and drought stress. ABA is a primary stress-related hormone.

Recently, ABA-responsive element binding factor 2 (CsABF2) was identified in

the ABA pathway of C. sinensis. However, the involvement of the CsABF2-

mediated ABA pathway in regulating CsNACs was not known. Herein, a series

of biochemical and genetic approaches supported the fact that CsNAC28

could potentially act as a transcription factor in the downstream of CsABF2.

Furthermore, we investigated the function of CsNAC28 in the adapting of a

plant to drought stress. The results showed that overexpression of CsNAC28 in

Arabidopsis conferred hypersensitivity to ABA treatment and decreased the

accumulation of reactive oxygen species (ROS), resulting in improved

dehydration tolerance. Under conditions of drought, the expression levels of

ABA pathway-related genes and drought stress‒inducible genes were greater

in CsNAC28 overexpression lines than in the wild type. Our study’s
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comprehensive characterization of NAC genes in C. sinensis could serve as

a foundation for exploring the molecular mechanism of CsNAC-mediated

drought responsiveness.
KEYWORDS

Camellia sinensis, expression pattern, NAC transcription factor, drought stress,
abscisic acid
Introduction

The tea plant C. sinensis is a major crop harvested for tea that

is consumed worldwide, and it has been widely cultivated in

tropical and subtropical areas (Liu et al., 2015). Its abundance of

secondary metabolites contribute to the nutrients, a clean taste,

and rich flavors beneficial to human health (Yang and Hong,

2013; Zhao et al., 2020). In recent years, the increasing frequency

of extreme temperatures and drought stress affected the yield

and quality of tea leaves (Wang et al., 2016a). Transcription

factors play critical roles in activating gene transcripts through

binding to the target gene promoter regions and regulating the

plant growth, development, and biotic and abiotic stress

processes (Pandey and Shukla, 2015).

NAC (NAM-ATAF1/2-CUC) transcription factors constitute

one of the most diverse transcription factor families in plants; they

contain highly conserved N-terminal DNA binding domains (150

amino acids) but relatively variable C-terminal regions (Souer et al.,

1996; Ooka et al., 2003; Ernst et al., 2004). The N-terminal areas

contain five subdomains (A, B, C, D and E), such as NAM (no

apical meristem) in a petunia mutant and ATAF1/2 and CUC2

(cup-shaped cotyledon) in Arabidopsis. Subdomains B and E are

divergent and may be associated with the NAC gene’s functional

diversity, whereas subdomains A, C, and D are generally conserved

(Olsen et al., 2005). The C-terminal regions are responsible for

activating or repressing the expression of downstream genes

(Kjaersgaard et al., 2011; Lindemose et al., 2014). Additionally,

some NAC transcription factors have transmembrane motifs,

which function as endoplasmic or plasma membrane anchors at

the C-terminal (Seo et al., 2008; Li et al., 2016).

The NAC transcription factors regulate many critical biological

processes that are commonly associated with stress resistance, and

they have been extensively identified in Arabidopsis (105), rice

(138), maize (147), sunflowers (151), tomatoes (93), bananas (167),

peppers (104), Populus trichocarpa (163), and apples (180) because

of the availability of their whole-genome sequences (Ooka et al.,

2003; Hu et al., 2010; Nuruzzaman et al., 2010; Su et al., 2013; Cenci

et al., 2014; Diao et al., 2018; Jin et al., 2020; Wang et al., 2020;

Bengoa Luoni et al., 2021). Many studies have demonstrated that

NAC transcription factors increase resistance to drought by

activating downstream genes involved in the ABA pathway. In
02
Arabidopsis, ATAF1, ATAF2, ANAC019, ANAC055, RD26/

ANAC072, and ANAC096 contribute to drought tolerance

through an ABA-mediated pathway (Fujita et al., 2004; Tran

et al., 2004; Jiang et al., 2009; Jensen et al., 2010; Xu et al., 2013;

Liu et al., 2016; Jiang et al., 2019). Overexpression of OsNAC5,

OsNAC6, and OsNAC9 increases the sensitivity to ABA and results

in enhanced tolerance to drought in rice (Redillas et al., 2012; Lee

et al., 2017; Bang et al., 2022). In wheat, TaSNAC8-6A,

TaASNAC4-3A, and TaNAC069 could activate the expression of

drought-related genes (Xue et al., 2011; Mao et al., 2020; Mei et al.,

2021). In maize, ZmSNAC1, ZmNAC33, ZmNAC49, ZmNAC55,

ZmNAC84, and ZmNAC111 drive drought responses through the

ABA pathway (Lu et al., 2012; Mao et al., 2015; Mao et al., 2016; Liu

et al., 2019; Han et al., 2021; Xiang et al., 2021). In the tea plant, the

involvement of CsNAC in responding to drought stress has not

been determined.

The high-quality genome sequences of tea plants have been

published, and, therefore, it was possible to identify 104 CsNACs

by scanning the genome at the chromosome level (Wei et al.,

2018). We analyzed the gene structure, motif pattern,

chromosome distribution, synteny, and evolutionary

relationship among Arabidopsis, P. trichocarpa, and C. sinensis.

To investigate the involvement of CsNACs in the adaption to

drought stress, we chose CsNAC28 as a candidate. The results

showed that CsNAC28 localized in the nucleus and possessed

transactivation activity. Furthermore, the overexpression of

CsNAC28 in Arabidopsis enhanced ABA sensitivity and

upregulated the expression of drought-tolerance-related genes,

thus improving the dehydration tolerance. This work improved

our understanding of CsNAC transcription factors and the

function of NACs in the adaption to drought stress, thereby

contributing to tea plant breeding programs.
Materials and methods

Identification and structure analysis of
NAC genes in C. sinensis

To identify the tea plant (C. sinensis cv. ShuChaZao) NAC

genes, the hidden Markov model (HMM) profile of the NAC
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domain (PF00170) was downloaded from Pfam (http://pfam.

xfam.org/) and the NAC protein sequences were searched with

an e-value cutoff of 1e-5. Then, to determine their presence and

completeness of the NAC domain, all of the putative NAC genes

were identified manually one by one (E value<1.0) in

INTERPORSCAN and SMART (http://smart.embl-heidelberg.

de/). Molecular weight, isoelectric points, subcellular

localization, and transmembrane helices of candidate NAC

proteins were detected in ExPASy (http://expasy.org/tools/),

WoLF PSORT (http://wolfpsort.org/) and TMHMM (http://

www.cbs.dtu.dk/services/TMHMM/) server v2.0.
Phylogenetic, gene structure and motifs
composition of CsNACs

The NAC sequences of coding proteins from Arabidopsis,

Oryza sativa and C. sinensis were aligned using ClustalX 2.0. A

phylogenetic tree consisting of 345 NACs was constructed by

MEGA7.0 using the neighbor-joining (NJ) tree with default

parameters. 1000 replicates were used to produce bootstrap

values. The exon/intron structure of NAC genes was displayed

by the Gene Structure Display Server program (GSDS http://

gsds.cbi.pku.edu.cn/) platform, and the NAC conserved motif

was characterized by MEME, with a cap of motifs set to 10.
Chromosomal mapping and gene
duplication analysis

The NAC genes were mapped by MapInspect (http://www.

plantbreeding.wur.nl/UK/software_mapinspect.html) with the

C. sinensis genome database. The gene duplication events of

NAC genes were examined by MCScanX software with default

parameters. To visualize the duplicated regions in the C. sinensis

genome, the Circos-0.67 program (http://circos.ca/) was used to

draw between matching genes. The homology of the NAC genes

between C. sinensis and the other species (Arabidopsis thaliana,

Oryza sativa and Populus trichocarpa) was analyzed by Dual

Synteny Plotter of TBtools (Chen et al., 2020).
NAC transcription factors expression
pattern in C. sinensis

The expression pattern data from distinct tissues (Root,

Stem, Old leaf, Mature leaf, Young leaf, Apical bud, Folwer

and Fruit) have been previously reported in the genome

sequencing research of ‘ShuChaZao’, which was downloaded

from http://tpia.teaplant.org/index.html (Wei et al., 2018). The

NAC genes expression level were evaluated using fragments per

kilobase per million reads mapped (FPKM) and the data were

displayed as Log10
(FPKM value) in a heat map using the Mev4.9.0
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software. The leaves of tea plant (C. sinensis vs LongJing43) were

sprayed with 100 µM ABA for ABA treatments (ddH2O as

control). The roots of tea plant seedlings were irrigated with 20%

PEG for drought treatments (ddH2O as a mock control). The

real-time PCR primers for the CsNACs of interest were designed

by Beacon Designer 7.0 software (Supplementary Table S1).

Glyceraldehyde-3-phosphate dehydrogenase (GAPDH,

accession number: KA295375.1) was employed as an internal

reference. SYBR Green (Roche, Basel, Switzerland) was used in

real-time PCR on an ABI7900HT Sequence Detection System

(Applied Biosystems, Waltham, MA, USA).
Transcriptional self-activating of NACs
proteins and subcellular localization

The cDNA of CsNAC28 were inserted into the pGBK vector

digested with BamH I and Nde I. pGBK-CsNAC28 and pGBK-

Lam were transformed into the yeast strain Y2H and plated on the

SD/-Trp plates individually. Colonies were further transferred to

SD/-Trp/ABA (250ng) medium for 3-5 days at 30°C.

The binary vector PCV-eGFP -N1 was digested with Apa I

enzyme before the cDNA of CsNAC28 was inserted. PCV-

CsNAC28-eGFP-N1 and PCV-eGFP-N1 vectors were

introduced into Agrobacterium tumefaciens strain GV3101,

then transiently transformed into tobacco. The GFP

fluorescence was imaged at 495-545 nm using a Leica TCS SP5

(Leica Microsystems, Bannockburn, IL, USA) confocal laser-

scanning microscope after infiltrating 44-48h.
Yeast one-hybrid assay

The cDNA of CsABF2 was inserted into a pGAD vector

digested with BamH I and Nde I. The CsNAC28 promoter was

inserted into the pABAi vector digested with Hind III and Sal I.

CsNAC28p-pABAi were linearized with Bstb I, then

transformed into Y1H strain and plated on SD/-Ura medium.

Colonies containing the CsNAC28 promoter were used to

generate receptor states, which were then transformed with the

CsABF2- pGAD (pGAD plasmid as a control) and plated into

SD/-Leu medium. Colonies were further transferred to SD/-Leu

medium with 300ng/ml ABA for three days.
Dual-luciferase assay for CsNAC28

Dual-luciferase assays were conducted in accordance with

He et al. (2021). The pGreenII0800- LUC vector was digested

with Pst I and Nco I and used to insert the 1388 bp promoter

region of CsNAC28. The pCambia2300 vector was digested with

Kpn I and Bam HI and used to insert the cDNA of CsABF2.

Dual-Luciferase Reporter Assay kit (Promega, Madison, WI,
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USA) was used to measure the ratio of firefly luciferase to renilla

luciferase of the CsNAC28 promoters with and without the effect

of CsABF2.
Transient gene suppression in tea plants

Gene suppression assays were carried out as described by Hu

et al. (2022). CsABF2 was used as input sequences to design

candidate antisense oligonucleotides (AsODNs) with the Soligo

software (Ding and Lawrence, 2003) (Supplementary Table S1).

Both sense oligonucleotides (sODNs) and gene-specific

AsODNs were infiltrated with at least ten individual tea plants.

The leaves were harvested after 24 h treatment, quick-frozen in

liquid nitrogen, and stored at -80°C.
Plant phenotype under ABA and
drought treatments

The cDNA of CsNAC28 was cloned into the pCambia1300

vector under the control of the 35s promoter, Transgenic plants

of CsNAC28-Flag (three copies of the flag in tandem)

overexpressing in Col-0 were generated. The Agrobacterium

strains GV3101 containing CsNAC28-pCambia1300 were

introduced into Arabidopsis plants by the Agrobacterium

tumefaciens-mediated floral dip method (Clough and Bent,

1998). Hygromycin resistance was used to screen out of ten

independent transgenic lines. T3 homozygous progenies of

transgenic lines (OE1, OE2 and OE3) were chosen to be

studied further. The sequence of primers used in this

investigation is listed in Supplementary Table S1.

To conduct the germination experiment, the cleaned seeds

were sown on 1/2MS solid medium (90 seeds were sown for each

line), which contained ABA (0 and 5µM) and mannitol (0, 100

and 200 mM) in varying concentrations, respectively. Then the

mediums were placed in a refrigerator at 4°C for three days to

break seed dormancy and transferred into a greenhouse 22°C

under long-day ling conditions (16h light/8h dark). The

germination number and root length were recorded once

daily. The 4-week-old seedlings were dehydrated for 14 days

for drought stress treatment, and re-water. Each experiment was

repeated three times (Chen et al., 2017).
Measurement of reactive oxygen species

WT and transgenic plants were subjected to drought stress

and three individual plant leaves were sampled. To determine

the hydrogen peroxide (H2O2) and superoxide (O
2-) content, the

leaves were stained by 3,3’-diaminobenzidine (DAB) and
Frontiers in Plant Science 04
nitroblue tetrazolium (NBT) according to previously described

methods (Yang et al., 2018).
Statistical analysis

All experiments were carried out with at least three

independent biological replicates. Each measurement was

carried out in triplicate. Data represent the mean ± sd of three

biological replicates. Data were statistically analyzed by one-way

analysis of variance (ANOVA) performed using SPSS.
Results

Identification of NACs in C. sinensis

The genome database of “C. sinensis” allows for the

identification of NAC gene members in the tea plant (Wei

et al., 2018). A total of 104 NACs was characterized with a

conserved NAC domain (PF01849) or NAM domain (PF02365).

The NACs’ amino acid residue counts ranged from 134 to 679,

their putative molecular weights ranged from 15.37 to 77.14

KDa, and their isoelectric points (pIs) were 4.6 to 9.91. An

examination of their chromosomal locations showed that 104

NACs were matched to the 15 chromosomes of the C. sinensis

genome and that the number of NACs in each chromosome

differed, ranging from 3 (chr15) to 15 (chr09) (Supplementary

Figure S1). According to the chromosomal position, which was

named CsNAC1 to CsNAC104 (Supplementary Table S2), the

104 NAC proteins were predicted to be located in the nucleus or

cytoplasm. Addit ional ly , e ight NACs conta ined a

transmembrane domain. CsNAC20, CsNAC64, CsNAC74, and

CsNAC99 had transmembrane domains at the C-terminal,

CsNAC55 had two transmembrane domains, and CsNAC2,

CsNAC68, and CsNAC100 had transmembrane domains at the

N-terminal.
Phylogenetic and gene structure analysis
of CsNAC genes

To evaluate the phylogenetic relationship of the NAC

proteins in C. sinensis and other species, an unrooted

neighbor-joining tree was created with 345 NAC proteins

from three plant species (i.e., 78 from Arabidopsis, 163 from

P. trichocarpa, and 104 from C. sinensis). The results showed

that 345 NAC proteins were grouped into 13 subfamilies, named

subfamilies A to M. All of them were unevenly distributed in 11

subfamilies; subfamily L contained 17 PNACs and 7 CsNACs,

whereas subfamily K contained only 4 PNACs but no AtNACs
frontiersin.org
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or CsNACs. Generally, the CsNAC proteins had closer

relationships with the NACs from P. trichocarpa than those

from Arabidopsis, and this was confirmed by the current plant

evolutionary history and provided more useful references for

functional identification in tea plants (Figure 1).

To further explore the evolution of the NAC gene family, we

analyzed the structural features of the NAC genes in C. sinensis.

CsNAC41 has a gene structure that is longer than 20 kb, whereas

CsNAC66 has the shortest structure, at 405 bp. Of all the NAC

genes, CsNAC59 contained the most (10) exons. No introns were

found in CsNAC66; over half (54, or approximately 51.9%) of the

NAC genes had three exons; and most of the NAC genes shared

a common exon/intron structure and had intron phases that

were clustered in the same subgroup (Figure 2). In addition, 10

conserved motifs of the 104 NAC genes were investigated by the

MEME program to explore genetic diversification in C. sinensis.

The lengths of these conserved motifs ranged from 11 to 50

amino acids, with a highly diverse distribution. CsNAC33 only

contained one motif, whereas eight similarly ordered motifs

(motifs 3, 8, 4, 1, 6, 5, 2, 7) were present in most NACs. Except

for the fourth subgroup, the compositions of the conserved

motifs and orders of the NAC protein sequences in the same

group were similar. Motifs 9 and 10 were unique to subgroup
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four, suggesting that they had specific functions that benefited

this group (Figure 2). An analysis of the exon/intron and motif

compositions further showed that the genes that have developed

in offspring may have functional redundancy.
Syntenic analysis of NAC genes in C.
sinensis and other species

Intrachromosomal and interchromosomal evolutionary

research showed that 9 pairs of tandem duplicate events

occurred in the same chromosome (tandem duplications were

defined as genes on the same chromosome that were mapped at

a distance ≤ 100 kb) and that 49 segmental duplication events

occurred on all chromosomes, which suggested that the

expansion of the CsNAC family was mainly the result of

interchromosomal duplication events (Supplementary

Figure S2).

A collinearity assay of the NAC gene family in C. sinensis,

Arabidopsis, Oryza sativa, and P. trichocarpa was carried out

to explore the species’ evolutionary relationships, and it

found 101, 45, and 165 homologous pairs between C.

sinensis and the other three species, respectively. The results
FIGURE 1

Phylogenetic tree of NACs from Arabidopsis thaliana, Populus trichocarpa and C. sinensis. Amino acid sequences were aligned using Clustal X
software and subjected to phylogenetic analysis using MEGA X software by the NJ method with 1,000 bootstrap replicates.
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FIGURE 2

Gene structure and motif organization of NAC genes in C. sinensis. Intron and exon structures of NACs are graphically represented by black
lines and orange boxes, respectively. The protein sequences of NACs was used to predict the conserved regions and motifs. Conserved motifs
are indicated by a colored box numbered 1 to 10.
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showed that C. sinensis and P. trichocarpa had more

homologous genes, which was consistent with their

phylogenetic relationship (Figure 3).
Tissue-specific expression profiles of
NACs in C. sinensis

Cultivated tea tree species differ greatly in terms of plant

morphology and economic characteristics. We determined the

abundance of NAC transcripts in various tissues, including the

apical bud, young leaf, mature leaf, flower, fruit, old leaf, stem,

and root tissue of C. sinensis cv. ShuChaZao, to explore the tissue

specificity. As shown in Figure 4, the expression levels of 16

CsNACs (CsNAC8/9/23/34/38/39/46/58/65/66/67/80/86/87/84/

98) were very low or undetectable in all tested tissues, possibly

due to the fact that they were pseudogenes; 88 CsNAC members

were expressed in at least one of the organs of C. sinensis; and 14

CsNACs (CsNAC1/3/4/15/18/20/21/24/28/63/64/69/78/91) were

predominantly expressed in all tissues with a Log10
(FPKM value) of

greater than 1. Ten CsNACs (CsNAC7/10/25/29/35/36/43/45/48/

59) were highly expressed in buds and leaves. The transcripts of
Frontiers in Plant Science 07
18 CsNACs were found in the roots, and the transcripts of 20

CsNACs were found in the flowers or fruits (Figure 4).
AREB cis-acting elements of CsNAC
gene promoter regions

ABA-responsive element-binding factors (AREB/ABFs) are

master regulators of the transcriptional response to ABA. Most

of them activate the expression of drought-responsive genes via

the direct binding of the ABA-responsive element (ABRE:

PyACGTGG/TC) to improving drought tolerance (Fujita et al.,

2011). Thus, we analyzed a sequence 2 kb upstream from the

translation initiation site of the CsNACs. The results showed

that 78 of the CsNAC promoters contained at least one ABRE

element. The number of ABRE elements ranged from one to

eight. Specifically, 27 of the CsNAC promoters had one ABRE

element, 17 contained two ABRE elements, and 11 contained

three or five ABRE elements. The other CsNAC promoters

contained four, six, or seven ABRE elements, and only

CsNAC78 contained eight ABRE elements (Supplementary

Figure S3A). To further examine the potential role of CsNACs
FIGURE 3

Synteny analysis of NAC genes between C. sinensis and three representative species. Red lines highlight the syntenic NAC gene pairs with the
Camellia sinensis and other plant genomes, whereas gray lines in the background indicate the collinear blocks.
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in the response to drought stress, transcriptome data for tea

plants under drought stress treatment were acquired from the

Tea Plant Information Archive (http://tpdb.shengxin.ren/index.

html). The expression patterns of 50 CsNAC genes in response

to drought stress are shown in Supplementary Figure S3B. The

expression of 20 of these CsNACs was induced significantly, and

the expression of 15 of these was high after 24 hours of

drought treatment.

Considering the expression pattern of the CsNACs and the

existence of ABRE elements in their promoters, seven CsNACs

were selected for attempts to detect their responsiveness to ABA

treatment and drought stress through the quantitative real-time

polymerase chain reaction (qRT-PCR). In most of the selected

candidate genes, expression was significantly induced after

exposure to ABA treatment and drought stress. The expression

levels of CsNAC20, CsNAC25, CsNAC28, CsNAC32, and

CsNAC69 were upregulated two-fold to four-fold at 1 hour

(H), CsNAC25 were induced after 3 H of ABA treatment. The

gene expression of most CsNACs had similar profiles for ABA

treatment and drought stress, although drought stress exhibited

a certain lag effect on the induction of expression of CsNACs. To

be specific, the expression of CsNAC20 and CsNAC25 was

upregulated three-fold and nine-fold at 24 H, respectively; that

of CsNAC28, CsNAC32, and CsNAC69 was significantly

increased at 3 H; and that of CsNAC29 was upregulated at 12

H. The expression of CsNAC3 was repressed by ABA and

drought stress, and the peak values of relative expression

appeared at 1 H and 3 H, respectively (Figure 5). The results

showed that the expression of most NACs was induced by ABA

treatment and drought stress.
Subcellular localization and
transcriptional activation ability of
CsNAC proteins

Both CsNAC28 and CsNAC69 were constitutively expressed

in all organs, and their expression was further induced by ABA

treatment and drought stress. Because CsNAC69 is the

homologue of ANAC019, which confers drought tolerance in

Arabidopsis (Jensen et al., 2010), we investigated whether

CsNAC28 participated in the drought stress response in tea.

The full-length CsNAC28 was fused into the DNA binding

domain to investigate the transcriptional activation of

CsNAC28. Each CsNAC-pGBK-pGAD pair was individually

co-transformed into the yeast cells Y2H and further selected

on a quadruple dropout medium. As shown in Figure 6A, the

negative control did not grow but the CsNAC28 transformant

grew well, indicating that CsNAC28 acts as a transcription factor

with transcriptional activity in yeast strains.

To explore the sub-localization of CsNAC28, Agrobacterium

tumefacient strains GV3101 containing either a GFP empty

vector or a CsNAC28-GFP vector were introduced into
FIGURE 4

Expression patterns of CsNACs in different tissues of C. sinensis.
The expression patterns of CsNACs genes in eight tissues (Root,
Stem, Old leaf: germinated in previous years; Mature leaf:
geminated in the spring and harvested in the autumn; Young
leaf: the first and second leaves follow the apical bud; Apical
bud: unopened leaves on the top of activity growing shoots,
Flower and Fruit) of tea plant were calculated using Log10

(FPKM).
The most of the data were distributed between -3 and +3, which
indicated high and low expression levels.
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tobacco leaves. The GFP fluorescence of the CsNAC28-GFP

vector was detected in the nucleus, while the GFP signals of

the empty vector were detected in the nucleus and cytoplasm

(Figure 6B). The results are consistent with the predicted role of

CsNAC28 as a transcription activator.
CsABF2 binds and activates
CsNAC28 expression

CsABF2 was examined as a key transcription factor in

regulating the tea cultivar’s drought tolerance (Lu et al., 2021).

To verify whether the ABRE element on CsNAC promoters
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could be recognized and bonded by CsABF2, the 1388-bp length

of the CsNAC28 promoter was fused to the Aureobasidin A

(AbA) gene to generate the CsNAC28Pro-pABAi vectors that

confer resistance to AbA. Then, the linearized CsNAC28Pro-

pABAi vector (digested by BstB I) was co-transformed with the

CsABF2-pGAD vector and tested on SD/-Trp/150mM AbA

media (Figure 6C). The result showed that CsABF2 could

recognize and bind the cis-element in the promoter of

CsNAC28 in vitro. Then, to explore the effect of CsABF2 on

CsNAC28 transcription in vivo, we cloned the promoter regions

of CsNAC28 to fuse them into the LUC reporter vector.

Compared with the control, the co-expression of CsABF2

dramatically increased the promoter activity of CsNAC28 by
FIGURE 5

Expression patterns of CsNACs in C. sinensis under ABA and PEG. Error bars indicate SD of three biological replicates.
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3.6-fold (Figure 6D). Furthermore, we transiently silenced

CsABF2 in tea plants to investigate the relationship between

CsABF2 and CsNAC28. Compared with CsABF2/sODN tea

plants, CsABF2 and CsNAC28 were decreased by 60% and

41%, respectively, in CsABF2/AsODN tea plants (Figure 6E).

Altogether, the results suggested that CsABF2 could recognize

the ABRE element on the promoter of CsNAC28 and activate the

expression of CsNAC28.
Overexpression of CsNAC28
enhances drought tolerance
in transgenic Arabidopsis

The ABA signaling pathway is critical for plant adaptation to

drought stress. When a plant is subjected to drought stress, ABA

rapidly accumulates in the roots and leaves (Finkelstein et al.,

2002; Kuromori et al., 2018). To explore the role of CsNAC28 in

the adaption to drought stress in plants, we heterogeneously

expressed CsNAC28 in Arabidopsis. Three overexpression lines

with relatively higher expression levels were selected for further

analysis (Supplementary Figure S4). Since the expression of

CsNAC28 was upregulated by ABA treatment, we spotted the
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seeds of the wild type (WT) and three CsNAC28/OE lines on 1/

2MS medium with or without the addition of 5 mMABA. As the

results showed, no significant difference in growth phenotype

and germination rate was observed in the WT and CsNAC28/OE

transgenic lines on the 1/2MS medium. However, when grown

on 1/2MS medium with 5 mM ABA added, three CsNAC28/OE

lines had lower germination rates than the WT (Figures 7A, B)

to different degrees. Moreover, the roots of the WT were longer

than the roots of the three CsNAC28/OE lines (Figures 7C, D).

Our data indicated that CsNAC28 overexpression in Arabidopsis

increased the sensitivity to ABA.

To further examine the drought tolerance of the CsNAC28/

OE lines, mannitol treatment was used to simulate drought

stress. Three CsNAC28/OE lines and the WT were sown on 1/

2MS medium containing 0 mM, 100 mM, or 200 mM mannitol.

Under normal growth conditions, there was no obvious

difference in the germination rate (Figures 8A, B) or root

length (Figures 8C, D) between the transgenic Arabidopsis and

the WT. When grown on the 1/2MS medium plus 100 mM

mannitol, the germination rate of the WT was 80% and the root

growth was slightly impaired. Compared with the influence on

the WT, the germination percentages of the three CsNAC28/OE

lines were higher (84%, 92%, and 96%), and consistently, the
B

C

D

E

A

FIGURE 6

The potential function of CsNAC28 in tea plant. (A) Transactivation analyses of CsNAC28 in yeast. Negative control, and the fusion constructs
were transformed into the Y2H strain and successively incubated in SD/-Trp media and SD-Trp/ABA (250ng) plate. (B) Subcellular localization of
CsNAC28. GFP and CsNAC28-GFP were transiently expressed in tobacco leaves. GFP, Green fluorescence image; BF, Bright-field microscopy
image; Merge, Merged bright-field and green fluorescence images. (C) Yeast one-hybrid assay to confirm binding of CsABF2 to the CsNAC28
promoter. (D) Relative LUC/REN ratio from transient expression assays of the CsNAC28 promoter in the present of CsABF2. Error bars indicate
the SD of three biological replicates. (E) CsABF2 and CsNAC28 expression in control (CsABF2/sODN) and CsABF2/AsODN tea leaves. Error bars
indicate the SD of three biological replicates. **Student’s test, P < 0.01.
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root lengths were longer (Figure 8). When the concentration of

mannitol increased to 200 mM, the germination rate of the WT

fell to 65% and the root growth was severely retarded. In this

condition, the CsNAC28/OE lines with higher germination rates

(Figures 8A, B) and longer root lengths exhibited resistance to

mannitol treatment (Figures 8C, D).

Four-week-old seedlings were subjected to drought stress to

further identify the function of CsNAC28 in drought stress

during the adult stage. The majority of the WT leaves were

seriously wilted and unable to recover after re-watering or were

dead. Only 53% of the WTs subjected to drought treatment

survived. However, the transgenic lines (CsNAC28/OE1,

CsNAC28/OE2, and CsNAC28/OE3) wilted only slightly after

drought treatment and grew normally after re-watering; For

them the final average survival percentages were 80%, 86%, and

91%, respectively (Figure 9A). In addition, we measured the

hydrogen peroxide (H2O2) and O2− content in leaves under
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normal and drought conditions using DAB and NBT staining to

see whether those levels were associated with improved drought

tolerance. Under normal conditions, the WT and three

CsNAC28/OE lines had little staining. When exposed to

drought stress, the staining of the WT leaves was substantially

greater than of the leaves of the CsNAC28/OE lines (Figure 9B).

It is well known that ABI1 and DREB2A are involved in ABA

signaling transduction and that RD22 (responsive to

dehydration 22) and RD29B are marker genes in the ABA

pathway (Yamaguchi and Shinozaki, 1993; Liu et al., 2020; Yu

et al., 2021; Sun et al., 2022). To further explore the role of

CsNAC28 overexpression in drought response pathways, the

expression of these genes was analyzed. Under normal

conditions, there was no obvious difference in expression

pattern between the CsNAC28/OE and the WT plants. Under

drought conditions, however, the expression of all these genes

was significantly induced. Furthermore, the expression levels
B

C

D

A

FIGURE 7

Overexpression of CsNAC28 increases ABA sensitivity in transgenic Arabidopsis. (A) Germination assays for each lines under different
concentrations of ABA treatments. (B) Germination percentage of each line under different concentrations of ABA treatments. (C) Root length
assays for different lines under different concentrations of ABA treatments. (D) Quantification of root length under different concentrations of
ABA treatments.
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were higher in the CsNAC28/OE plants than in the WT plants.

These results demonstrated that CsNAC28 overexpression

resulted in the additional upregulation of drought-responsive

genes during drought treatment (Figure 9C).
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Discussion

NAC transcription factors make up the most abundant

plant-specific transcription family that plays a central role in
B

C D

A

FIGURE 8

CsNAC28 overexpression promotes seed germination under simulated drought conditions. (A) Germination assay under different concentrations
of mannitol treatments. (B) Germination percentage of each line after 7-day simulated drought treatment. (C) Root elongation assays under
different concentrations of mannitol treatments. (D) Quantification of root length under different concentrations of mannitol treatments.
Different letters indicate significant differences at P-value<0.05.
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plants’ growth, development, and response to environmental

stimuli. Previous reports showed that 45 putative NAC

sequences were identified in the tea plant (Wang et al., 2016b).

In the current study, a total of 104 members of the enlarged NAC

gene family were identified in C. sinensis. The genome sizes of

Arabidopsis (125 Mb), O. sativa (480 Mb), and P. trichocarpa

(1.07 Gb) are smaller than the genome size of C. sinensis,

whereas the members of the NAC gene family of Arabidopsis

(105), rice (151), and P. trichocarpa (167) are more numerous

than in the tea plant (104) (Guillaume et al., 2003; Ooka et al.,

2003; Tuskan et al., 2006; Hu et al., 2010; Korbinian et al., 2011;

Nuruzzaman et al., 2010; Schneeberger et al., 2011). In

particular, the CsNAC genes in subgroups B, F, and H are far

fewer than in Arabidopsis and P. trichocarpa. The exon/intron

location patterns of CsNACs were unified in all the phylogenetic

subfamilies studied. Similar exon/intron structures were

observed in the same subgroups as in Arabidopsis, O. sativa,
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and P. trichocarpa (Ooka et al., 2003; Hu et al., 2010;

Nuruzzaman et al., 2010).

Genome duplication events have increased the evolution and

expansion speed of these essential genes, which might provide

genetic diversity and a greater ability for plants to survive under a

variety of environmental pressures (Blanc et al., 2003; Crow et al.,

2006). There are 49 segmental duplications found in the tea plants,

and many species such as Arabidopsis, O. sativa, P. trichocarpa,

and potatoes experienced an abundance of segmental duplication

events (Olsen et al., 2005; Hu et al., 2006; Hu et al., 2010; Yan et al.,

2021). Therefore, segment gene duplication plays a vital role in

NAC gene family expansion. However, in comparing the size of

the genome with NAC genes in different species, the low number

of NAC genes in C. sinensis might be due to the whole-genome

duplication events.

Drought stress is one of the most severe difficulties

encountered by land plants; it disrupts plants’ metabolism,
BA

C

FIGURE 9

Overexpression of CsNAC28 improves drought stress tolerance in transgenic Arabidopsis. (A) Survival rates of the WT and transgenic lines at 7d
of re-water. (B) Histochemical detection of hydrogen peroxide (H2O2) and superoxide (O2−) using DAB staining and NBT staining. (C) The
relative expression of four abiotic stress-responsive genes in transgenic lines and the WT under normal and drought stress conditions. Error bars
indicate the SD of three biological replicates.
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photosynthesis, and cell structure, thereby impairing plants’

productivity (Pandey and Shukla, 2015; Chen et al., 2017;

Qing et al., 2022). Recently, many studies have shown that

NACs can upgrade the drought resistance of Arabidopsis, rice,

wheat, and maize (Tran et al., 2004; Hu et al., 2006; Huang et al.,

2015; Zhu et al., 2016). However, the research on stress-related

NAC genes in tea plants was limited. NAC genes operate at

multiple levels in ABA signaling networks (Fujita et al., 2011;

Kuromori et al., 2018). Many NAC transcription factors have

been reported to be upregulated by exogenous ABA and involved

in an ABA-dependent signaling pathway in response to drought

stress (Fujita et al., 2004; Ding et al., 2019; Chen et al., 2021).

Herein, we showed that the expression of CsNAC28 was strongly

induced by treatment with ABA and PEG. The fact that the peak

values of relative expression were different between them may be

due to the fact that exogenous ABA induces conduction faster

than drought stress induces endogenous signaling. Previous works

indicated that ABF could bind to the ABRE cis-acting element in

the promoter of NAC and thereby became involved in a drought

stress response (Jia et al., 2022). Our study found that CsABF2

could bind to the ABRE cis-acting element in the promoter of

CsNAC28 and activate CsNAC28 expression.

ABA is the phytohormone most closely related to drought

stress responses in plants. It causes stomatal closure, which

decreases water loss, and is thus critical for drought resistance

(Wu et al., 2019). Overexpression of CsNAC28 in Arabidopsis

reduced germination rates and shortened root lengths when

ABA medium was added. Our study supported the finding that

CsNAC28 overexpression in Arabidopsis resulted in increased

sensitivity to ABA and promoted ABA-mediated stomatal

closure, which helped plants conserve water and have

improved survival rates. Overexpression of CsNAC28 in

Arabidopsis upregulated the expression of drought-responsive

genes (ABI1, DREB2A, RD22, and RD29B) and enhanced plants’

survival rates under drought stress conditions. Our study found

that CsNAC28 was involved in the response to drought stress

dependent on the ABA signal transduction pathway.

In contrast to the highly conserved NAC-binding domain at

the N-terminal of NAC family proteins, the C-terminal

transcription regulatory region is highly variable and usually

functions as a transcriptional repressor or activator (Puranik

et al., 2012). In this study, we demonstrated that CsNAC28 was

located in the nucleus and functioned as a transcriptional

activator to modulate abiotic stress tolerance positively.

Drought stress causes the excessive accumulation of ROS,

which destroys plant performance and thus reduces crop

yields. Hence, having an ROS scavenging system is crucial for

plants to cope with drought stress (Verslues et al., 2006; Guo

et al., 2022). The role of NAC transcription factors in regulating

ROS scavenging systems under drought stress has been explored

in other species. The Arabidopsis NAC transcription

Jungbrunnen1 is induced by H2O2 and reduces the level of
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H2O2 in cells and improves various degrees of abiotic stress

tolerance (Wu et al., 2012). In rice, SNAC3 confers drought

tolerance through the modulation of ROS (Fang et al., 2015). We

found that compared withWT plants, CsNAC28/OE plants had a

significantly reduced ROS content under drought stress. These

findings indicated that WT plants suffered more serious

oxidative damage than CsNAC28 transgenic plants during the

drought stress response. The improved antioxidant capability of

CsNAC28/OE plants enhanced the drought resistance of

transgenic Arabidopsis at the cellular level, laying the

foundation for its drought-tolerant phenotype.
Conclusion

NAC plays an essential role in responses to abiotic stresses.

Herein, we have identified 104 NAC transcription factors in C.

sinensis and presented a comprehensive analysis of them.

Importantly, our findings suggested that CsNAC28 contributes

to drought tolerance by regulating the expression of ABA-related

genes and the antioxidant system. These results provide

physiological and molecular evidence for the participation of

CsNAC28 in plants’ drought tolerance.
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