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Abstract

Bovine milk is a rich source of dietary nutrients that are important to human health. Market

demand for bovine milk is driven by its nutritional value, price, processability, and consumer

expectations and perceptions about food production systems. The ability to quantify traits

associated with milk quality, processability, animal health and environmental impact is critical

for selective breeding and thus highly valuable to the dairy industry. However, obtaining direct

measurements of such traits can be difficult and expensive. Estimation of major milk components

using Fourier-transform mid-infrared (FT-MIR) spectroscopy is common practice, and spectral-

based predictions of these traits are already widely used in milk payment and animal evaluation

systems. Applications using FT-MIR spectra to predict other traits have increased in popularity

over the last decade, and are attractive alternatives to directly measuring phenotypes because

the FT-MIR spectra are readily available as a by-product of routine milk testing. The objectives

of this thesis were to improve understanding of the phenotypic and genetic characteristics of

FT-MIR spectra, and assess the role that such data can play in predicting new traits or improving

the prediction of existing traits in New Zealand dairy cattle. We assessed different strategies for

improving the quality of spectral data and demonstrated that there are limitations in predicting

traits such as pregnancy status, due to confounding effects such as stage of lactation. From a

genetics perspective, we reviewed the evolving role of spectral data in the improvement of dairy

cattle by selection and discussed opportunities for consolidating spectral datasets with other

genomic and molecular data sources. We conducted GWAS on individual FT-MIR wavenumbers

and demonstrated that the individual wavenumbers provided stronger association effects and

improved power for identifying candidate causal variants, compared to conducting GWAS on

FT-MIR predicted traits. We also demonstrated the potential utility of spectral data for predicting

and incorporating fatty acids and protein traits into breeding programs, but showed that even

when genetic correlations between directly measured and FT-MIR predicted traits were high,

the detectable QTL underpinning these traits were not always the same. Although there are

many potential applications for FT-MIR spectral datasets, there are still challenges to developing

robust prediction equations and understanding the genetic relationships between traits of interest

and their FT-MIR predictions. Addressing these challenges will provide opportunities to improve

the prediction of new and existing traits in dairy cattle milk production systems and breeding

programs into the future.
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1.1 Introduction

Bovine milk is a rich source of dietary nutrients including proteins, fats, carbohydrates, vitamins

and minerals, with their concentrations being influenced by genetic factors such as breed and sire,

along with non-genetic factors related to feed, environment, stage of lactation and the nutritional

status of the animal. Key drivers for the market demand of bovine milk are its nutritional value,

its cost, and its processability into products such as cheese and butter. Consumer expectations

and perceptions about food production systems are also becoming increasingly important. In

particular, consumers are concerned about the impact that animal production systems have on

the environment, and animal health and welfare. It is thus important that the dairy industry

achieves profitability within an efficient and sustainable framework where milk quality, animal

wellbeing and reduction in the environmental footprint are key priorities.

The ability to quantify relevant traits of interest and incorporate them into dairy cattle

breeding programs is of significant financial value to the dairy industry. However, obtaining direct

measurements of all these traits of interest can be difficult, time-consuming and expensive. Esti-

mation of major milk components using Fourier-transform mid-infrared (FT-MIR) spectroscopy

is common practice, and spectral-based predictions of milk composition are already widely used

in dairy cattle milk payment and animal evaluation systems. Applications using FT-MIR spectra

to predict other traits are appealing because of the opportunity to obtain indicator traits across

large numbers of animals at little or no marginal cost, due to the spectral data already being

available as a by-product of routine milk testing.

Applications using FT-MIR spectra to predict traits typically involve using a set of samples

with directly measured trait values to develop a calibration equation based on individual FT-

MIR wavenumber absorbance values. The resulting calibration equation can then be applied to

future samples, to predict trait values as a linear combination of individual wavenumber values

from any milk sample with FT-MIR spectral data. The success of using FT-MIR spectra as

a phenotyping tool relies on the strength of the phenotypic correlation between the directly

measured trait and the FT-MIR predicted trait. However, the success of using an FT-MIR

predicted trait in a breeding program is further dependent on the extent of genetic variation

present in the trait of interest, the heritability of the predicted trait, and the genetic correlation

between the directly measured and predicted trait. Although there are many studies related to

the genetics of FT-MIR predictions of milk composition traits, there are relatively few studies of

the genetics of the individual FT-MIR wavenumbers. This is despite the individual wavenumbers

exhibiting additional genetic signal that is often not observed in FT-MIR predictions of major

milk composition traits.
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1.2 Thesis objectives and outline

The objectives of this thesis were to improve understanding of the phenotypic and genetic

characteristics of FT-MIR spectra, and assess the role that these data can play in predicting

new traits or improving the prediction of existing traits in New Zealand dairy cattle. Chapter 2

provides an overview of existing applications for using FT-MIR spectra to predict traits of interest

from milk samples; and summarises existing studies of the underlying genetic characteristics of FT-

MIR predicted traits and individual FT-MIR wavenumbers. In Chapter 3, strategies for preparing

FT-MIR spectral data for downstream analysis are discussed, and methods are compared for

standardizing FT-MIR spectra from milk samples collected across a multi-instrument network.

Chapter 4 compares strategies for predicting pregnancy status from FT-MIR spectra, including

different ways of defining pregnant and non-pregnant cows, and different ways of accounting

for stage of lactation in prediction models. The next three chapters focus on the genetics of

FT-MIR predicted traits and individual FT-MIR wavenumbers. Chapter 5 provides a review

of the evolving role of spectral data in the genetic improvement of dairy cattle, including a

discussion of opportunities for consolidating FT-MIR datasets with other genomic and molecular

data sources. In Chapter 6, we present a large sequence-based GWAS of individual FT-MIR

wavenumbers, and compare the genetic signals we observe from individual FT-MIR wavenumbers

to those of FT-MIR predicted major milk composition traits. Chapter 7 brings together the

knowledge from all previous chapters to develop prediction equations for a number of fatty acids

and protein fractions, and compare the genetic characteristics and QTL underlying directly

measured traits to those for corresponding FT-MIR predicted traits. Finally, in Chapter 8, I

provide a general discussion to highlight key areas of consideration for the use of FT-MIR spectra

to improve dairy cattle trait prediction and advance selective breeding into the future.

1.3 PhD Supervisors
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2.1 Fourier-transform infrared spectroscopy
Infrared spectroscopy is a method to determine the presence of specific chemical bonds in a

composite substance and is widely used to determine the chemical composition of milk. When

infrared light is shone through the milk, interactions between the infrared light and molecules

cause vibrations and rotational changes in molecular bonds. When the light frequency matches the

frequency of a vibrating bond or group, molecules in the milk absorb some of the light. Fourier-

transform infrared spectroscopy simultaneously obtains data across a wide spectral range and

transforms the raw results to absorptions for each wavelength using a Fourier-transform function.

Subdivisions of the infrared region vary across different sources (Bittante and Cecchinato, 2013),

but can be broadly classified into near-infrared (NIR; 14,000-4,000 cm−1), mid-infrared (MIR;

4,000-400 cm−1) and far-infrared (FIR; 400-10 cm−1). Typically, milk composition traits are

predicted from wavenumbers in the MIR range of the spectrum because absorbance coefficients

are higher in the MIR range and there is a lesser effect of other factors such as water in the MIR

region (McParland and Berry, 2016; Williams and Norris, 1987).

2.2 Phenotyping applications
It is common practice to use Fourier-transform mid-infrared (FT-MIR) spectra to estimate major

milk components such as fat, protein and lactose for incorporating in milk payment and animal

evaluation systems. Applications using FT-MIR spectral data to predict traits typically involve

using a small set of samples with measured trait values to develop a calibration equation based

on spectral wavenumber data. The resulting calibration equation can then be applied to future

samples to predict trait values as a function of individual wavenumber absorbance values from any

milk sample with FT-MIR spectral data. Because calibration equations are generally developed

on small datasets with more predictors than observations, approaches such as partial least squares

(PLS) regression for continuous responses and PLS discriminant analysis (PLS-DA) for binary

outcomes are commonly used to reduce the predictors to a smaller set of uncorrelated components,

from which least squares regression can be performed. Although PLS and PLS-DA are the most

widely-used methods for developing calibration models from FT-MIR spectra, there are a number

of studies that employ other approaches such as Bayesian methods (Bonfatti et al., 2017b; El Jabri

et al., 2019; Ferragina et al., 2015; Toledo-Alvarado et al., 2018a) or other machine learning

algorithms (Brand et al., 2021; Contla Hernández et al., 2021; Denholm et al., 2020; Dórea et al.,

2018; Frizzarin et al., 2021a, 2021b; Hempstalk et al., 2015; Pralle et al., 2018). The prediction

accuracies for different types of calibration models vary between studies. For example, El Jabri et

al. (2019) reported that PLS models outperformed Bayesian models for predicting cheese-making
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properties, but Ferragina et al. (2015) showed that Bayesian models outperformed PLS models

for predicting fatty acids, whereas Bonfatti et al. (Bonfatti et al., 2017b) demonstrated that

differences between prediction accuracies for PLS and Bayesian models varied depending on the

trait. Further, multiple studies have reported that neural network approaches outperform PLS

models for the prediction of health traits (Contla Hernández et al., 2021), pregnancy (Brand

et al., 2021) and dry matter intake (Dórea et al., 2018). In contrast, Frizzarin et al. (2021a)

showed that differences between prediction accuracies for PLS-DA and other machine learning

approaches varied for milk quality traits, and Frizzarin et al. (2021b) demonstrated that PLS-DA

models outperformed other machine learning approaches for the prediction of cow diet.

Several recent reviews outline the use of FT-MIR spectroscopy as a phenotyping strategy

(Dann et al., 2018; De Marchi et al., 2014; Egger-Danner et al., 2015; Gengler et al., 2016).

Ongoing research includes studies of individual fatty acids and protein fractions (Bonfatti et al.,

2017d; Lopez-Villalobos et al., 2014; McDermott et al., 2016), technological properties (Cecchinato

et al., 2015; Toffanin et al., 2015; Visentin et al., 2015), and indirect traits related to pregnancy

(Brand et al., 2021; Delhez et al., 2020; Lainé et al., 2017; Toledo-Alvarado et al., 2018a), energy

status (Grelet et al., 2016; McParland et al., 2015; Mehtiö et al., 2018), feed efficiency (McParland

and Berry, 2016; Shetty et al., 2017) and methane emissions (Bittante and Cipolat-Gotet, 2018;

Vanlierde et al., 2013; Vanlierde et al., 2015). In the following sections, the use of FT-MIR

spectroscopy to predict traits such as individual milk fatty acids and proteins, and traits related

to milk technological properties, animal health and the environment will be discussed.

2.2.1 Milk fatty acid composition

Fats and fatty acids are important nutrients in the human diet and have a key role in growth,

development, hormone regulation and inflammation management. A typical fatty acid profile

in bovine milk is approximately 70% saturated fatty acids (SFA), 25% monounsaturated fatty

acids (MFA) and 5% polyunsaturated fatty acids (PUFA). This typical profile is unfavourable

because fatty acid profiles with lower levels of saturated fats are more desirable for human health.

Fat composition in milk has been a popular target for prediction using FT-MIR data from milk

samples. Studies of fatty acid composition both as a percentage of total milk volume and as a

percentage of total fat content presented higher accuracies when fatty acids were reported as a

percentage of total milk volume (Bonfatti et al., 2016; Rutten et al., 2009; Soyeurt et al., 2006).

Studies also showed that prediction accuracies for major fatty acids were more accurate than for

minor fatty acids (De Marchi et al., 2011; Maurice-Van Eijndhoven et al., 2013; Rutten et al.,

2009; Soyeurt et al., 2006, 2011). Rutten et al. (2009) demonstrated that increasing the number
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of observations used in the prediction equations resulted in better predictions for fat composition.

Also, compared to a previous study, Soyeurt et al. (2006, 2011) demonstrated higher prediction

accuracy with a larger sample size, intentionally selected to provide a wider range of variation in

the fatty acids. Overall, accuracies for FT-MIR predicted fatty acids have been variable, and were

affected by a number of factors including breed composition, spectra pre-treatments, the number

of samples used to develop prediction equations, and the variability of fatty acid composition

present in the calibration samples.

2.2.2 Milk protein composition

Proteins are important nutrients in the human diet and have a key role in body maintenance and

the growth and repair of cells. Bovine milk is a common source of protein, however, bovine milk

and human milk differ in their concentrations of casein and whey proteins. Most of the protein

in human milk is from whey, whereas bovine milk protein comprises approximately 80% casein

and 20% whey proteins. Casein and whey proteins have different digestibility and amino acid

profiles and also have important implications for cheese processing and the manufacture of casein

supplements.

Characterization of casein and whey proteins is of value to the dairy industry because of

the implications it has for human health and milk processability. Early studies assessed the

capability of using FT-MIR spectra to predict protein and casein concentrations (Etzion et al.,

2004; Luginbühl, 2002; Sørensen et al., 2003). Subsequent studies predicted the concentrations

of lactoferrin (Lopez-Villalobos et al., 2009; Soyeurt et al., 2007a, 2012) and other individual

casein and whey proteins (Bonfatti et al., 2016, 2011; De Marchi et al., 2009a; McDermott et al.,

2016; Rutten et al., 2011). Across these studies, better accuracies were observed for prediction

models with protein fractions expressed as a percentage of total milk volume, compared to when

protein fractions were expressed as a percentage of the casein or whey content. The most accurate

prediction models were observed for the studies by Bonfatti et al. (2011, 2016), but prediction

accuracies varied for different protein fractions.

Overall, the reported accuracies for predicting protein fractions from FT-MIR spectra have

varied across studies, with differences being partly due to the diversity of production systems and

breed composition represented in calibration samples. Compared to prediction models for fatty

acids, prediction models for protein fractions were less accurate and were often well below the R2
cv

level of 0.75 prescribed by Soyeurt et al. (2011) as a threshold for them to be useful in breeding

programs. This may be potentially limiting to the value of their application in the industry.
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2.2.3 Milk coagulation and other technological properties

Milk coagulation and other technological properties have an impact on the processability of milk

into certain types of dairy products and are particularly important for cheese-making (De Marchi

et al., 2009b; Pretto et al., 2013). Milk coagulation properties (MCP) are also affected by

titratable acidity (TA), and pH levels have an influence on colloidal stability (De Marchi et al.,

2009b). Multiple studies have assessed the accuracy of using FT-MIR spectra from milk samples

to predict MCP and TA. Milk coagulation properties are generally reported in terms of rennet

coagulation time (RCT) in minutes and curd firmness 30 or 60 minutes after rennet addition

(a30, a60). Studies have shown that the assessment of MCP using RCT provides better prediction

results, compared to assessing MCP using a30 (Bonfatti et al., 2016; Dal Zotto et al., 2008;

De Marchi et al., 2009b, 2013). Low to moderate prediction accuracies were observed for a30,

but these were significantly better than those observed for a60. Promising predictions of TA

(De Marchi et al., 2009b) and pH (Bonfatti et al., 2016; De Marchi et al., 2009b; Visentin et al.,

2015) have also been reported. Predictions of Calcium (Ca), Phosphorus (P), Magnesium (Mg)

and Potassium (K) were also carried out in studies by Soyeurt et al. (2009) and Bonfatti et al.

(2016). In both studies, low prediction accuracies were observed for K, and moderate to high

accuracies were observed for Ca, P and Mg.

Utilising FT-MIR spectra to predict milk coagulation and cheese manufacturing traits is

appealing, because it offers a high-throughput, timely and efficient method for generating indicator

traits across large numbers of animals. Overall, studies have indicated that there is promising

potential to use FT-MIR predictions as proxies for traits related to cheese yield and cheese-making

efficiency. The success of this approach is critically dependent on ensuring that sufficient variation

in the traits of interest is represented in calibration samples.

2.2.4 Animal health and energy status

Physiological changes across lactation that affect energy balance also influence milk composition

and have implications for animal welfare, health and fertility. Predicting health and energy status

indicators using FT-MIR spectra has been widely studied. Specifically, FT-MIR predictions of

acetone and β-hydroxybutyrate (BHB) have been proposed to potentially breed cows with lower

susceptibility to ketosis (van der Drift et al., 2012; van Knegsel et al., 2010), and Renaud et al.

(2019) demonstrated that it is possible to evaluate hyperketonemia using a prediction from FT-

MIR spectra, which can be used at a herd-level to assist with nutritional management. Grelet et al.

(2016) reported promising accuracies for the prediction of BHB (R2
cv=0.71), acetone (R2

cv=0.73)
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and citrate contents (R2
cv=0.90), and Mehtiö et al. (2018) reported promising accuracies for the

prediction of non-esterified fatty acid (NEFA) concentrations (R2
cv=0.58).

More recently, Luke et al. (2019b) investigated the use of FT-MIR spectra from milk for

predicting concentrations of metabolites in serum, using early lactation (between 5 and 49 days

in milk) data for spring-calving Holstein-Friesian cows in 4 southeastern Australian dairy herds.

Prediction accuracies (R2
cv) in that study based on cow-independent validation were 0.48, 0.61

and 0.91 for BHB, NEFA and urea concentrations in serum, respectively; and R2
cv values based

on herd-independent validation were 0.60, 0.45 and 0.35 for BHB, NEFA and urea concentrations

in serum, respectively. Ho et al. (2021) extended the analysis of Luke et al. (2019b) to include

FT-MIR spectra records for 19 herds, collected across 3 seasons, and reported cow-independent

validation R2
cv values of 0.60, 0.42 and 0.87 for BHB, NEFA and urea concentrations, respectively;

and R2
cv values based on herd-independent validation of 0.48, 0.35 and 0.69 for BHB, NEFA

and urea concentrations, respectively. These results were promising in that the R2
cv values for

cow- and herd-independent validation were similar. Ho et al. (2021) also validated prediction

models using data from a single year to predict data collected in other years. This resulted in

relatively consistent R2
cv values between seasons, however the root mean square error values for

these prediction models increased substantially. This finding may have been due to changes in

spectral measurement across time or other differences in herd management between seasons.

Moderate to high prediction accuracies for body energy status (McParland et al., 2012, 2015)

and feed efficiency traits (McParland and Berry, 2016; Shetty et al., 2017) have been reported in a

number of studies. Specifically, McParland et al. (2012) developed prediction equations for energy

balance, body energy content and energy intake using a consolidated dataset of Holstein and

Holstein-Friesian dairy cows raised in Scotland and Ireland, respectively. Prediction accuracies

(R2
cv) based on multiple external validation strategies ranged from 0.22 to 0.48 for energy balance,

0.26 to 0.31 for body energy content and 0.58 to 0.64 for energy intake. In a subsequent study,

McParland et al. (2015) presented record-independent validation prediction accuracies of 0.53

and 0.56 for energy balance and energy intake, respectively. A further study based on data from

differing production systems in the United Kingdom and Ireland resulted in R2
cv values of 0.61, 0.77

and 0.40 for energy balance, energy intake and residual feed intake (RFI), respectively (McParland

and Berry, 2016). Shetty et al. (2017) examined the effectiveness of using FT-MIR data to

predict dry matter intake (DMI) and RFI using a number of different validation strategies. Based

on cow-independent validation, the R2
cv for DMI was 0.58 for models including milk yield only,

which increased to 0.72 when live weight was included in the model. The prediction accuracies of

DMI models that only included FT-MIR spectra were lower (R2
cv=0.30), but this increased to
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0.82 when milk yield and live weight were also included as predictors. Prediction accuracies for

RFI models were lower than for DMI models, with the highest cow-independent RFI prediction

accuracies observed for early lactation (R2
cv=0.29), compared to across-lactation or mid- and

late-lactation R2
cv values which were 0.20, 0.09 and 0.09, respectively. Shetty et al. (2017) also

showed that for DMI, most of the variation was from wavenumbers in FT-MIR spectral regions

associated with milk fat, whereas for RFI, most of the variation was from wavenumbers in spectral

regions associated with milk protein. Overall, findings from these studies indicate the potential

value in predicting energy status indicators from FT-MIR spectra. However, prediction accuracies

varied between traits and were dependent on the strategy used for validation. In general, the best

results were achieved when the phenotypic variation in the prediction population was captured

within the dataset used to evaluate prediction equations, and improvements were made when a

diverse range of breeds and production systems were included in the calibration dataset.

Pregnancy results in changes to metabolic and energy requirements and the partitioning of

resources to different physiological functions, and has a consequent influence on milk composition

(Loker et al., 2009; Penasa et al., 2016). Previous studies have examined the impact of pregnancy

on detailed milk composition as determined by FT-MIR spectra (Lainé et al., 2017) and the ability

to use FT-MIR spectra to predict conception outcomes (Hempstalk et al., 2015; Ho et al., 2019;

Ho and Pryce, 2020) or pregnancy (Brand et al., 2021; Delhez et al., 2020; Toledo-Alvarado et al.,

2018a). Lainé et al. (2017) observed that the effect of pregnancy was highly variable between

mid-infrared wavenumber regions, and that at the start of pregnancy, for some wavenumbers, the

relative effect of pregnancy was higher than for milk yield and fat and protein concentrations. In

particular, they observed the highest effects of pregnancy in mid-infrared wavenumbers in the

region from 968 to 1,577 cm−1.

Improvements in accuracy from incorporating FT-MIR spectra into the prediction of conception

and pregnancy status have varied between studies. Hempstalk et al. (2015) assessed the accuracy

of predicting conception status from herd- and cow-level factors as well as FT-MIR spectra using

a variety of machine learning algorithms. Overall, their findings were that FT-MIR spectra did

not improve the accuracy of conception status predictions, above what was possible from using

other herd- and cow-level information. In contrast, Toledo-Alvarado et al. (2018a) found that

the incorporation of FT-MIR spectra into pregnancy prediction equations improved prediction

accuracy. In that study, they assessed and compared the ability to predict pregnancy from milk

components (fat, protein, lactose and casein) or from a single wavenumber or from a full set of

FT-MIR spectral wavenumbers. The best predictions of pregnancy were obtained using a full set

of FT-MIR spectral wavenumbers. Adjustment for herd and year effects improved predictions
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even further, but notably, the incorporation of that information may not be easily implementable

for timely predictions. Predictions from a single wavenumber, 1,546 cm−1, had area under the

receiver operating characteristic (ROC) curve values of 0.55 to 0.58, whereas predictions based

on a full set of FT-MIR spectra had area under the ROC curve values of 0.60 to 0.66.

The relationship between the oestrous cycle and milk composition was assessed by Toledo-

Alvarado et al. (2018b). They found that milk composition varied during different phases of

the oestrous cycle, with fatty acid profiles and major milk components (fat, protein, lactose

and casein) all being significantly affected by oestrous cycle phase. That study demonstrated

that FT-MIR spectra may be used as a diagnostic tool to predict oestrus phase, but because

routine milk testing in New Zealand is usually conducted only every 2 to 3 months, the practical

application of such an approach may be limited. However, if advances in technology enable

the use of miniaturized inline spectrometers in milking sheds, FT-MIR measurements would be

available on farm and more frequently, and this approach could be useful.

2.2.5 Nitrogen

The environmental impact of nitrogen losses into waterways and ammonia (NH3) volatization

into the atmosphere from dairy production is of key interest to producers and consumers of

dairy products. Nitrogen losses result from excess nitrogen in the cow’s diet which is excreted

in urine and faeces. A large proportion of the nitrogen in urine is in the form of urea, which is

a potential source of NH3 emission into the soil, waterways and atmosphere. The relationship

between urinary urea nitrogen (UUN), blood urea nitrogen (BUN) and milk urea nitrogen (MUN)

is complex. However, several studies have indicated that it is possible to predict UUN from MUN

(Jonker et al., 1998; Kauffman and St-Pierre, 2001; Nousiainen et al., 2004; Zhai et al., 2007).

Estimation of protein intake and dry matter intake (DMI) from pasture using MUN may also

be possible (Jonker et al., 1998; Nousiainen et al., 2004), and strong relationships have been

established between MUN and NH3 emissions (Burgos et al., 2010; Powell et al., 2011). Notably,

Spek et al. (2013) reported on the effect of dietary and animal factors on the excretion of UUN

and showed substantial improvements in predictions of UUN when total urine collection was used,

instead of spot sampling. Using FT-MIR spectra to predict serum concentrations of urea has

been discussed in a previous section, with respect to studies of metabolic profiling and animal

health (Ho et al., 2021; Luke et al., 2019b). In general, prediction accuracies were promising, but

were variable between studies and were influenced by the validation strategy that was used.
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Using FT-MIR spectra to predict MUN or BUN would enable high-throughput nitrogen

phenotyping for large numbers of animals. However, there may be difficulties in breeding for

low-nitrogen output cows based on FT-MIR predictions because of the large amount of between

animal variation and the strong effect of feed composition. Potentially, in breeding for high protein-

producing cows, those cows would be making more efficient use of nitrogen, and consequently

would have less UUN output. Work is ongoing to determine the role that FT-MIR predictions

of MUN and BUN may have in reducing the impact of nitrogen outputs from dairy systems. It

is likely that solutions will be multi-faceted and will also include a large emphasis on diet and

housing systems.

2.2.6 Methane

The agricultural sector contributed half of New Zealand’s gross greenhouse gas emissions in 2020,

of which 39.2% was methane emissions from dairy cattle (Ministry for the Environment, NZ,

2022). Reducing methane emissions from dairy production is thus important to ensure that New

Zealand achieves its International climate change commitments. Breeding for cows with less

impact on the environment is a potential part of the solution, but obtaining direct measurements

of methane using methods such as respiration chambers, the sulphur hexafluoride (SF6) tracer

technique or the GreenFeed system is difficult and expensive. Using FT-MIR spectra to generate

indicator traits for methane are an attractive alternative because they have the potential to

provide methane predictions across large numbers of individuals at very low cost.

Methane predictions from FT-MIR spectra have recently been compared to predictions from

milk fatty acids determined by gas chromatography (GC; van Gastelen et al., 2018a). Results

indicated that GC-determined milk fatty acids were better predictors of methane, but that

combining FT-MIR spectra with other information such as feed intake and stage of lactation

improved the predictive ability of the FT-MIR spectra. There are a handful of other studies that

have assessed the potential utility of using FT-MIR spectra directly to predict methane. Dehareng

et al. (2012) developed FT-MIR spectra prediction models for methane as determined by the

SF6 tracer technique using a small number of animals (n=11), with methane measurements and

milk samples collected on a daily basis during a 7-day period. The accuracy to predict methane

outputs as assessed by leave-one-out cross-validation was high (R2
cv=0.87), better than that for

fatty acids (R2
cv=0.76). Vanlierde et al. (2013) extended those models to include more animals

(n=146) of multiple breeds and from different countries, resulting in a 50-group cross-validation

accuracy of 0.70. In a subsequent study using the same dataset, Vanlierde et al. (2015) also

showed that the accuracy of FT-MIR prediction equations could be improved by including stage

of lactation, modelled using linear and quadratic Legendre polynomials.
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Predictions of methane outputs using FT-MIR spectra based on respiration chamber measure-

ments have also been studied (Denninger et al., 2020; Vanlierde et al., 2018, 2021; Wang and

Bovenhuis, 2019). In a study of 584 respiration chamber measurements, Vanlierde et al. (2018)

reported a 5-group cross-validation accuracy of 0.57. In a subsequent study, Vanlierde et al.

(2021) combined SF6 and respiration chambers measurements from previous studies (Vanlierde

et al., 2015, 2016, 2018) to develop models that accounted for more of the observed variability

in CH4 emissions. However, when Denninger et al. (2020) applied the CH4 prediction equation

developed by Vanlierde et al. (2016) to an independent dataset, it was not possible to differentiate

between low and high emitting cows based on average daily CH4 emissions measured with either

respiration chambers or laser CH4 detectors. Moreover, in a study by Wang and Bovenhuis (2019)

with respiration chamber measurements for 801 dairy cows, prediction accuracy as assessed by

random cross-validation was promising (R2
cv=0.49), but the prediction accuracy as assessed by

herd-independent validation was poor (R2
cv=0.01). These findings highlight that in some instances,

random cross-validation can give an overly optimistic view of the quality of FT-MIR predictions.

Overall, further work is required to develop FT-MIR prediction equations for methane that are

robust and transferable to independent spectral datasets. Issues related to uncertainties and

discrepancies in methane datasets and measurement methods still need to be addressed, but there

may be potential to improve prediction accuracy through collaboration and by ensuring that

datasets represent a range of breeds, diets and production systems (Hristov et al., 2018; Vanlierde

et al., 2018).

2.3 Pre-processing of FT-MIR spectra

Although there are many potentially valuable applications for FT-MIR spectra, the ability to

predict traits directly from the spectra and to transfer prediction equations between instruments

is hindered by a number of sources of unwanted variation. These sources of variation include

scaling and baseline effects in spectral measurement, low repeatability of sample measurement

for specific regions of the infrared spectrum influenced by the water content of milk, and also

systematic variation between measurements from different instruments and within instruments

across time due to factors such as temperature fluctuations and wavelength or detector intensity

instability (Wang et al., 1991). Addressing these sources of variation appropriately is important,

and would provide an opportunity to increase prediction accuracy and improve the utility of

using the FT-MIR spectra in downstream applications.
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2.3.1 Pre-processing treatments

Applying pre-processing treatments to FT-MIR spectra before generating prediction models is a

widely-used practice. The objective in doing so is to correct signal noise in the spectral profile

whilst still retaining important features. Common methods for pre-processing are multiplicative

scatter methods (Geladi et al., 1985; Martens et al., 2003) or derivation methods such as the

Savitzky-Golay derivative (Savitzky and Golay, 1964). Multiplicative scatter correction is a

normalization method that corrects spectra for scaling and baseline effects by comparing the

spectra to an expected spectral profile, where the expected profile is based on the overall average

of all spectral responses. Derivation methods are based on changes in the spectra across specified

window sizes and are intended to smooth the spectra whilst retaining key features of its shape.

There are a number of studies where prediction accuracies from models using different pre-

treatments of spectra have been compared. The findings of these studies vary, with Soyeurt et

al. (2011) and De Marchi et al. (2011) reporting that a 1st derivative treatment provided the

best prediction equations for fatty acids; De Marchi et al. (2009b, 2013) reporting that untreated

spectra provided the best prediction equations for milk coagulation properties and acidity traits;

and Bonfatti et al. (2011) reporting varying results for a range of spectra pre-treatments applied

to spectra prior to evaluating protein fraction prediction equations. Overall, there is no consensus

about the best pre-processing treatment to apply to spectral data. Each dataset has its own

unique characteristics and this will determine the effectiveness of each approach. Notably, even

when different pre-processing strategies are examined in a study, authors often only report

the best prediction models, and this makes it difficult to compare the effectiveness of different

pre-processing strategies (De Marchi et al., 2014).

2.3.2 Noise regions of the FT-MIR spectrum

Water content in milk samples results in high noise levels in some bands of the infrared spectrum.

Bands of the spectrum associated with high noise levels due to water absorption are generally

reported in the O-H bending (~1,600 to 1,700 cm−1) and O-H stretching bands (>~3,000 cm−1).

However, the boundaries of these regions vary between publications: 1,616 to 1,678 cm−1, 3,066

to 3,668 cm−1 (Soyeurt et al., 2010); 1,586 to 1,698 cm−1, 3,052 to 3,669 cm−1 (Bittante and

Cecchinato, 2013); and 1,600 to 1,689 cm−1, 3,008 to 5,010 cm−1 (Grelet et al., 2015). Notably,

most studies, including those mentioned above do not report wavenumbers lower than 925 cm−1,

because the milk samples have been analysed on FOSS instruments (Hillerød, Denmark) which

do not report any spectral results from that region.
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Although it is common practice to remove spectra from noise regions such as those mentioned

above, studies indicate that some wavenumbers within commonly-defined noise regions may still

carry valuable information. Wavenumbers in the regions between 1,619 to 1,674 cm−1 and 3,073

to 3,667 cm−1 have been associated with a polymorphism in the DGAT1 gene (Wang et al.,

2016; Wang and Bovenhuis, 2018), a gene that has been shown to have major impacts on milk

composition (Grisart et al., 2002). Similarly, Toledo-Alvarado et al. (2018a) reported a significant

association between pregnancy status and the 3,683 cm−1 wavenumber. Bittante and Cecchinato

(2013) also showed that the transmittance for most FT-MIR wavenumbers in the range from 930

to 5,000 cm−1 was heritable. They concluded that, although heritability estimates were often low

in the water absorption regions from 1,698 to 1,586 cm−1 and 3,052 to 3,669 cm−1, those regions

should still be considered for investigation, because they include absorbance peaks for chemical

bonds related to non-water milk components.

2.3.3 Identifying and removing outliers

Noise in FT-MIR spectra can result from outliers caused by sample or instrument anomalies.

Outliers are generally identified using multivariate approaches such as the squared Mahalanobis

distance (MD) which is an indicator of the distance between a spectral record and the average

spectral response. Notably, many studies are based on spectra from a single instrument so do

not have the complication of differing variance-covariance structures from different instruments.

Developing robust strategies for identifying noise regions and detecting outliers when spectra

are collected across multiple instruments is important, because covariance structures in high-

dimensional datasets can be highly sensitive and susceptible to variance inflation.

2.3.4 Standardization

Standardization of FT-MIR spectra is a methodology used to reduce the impact of variation

between instruments or within instruments across time. This variation, existing even between

instruments of the same brand can result in prediction errors and bias, and is particularly

problematic when applying prediction equations developed on one instrument across a historical

database of spectra collected on other instruments (Bonfatti et al., 2017d; Grelet et al., 2015). A

widely-used practice to address the issue of variation between instruments and shifts in instruments

across time is to adjust trait predictions by instrument correction coefficients, previously evaluated

from the analysis of reference samples using the approach outlined by Lynch et al. (2006). However,

that method is only applicable when trait-specific reference samples are available. With the

growing number of traits predicted from FT-MIR spectra, many of which do not have reference
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samples, there is increased interest in standardizing individual FT-MIR spectra wavenumbers

directly (Bonfatti et al., 2017a; Grelet et al., 2015, 2017). Recent publications by Grelet et

al. (2015) and Bonfatti et al. (2017a) have presented methods for standardizing individual

wavenumber absorbance values. Both strategies involved assigning a primary instrument and

standardizing spectra from other (secondary) instruments to align them to the spectral response

of the primary instrument. Grelet et al. (2015) presented a piecewise direct standardization (PDS)

approach based on the method described by Wang et al. (1991). Bonfatti et al. (2017a) presented

a retroactive approach (RPS) where percentiles of spectral responses for each wavenumber were

used to map the primary/secondary instrument relationships. Both the PDS and RPS approaches

successfully reduced prediction errors when transferring prediction equations between instruments

for fat composition traits (Bonfatti et al., 2017a; Grelet et al., 2015). Grelet et al. (2017) also

demonstrated the effectiveness of the PDS approach for reducing prediction errors for traits with

lower quality calibration equations such as methane emissions and cheese yield. Whilst there are

clear benefits for standardizing FT-MIR spectra wavenumbers, to date there have been no studies

that directly compare the reduction in prediction errors for the two methods when measured

across the same dataset.

2.4 The genetics of FT-MIR predicted traits

The success of incorporating FT-MIR predicted traits into breeding programs is dependent on

the genetic parameters of measured and predicted traits, and the genetic correlations between the

measured and predicted trait values (Bonfatti et al., 2016). The genetic parameters of individual

fatty acids and protein fractions (Lopez-Villalobos, 2012) and milk coagulation properties (Bittante

et al., 2012) have been recently reviewed. Moderate to high heritability estimates have been

reported for many FT-MIR predicted individual fatty acids (Bonfatti et al., 2017d; Lopez-

Villalobos et al., 2014; Rutten et al., 2010; Soyeurt et al., 2007b). Moderate to high heritability

estimates have also been reported for FT-MIR predicted grouped fatty acids, with consistently

higher heritability estimates for saturated fat and short- and medium-chain fatty acid groups,

compared to unsaturated fat and long-chain fatty acid groups (Fleming et al., 2018; Hein et al.,

2018; Narayana et al., 2017). Two studies also evaluated genetic parameters for both directly

measured and FT-MIR fatty acids, and reported genetic correlations between measured and

predicted traits that were predominantly above 0.95 (Bonfatti et al., 2017d; Rutten et al., 2010).

There are fewer studies reporting genetic parameters for FT-MIR predicted milk proteins (Bonfatti

et al., 2017d; Buitenhuis et al., 2016; Sanchez et al., 2017a). Buitenhuis et al. (2016) reported
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on individual proteins as a proportion of total protein or whey protein, whereas Bonfatti et al.

(2017d) and Sanchez et al. (2017a) reported on individual proteins as a proportion of total protein

and as a proportion of total milk volume. Only the study by Bonfatti et al. (2017d) presented

genetic parameters for both directly measured and FT-MIR predicted milk traits, including genetic

correlations between measured and predicted milk proteins. These were generally moderate to

high, ranging from 0.231 for αs1-casein to 0.822 for κ-casein.

Moderate to high heritability estimates have been reported for FT-MIR predicted milk

coagulation traits (Cecchinato et al., 2009; Costa et al., 2019; Visentin et al., 2017). Of those

studies, Cecchinato et al. (2009) was the only one that presented genetic correlations between

FT-MIR predicted and measured coagulation traits, which ranged from 0.91 to 0.96 for rennet

coagulation time (RCT), and from 0.71 to 0.87 for curd firmness after 30 minutes (a30). Moderate

to high heritability estimates have also been reported for FT-MIR predicted minerals (Costa

et al., 2019; Sanchez et al., 2018). Heritability estimates in those studies were consistently lower

for sodium (0.32 to 0.38) and consistently higher for phosphorus (0.53 to 0.56). In studies of

cheese yield and nutrient recovery traits, moderate heritability estimates have been reported

(Bittante et al., 2014; Cecchinato et al., 2015). In those studies, heritability estimates for protein

nutrient recovery were typically higher than for other traits, ranging from 0.32 to 0.44. Bittante

et al. (2014) also presented genetic correlations between measured and FT-MIR predicted cheese

yield and nutrient recovery traits, which ranged from 0.76 to 0.98 for cheese yield traits, and from

0.79 to 0.98 for nutrient recovery traits.

Although health, fertility and environment traits are valuable targets for breeding programs,

there are relatively few studies of the genetic parameters of FT-MIR predictions for these traits.

One such study reported a heritability of 0.16 for FT-MIR predictions of the probability of

conception to first mating (MFERT), which was higher than the heritability of 0.05 they observed

for traditional fertility traits (van den Berg et al., 2021a). In that study, genetic correlations

between MFERT and traditional fertility traits were low to moderate, with the weakest correlation

being with pregnancy at the end of the mating season (0.13), and the strongest correlation being

with calving to first service (-0.61). Genetic parameter estimates for FT-MIR predicted blood β-

hydroxybutyrate (BHB) vary between studies. Belay et al. (2017) presented moderate heritability

estimates for FT-MIR predicted blood BHB, ranging from 0.25 to 0.37 across different stages

of lactation, and moderate genetic correlations between clinical ketosis and FT-MIR predicted

blood BHB (0.47). Heritability estimates for FT-MIR predicted blood BHB were lower in other

studies, ranging from 0.04 to 0.09 (van den Berg et al., 2021b; Luke et al., 2019a).
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Moderate heritability estimates have also been reported for traits relating to methane, ranging

from 0.22 to 0.25 for predicted daily CH4 emissions and 0.17 to 0.18 for log-transformed predicted

CH4 intensity (Khanal and Tempelman, 2022). For FT-MIR predicted MUN, moderate to high

heritability estimates, ranging from 0.38 to 0.59 were reported by Miglior et al. (2007) and

Wood et al. (2003), with lower estimates of 0.22 and 0.14 presented in studies by Mitchell et al.

(2005) and Stoop et al. (2007), respectively. Of those studies, the only one that reported genetic

correlations between wet-chemistry measurements of MUN and FT-MIR predicted MUN was

by Mitchell et al. (2005), which were 0.38 and 0.23 in lactations 1 and 2, respectively. These

genetic correlations are significantly lower than those reported for fatty acids (0.82 to 0.99; Rutten

et al., 2010) and milk processability traits (0.76 to 0.98; Bittante et al., 2014), and indicate

that wet-chemistry measurements of MUN and FT-MIR predicted MUN are genetically different

traits. However, recently, promising genetic parameter estimates have been reported for FT-MIR

predicted BUN, with heritability estimates ranging from 0.08 to 0.13, and genetic correlations

between BUN and its FT-MIR prediction ranging from 0.96 to 0.98 (van den Berg et al., 2021b).

Moderate to high heritability estimates across many individual fatty acids and proteins,

and traits related to milk processability indicate that these traits have genetic variation that

could potentially be exploited for the purposes of animal selection. Moreover, for many of

these traits, high genetic correlations between direct measurements and FT-MIR predictions

indicate that selection based on FT-MIR predictions could provide favourable genetic gains in

the true traits of interest. The potential for incorporating FT-MIR predicted animal health and

environmental indicators into breeding programs is less clear due to the lack of studies reporting

genetic parameters for these traits. Low to moderate heritability estimates have been reported

for FT-MIR predicted blood BHB and probability of conception to first mating (Belay et al.,

2017; van den Berg et al., 2021a, 2021b; Luke et al., 2019a). Moderate heritability estimates

have also been reported for methane traits (Khanal and Tempelman, 2022), however, there are

still issues to be resolved to improve the accuracy and robustness of prediction equations to

make them applicable across a broader range of production systems and environments (van

Gastelen et al., 2018b; Hristov et al., 2018; Negussie et al., 2017; Vanlierde et al., 2018). For

FT-MIR predicted MUN, large differences in heritability estimates between studies indicate that

there may be underlying instability in prediction equations, and highlight the importance of

developing prediction models that are robust across different breeds and production systems.

Notably, promising results have recently been reported for FT-MIR predicted BUN (van den Berg

et al., 2021b). More research is required to determine the role that FT-MIR predicted animal

health and environment traits could have in improving animal health and reducing methane and

nitrogen outputs from dairy systems.
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2.5 The genetics of FT-MIR spectra

Although there are many studies reporting genetic parameter estimates of FT-MIR predicted

traits, there are relatively few studies reporting genetic parameter estimates for the individual

spectral wavenumbers. Within those studies, the transmittance of FT-MIR spectral wavenumbers

were moderately to highly heritable across a large proportion of the mid-infrared region (Bittante

and Cecchinato, 2013; Rovere et al., 2019; Soyeurt et al., 2010; Wang et al., 2016; Zaalberg et al.,

2019). Although heritability estimates were consistently low in regions affected by the water

content in milk, estimates greater than 0.2 were still reported across most of the mid-infrared

region (Soyeurt et al., 2010; Wang et al., 2016). This indicates that there may be potential

to achieve genetic gain through the direct use of FT-MIR spectra for selection, rather than

selection based on indirect predictions of the composite production traits, which are themselves a

function of the FT-MIR spectral wavenumbers. Previous studies have compared indirect vs direct

approaches to using FT-MIR spectra to calculate estimated breeding values (EBV) for traits

(Bonfatti et al., 2017c, Dagnachew et al., 2013). The indirect approach is the commonly used

method whereby the EBV are evaluated from the FT-MIR predicted trait using a single-trait

mixed model. Alternatively, the direct approach evaluates trait EBV as a function of individual

FT-MIR wavenumber EBV. Typically, the latter approach involves reducing the dimensionality

of the spectra to a smaller subset of latent variables and estimating the variance components of

the latent traits in a multivariate model. Latent trait EBV are subsequently back-transformed

and used to evaluate predicted trait EBV.

In a study of spectral data from dairy goats, Dagnachew et al. (2013) showed that prediction

error variances for EBV were reduced for major milk components when a direct approach was used,

compared to using an indirect approach. However, Bonfatti et al. (2017c) showed that differences

in prediction accuracies for indirect and direct approaches varied depending on the trait, and in

particular were sensitive to the spectral variability captured within the latent variables used to

evaluate the trait EBV. A subsequent study by Belay et al. (2018) compared EBV prediction

accuracies for indirect and direct approaches using simulated traits with different genetic and

residual correlation structures. They showed that a direct approach could be sensitive to whether

coefficients relating latent traits to the trait of interest were based on phenotypic or genetic

relationships. Notably, in the simulation study by Belay et al. (2018), a simplified model with

only two predictors (equivalent to two latent variables) was used, but in practice, more latent

variables would be required to effectively capture spectral variation. Indeed, to capture 99% of
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spectral variation, Soyeurt et al. (2010) identified that 46 latent variables were required and

Bonfatti et al. (2017c) identified that 8 latent variables were required. Bonfatti et al. (2017c)

also highlighted that when a principal component analysis (PCA) approach is used to reduce

dimensionality in spectral data, latent variables are based on the overall spectral variation, and

may not appropriately capture the genetic variation of traits less correlated with fat and protein.

Evaluating trait-specific latent variables using a supervised PCA approach such as PLS may

address this, however, a large number of latent variables may still be required to appropriately

capture the spectral variability associated with the trait. More research is required to understand

how the genetic variation present in the spectra can be used to improve prediction of trait EBV.

2.5.1 Genome-wide association studies of FT-MIR spectra wavenumbers

Although there are currently many genome-wide association studies (GWAS) for FT-MIR predicted

milk production traits such as fat, protein, and lactose concentrations (Jiang et al., 2010; Kemper

et al., 2015b; Littlejohn et al., 2016; Lopdell et al., 2017; Raven et al., 2014), and fatty acids and

protein fractions (Cruz et al., 2019; Freitas et al., 2020; Iung et al., 2019; Olsen et al., 2017; Sanchez

et al., 2017b, 2019), there have been relatively few GWAS for individual FT-MIR wavenumbers.

Two such studies conducted GWAS on medium density SNP-chip (~50k markers) genotypes for a

subset of wavenumbers, identified either by clustering analysis (Wang and Bovenhuis, 2018), or

by using phenotypic correlation structures and heritability estimates within each breed (Zaalberg

et al., 2020). A third study explored relationships between FT-MIR wavenumber phenotypes

and a subset of SNP previously implicated in a GWAS of milk composition and fatty acid

traits (Benedet et al., 2019). Across those studies, a number of FT-MIR wavenumber QTL were

identified. Most of the implicated genomic regions had been previously reported in studies of

major milk composition traits, but new regions with potential links to milk components such as

phosphorus, orotic acid or citric acid were also identified (Wang and Bovenhuis, 2018). Overall,

those studies indicated that there is potential to conduct GWAS on individual wavenumbers to

further our understanding of the underlying genetics of milk composition, and that these insights

could be used for improving dairy cattle breeding programs.
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2.6 Summary

Fourier-transform mid-infrared spectroscopy offers a high-throughput and inexpensive method for

predicting milk composition and other novel traits. This includes traits related to milk quality,

animal health and the environment. Studies have reported promising prediction accuracies

for fatty acids, protein fractions, cheese-making characteristics and energy status. However,

prediction accuracies have been variable and were affected by a number of factors including breed

composition, spectra pre-treatments, the number of samples used in calibration models, and how

well the variability of the validation population was represented in the calibration samples. Recent

studies have highlighted the potential to use FT-MIR spectra to predict oestrus phase, pregnancy

and environmental traits such as methane and nitrogen outputs. However, more research is

required to improve the prediction quality for these traits. Although there have been many studies

related to the genetics of FT-MIR predicted traits, there are relatively few studies of the genetics

of individual FT-MIR wavenumbers. This is despite the individual wavenumbers exhibiting

additional genetic signals that are often not observed in FT-MIR predicted traits. Indications

are that individual FT-MIR wavenumbers may provide an additional layer of granularity to

assist with establishing causal links between the genome and observed phenotypes to enable the

discovery of novel QTL. However, conducting GWAS on such large numbers of phenotypes presents

computational challenges due to the size and complexity of the datasets involved. Addressing

these challenges promises to enhance our knowledge of milk composition and improve future dairy

cattle breeding programs.
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3.1 Interpretive summary

Fourier-transform mid-infrared (FT-MIR) spectra from milk samples are valuable resources

because they are routinely available and can be used to predict traits that are difficult or

expensive to measure directly. Noise in FT-MIR spectra is problematic because it reduces

prediction accuracy. This study develops strategies for reducing the impact of noise and compares

methods for standardizing FT-MIR spectra across multiple-instrument networks. Our results

demonstrate that standardization using spectra from milk-based reference samples is the most

consistent method for reducing prediction errors across time. Implementing this approach will

improve the quality of predictions based on FT-MIR spectra for various downstream applications.

3.2 Abstract

The use of Fourier-transform mid-infrared (FT-MIR) spectroscopy is of interest to the dairy

industry worldwide for predicting milk composition and other novel traits that are difficult

or expensive to measure directly. Although there are many valuable applications for FT-MIR

spectra, noise from differences in spectral responses between instruments is problematic, because

if ignored, it reduces prediction accuracy. The purpose of this study was to develop strategies

for reducing the impact of noise and to compare methods for standardizing FT-MIR spectra, to

reduce between-instrument variability in multiple-instrument networks. Noise levels in bands of

the infrared spectrum due to the water content of milk were characterised, and a methodology for

identifying and removing outliers was developed. Two standardization methods were assessed and

compared: piecewise direct standardization (PDS) which related spectra on a primary instrument

to spectra on five other (secondary) instruments using identical milk-based reference samples

(n=918) analysed across the six instruments; and retroactive percentile standardization (RPS)

whereby percentiles of observed spectra from routine milk test samples (n=2,044,094) were used

to map and exploit primary and secondary-instrument relationships. Different applications of

each method were studied to determine the optimal way to implement each method across

time. Industry-standard predictions of milk components from 2,044,094 spectra records were

regressed against predictions from spectra before and after standardization using PDS or RPS. The

PDS approach resulted in an overall drop in root mean square error between industry-standard

predictions and predictions from spectra from 0.190 to 0.071 g/100mL for fat, 0.129 to 0.055

g/100mL for protein and 0.143 to 0.088 g/100mL for lactose. Reductions in prediction error
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for RPS were similar but less consistent than those for PDS across time, but similar reductions

were achieved when PDS coefficients were updated monthly and separate primary instruments

were assigned for North and South Islands. We demonstrate that the PDS approach is the most

consistent method for reducing prediction errors across time. We also show that the RPS approach

is sensitive to shifts in milk composition, but can be used to reduce prediction errors, provided that

secondary-instrument spectra are standardized to a primary instrument with samples of broadly

equivalent milk composition. Appropriate implementation of either of these approaches will

improve the quality of predictions based on FT-MIR spectra for various downstream applications.

Key words: Fourier-transform mid-infrared spectra, standardization, trait prediction, milk

composition, dairy cattle

3.3 Introduction

Fourier-transform infrared spectroscopy is a method to determine light absorbance at wavenumbers

across the infrared spectrum. Applications using Fourier-transform infrared data from the mid-

infrared range have increased in popularity over the last decade for predicting milk composition

and other novel traits. De Marchi et al. (2014) comprehensively reviewed the use of Fourier-

transform mid-infrared (FT-MIR) spectroscopy and many potential applications for the use of

the resulting spectra as a phenotyping tool. Ongoing research includes studies of individual

milk proteins and fatty acids (Bonfatti et al., 2017d; Lopez-Villalobos et al., 2014; McDermott

et al., 2016) and technological properties (Cecchinato et al., 2015; Toffanin et al., 2015; Visentin

et al., 2015). Studies have predicted indirect traits related to pregnancy (Lainé et al., 2017;

Toledo-Alvarado et al., 2018a, 2018b), energy status (Grelet et al., 2016; McParland et al., 2015;

Mehtiö et al., 2018), efficiency (McParland and Berry, 2016; Shetty et al., 2017) and methane

emissions (Bittante and Cipolat-Gotet, 2018; Vanlierde et al., 2013, 2015).

Although there are many valuable applications for FT-MIR spectra, the ability to predict

traits directly from the spectra and to transfer calibration equations between instruments is

hindered by a number of sources of noise. These sources include noise across bands of the infrared

spectrum due to the water content of milk, and noise resulting from spectral outliers caused by

sample or instrument anomalies. A third source of noise is the variation between instruments or

within instruments across time. This variation, that exists even between instruments of the same

brand can result in prediction errors and bias, and is particularly problematic when applying

calibration models developed on one instrument across a historical database of spectra collected

on different instruments (Bonfatti et al., 2017d; Grelet et al., 2015).
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A widely-used practice to address the issue of variation between instruments and shifts

in instruments across time, is to adjust trait predictions by instrument correction coefficients,

previously evaluated from the analysis of reference samples, using the approach outlined by Lynch

et al. (2006). However, that method is only applicable where reference samples are available

for a trait. With the growing number of traits predicted from spectra, many of which do not

have reference samples, there is increased interest in standardizing individual FT-MIR spectra

wavenumbers directly (Bonfatti et al., 2017a; Grelet et al., 2015, 2017). Recent publications by

Grelet et al. (2015) and Bonfatti et al. (2017a) present methods for standardizing individual

wavenumber absorbance values. Both strategies involve assigning a primary instrument and

standardizing spectra from other (secondary) instruments to align them to the spectral response

of the primary instrument. Grelet et al. (2015) present a piecewise direct standardization (PDS)

approach based on the method described by Wang et al. (1991). Bonfatti et al. (2017a) present

a retroactive approach (RPS) where percentiles of spectral responses for each wavenumber are

used to map the primary/secondary instrument relationships.

The effectiveness of standardization for reducing prediction errors when transferring calibration

models between instruments for fat composition traits has been demonstrated previously (Bonfatti

et al., 2017a; Grelet et al., 2015). Grelet et al. (2017) also demonstrated the effectiveness of

standardization for reducing prediction errors for traits with lower quality calibration models

such as methane emissions and cheese yield. Whilst those studies demonstrate the clear benefits

of standardization, to date there have been no studies that directly compare the reduction in

prediction errors for the two methods when measured across the same dataset.

The purpose of this study was to develop strategies for reducing the impact of noise on

predictions and to compare methods for standardizing FT-MIR spectra from milk samples

collected across multiple-instrument networks. Our aims included identifying bands with high

noise levels across the mid-infrared spectrum, developing an outlier removal methodology, and

quantifying the effect of standardization on milk trait predictions. Standardization methods

were compared across the same set of milk samples using industry-standard trait predictions for

concentrations of major milk components, and different applications of each method were studied

to determine the optimal way to implement each method across time.
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3.4 Materials and methods

3.4.1 Ethics statement

All data were generated as part of routine commercial activities and were outside the scope of

requiring formal ethics approval.

3.4.2 Instrumentation

Fourier-transform mid-infrared spectra from six Bentley FTS (Chaska, MN, USA) instruments,

located at two different centres in New Zealand, within the Livestock Improvement Corporation

(LIC) milk testing network were used in this study. Three instruments (A4-A6) were located in

Hamilton (North Island) and three instruments (A1-A3) were located in Christchurch (South

Island). Each spectra record had absorbance values reported for 899 wavenumbers across the

range from 649.03 to 3,998.59 cm−1. This range is referred to broadly as the mid-infrared region

throughout this study. However, subdivisions of the infrared region vary across different sources,

sometimes defining the range 649.03 to 3,998.59 cm−1 as including part of the long-wavelength

infrared and short-wavelength infrared regions (Bittante and Cecchinato, 2013).

3.4.3 Milk-based reference samples

Milk-based reference sample sets were used to calibrate instruments weekly to meet the Inter-

national Committee for Animal Recording (ICAR) requirements, in accordance with relevant

standards (ISO 9622:2013). Reference sample calibration sets were prepared by MilkTestNZ

(Hamilton, NZ) to comply with ICAR guidelines (ICAR, 2017). Those sets included up to

11 milk-based samples with known concentrations of fat, protein and lactose, as determined

by industry-accepted chemical reference methods, in accordance with relevant standards (ISO

1211:2010; ISO 8968-4:2016; ISO 22662:2007). A separate set of samples, designed to be identical

in composition was generated for each instrument, with samples in each set reflecting milk

component concentrations ranging from ~0.1 to 6.1 g/100mL for fat, ~3.5 to 4.5 g/100mL for

protein and ~4.7 to 5 g/100mL for lactose.

In total, 918 milk-based samples from reference sets across 16 weeks from February to May

2018 were included in this study. In each week, there were six sets of samples, designed to be

identical, with each set analysed across a different instrument. On average, spectra from only 9.6

of the 11 samples were available for each week. This was because some reference sets included

only 10 samples (instead of 11), and because some spectra records were discarded if samples were

processed out of sequence during the calibration process.
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3.4.4 Noise region identification using reference samples

Noise regions across the mid-infrared spectrum range were identified using spectra generated

from the weekly instrument calibration process. During instrument calibration, each reference

sample was analysed in duplicate to obtain two spectra records (paired-spectra), which were

averaged. For each set of paired-spectra (n=918), the difference in absorbance was calculated for

each wavenumber. Paired-spectra represented the same reference sample analysed in duplicate on

the same instrument, so the expectation was that the absorbance difference would be zero, under

the assumption that there was no other interference in the absorbance signal. Metrics to describe

the distribution of absorbance differences for each wavenumber were calculated as follows: the

mean of the absolute differences for a wavenumber; the standard deviation of the differences for

a wavenumber; and the Wasserstein distance metric, to compare the distribution of differences

for a wavenumber to the distribution of differences for the wavenumber with the lowest variance.

Wasserstein distance metrics were calculated using the transport package in R (Schuhmacher

et al., 2017).

Paired-spectra difference metrics were multiplied by 100 and the distributions of each of

the scaled absolute mean, the scaled standard deviation and the scaled Wasserstein distance

were approximated with a Cauchy distribution. Location and scale parameters for each fitted

Cauchy distribution were estimated using the fitdistrplus package in R (Delignette-Muller and

Dutang, 2015), where the location parameter defined the location of the distribution peak, and

the scale parameter defined the spread of the distribution. Critical-value thresholds based on

these parameters were evaluated for each scaled metric for each of the α-levels 0.05, 0.1 and

0.15. A wavenumber was assigned to belong to a noise region if the scaled metric was above the

corresponding critical-value threshold for a specified α-level. Levels of α indicated the probability

of falsely assigning a wavenumber to a noise region, with higher α-levels resulting in an increased

likelihood of assigning wavenumbers to noise regions.

3.4.5 Identification of a primary instrument

Averaged spectra from milk-based reference samples (n=918) were used to identify a high-

performing primary instrument to which the other secondary instruments would be calibrated.

For each sample, uncorrected predictions of milk component concentrations were generated

by applying industry-accepted calibration equations to the average of FT-MIR wavenumber

absorbance values. The intercept, slope, R2, root mean square error (RMSE) and relative RMSE

between uncorrected predictions of milk component concentrations and concentrations determined

by chemical reference methods were calculated. Relative RMSE values were calculated as the
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ratio of the RMSE to the overall average of the reference values for each milk component. The

instrument with the highest average R2 across milk component concentrations for fat, protein

and lactose was designated as the primary instrument (A6). The primary instrument also

demonstrated consistently lower relative RMSE values and lower deviations from unity for the

slope across all three milk components, compared to all other instruments.

3.4.6 Milk test samples from routine milk testing

In New Zealand, milk testing is currently carried out on ~3 million cows per year, located in ~7,500

herds (LIC and DairyNZ, 2017). Most dairy herds in New Zealand operate as pasture-based,

seasonal production systems, with milk testing conducted on a bi-monthly basis so that each cow

has 3 to 4 tests per lactation. LIC is one of two milk testing providers in New Zealand and has

both FOSS (Hillerød, Denmark) and Bentley instruments in their milk testing network. Samples

from the North Island were processed at the Hamilton centre and samples from the South Island

were processed at the Christchurch centre. Samples were randomly allocated to instruments at

each centre, with approximately half being analysed on Bentley instruments.

Fourier-transform mid-infrared spectra records from 2,109,750 individual milk test samples

for 1,533,669 cows across 5,574 herds were included in the dataset. Samples were collected and

analysed on Bentley instruments as part of routine milk testing conducted by LIC, over the

period from September 2017 to May 2018. Median calving dates were 8th August 2017 for cows

with samples in the North Island and 20th August 2017 for cows with samples in the South

Island. The median parity of cows was 3 with a range of 1 to 15. Cows were from a mixed-breed

population. The breed composition of cows sampled comprised 516,893 Holstein-Friesian, 159,249

Jersey, 762,210 Holstein-Friesian x Jersey and 95,317 other breeds.

Outlier removal for milk test samples

The squared Mahalanobis distance (MD) between industry-standard predictions of milk component

concentrations (fat, protein and lactose) were evaluated for each milk test record. Outliers were

identified and removed if the MD of milk component predictions had a p-value <0.001 based on a

χ2 distribution with 3 degrees of freedom.

The MD between each spectrum and the average spectra were evaluated after excluding

noise regions. Under the assumption that the spectra were distributed as a multivariate normal

distribution, the MD values for the spectra were expected to follow a χ2 distribution with r degrees

of freedom, where r is the number of wavenumbers after excluding noise regions. Instrument-

specific clustering was present in the MD values, necessitating the calculation of within-instrument

MD values for the purpose of outlier removal.
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The distribution of best-fit was determined for each set of within-instrument MD values using

the fitdistrplus package in R (Delignette-Muller and Dutang, 2015). The distributions considered

were the normal, gamma, χ2, lognormal and logistic distribution. The logistic distribution was

identified as the best-fit to within-instrument MD values, based on having the lowest average

information criterion (AIC), on average, across instruments. Outliers were identified and removed

if the within-instrument MD had a p-value <0.001 based on the logistic distribution of best-fit.

3.4.7 Evaluation of standardization coefficients

Piecewise direct standardization

Coefficient sets to relate primary-instrument spectra to spectra from secondary instruments were

generated using a PDS approach (Grelet et al., 2015). Briefly, milk-based reference samples

measured across all instruments were used to relate the response for each wavenumber j on the

primary instrument to a small window around the same wavenumber on each secondary instrument.

Each secondary instrument window included five responses, centred on the wavenumber j. A

principal components regression was used to map the relationship between the primary-instrument

spectral wavenumber and each corresponding secondary-instrument spectral window:

pj = β0j + Sjβj
(3.1)

where pj is a vector of average absorbance values from paired-spectra for up to 153 samples, for

the jth wavenumber on the primary instrument, Sj=[ s(j−2),s(j−1),sj ,s(j+1),s(j+2)] is a matrix of

the corresponding window on the secondary instrument, β0j is an offset term and βj is a vector

representing transformation coefficients. These defined a complete standardization coefficient

set comprising PDS estimates of β0j and βj for wavenumbers j=3 to j=897 (895 wavenumbers),

with coefficient sets for j=1, j=2, j=898 and j=899 being undefined.

Five time-based criteria were used to restrict the samples included for evaluating coefficient

sets. An overall coefficient set was evaluated based on all samples (PDS:Overall). For each of k=1

to 16 weeks, coefficient sets were evaluated: using samples in week k only (PDS:Weekly), using

samples from all other weeks, except week k (PDS:AllOtherWks); using samples from all weeks

in the same calendar month as week k, but excluding week k (PDS:Monthly); and using the last

w weeks of samples prior to week k, where w=1 to 8 (PDS:RollingWks). These coefficient sets

allowed different applications of the PDS method across time, and defined different values for pj

and Sj in equation 3.1).
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Retroactive percentile standardization

Coefficient sets to relate primary-instrument spectra to spectra from secondary instruments were

assessed using the RPS approach outlined by Bonfatti et al. (2017a). Briefly, standardization

coefficients were calculated using linear regression to map the absorbance percentiles for each

wavenumber from the primary instrument to the corresponding absorbance percentiles from each

secondary instrument.

Three separate RPS coefficient sets were constructed from milk test samples: using spectra

from all milk test samples to evaluate an overall coefficient set (RPS:Overall); using spectra

from milk test samples in each month to evaluate monthly coefficient sets (RPS:Monthly); and

using spectra from milk test samples in each month, with a different primary instrument used

for spectra from South Island samples, to evaluate coefficient sets for each island in each month

(RPS:MonthlyIs). To evaluate the RPS:MonthlyIs coefficient sets, an alternative South Island

instrument (A1) was designated as the primary instrument for standardizing South Island spectra.

This instrument was selected from South Island instruments following the methodology described

for designating an overall primary instrument.

3.4.8 Assessment of standardization strategies

Assessment of standardization strategies was undertaken in two stages: i) assessment of PDS on

spectra from milk-based reference samples; and ii) assessment of PDS and RPS on spectra from

milk test samples.

Assessment of PDS on milk-based reference samples

The process for assessment of PDS strategies is shown in Fig. 3.1. From a total of 918 milk-

based reference samples, 153 were analysed in duplicate on the primary instrument to obtain

primary instrument spectra. Corresponding samples, designed to be identical, were analysed

in duplicate on the five secondary instruments (n=765) to obtain spectra for each secondary

instrument. Calibration models for concentrations of fat, protein and lactose were developed

by regressing the average absorbance values from primary instrument paired-spectra against

component concentrations, previously determined by chemical reference methods. In these models,

wavenumbers from noise regions were excluded and each partial least squares regression was

conducted using the plsr package in R (Mevik and Wehrens, 2007). For each model, the number

of components to minimise the RMSE of prediction was identified and subsequently employed in

model applications.
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Secondary-instrument reference sample spectra were standardized using PDS:Weekly,

PDS:AllOtherWks, PDS:Monthly and PDS:RollingWks coefficient sets. Calibration models

developed from primary instrument spectra were then applied to primary-instrument spectra, and

unstandardized and standardized secondary-instrument spectra. This resulted in a set of predicted

traits from each of the primary-instrument spectra, the unstandardized secondary-instrument

spectra, and each of the standardized secondary-instrument spectral datasets.

Figure 3.1: Summary of process for assessment of piecewise direct standardization (PDS) strategies on
79 sets of identical milk-based reference samples.

Primary-instrument trait predictions were regressed on predictions from unstandardized and

standardized secondary-instrument spectra, and the R2, intercept, slope, RMSE and relative

RMSE were evaluated for each strategy. Relative RMSE values were calculated as the ratio of

the RMSE to the overall average of the reference values for each milk component. Because the

PDS:RollingWks strategies were dependent on having up to 8 weeks of spectra from previous

weeks available, coefficient sets for w=8 were only estimable for weeks k=9 to 16. Therefore,

to ensure that standardization strategies were compared across the same period, comparisons

between primary and secondary-instrument spectra were restricted to weeks k=9 to 16 across all

strategies (n=79).
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Assessment of PDS and RPS on milk test samples

The process for assessment of PDS and RPS strategies is shown in Fig. 3.2. Milk test samples

(n=2,044,094) were analysed on one of six instruments, and sample spectra were standardized using

PDS:Overall, RPS:Overall, RPS:Monthly and RPS:MonthlyIs coefficient sets. Industry-standard

calibration equations were used to predict individual milk component concentrations (fat, protein

and lactose) from unstandardized and standardized spectra. This resulted in a set of predicted

traits from unstandardized spectra and a set of predicted traits from each of the standardized sets

of spectra. Traits predicted from unstandardized spectra were also adjusted by instrument-specific

calibration coefficients (previously evaluated from the weekly calibration process), to obtain the

industry-standard prediction for each trait, in accordance with ICAR requirements and relevant

milk testing standards (ISO 9622:2013). Industry-standard trait predictions were regressed on

predictions from unstandardized and standardized spectra and the overall R2, intercept, slope,

RMSE and relative RMSE were evaluated for each strategy. Relative RMSE values were calculated

as the ratio of the RMSE to the overall average of the industry-standard prediction for each milk

component. Relative RMSE values for each individual milk component were compared overall

and by individual instrument and month.

Figure 3.2: Summary of process for assessment of piecewise direct standardization (PDS) and retroactive
percentile standardization (RPS) strategies on 2,044,094 milk test samples.



3.5. RESULTS AND DISCUSSION 39

3.5 Results and discussion

3.5.1 Noise region identification using reference samples

Profiles of absorbance differences for paired-spectra records across the mid-infrared spectrum

are presented in Fig. 3.3. Six separate regions are identified in Fig. 3.3(a) based on noise levels

observed across the spectrum, with close up views of regions (i), (iii) and (v) shown in Figs.

3.3(b), 3.3(c) and 3.3(d), respectively. Representative distributions of absorbance differences for

individual wavenumbers from each region are presented in Fig. 3.4. Regions of the spectrum

below ~950 cm−1 and from ~3,000 to 3,700 cm−1 had the largest noise levels. Notably, noise

observed in the region ~1,600 to 1,700 cm−1 was much lower than that in regions (i) or (v).

Figure 3.3: Absorbance differences for paired FT-MIR milk spectra wavenumbers where absorbance
= Log(1/T) and T=transmittance. Based on paired-spectra (n=918) from reference samples analysed
across six Bentley instruments.
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Table 3.1: Noise regions for FT-MIR milk spectra as defined by different paired-spectra difference
metrics and varying α levels1

Scaled paired-spectra
difference metric

Noise region
number

Noise region wavenumber ranges (cm−1)

α=0.05 α=0.1 α=0.15

Mean
1 653-940 649-959 649-970
2 1,626-1,664 1,615-1,675 1,608-1,686
3 3,074-3,667 3,040-3,737 3,018-3,879

Standard deviation
1 653-944 649-962 649-974
2 1,623-1,667 1,611-1,679 1,608-1,686
3 3,070-3,674 3,036-3,801 3,006-3,999

Wasserstein distance
1 653-940 649-955 649-970
2 1,626-1,664 1,615-1,675 1,608-1,682
3 3,077-3,663 3,044-3,726 3,021-3,849

1 The α levels indicate the probability of falsely assigning a wavenumber to a noise region.

Table 3.1 presents noise regions defined by scaled paired-spectra difference metrics. Wavenum-

bers were assigned to noise regions if the scaled difference metric was above the critical-value

threshold from the appropriate Cauchy distribution. Location and scale parameters for Cauchy

distributions were 0.0143 and 0.0157 for absolute means; 0.0170 and 0.0187 for standard deviations;

and 0.00989 and 0.0163 for Wasserstein distances. For the first and second noise regions, for

any given α-level, noise region boundaries defined for each metric differed by up to only seven

wavenumbers. The third noise region was the most variable between α-levels and between metrics;

the upper limit varying between the standard deviation and Wasserstein distance metrics by 75

wavenumbers for α=0.1 and by 150 wavenumbers for α=0.15. Similar noise regions have been

presented in other studies: 1,616 to 1,678 cm−1, 3,066 to 3,668 cm−1 (Soyeurt et al., 2010); 1,586

to 1,698 cm−1, 3,052 to 3,669 cm−1 (Bittante and Cecchinato, 2013); 1,600 to 1,689 cm−1, 3,008

to 5,010 cm−1 (Grelet et al., 2015). Wavenumbers lower than 925 cm−1 were not reported in

those studies, because they used FOSS instruments (Hillerød, Denmark) that do not report any

part of the spectra from this region.

In the present study, most of the region from 649.03 to 925 cm−1 had high noise levels (Fig.

3.3). However, the first wavenumber, 649.03 cm−1 was an exception and had comparatively low

noise levels with a scaled absolute difference mean of 8.92e-02 and scaled difference standard

deviation of 1.28e-01. Low noise levels were also observed in the distribution of paired-spectra

absorbance differences for 649.03 cm−1 (not shown), which was narrower than that for the

wavenumber 1,648.7 cm−1 (Fig. 3.4(iii)), but wider than that for 3,924 cm−1 (Fig. 3.4(vi)).

Notably, for α=0.05, the wavenumber 649.03 cm−1 was not classified as part of the first noise

region for any of the difference metrics (Table 3.1).
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The second noise region defined in this study was in the water absorption band of the spectrum

affected by O-H bending (~1,600 to 1,700 cm−1), and the third noise region was in the band

affected by O-H stretching (>~3,000 cm−1). Although wavenumbers in the O-H bending and O-H

stretching bands of the spectrum are often attributed as noise and removed, there is evidence that

these regions contain valuable information. Wang et al. (2016) and Wang and Bovenhuis (2018)

found wavenumbers in the regions between 1,619 to 1,674 cm−1 and 3,073 to 3,667 cm−1 that

were affected by a polymorphism in the DGAT1 gene that has major impacts on milk composition

(Grisart et al., 2002). Similarly, Toledo-Alvarado et al. (2018a) reported a significant association

between cows’ pregnancy status and the 3,683 cm−1 wavenumber. Bittante and Cecchinato (2013)

also showed that the transmittance for most FT-MIR wavenumbers in the range from 930 to

5,000 cm−1 was heritable. They concluded that, although heritabilities were often low in the

water absorption regions from 1,586 to 1,698 cm−1 and 3,052 to 3,669 cm−1, these regions should

still be considered for investigation, because they included absorbance peaks for chemical bonds

related to non-water milk components.

Figure 3.4: Representative distributions of absorbance differences for paired FT-MIR milk spectra at
specified wavenumbers where absorbance = Log(1/T) and T=transmittance. Based on paired-spectra
(n=918) from reference samples analysed across six Bentley FTS instruments.
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The impact of including wavenumbers from noise regions in a study will depend on the specific

application. In applications where wavenumbers are considered independently, such as in a single

wavenumber genome-wide association study, it is prudent to retain spectra from all wavenumbers

in the analysis. However, in applications where wavenumbers are considered in a multivariate

manner, such as in the evaluation of principal components or partial least squares regression, the

exclusion of noise regions is an important step. For all subsequent applications in the present

study, noise regions have been defined according to the Wasserstein distance metric with α=0.15

(649 to 970 cm−1, 1,608 to 1,682 cm−1 and 3,021 to 3,849 cm−1). This definition provided

boundaries similar to those previously reported (Bittante and Cecchinato, 2013; Grelet et al.,

2015; Soyeurt et al., 2010). The resulting spectra with noise regions removed included only 526 of

the 899 original wavenumbers.

3.5.2 Outlier removal for milk test samples

From 2,109,750 milk test records, 2,081,455 remained after outlier removal based on the MD

for milk component concentrations. The distribution of MD values between each spectra record

and the average spectra is presented in Fig. 3.5. Also shown is the curve of the expected χ2

distribution with 526 degrees of freedom and the corresponding critical-value threshold based on

a p-value of 0.001. The distribution of MD values for the spectra was not consistent with the

expected χ2 distribution, due to instrument-specific clustering. Therefore, outlier removal was

conducted on within-instrument MD values.

Figure 3.5: Squared Mahalanobis distance distribution (MD) across herd test records (n=2,081,445).
The curve of the expected χ2 distribution with 526 degrees of freedom is also shown with the corresponding
critical-value threshold associated with a p-value of 0.001.
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Within-instrument MD values were calculated and the logistic distribution of best-fit was

determined. Within-instrument MD values are presented in Fig. 3.6. Curves of the best-fit

logistic distributions are also shown with outlier thresholds corresponding to a p-value of 0.001.

Within-instrument outlier thresholds ranged from 572 to 772. Using these thresholds, 1.79% of

records were identified as outliers and removed, leaving 2,044,094 records for analysis.

Figure 3.6: Within-instrument squared Mahalanobis distance (MD) distributions and corresponding
critical-value thresholds associated with a p-value of 0.001, based on approximated Logistic distributions
with location and scale parameters respectively: A1:518.4,29.2; A2:516.3,42.1; A3:517.8,37.0; A4:420.8,20.6;
A5:509.1,37.8; and A6:515.8,31.2. (A1: n=191,655; A2: n=200,612; A3: n=157,691; A4: n=430,940; A5:
n=461,130; A6: n=639,427).

In studies of FT-MIR spectra, outlier removal using MD values is a common approach.

However, many studies use spectra from only a single instrument and do not have the complexity

of differing variance structures between instruments. Results in this study demonstrate the

importance of accounting for instrument-specific variance structures when applying multivariate

outlier identification methods. Failure to do so and applying a threshold based on a χ2 distribution

with 526 degrees of freedom would have resulted in removing a large proportion of records from

one instrument and not removing anomalies from others.
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3.5.3 Assessment of PDS on milk-based reference samples

Root mean square errors between primary and secondary-instrument predictions from unstan-

dardized and standardized reference sample spectra are presented in Table 3.2. Each of the

PDS strategies resulted in lower RMSE values across milk component concentrations, compared

to the RMSE values from unstandardized spectra. The PDS:Weekly strategy resulted in the

lowest RMSE values with a reduction in RMSE from 0.222 to 0.022 g/100mL for fat, 0.265 to

0.020 g/100mL for protein and 0.299 to 0.010 g/100mL for lactose. A recent study reported a

comparable RMSE between primary and secondary-instrument predictions after standardization

of 0.016 g/100mL for fat (Grelet et al., 2015). That study used a similar approach to the

PDS:Weekly strategy, in that the spectra for each week was also included in the records used

to evaluate standardization coefficients. This approach is likely to underestimate prediction

errors when coefficients are applied to different spectral datasets. The PDS:AllOtherWks and

PDS:Monthly strategies were structured to ensure that for any given week, the spectra for the

week being assessed was independent of the spectra used to evaluate the coefficients being applied

to that week. Of these two strategies, the PDS:AllOtherWks strategy resulted in the lowest

RMSE values, namely 0.059 g/100mL for fat, 0.051 g/100mL for protein and 0.053 g/100mL for

lactose (Table 3.2). These RMSE values equate to a reduction by 73% for fat, 81% for protein

and 82% for lactose. These reductions in RMSE were similar to those presented by Grelet et al.

(2017) for methane emissions (83%), polyunsaturated fatty acids (86%) and cheese yield (81%).

Table 3.2: Root mean squared errors (RMSE) between primary and secondary-instrument trait
predictions from unstandardized and standardized spectra (n=79)1

Strategy
Trait

Fat Protein Lactose
(g/100mL) (g/100mL) (g/100mL)

Standardized2

PDS:Weekly 0.022 0.020 0.010
PDS:AllOtherWks 0.059 0.051 0.053
PDS:Monthly 0.080 0.066 0.054

Unstandardized 0.222 0.265 0.299

1 Standardization conducted using implementations of the piecewise direct standardization (PDS) method.
Results shown for weeks k=9 to 16: 8 week validation period from April to May 2018.

2 For each week k, PDS coefficients evaluated and applied. PDS:Overall: Standardized using PDS
coefficients evaluated from all reference samples; PDS:Weekly: Standardized using PDS coefficient sets
from reference samples from week k only; PDS:AllOtherWks: Standardized using PDS coefficients
evaluated from reference samples from all other weeks, except week k; and PDS:Monthly: Standardized
using PDS coefficients evaluated from reference samples from all weeks in the same calendar month as
week k, but excluding week k.
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Relationships between primary and secondary-instrument predictions from unstandardized and

standardized spectra based on PDS:AllOtherWks and PDS:Monthly coefficient sets are presented

in Fig. 3.7. After standardization, bias and deviation from unity for slopes consistently decreased

and R2 values consistently increased. Slope deviations from 1 after standardization were < 0.02

for fat and protein concentrations. For lactose, the deviation from 1 prior to standardization was

high at 0.75, but was reduced to < 0.17 after standardization. The highest bias levels between

primary and secondary-instrument predictions were observed for lactose concentrations. Prior to

standardization, the bias was 3.56 g/100mL, but this was reduced to 0.41 g/100mL using the

PDS:AllOtherWks strategy.

Figure 3.7: Comparison between primary and secondary-instrument predictions based on unstandardized
and standardized spectra from implementations of the piecewise direct standardization (PDS) method.
Results shown for weeks k=9 to 16: 8 week validation period from April to May 2018 (n=79). For each
week k, PDS coefficients evaluated and applied. PDS:AllOtherWks: Standardized using PDS coefficients
evaluated from reference samples from all other weeks, except week k; and PDS:Monthly: Standardized
using PDS coefficients evaluated from reference samples from all weeks in the same calendar month as
week k, but excluding week k. Dotted lines represent the regression line between primary and secondary
instruments; continuous line represents y=x.
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Figure 3.8 presents relative RMSE values between primary and secondary-instrument predic-

tions from standardized spectra using PDS:RollingWks strategies where w=1 to 8, represents the

number of previous weeks of spectra included in standardization coefficient set evaluation. For

fat and protein, relative RMSE values between primary and secondary-instrument predictions

decreased as additional weeks of historical data were used to evaluate coefficients, but incremental

benefits diminished as more weeks were added. For lactose, the relative RMSE values were

consistently low at ~1% regardless of the number of previous weeks of data used to evaluate

coefficient sets.

Including spectra from a wider date range in coefficient set evaluations resulted in lower

prediction errors. This was evident from the lower RMSE values for the PDS:AllOtherWks

strategy (Table 3.2), and was confirmed by the trends in relative RMSE for the PDS:RollingWks

strategies (Fig. 3.8). However, the present study included reference sample spectra from a 16

week period only. Over a longer time period, we could expect further instrument drift and shifts

in the spectra due to instrument maintenance, parts deterioration/replacement and factors such

as temperature fluctuations and wavelength or detector intensity instability (Wang et al., 1991).

Major shifts in the spectra due to these factors would affect relationships between primary and

secondary-instrument spectra and potentially erode gains in prediction accuracy. Monitoring and

adjusting for drift and spectra shifts is thus important to ensure that standardization using the

PDS approach consistently reduces prediction errors across time.

Figure 3.8: Relative root mean squared errors (RMSE) between primary and secondary-instrument
predictions for spectra standardized using piecewise direct standardization (PDS). Results shown for
weeks k=9 to 16: 8 week validation period from April to May 2018 (n=79). The x-axis represents the
number of previous weeks of reference sample spectra included in the evaluation of standardization
coefficients applied to each week. Dotted lines represent the relative RMSE from the PDS:AllOtherWks
strategy: Each week standardized using PDS coefficients evaluated from reference sample spectra from
all other weeks.
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Table 3.3: Root mean squared errors (RMSE) between industry standard trait predictions and
predictions from unstandardized and standardized spectra (n = 2,044,094)

Strategy
Trait

Fat Protein Lactose
(g/100mL) (g/100mL) (g/100mL)

Standardized1

PDS:Overall 0.071 0.055 0.088
RPS:Overall 0.156 0.085 0.087
RPS:Monthly 0.142 0.081 0.080
RPS:MonthlyIs 0.076 0.049 0.061

Unstandardized 0.190 0.129 0.143

1 PDS:Overall = standardized using piecewise direct standardization (PDS) coefficients evaluated from
all reference samples; RPS:Overall = standardized using retroactive percentile standardization (RPS)
coefficients evaluated from all herd test samples; RPS:Monthly = standardized using RPS coefficient
sets evaluated monthly from herd test samples; and RPS:MonthlyIs standardized using RPS coefficient
sets evaluated monthly from herd test samples with a different primary instrument used for South Island
samples.

3.5.4 Assessment of PDS and RPS on milk test samples

Root mean square errors between industry-standard predictions of milk components and predic-

tions from unstandardized and standardized spectra are presented in Table 3.3. Standardization

resulted in lower RMSE values for all strategies and across all examined milk components. The

two most effective strategies for reducing prediction errors were PDS:Overall and RPS:MonthlyIs.

The RPS strategies that standardized secondary instruments to a common North Island primary

instrument (RPS:Overall, RPS:Monthly) did not perform as well at reducing prediction errors

when compared to the RPS:MonthlyIs strategy that standardized spectra from South Island

samples to a South Island instrument.

The PDS:Overall strategy resulted in the lowest RMSE for fat with a drop from 0.190 to 0.071

g/100mL, i.e., a reduction of 63%. The RPS:MonthlyIs strategy resulted in the lowest RMSE

for protein with a drop from 0.129 to 0.049 g/100mL for protein, i.e., a reduction of 62%. For

lactose, standardization using the PDS:Overall strategy resulted in a drop in RMSE from 0.143

g/100mL to 0.088 g/100mL, i.e., a reduction of 38%. This reduction in RMSE was lower than for

the RPS:MonthlyIs strategy which had a drop in RMSE to 0.061 g/100mL, i.e., a 57% reduction.

A likely reason for the PDS strategy not performing as well for lactose is that only a small range

of lactose values (~4.7 to 5 g/100mL) were represented in the reference samples used to evaluate

PDS coefficients. Wider component concentration ranges in reference samples improves trait
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calibrations (Kaylegian et al., 2006). This implies that representation of a wider range of lactose

values in reference samples would improve the mapping of relationships between primary and

secondary-instrument wavenumbers that have absorbance peaks for lactose. This would improve

lactose predictions when using the PDS approach, and also improve predictions for other traits

that have spectral signal represented across the same wavenumbers.

Variation in individual instrument prediction accuracy

Figure 3.9 presents relative RMSE values between industry-standard milk component predictions

and predictions from unstandardized and standardized spectra, summarised by instrument.

Two of the South Island instruments (A2, A3) had consistently high relative RMSE values for

unstandardized spectra compared to the other instruments. The PDS:Overall strategy had

consistently low RMSE values, even for the A2 and A3 instruments. For all milk components,

after standardizing using the RPS:Monthly strategy, relative RMSE values were inflated for South

Island instruments. When spectra from South Island samples were standardized to a South Island

instrument (RPS:MonthlyIs), RMSE values were reduced to similar levels as the PDS:Overall

strategy for fat, and were lower for protein and lactose.

Figure 3.9: Relative root mean squared errors (RMSE) between industry-standard milk component
predictions and predictions from unstandardized and standardized spectra, summarised by instrument
(n=2,044,094). Standardization conducted using implementations of the piecewise direct standardization
(PDS) and retroactive percentile standardization (RPS) methods. Unstand: Unstandardized; PDS Overall:
Standardized using PDS coefficients evaluated from all reference samples; RPS Monthly: Standardized
using RPS coefficient sets evaluated monthly from herd test samples; and RPS MonthlyIs: Standardized
using RPS coefficient sets evaluated monthly from herd test samples with a different primary instrument
used for South Island samples.
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Figure 3.10: Relative root mean squared errors (RMSE) between industry-standard milk component
predictions and predictions from unstandardized and standardized spectra, summarised by month
(n=2,044,094). PDS:Overall: Standardized using piecewise direct standardization (PDS) coefficients
evaluated from all reference samples; RPS:Monthly: Standardized using retroactive percentile
standardization (RPS) coefficient sets evaluated monthly from herd test samples; and RPS:MonthlyIs:
Standardized using RPS coefficient sets evaluated monthly from herd test samples with a different primary
instrument used for South Island samples.

Variation in prediction accuracy over time

Figure 3.10 presents relative RMSE values between industry-standard milk component predictions

and predictions from unstandardized and standardized spectra, summarised by month. The

PDS:Overall strategy had consistently low relative RMSE values across all months for all milk

components. Notably, the PDS:Overall strategy standardizes the full season of herd test spectra

using only one set of standardization coefficients, evaluated from reference samples for the 16

week period from February to May 2018.

Consistently low relative RMSE values were also observed for the RPS:MonthlyIs strategy,

except for a peak for fat and protein in May. On closer examination, these peaks were caused by

high relative RMSE values for two of the instruments (A2, A4). The likely cause of this was the

drop in overall spectra record numbers included in the estimation of standardization coefficients

for May. Between April and May, the number of spectra records dropped by 65% for the North

Island, and by 68% for the South Island.

Implementing the RPS strategy with monthly coefficient updates and standardizing to a

common North Island primary instrument (RPS:Monthly) was not as effective at reducing

prediction errors as the RPS:MonthlyIs approach. Using the RPS:Monthly strategy resulted

in prediction error peaks for fat in January and May, and protein in April and May. On

closer examination, high relative RMSE values for South Island instruments (A1, A2, A3) were

underlying these peaks. These were caused by differences in milk component concentrations for
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North and South Island samples in these months: average industry-standard predictions for fat in

January were 5.10 g/100mL for North Island samples compared to 4.68 g/100mL for South Island

samples, i.e., 9% higher; in May, average industry-standard predictions for fat were 5.48 g/100mL

for North Island samples compared to 5.91 g/100mL for South Island samples, i.e., 7% lower.

Differences between fat concentrations for North and South Island samples were also observed in

other months, but were smaller. Similar trends were also observed for protein in April and May.

In general, regional and island differences in milk composition across the season are expected

due to genetic factors such as regional breed structure, and other region-specific factors related

to feed, management, calving start dates and climate/weather patterns. For this reason, it is

unsurprising that differences in milk composition were observed between North and South Island

samples, particularly in January and also in April/May. January is at the peak of summer in

New Zealand, a time when farmers adopt varying practices to manage feed and maintain body

condition score targets. From March onwards, there are also expected to be differences in milk

composition as cows are dried off, with drying off on average taking place 2-3 weeks later in the

South Island.

The expectation is that milk composition on average across instruments within a centre

would be equivalent because milk test samples are randomly allocated to instruments within

each milk testing centre. However, overall differences in milk composition for samples processed

in the North Island compared to those processed in the South Island are expected. These

milk composition differences became problematic when using the RPS:Monthly approach which

standardizes spectra from South Island samples to a North Island primary instrument. In doing so,

other non-instrument errors and bias were introduced. The risk of correcting for non-instrument

factors such as breed and feed when using a retroactive approach was also signalled by Grelet et

al. (2017). In the present study, we were able to resolve this by partitioning spectra into subsets

and applying standardization within month and with a separate primary instrument assigned

for each of the North and South Islands. Partitioning spectra into homogeneous subsets for the

purpose of standardization can also be achieved using principal components analysis (PCA) to

detect shifts in the PCA scores across time as per Bonfatti et al. (2017a). In their study, Bonfatti

et al. (2017a) also demonstrated the importance of standardization within homogeneous sets

of spectra and confirmed that small variations in the FT-MIR signal could lead to prediction

inaccuracies. They also concluded that the RPS method should be considered as complementary

to other classical standardization procedures, and variability in signal across time should be

monitored carefully.
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3.5.5 Common reference sample sharing between networks

Standardization using the PDS method consistently reduced prediction errors across time,

compared to no standardization or standardizing using the RPS method. This was evident

in the application of the PDS:AllOtherWks approach applied to reference samples, and also in the

PDS:Overall approach applied to milk test samples. Applications of the PDS method are reliant

on the analysis of identical reference samples across all instruments in the network. To be able to

standardize predictions across multiple networks, including those in other countries requires the

sharing of common reference samples. In Europe, reference sample sharing and standardization

between instruments in different countries already takes place across the OptiMIR network. This

transnational network includes ~65 FT-MIR spectrometers in 25 milk laboratories across five

countries, with standardisation data being stored in a common database (European Economic

Interest Grouping in the service of dairy farmers. n.d.). Outside Europe, there is little in the

way of sharing or analysing common reference samples between countries. Sharing reference

samples globally has the potential to enhance collaboration opportunities and maximise the value

of FT-MIR spectra. However, the success of this would require the resolution of a number of

key issues, such as logistics, sample preservation and integrity, and other biosecurity related

risks. Also, it would be ideal if shared reference sample sets were extended to include a broader

range of milk component representation as well as a wider range of individual component values.

A number of milk components have been confirmed as having absorbance peaks for chemical

bonds within specific ranges of the mid-infrared spectrum (De Marchi et al., 2009b; Grelet et al.,

2015). If reference samples were extended to capture greater signal diversity across the spectrum,

accuracies across a wider range of individual wavenumbers would be improved, and this would

result in improved predictions for other new traits.
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3.6 Conclusions

In this study, we present strategies for reducing the impact of noise in FT-MIR spectra and

compare standardization methods for reducing between-instrument variation. We demonstrate

that standardization using a PDS approach gives the most consistent reduction in prediction errors

across time. Standardization using the RPS approach can also be highly effective at reducing

prediction errors, provided that secondary-instruments are standardized to a primary-instrument

with broadly equivalent milk composition. Standardization using PDS is the optimal approach

because it is less sensitive to shifts in milk composition and non-instrument errors. However,

this method is reliant on having spectra from identical reference samples analysed across all

instruments in the network. Where reference sample spectra are unavailable, standardization

using the RPS approach can be a suitable alternative. For implementations of either of these

standardization methods, instrument drift and other major shifts in the spectra across time should

be monitored carefully. Standardization to reduce between-instrument variation will improve the

quality of FT-MIR spectra for various downstream applications, including for trait prediction,

predicting breeding values and quantifying genetic signals underlying specific FT-MIR spectra

wavenumbers.
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4.1 Interpretive summary

Knowledge of pregnancy status is important for effective herd management of dairy cattle. Utilising

Fourier-transform mid-infrared data to predict pregnancy is of interest, because alternative

methods for determining pregnancy status are costly and/or time-consuming. This study compared

pregnancy prediction models based on milk spectra using differing strategies for classifying pregnant

and non-pregnant records. We show that in pasture-based seasonal calving herds, confounding

between pregnancy status and lactation stage can produce misleading results. For models where

the effect of this confounding was reduced, prediction accuracies were not sufficiently high to be

used as a sole indicator of pregnancy status for herd management.

4.2 Abstract

Accurate and timely pregnancy diagnosis is an important component of effective herd management

in dairy cattle. Predicting pregnancy from Fourier-transform mid-infrared (FT-MIR) spectroscopy

data is of particular interest because the data is often already available from routine milk testing.

The purpose of this study was to evaluate how well pregnancy status could be predicted in a large

dataset of 1,161,436 FT-MIR milk spectra records from 863,982 mixed-breed pasture-based New

Zealand dairy cattle managed within seasonal calving systems. Three strategies were assessed for

defining the non-pregnant cows when partitioning the records according to pregnancy status in

the training population. Two of these used records for cows with a subsequent calving only, whilst

the third also included records for cows without a subsequent calving. For each partitioning

strategy, partial least squares discriminant analysis (PLS-DA) models were developed, whereby

spectra from all the cows in 80% of herds were used to train the models, and predictions on

cows in the remaining herds were used for validation. A separate dataset was also used as a

secondary validation, whereby pregnancy diagnosis had been assigned according to the presence

of pregnancy-associated glycoproteins (PAG) in the milk samples. We examined different ways

of accounting for stage of lactation in the prediction models, either by including it as an effect

in the prediction model, or by pre-adjusting spectra prior to fitting the model. For a subset of

strategies, we also assessed prediction accuracies from deep learning approaches, utilising either

the raw spectra or images of spectra. Across all strategies, prediction accuracies were highest for

models using the unadjusted spectra as model predictors. Strategies for cows with a subsequent

calving performed well in herd-independent validation with sensitivities above 0.79, specificities

above 0.91 and area under the receiver operating characteristic curve (AUC) values over 0.91.
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However, for these strategies, the specificity to predict non-pregnant cows in the external PAG

dataset was poor (0.002 to 0.04). The best performing models were those that included records

for cows without a subsequent calving, and used unadjusted spectra and DIM as predictors, with

consistent results observed across the training, herd-independent validation and PAG datasets.

For the PLS-DA model, sensitivity was 0.71, specificity was 0.54 and AUC values were 0.68 in the

PAG dataset; and for an image-based deep learning model, the sensitivity was 0.74, specificity

was 0.52 and the AUC value was 0.69. Our results demonstrate that in pasture-based seasonal

calving herds, confounding between pregnancy status and spectral changes associated with stage

of lactation can inflate prediction accuracies. When the effect of this confounding was reduced,

prediction accuracies were not sufficiently high enough to use as a sole indicator of pregnancy

status.

Key words: Fourier-transform mid-infrared spectra, pregnancy prediction, milk composition,

dairy cattle, machine learning

4.3 Introduction

Knowledge of pregnancy status for dairy cattle is an important component of an efficient and

productive herd management system. In an ideal seasonal calving system, oestrus is reliably

detected during the mating period, so that animals are inseminated and conceive in a timely

manner, resulting in a herd average 365-day calving interval. Knowing a cow is pregnant during

the mating period avoids wasted re-inseminations, and early identification of non-pregnant cows

could provide an opportunity to shorten interbreeding intervals and result in an increase in

herd profitability (Ferguson and Galligan, 2011; Giordano et al., 2013). Moreover, knowledge

of non-pregnant status beyond the mating period plays a role in herd management and culling

decisions. Pregnancy status during the mating period is crudely determined by non-return to

oestrus, and later in lactation is ascertained by indirect methods such as those measuring milk

progesterone levels, or pregnancy-associated glycoproteins (PAG) in blood or milk, or direct

methods such as transrectal palpation and ultrasonography. Direct pregnancy testing is costly

and may also require additional animal-handling, and detection of pregnancy status based only

on non-return to oestrus is unreliable unless oestrus detection monitoring and recording is of

a high standard. Further, in instances of embryonic loss after initial pregnancy establishment,

non-pregnant cows may not all return to oestrus due to the extended presence of a corpus luteum

(Ricci et al., 2017). For these reasons, a methodology for determining pregnancy status using

Fourier-transform mid-infrared (FT-MIR) spectroscopy is of interest, because the data is often

already available from routine milk testing at 30- or 60-day intervals.
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Pregnancy results in changes to metabolism and energy requirements and leads to a reparti-

tioning of resources to different physiological functions, compared to a non-pregnant lactating

animal, and has a consequent influence on milk composition in dairy cattle, particularly in mid

to late lactation (Loker et al., 2009; Olori et al., 1997; Penasa et al., 2016). Previous studies

have examined the impact of pregnancy stage on detailed milk composition as determined by

FT-MIR spectra (Lainé et al., 2017), and have reported the ability to predict conception outcomes

(Hempstalk et al., 2015) or pregnancy (Brand et al., 2021; Delhez et al., 2020; Toledo-Alvarado

et al., 2018a) from FT-MIR spectra. Improvements in accuracy from incorporating FT-MIR

data into pregnancy prediction models vary between studies. Toledo-Alvarado et al. (2018a)

assessed and compared the ability to predict pregnancy from milk components (fat, protein,

lactose and casein) or from a single wavenumber or a full FT-MIR spectra, using a Bayesian

variable selection model. The best predictions of pregnancy in that study were obtained when full

FT-MIR spectra were incorporated into prediction models, with area under the receiver operating

characteristic curve (AUC) values of around 0.6. Delhez et al. (2020) investigated the potential of

FT-MIR to predict pregnancy status of dairy cows with partial least squares discriminant analysis

(PLS-DA) using residual FT-MIR spectra, evaluated from the difference between the spectra

before and after insemination at a specific stage of lactation; and predicted pregnancy status

within lactation stage classes, to account for the effect of lactation stage on milk composition.

They found that prediction accuracies for models developed using FT-MIR spectra across different

stages of lactation were limited, with AUC values of around 0.6, but that models using data

after 150 days of pregnancy had promising prediction accuracies with AUC values of around 0.78.

The use of deep learning models to establish pregnancy status were examined by Brand et al.

(2021). They compared prediction accuracies between models developed using genetic algorithms

for feature selection and network design, and transfer learning models that used a pre-trained

Dense Convolutional Network (DenseNet) model. The former of these approaches resulted in

high validation accuracies of 0.89, but loss values of 0.18, which were considered too high for

useful application in the industry. However, models using transfer learning whereby FT-MIR

spectra was converted to grey-scaled images, resulted in accuracy and loss values of 0.97 and 0.08,

respectively, indicating that transfer learning can provide pregnancy prediction models with high

enough accuracies for industry application.

In previous studies where FT-MIR spectra had been used to predict pregnancy, there were

key differences in the manner in which records were selected for inclusion in the analysis, and how

records were classified as pregnant or non-pregnant. The purpose of this study is to investigate



60 4. PREGNANCY STATUS PREDICTED USING FT-MIR MILK SPECTRA

pregnancy prediction accuracy from FT-MIR spectra in a dataset of NZ seasonal calving herds,

when differing strategies for classifying pregnant or non-pregnant records, broadly similar to

those from previous studies, are used across the same dataset. We assess three strategies for

partitioning records, two of which use records for cows with a subsequent calving only, whilst the

third includes records for cows without a subsequent calving. We examine the impact of different

ways of accounting for the effect of stage of lactation in these models, either by including days

in milk as a model predictor, or by pre-adjusting the spectra for days in milk; and for a subset

of models, we compare prediction accuracies from PLS-DA models to those from alternative

models developed using deep learning approaches. Finally, we investigate the relationship between

FT-MIR spectra and lactation stage by assessing how well days in milk can be predicted from

spectral data.

4.4 Materials and methods

4.4.1 Ethics statement

All data were collected as part of routine on-farm activities and thus did not require formal ethics

approval.

4.4.2 Data

Fourier-transform mid-infrared spectra

Fourier-transform mid-infrared spectra were from a wider set of 2,044,094 routine milk test

samples for 1,877,456 animals, collected from Bentley FTS (Chaska, MN, USA) instruments

by Livestock Improvement Corporation (LIC), as previously described in Tiplady et al. (2019).

Briefly, FT-MIR spectra from milk samples analysed between September 2017 and May 2018 were

pre-processed to remove outliers and standardized to account for differences between instruments.

Outliers were removed according to the squared Mahalanobis distance between each spectrum and

the average within-instrument spectrum from each analyser, and standardization was performed

using piecewise direct standardization (Grelet et al., 2015). Spectral data consisted of light

absorbance values for 899 spectral wavenumbers across the range from 649.03 to 3,998.59 cm−1.

These were restricted to exclude wavenumbers within noise regions as defined by Tiplady et

al. (2019) (649 to 970 cm−1, 1,608 to 1,682 cm−1 and ≥ 3,021 cm−1). This resulted in 528

wavenumbers for use in the development of prediction equations. Exclusions were applied to
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remove records with high SCC (≥ 400,000 cells/ml) or records where there had been less than

30 samples processed for the herd on a day. Additionally, records were restricted to those for

spring-calving animals that calved between June and November, and where the sample took place

between 5 and 300 days in milk (DIM). This resulted in a dataset of 1,853,771 spectral records

for 1,375,227 cows, across 5,529 herds.

Glycoproteins-based pregnancy diagnosis

Pregnancy-associated glycoproteins (PAG) are macromolecules produced by placental tissue and

can provide a good indication of pregnancy (Commun et al., 2016; Green et al., 2005; Sousa

et al., 2006), with accurate indication of pregnancy status achievable from PAG in milk samples

as early as 25 days after successful AI (Commun et al., 2016; Ricci et al., 2015). Assessment of

PAG in milk samples was undertaken at LIC’s Animal Health laboratory, with cows assigned

as pregnant, not pregnant or unconfirmed. In total, there were 25,493 records among available

spectral records for which there was a PAG result, of which 22,235 were assigned as pregnant and

2,032 were assigned as not pregnant. The remaining 1,226 records had an unconfirmed result.

Records were restricted to those that were definitively assigned as pregnant or not pregnant, and

where the test date of the PAG result was ≥ 28 days after the last AI for the cow. This resulted

in a dataset of 24,063 records, representing 24,004 cows in 202 herds. At the time of the PAG

assessment, the average DIM was 186, ranging from 42 to 299 days; and the average number of

days since the last mating was 103 days, ranging from 28 to 222 days.

Consolidation of spectral records with AI and calving data

Records of AI events and those of subsequent calvings were obtained for all cows with spectral

records. Validated AI events were assigned where calving took place between 271 and 293 days

after an AI event. To reduce the risk of assigning a record incorrectly as pregnant, if there

was more than one potential AI date within a 271 and 293 window prior to successful calving,

all records for that animal were excluded. Similarly, if there was a subsequent calving but no

validated AI event within the 271 and 293 calving window, all records for the animal were removed.

The resulting dataset was filtered to exclude all herds with animals that had a pregnancy diagnosis

based on PAG, to enable the latter dataset to be used as an external herd-independent validation

dataset. This resulted in a final dataset of 1,161,436 records for 863,982 animals, across 5,170

herds for generating and evaluating pregnancy prediction models. The median calving date across

these records was 11th August 2017, and the median parity of cows was 3 with a range of 1 to 9.
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The breed composition comprised 277,658 cows with ≥ 14/16 Holstein or Friesian composition;

87,111 cows with ≥ 14/16 Jersey composition, 446,136 cows with ≥ 3/16 Holstein-Friesian and ≥

3/16 Jersey composition; and 53,077 cows from other breeds or crosses.

4.4.3 Strategies for classifying pregnancy status

Three different strategies that broadly reflected those from previous studies were used to select

and classify records into pregnant and non-pregnant groups. For all of these strategies, records

were only defined as pregnant if there was a validated AI event and a subsequent calving

(n=700,332 records). The strategies varied in the manner in which non-pregnant records were

assigned. Specifically, the strategies were defined as follows: (i) Records prior to the first mating

were assigned as non-pregnant (n=164,537); (ii) records after the first mating but prior to the

validated AI event were assigned as non-pregnant (n=14,778); and (iii) in addition to non-pregnant

records used in (ii), records for cows without a subsequent calving were assigned as non-pregnant

(n=197,624). Strategy (i) was similar to that defined in the study by Brand et al. (2021), whereas

Strategy (ii) was similar to that defined by Toledo-Alvarado et al. (2018a), except that in their

study they only retained records within 90 days after each insemination, and classified records

without a subsequent insemination within 90 days as pregnant, and records with a subsequent

insemination within 90 days as non-pregnant. Strategy (iii) was similar to that defined in the study

by Delhez et al. (2020) in that records were not restricted to those for cows with a subsequent

calving, but differed in that our dataset was not restricted to using only a single-spectral record

after each insemination.

4.4.4 PLS-DA model development and validation

Animals with confirmed pregnant or non-pregnant status based on PAG formed the basis of

an external validation dataset (VAL-PAG). For each pregnancy classification strategy, spectra

from the remaining records were partitioned into training and validation datasets. Each training

dataset consisted of records for cows from a random sample of 80% of herds, with the remaining

spectra assigned to validation (VAL-Test). Random sampling with replacement was conducted to

augment the minority class (non-pregnant) to be the same size as the majority class (pregnant) in

the training dataset. Partial least squares discriminant analysis (PLS-DA) models were developed

from training data with 10 repeats of 10-fold cross-validation using the caret package in R

(Kuhn, 2008). For each pregnancy classification strategy, three types of models were evaluated:

(a) models using unadjusted spectral wavenumbers as predictors; (b) models using unadjusted

spectral wavenumbers but including DIM as a predictor, where DIM was fitted as a class variable
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representing 30-day windows from the start of lactation; and (c) models using adjusted spectral

wavenumbers as predictors, where the spectra had been pre-adjusted for DIM (30-day window

classes) using repeated measures models in ASReml-R (Butler et al., 2009).

To assess the impact of augmenting the data using upsampling of the minority non-pregnant

class, a secondary set of models were developed using a downsampled training dataset whereby

random sampling was conducted to reduce the majority class (pregnant) to be the same size as the

minority class (non-pregnant). Additionally, for models using unadjusted spectral wavenumbers as

predictors, we assessed the impact of excluding records classified as pregnant where the test date

was within a short time period after a validated successful AI event. Specifically, we evaluated

alternative models whereby spectral records classified as pregnant were removed if the test date

associated with the record was within 7, 14 or 21 days of a cow’s successful AI.

Model performance for each pregnancy classification strategy and model type was assessed

according to the sensitivity and specificity of pregnancy prediction, and from the AUC values when

the trained model was applied to each of the two validation datasets (VAL-Test and VAL-PAG).

Sensitivity was defined as the proportion of pregnant records that were correctly assigned as

pregnant by the model; and specificity was defined as the proportion of non-pregnant records

that were correctly assigned as non-pregnant by the model. Receiver operating characteristic

(ROC) curves represent the relationship between a model’s true positive rate (records correctly

assigned as pregnant) and the false positive rate (records incorrectly assigned as pregnant), for

different classification thresholds. The AUC measures the area under the ROC curve when values

of the true positive rate are plotted against values of the false positive rate on a continuous

scale, providing a consolidated measure of model performance across all possible classification

thresholds. Values of AUC range from 0 to 1, with an AUC value of 0.5 indicating that the model

is only able to classify records as well as random allocation of pregnant and non-pregnant status.

4.4.5 Deep learning models

Two different deep learning approaches were developed for a subset of models using training and

test datasets as defined by Strategy (iii). The first approach used a multilayer perceptron (MLP)

feed-forward artificial neural network to classify pregnancy status based on raw spectra, while

the second used a convolutional neural network (CNN). A diagram showing the pipeline for the

two approaches is in Fig. 4.1. Both deep learning approaches were implemented with PyTorch

(v1.7.1; Paszke et al., 2019), and one-hot encoding was used to transform the categorical predictor

DIM, which was classified by 30-day windows from the start of lactation. For the MLP network,

we used two fully connected layers with leaky rectified linear unit (LeakyReLU) activation and
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batch normalization (BatchNorm) to accelerate convergence speed. When trained with DIM, the

obtained one-hot encoded tensor was concatenated with the spectral wavenumbers tensor prior to

input to the fully connected layers. The CNN network shared the same fully connected layers

design as MLP, but the spectral wavenumbers tensor went through a dense convolutional network

architecture, extracting 1,024 features that were then concatenated with one-hot encoded DIM.

PyTorch Image Models (Wightman, 2019) were used to generate the original DenseNet121 (Huang

et al., 2017) feature extractor layers. The original DenseNet121 architecture was designed for

images with 3 channels, 224 rows and 224 columns as input, while the input of our 528 spectral

wavenumbers were an image with one channel, one row and 528 columns. To accommodate the

difference in the image size of the spectral data, the number of input channels was changed from

3 to 1 in the first convolution layer; and the kernel size and stride of all average pooling layers

was changed from (2,2) to (2,1). We applied adaptive average pooling (AdaptiveAvgPool) to the

output of our 1D DenseNet121 network to reduce the overall number of parameters, and applied

LeakyReLU activation and batch normalization to accelerate the convergence of the stochastic

gradient descent. Across both deep learning approaches, networks were trained for 50 epochs

on computers equipped with NVIDIA Titan XP or RTX 5000 graphics cards, using a batch

size of 1,024 and randomized initial weights. Stochastic gradient descent was used to minimise

binary cross entropy loss, with the learning rate starting at 1e-03 and reduced by a factor of 10

at epoch 15, 25 and 35. Validation of each deep learning approach was conducted in the same

way as for the PLS-DA models, using test data (VAL-Test) and the separate cow independent

dataset whereby pregnancy diagnosis had been assigned according to PAG in the milk sample

(VAL-PAG).

4.4.6 Prediction models for stage of lactation

To investigate the relationship between FT-MIR spectra and lactation stage, a partial least squares

(PLS) model was developed to predict actual DIM (in days), using the Strategy (iii) dataset.

Spectra from a random sample of 80% of herds were assigned as a training dataset (n=724,864)

to develop the model with 10 repeats of 10-fold cross-validation, using the caret package in R

(Kuhn, 2008). The remaining spectra (n=187,870) were used for validation, comprising 145,014

pregnant and 42,856 non-pregnant records. A secondary set of models were also developed and

validated, whereby the model was trained on only records classified as pregnant (n=555,318). For

each model, performance was assessed according to the relative root mean square error (RMSE)

between actual and predicted DIM, and according to the correlation between actual and predicted

DIM in the validation datasets.
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Figure 4.1: Architecture of the Multilayer Perceptron (MLP) feed-forward artificial neural network
and the Convolutional Neural Network (CNN) used to classify pregnancy status. DIM: days in milk;
N: batch size, representing the number of samples processed before the model is updated. One-hot
encoding used to transform the categorical predictor DIM; for the CNN, spectral wavenumbers tensor
passed through a dense convolutional network architecture (1D DenseNet121) and adaptive average
pooling (AdaptiveAvgPool) applied, followed by Leaky Rectified Linear Unit (LeakyReLU) activation
and batch normalization (BatchNorm); for both networks, one-hot encoded DIM tensor concatenated
with spectral wavenumbers tensor to form fully connected layers which were passed through a further
round of LeakyReLU activation and BatchNorm.
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4.5 Results and discussion

4.5.1 Data description

Table 4.1 shows the number of records and cows by pregnancy status for each classification

strategy, and the mean DIM values for records in each class. A large difference was observed

between the average DIM of non-pregnant and pregnant records for Strategy (i) and Strategy (ii),

with values of 55 to 89 for non-pregnant records, compared to 170 to 171 for pregnant records.

This difference was smaller for Strategy (iii), where the average DIM for non-pregnant records

was 150, compared to 170 to 171 for pregnant records; and in the external PAG validation dataset

the average DIM for non-pregnant and pregnant records were 176 and 187, respectively. These

differences in the distribution of DIM for records in each pregnancy status group are further

demonstrated in Fig. 4.2.

Table 4.1: Total number of records and cows, and descriptive statistics (mean +/- SD) for days
in milk (DIM) across pregnancy classification strategies for training and validation datasets

Pregnant Non-pregnant

Dataset1 No. of No. of No. of No. of DIM
records cows

DIM
records cows

Strategy (i)
Training data 552,263 440,083 170 (56.0) 131,056 130,167 55 (20.8)
Test validation 148,069 116,048 171 (56.1) 33,481 33,170 55 (20.5)

Strategy (ii)
Training data 560,215 444,687 170 (56.0) 11,781 11,746 89 (22.0)
Test validation 140,117 111,407 170 (56.0) 2,997 2,987 89 (22.1)

Strategy (iii)
Training data 557,440 443,574 170 (55.9) 167,945 141,407 150 (56.5)
Test validation 142,892 112,552 171 (56.6) 44,457 36,912 150 (57.6)

PAG validation 1,946 1,936 176 (39.3)
(VAL-PAG)

22,117 22,068 187 (36.7)

1 For all strategies, records defined as pregnant if there was a validated AI event and a subsequent calving
(n=700,332 records). Non-pregnant records defined for each strategy as follows: (i) Records prior to the
first mating assigned as non-pregnant (n=164,537); (ii) records after the first mating but prior to the
validated AI event assigned as non-pregnant (n=14,778); and (iii) in addition to non-pregnant records
used in (ii), records for cows without a subsequent calving assigned as non-pregnant (n=197,624). PAG
validation (VAL-PAG): Pregnancy-associated glycoproteins validation dataset.
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Figures 4.2(a)-4.2(c) show the DIM distribution of records for the training dataset of each

strategy. The distribution of DIM for the VAL-PAG dataset are shown in Fig. 4.2(d). The

distributions for Strategy (i) and Strategy (ii) were similar in the early stages of lactation, in that

there was a good representation of non-pregnant records, but beyond ~120 days there were few

non-pregnant records (Figs. 4.2(a); 4.2(b)). Strategy (iii) differed in that there was representation

of both pregnancy classifications across lactation (Fig. 4.2(c)). Similarly, in the VAL-PAG dataset,

both pregnancy classifications were well represented across lactation (Fig. 4.2(d)).

Figure 4.2: Frequency of pregnant (P) and non-pregnant (NP) records across days in milk for training
and validation records for (a) Strategy (i); (b) Strategy (ii); (c) Strategy (iii); and (d) Pregnancy-associated
glycoproteins (PAG) records. For all strategies, records defined as P if there was a validated AI event and
a subsequent calving (n=700,332 records). Records were defined as NP for each strategy as follows: (i)
Records prior to the first mating (n=164,537); (ii) records after the first mating but prior to the validated
AI event (n=14,778); and (iii) in addition to non-pregnant records used in (ii), records for cows without a
subsequent calving were assigned as non-pregnant (n=197,624).
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4.5.2 Diagnosis of pregnancy status using PLS-DA models

In this study, we compared three strategies for selecting FT-MIR spectral records for analysis and

partitioning records into non-pregnant and pregnant groups. Table 4.2 shows prediction accuracies

for PLS-DA models within the training, VAL-Test and VAL-PAG datasets for each strategy

and model type. For each strategy, models that used unadjusted FT-MIR spectra as predictors

outperformed the prediction accuracy of models that used spectra that had been pre-adjusted for

DIM. Boxplots representing prediction probabilities for non-pregnant and pregnant records using

unadjusted FT-MIR spectra for each strategy are provided in Fig. 4.3.

Strategy (i) was comparable to the approach used by Brand et al. (2021), where only cows

with a subsequent calving were included, with records prior to the first mating assigned as

non-pregnant, and records after a validated AI event assigned as pregnant. Brand et al. (2021)

reported promising predictive ability to classify pregnancy status in a large dataset of FT-MIR

spectra from UK herds using PLS-DA models, with accuracy, sensitivity and specificity values

of 0.77, 0.73 and 0.82, respectively. In our study, the model using unadjusted FT-MIR spectra

with Strategy (i) data had sensitivity of 0.94, specificity of 0.96, and AUC values of 0.99 for the

VAL-Test dataset (Table 4.2), higher than those reported by Brand et al. (2021). However, for this

model, the specificity to correctly classify non-pregnant cows in the VAL-PAG dataset was poor

(0.002). This lack of consistency in prediction accuracy across the training and validation datasets

for the Strategy (i) dataset is clearly demonstrated in Figs. 4.3(a)-4.3(c), where we observed good

partitioning between the distribution of prediction probabilities in the training and VAL-Test

datasets (Fig. 4.3(a), 4.3(b)), but a tendency to predict non-pregnant records as pregnant in the

VAL-PAG dataset (Fig. 4.3(c)). When DIM was included as a predictor for Strategy (i) models,

accuracies in the VAL-Test and VAL-PAG datasets were relatively unchanged, compared to fitting

FT-MIR spectra alone (Table 4.2). However, pre-adjusting spectra for DIM resulted in prediction

accuracies that were more consistent across training and validation datasets, with sensitivity of

0.66, specificity of 0.61 and AUC values of 0.68 in the VAL-Test dataset; and 0.63, 0.42 and

0.53 in the VAL-PAG dataset, respectively. Although the training and VAL-Test accuracies were

lower in the model that used spectra pre-adjusted for DIM, the improved consistency in results

across training and both validation datasets indicated that using pre-adjusted spectra was at

least partially effective at removing some of the confounding effect between stage of lactation and

pregnancy status.
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Figure 4.3: Summary of prediction probabilities for non-pregnant and pregnant records for training and
validation datasets based on differing strategies for record selection and pregnancy status classification.
VAL-Test: herd-independent validation; VAL-PAG: external validation dataset based on pregnancy-
associated glycoproteins.
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Strategy (ii) for classifying pregnancy status was comparable to the approach used by Toledo-

Alvarado et al. (2018a), whereby only cows with a subsequent calving were included, and records

between the first mating and a validated AI event were assigned as non-pregnant, and records

after a validated AI event were assigned as pregnant. Toledo-Alvarado et al. (2018a) classified

pregnancy status using FT-MIR spectra from cattle raised in heterogeneous farming systems in

north-eastern Italy using a Bayesian model, and reported cross-validation AUC values of ~0.6

to 0.66. In our study, Strategy (ii) models using unadjusted spectra had comparatively higher

AUC values for the VAL-Test dataset (0.91 to 0.93). However, in the VAL-PAG dataset these

dropped to between 0.57 and 0.59, and the specificity to correctly classify non-pregnant cows in

the VAL-PAG dataset was poor (0.02 to 0.04). Similar to the observations for Strategy (i), we

observed good partitioning between the distribution of prediction probabilities in the training

and VAL-Test datasets (Fig. 4.3(d), 4.3(e)), but a tendency to predict non-pregnant records

as pregnant in the VAL-PAG dataset (Fig. 4.3(f)). A small improvement was observed in the

specificity to correctly classify non-pregnant records in the VAL-PAG dataset when spectra were

pre-adjusted for stage of lactation, however the AUC value for this model was still low (0.52). The

lack of consistency in prediction accuracies across training and validation datasets for Strategy

(ii) were similar to those for Strategy (i), indicating a lack of robustness in the models, likely due

to confounding between pregnancy status and stage of lactation in the training dataset, and a

lack of representation of non-pregnant and pregnant records across lactation.

Prediction accuracies for Strategy (iii) models were relatively consistent across the training and

validation datasets for unadjusted and adjusted spectra. For models including unadjusted spectra

only, sensitivity was 0.67, specificity was 0.57 and AUC values were 0.67 for the VAL-PAG dataset.

Unlike the other two strategies, we did not observe clear partitioning between the distribution

of prediction probabilities in the training and VAL-Test datasets (Fig. 4.3(g), 4.3(h)), however,

the observed trend was consistent in the VAL-PAG dataset (Fig. 4.3(i)). For models using

unadjusted spectra that also included DIM as a predictor, AUC values in the VAL-PAG dataset

increased from 0.67 to 0.68. Notably, a decline in prediction accuracy was observed for models

that used spectra pre-adjusted for DIM, with overall accuracy and sensitivity dropping to 0.57,

and AUC values dropping to 0.64. Strategy (iii) models were comparable to the approach used

by Delhez et al. (2020), whereby records for cows were included (and assigned as non-pregnant)

if they did not have a subsequent calving. Delhez et al. (2020) classified pregnancy status in a

dataset of Australian Holstein cattle using PLS-DA models with FT-MIR spectra as independent

predictors, and observed validation AUC values of 0.63 to 0.65. They also examined the effect of
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using residual spectra, evaluated as the difference between a non-pregnant record and pregnant

record for the same animal, but did not see an improvement in results. However, they did observe

an improvement in prediction accuracy for models developed from spectra in different stages of

lactation, particularly for spectra recorded after 150 days of lactation, with validation AUC values

of 0.76 to 0.78. We also undertook a similar approach for the Strategy (iii) dataset whereby we

fitted separate models for different stages of lactation (Appendix Table 4.A.1) and observed a

consistent increase in AUC values after 210 days of lactation in the VAL-PAG dataset (0.68 to

0.76), but the overall prediction accuracy after 210 days of lactation remained low (0.55 to 0.64).

Prediction accuracies for PLS-DA models where the majority class (pregnant) was reduced

to be the same size as the minority class (non-pregnant) are shown in Appendix Table 4.A.2.

Prediction accuracy metrics across all strategies and model types were only marginally different

to those presented in Table 4.1. This indicated that augmenting the minority class to be the same

size as the majority class did not introduce bias to the results. Moreover, it indicated that the

reduced dataset where the majority class was downsampled to be the same size as the minority

class, sufficiently captured the extent of the relationships between spectral wavenumbers and

pregnancy classification.

Prediction accuracies for PLS-DA models based on unadjusted spectral wavenumbers as

predictors are shown in Appendix Table 4.A.3, whereby records classified as pregnant were

removed if the test date was within 7, 14 or 21 days of successful AI. The premise for this

analysis was that changes in an animal’s physiological status might not be detectable in milk

composition for some time after pregnancy is established, and that including those records could

lower prediction accuracy. Of the total 700,332 pregnant records, 22,338 had a test date within 7

days after a validated AI event; 48,573 had a test date within 14 days after a validated AI event;

and 81,581 head a test date within 21 days after a validated AI event. For all strategies, prediction

accuracy metrics were relatively unchanged by removing these records (Appendix Table 4.A.3).

This indicated that although there may be changes in the physiological status of an animal that

are not detectable in milk composition shortly after successful AI, including and classifying those

records as pregnant did not impact on pregnancy prediction accuracies, compared to completely

ignoring them.
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4.5.3 Diagnosis of pregnancy status using deep learning models

Deep learning is a subclass of machine learning that uses neural networks with multiple layers to

extract features from data. These neural networks consist of densely interconnected processing

nodes arranged into layers, with each node receiving information from nodes in the layer beneath

it and sending data to the nodes in the layer above it. The complexity of these networks enable

training models to be developed on datasets with multiple connections, making them a good

choice for managing high-dimensional datasets such as those presented from FT-MIR spectra.

Previous studies have established that it is possible to use artificial neural networks to identify

features in spectra relating to pregnancy status (2018), and that this could be extended to predict

bovine tuberculosis status of individual cows (Denholm et al., 2020). More recently, Brand et al.

(2021) assessed the accuracy of predicting pregnancy status using a deep learning image-based

approach with a pre-trained Dense Convolutional Network (DenseNet), compared to a PLS-DA

approach. In that study, when a deep learning image-based approach was employed, they observed

an increase in sensitivity from 0.77 to 0.88, an increase in specificity from 0.73 to 0.89, and an

increase in the AUC value from 0.82 to 0.89.

In this study, we assessed pregnancy status prediction accuracies for two deep learning

approaches, and compared these to the accuracies achieved from PLS-DA models. The first

approach utilised a simple MLP with one hidden layer, using 4,600 parameters, whilst the second

imaged-based CNN approach was significantly more complex with up to 7.4 million parameters.

Convolutional neural networks are widely used in the computer vision domain and achieve the

best performance when applied on image inputs. This type of architecture can efficiently extract

local features, patterns and textures which are very common in natural images generated from

optical cameras. In this study, adjacent spectral wavenumbers also present high correlations and

thus may contain local patterns that a CNN model can learn and extract. In contrast to the

Brand et al. (2021) study, we did not apply transfer learning as we deemed this unnecessary

because: a) most pre-trained DenseNet networks are trained on images generated from optical

cameras, (e.g: ImageNet), while our spectral data were acquired from a different physical process,

namely FT-MIR spectroscopy; and b) we use a large training dataset with more than 1 million

samples.

Training and validation accuracy and loss values for deep learning approaches are shown in

Fig. 4.4. Accuracies for the VAL-Test dataset stabilized gradually after epochs 15, 25 and 35,

corresponding to the reduction of the learning rate. In the case of our CNN trained on adjusted

spectra, the model started overfitting from around epoch 10, with an increasing accuracy of the
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training dataset while accuracy for the VAL-Test dataset stayed the same. This was despite the

usage of batch normalization for regularization. Prediction accuracies for the MLP and CNN

approaches within the training, VAL-Test and VAL-PAG datasets are shown in Table 4.3. For

each approach, the best performing models used unadjusted spectra and DIM as predictors.

Figure 4.4: Accuracy (a) and loss (b) values for deep learning approaches, assessed using training and
herd-independent validation (VAL-Test) datasets.
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Across all models, prediction accuracies for the MLP approach were similar to those from

PLS-DA models, however we observed a marginal increase in prediction accuracy for the models

using an image-based CNN approach. For the image-based model that used unadjusted spectra

and DIM as predictors, the overall prediction accuracy for the external PAG validation dataset

increased from 0.70 to 0.72, sensitivity increased from 0.71 to 0.74, and the AUC value increased

from 0.68 to 0.69, but the specificity decreased from 0.54 to 0.52. Notably, gains in prediction

accuracy from adopting a deep learning approach were lower than those previously reported by

Brand et al. (2021).

4.5.4 Prediction models for stage of lactation

To understand the magnitude of the effect that stage of lactation may be having on pregnancy

prediction, we used the Strategy (iii) dataset to develop and validate a PLS model for predicting

DIM from FT-MIR spectra. Records from a random sample of 80% of herds were used as a

training dataset to develop the prediction model, with the remaining Strategy (iii) records used

as herd-independent validation datasets for pregnant and non-pregnant records, respectively. The

relationships between predicted and actual DIM values for the training dataset and two validation

datasets are shown in Fig. 4.5. Consistently high correlations between actual and predicted DIM

were observed across the training and validation datasets when the DIM prediction model was

developed across all (pregnant and non-pregnant) records (0.89 to 0.90; Figs. 4.5(a)-4.5(c)). When

only records assigned as pregnant were used to develop the DIM prediction model, correlations

between actual and predicted DIM remained high (0.89 to 0.90; Figs. 4.5(d)-4.5(f)). Relative

RMSE values for the validation dataset of pregnant records dropped marginally from 14.5% to

14.4% when only records assigned as pregnant were used to develop the model (Fig. 4.5(b);

4.5(e)), whereas relative RMSE values for the validation dataset of non-pregnant records increased

marginally from 17.3% to 17.6% when only records assigned as pregnant were used to develop

the model (Fig. 4.5(c); 4.5(f)). These marginal shifts in validation prediction accuracy when

models were developed on all records versus only records assigned as pregnant, highlighted that

in pasture-based seasonal calving systems the underlying relationship between FT-MIR spectra

and DIM was upheld regardless of pregnancy status.
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Figure 4.5: Summary of predicted vs actual days in milk (DIM) for training and validation datasets
from partial least squares (PLS) prediction models based on pregnant and non-pregnant records (a-c);
and prediction models based on pregnant records only (d-f). Continuous red line represents y=x. Corr.
is the correlation between actual and predicted DIM; and relRMSE is the relative root mean-square error
between actual and predicted DIM.

4.5.5 Confounding between pregnancy status and stage of lactation

Changes in dairy cattle milk composition across lactation are more noticeable in seasonal pasture-

based farming systems (compared to non-seasonal systems), where compact calving periods are

used so that peak lactation volumes are matched with peak grass growth (Timlin et al., 2021).

Although NZ dairy systems are mainly pasture-based, intensification has resulted in widespread

use of supplement feed to offset the effect of high-stocking rates and ensure that the nutritional

requirements of cows are met. In particular, there has been an increased use of Palm Kernel

Extract (PKE) and maize silage as supplements in NZ dairy systems over the last two decades

(Ministry for Primary Industries, NZ, 2017). Palm Kernel Extract is associated with an increase

in milk fat content (DairyNZ, 2017; van Wyngaard and Meeske, 2017) and changes to milk fatty

acid composition (Dias, 2010; Oliveira et al., 2015), and has resulted in the introduction of a

Fat Evaluation Index (FEI) by Fonterra in 2018 to assess the suitability of milk for processing
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(DairyNZ, 2017). More generally, fatty acids have been shown to change with different dietary

systems (Elgersma, 2015) and levels of pasture in the diet (Butler et al., 2011; Couvreur et al.,

2006; O’Callaghan et al., 2016; White et al., 2001). Nevertheless, across different diets, as lactation

progresses, consistently lower milk volumes (McAuliffe et al., 2016) and higher concentrations of

fat and crude protein have been reported (O’Callaghan et al., 2016). This can be problematic

for the prediction of indirect traits such as pregnancy status from FT-MIR spectra, particularly

when the spectra are from seasonal calving herds, because as lactation progresses, changes in

milk composition coincide with the advent of a cow becoming pregnant, and most cows do

become pregnant. In seasonal calving pasture-based systems, there are also other changes that

are confounded with lactation stage such as climatic changes and the use of dietary supplements

to ensure that the energy requirements of cows are met at times when pasture growth is low. It

is thus important to ensure that pregnancy prediction models based on FT-MIR spectra include

a consistent representation of pregnant and non-pregnant records across all stages of lactation.

In this study, the most robust prediction accuracies were achieved when the prediction model

was developed on a dataset with a good representation of pregnant and non-pregnant records

across lactation. Contrary to this, when we developed prediction models on datasets that did not

have a good representation of pregnant and non-pregnant records across lactation, prediction

accuracies appeared promising in initial validation, but did not perform well in the external PAG

validation dataset. In future research, to improve prediction accuracies for pregnancy status from

FT-MIR spectra within a seasonal calving pasture-based context, it is important that careful

consideration is given to how models can account for the confounding effects of factors such

as lactation stage, feed management and seasonality. Whilst some of this could be addressed

by including multiple seasons of data, including other information such as knowledge of feed

management and supplementation may also play an important role.

4.5.6 Prediction model validation strategies

This is not the first study to highlight differences in prediction accuracy for FT-MIR predicted

traits, depending on the validation dataset/strategy used. Wang and Bovenhuis (2019) observed

that using a random cross-validation approach to predict methane (CH4) emissions from FT-MIR

spectra resulted in overoptimistic results. Other studies show that prediction accuracies can be

inflated by the split-data strategy used for validation, with cow-independent validation having

lower accuracies compared to record-independent cross-validation (Shetty et al., 2017; Smith et al.,

2019), and trial- or herd-independent validation having lower accuracies compared to record- or
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cow-independent validation (Dórea et al., 2018; Lahart et al., 2019; Luke et al., 2019b). Recently,

Bresolin and Dórea (2020) have reviewed the impact of validation strategies on predictive quality

for a range of FT-MIR predicted milk composition and animal health traits, and highlight the

value of an external validation dataset whereby the external validation uses data from a different

herd, trial, or season. In 67 of the 113 studies they reviewed, internal validation (holdout,

leave-one-out, k-fold) was performed. Of the 32 papers they reviewed that used an external

validation, only 17 conducted validation using an independent dataset based on herd, trial or

season, whereas the other 15 used cow-independent validation. In our study, we demonstrate

that in some instances, even a herd-independent validation approach can overestimate prediction

accuracies, if there is systemic confounding between the trait of interest and other underlying

factors in the FT-MIR spectra. Specifically, where there were divergent DIM characteristics

between pregnancy status groups, we were not only predicting changes in milk composition due

to pregnancy, but also changes due to other factors.

4.6 Conclusions

We have assessed and compared pregnancy prediction accuracy from FT-MIR spectra using

different strategies for classifying pregnancy status and accounting for the effect of stage of

lactation. We have also compared prediction accuracies from PLS-DA models to alternative

models developed using deep learning approaches. We have shown that the ability to predict

pregnancy status from FT-MIR spectra is influenced by which records are used, and how these

records are partitioned into pregnant and non-pregnant groups. Prediction models developed on

datasets without adequate representation of non-pregnant and pregnant status across lactation,

led to misleading results, whereby prediction accuracies were high in the training and herd-

independent validation dataset, but were not upheld for an external validation dataset where

pregnancy status was assigned according to pregnancy-associated glycoproteins in milk samples.

This demonstrated that even with herd-independent validation, prediction accuracies can be

misleading where there is systematic confounding between pregnancy status and other factors

such as stage of lactation. For models where the effect of this confounding was reduced, prediction

accuracies were not sufficiently high to be used as a sole indicator of pregnancy status within a

seasonal calving herd management context.
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5.1 Abstract

Over the last 100 years, significant advances have been made in the characterisation of milk

composition for dairy cattle improvement programs. Technological progress has enabled a shift

from labour intensive, on-farm collection and processing of samples that assess yield and fat

levels in milk, to large-scale processing of samples through centralised laboratories, with the

scope extended to include quantification of other traits. Fourier-transform mid-infrared (FT-MIR)

spectroscopy has had a significant role in the transformation of milk composition phenotyping,

with spectral-based predictions of major milk components already being widely used in milk

payment and animal evaluation systems globally. Increasingly, there is interest in analysing the

individual FT-MIR wavenumbers, and in utilising the FT-MIR data to predict other novel traits

of importance to breeding programs. This includes traits related to the nutritional value of milk,

the processability of milk into products such as cheese, and traits relevant to animal health and

the environment. The ability to successfully incorporate these traits into breeding programs

is dependent on the heritability of the FT-MIR predicted traits, and the genetic correlations

between the FT-MIR predicted and actual trait values. Linking FT-MIR predicted traits to

the underlying mutations responsible for their variation can be difficult because the phenotypic

expression of these traits are a function of a diverse range of molecular and biological mechanisms

that can obscure their genetic basis. The individual FT-MIR wavenumbers give insights into the

chemical composition of milk and provide an additional layer of granularity that may assist with

establishing causal links between the genome and observed phenotypes. Additionally, there are

other molecular phenotypes such as those related to the metabolome, chromatin accessibility,

and RNA editing that could improve our understanding of the underlying biological systems

controlling traits of interest. Here we review topics of importance to phenotyping and genetic

applications of FT-MIR spectral datasets, and discuss opportunities for consolidating FT-MIR

datasets with other genomic and molecular data sources to improve future dairy cattle breeding

programs.

Key words: Bovine milk, cattle breeding genetics, Fourier-transform mid-infrared spectroscopy,

trait prediction
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5.2 Introduction

Characterisation of milk composition in dairy cattle has a long history of scientific and commercial

interest, with many countries establishing formal milk testing programs by the early 1900’s (Bayly,

2009; Miglior et al., 2017). Initial selection targets in these programs were yields of milk or fat,

which were measured on a small scale from samples taken manually on farm. Over the course of

the 20th century, advances in refrigeration and transportation technologies, and the availability of

automated on-farm milk meters, resulted in a shift to large-scale collection of samples, processed

through centralised laboratories, with the scope extended to include quantification of traits such

as protein yield and somatic cell counts. More recently, advances in analytical techniques have led

to the widespread use of Fourier-transform mid-infrared (FT-MIR) spectroscopy for phenotyping

major milk composition traits for dairy improvement programs.

Fourier-transform mid-infrared spectroscopy uses light from the mid-infrared region to scan

milk samples and determine the presence of specific chemical bonds. Results are presented as an

absorption profile, consisting of the absorbance values for individual infrared light wavenumbers

across the mid-infrared region. Traits are predicted as a function of the individual FT-MIR

wavenumber absorbance values, enabling rapid, high-throughput phenotyping of milk traits such

as fat and protein yields, at a fraction of the cost of estimating the components using other

methods. Increasingly, there is interest in analysing the individual FT-MIR wavenumbers, and

in utilising FT-MIR data to predict other novel traits of interest to the industry, because the

spectra are already available as a by-product of routine milk testing. Many of these traits are

relevant to consumer expectations and concerns about the nutritional quality of milk, and the

impact of dairy production systems on animal health and the environment; and are also relevant

to farmers as they seek to improve farming systems and select cows based on their productivity,

reproductive performance and disease resistance.

Successful phenotyping using FT-MIR data is dependent on the magnitude of the phenotypic

correlation between the predicted trait and the trait as measured by a benchmarked standard

reference method. The successful incorporation of an FT-MIR predicted trait into a breeding

program is further dependent on the heritability of the spectral-based predictions and on the genetic

correlation between the spectral-based predictions and the trait as measured by the benchmarked

standard (De Marchi et al., 2014; Gengler et al., 2016). Improving our understanding of the

genetics underlying the expression of FT-MIR predicted traits of interest is thus highly valuable.

Conducting a genome-wide association study (GWAS) is a widely-used practice for identifying
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genomic regions that are influencing expression of complex traits, such as those predicted from

FT-MIR data. However, linking complex traits, such as those predicted from FT-MIR spectra to

specific genetic mechanisms is complex, as the phenotypic expression of traits are a function of

a diverse range of molecular and biological mechanisms (Te Pas et al., 2017) that can obscure

the underlying causal links between genotypes and phenotypes. These mechanisms may be

characterised as a set of intermediate omics measures, including sugars, lipids and amino acids

in the metabolome, proteins in the proteome, RNA molecules in the transcriptome and DNA

in the genome, all of which interact with environmental factors to ultimately determine what is

observed at the phenotypic level (Fig. 5.1).

Figure 5.1: Characterisation of the relationships between molecular and biological mechanisms
underlying phenotypic trait expression
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Establishing causal links between the genome and observed phenotypes may be assisted by

employing the individual FT-MIR wavenumbers, and other molecular phenotypes such as those

related to the metabolome, chromatin accessibility, transcript levels, and RNA editing. Here we

review the shifting role of FT-MIR datasets in dairy cattle improvement as we seek to predict new

traits of importance to milk payment and animal evaluation systems. We discuss the broader topics

of improving FT-MIR data quality and prediction model accuracy in phenotyping applications;

and review existing studies of the genetics of FT-MIR predicted traits and individual FT-MIR

wavenumbers. We also discuss opportunities for consolidating FT-MIR spectral datasets with

other genomic and molecular data sources, to improve our knowledge of the genetic mechanisms

of milk composition and enhance future dairy improvement programs.

5.3 Phenotyping applications of FT-MIR spectra

Fourier-transform mid-infrared spectroscopy uses infrared light to scan a milk sample and

determine the presence of specific chemical bonds. As the light passes through the sample, it

interacts with the molecules present, causing vibrations and rotational changes in the molecular

bonds, resulting in absorption of some of the light. The light absorption is typically represented

as an absorption spectrum, consisting of the absorbance values for individual infrared light

wavenumbers across the mid-infrared range. Traits of interest are subsequently predicted as a

function of the individual FT-MIR wavenumber absorbance values. Utilising FT-MIR data for the

prediction of milk composition and other novel traits has been widely studied and recently reviewed

(De Marchi et al., 2014, 2018; Egger-Danner et al., 2015; Gengler et al., 2016). Other notable

FT-MIR research includes studies of individual fatty acids and milk proteins (Bonfatti et al.,

2017d; Lopez-Villalobos et al., 2014), and studies of milk properties related to manufacturing,

especially coagulation and other cheese-making properties (Toffanin et al., 2015; Visentin et al.,

2015, 2018). Further studies have focussed on traits not directly measurable in milk, including

those related to pregnancy (Lainé et al., 2017; Toledo-Alvarado et al., 2018a), energy status

(Luke et al., 2019b; McParland et al., 2015), nitrogen outputs (Oliveira et al., 2012) and methane

emissions (Bittante and Cipolat-Gotet, 2018; van Gastelen et al., 2018b; Vanlierde et al., 2018).

Such applications demonstrate that FT-MIR spectra can be used to predict a wide range of traits,

including highly topical traits that are important to animal welfare and the environment. Whilst

prediction accuracy is variable across these applications, a number of key principles and findings

have been reported for improving spectral data quality and model prediction accuracy.
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5.4 FT-MIR data quality and prediction model accuracy

Trait prediction using FT-MIR spectra requires development of a calibration model, typically

using a modest set of samples that have corresponding trait values, measured by a benchmarked

technique. The most widely-used method for developing calibration models from FT-MIR spectra

has been partial least squares (PLS) regression. Fewer studies have employed Bayesian methods

to develop calibration models, but no consensus has been attained as to which methodology is best

at providing prediction accuracy (El Jabri et al., 2019; Ferragina et al., 2015; Toledo-Alvarado

et al., 2018a). This is likely due to the unique set of characteristics of each dataset, and indicates

that it is advisable to assess a number of different modelling approaches for any given study.

Once a calibration model is developed, the trait of interest can be estimated for any existing

spectral absorbance data, or any future milk sample where the FT-MIR spectral data is available.

The performance of an FT-MIR calibration model is assessed by how well the model predicts the

benchmarked trait measurements in an independent dataset, or within the development dataset

using a cross-validation framework. The utility and accuracy of trait predictions from FT-MIR

spectra can often be improved by increasing the number of observations used to develop the

calibration equation, and by ensuring that a similar extent of the variation in the prediction

population is represented in the calibration dataset (McParland et al., 2011, 2012; Rutten et al.,

2009; Soyeurt et al., 2011). Prediction accuracy may also be improved by modifying the scale of

the trait. For example, higher prediction accuracies have been reported when evaluating fatty

acids as a percentage of total milk volume, compared to as a percentage of total fat content

(Bonfatti et al., 2016; Rutten et al., 2009; Soyeurt et al., 2006). Similar considerations are

important for studies of the concentrations of individual casein and whey proteins (Bonfatti et al.,

2011, 2016; De Marchi et al., 2009a; McDermott et al., 2016; Rutten et al., 2011); and in studies

related to cheese-making efficiency (Bonfatti et al., 2016; Dal Zotto et al., 2008; De Marchi et al.,

2009b, 2013). Other considerations that influence prediction accuracy include: pre-processing

treatments to address scaling and baseline effects in spectral data; appropriate management of

outliers; low repeatability of sample measurement for specific regions of the infrared spectrum

affected by the water content in milk; and managing systematic instrument variation due to

factors such as temperature fluctuations and wavelength or detector intensity instability (Wang

et al., 1991).
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5.4.1 Pre-processing

Pre-processing treatments are commonly applied to FT-MIR spectra before generating a calibration

model. The objective of pre-processing is to retain important discriminatory features of the

spectra, but address baseline and scaling effects caused by light scattering, that can erode

prediction accuracy. Baseline effects are additive and represent a baseline offset in the spectral

response, whereas scaling effects are multiplicative and scale the spectral results by a given

factor. One common group of methods for pre-processing are the multiplicative scatter methods

(Geladi et al., 1985; Martens et al., 2003). Multiplicative scatter correction is a normalization

method that corrects spectra for scaling and baseline effects by comparing each spectrum to an

expected spectral profile. Another family of techniques are the derivation methods, such as the

Savitzky-Golay derivative (Savitzky and Golay, 1964). Derivation methods are based on changes

in the spectrum across specified window sizes, and are intended to smooth the spectrum whilst

retaining key features of its shape.

Overall, there is no consensus about the best pre-processing treatment to apply to FT-MIR

spectra. For example, some studies report that pre-processing spectra provides no significant

gains to model prediction accuracy (De Marchi et al., 2009b, 2013), whilst others observe better

predictions after pre-processing (De Marchi et al., 2011; Soyeurt et al., 2011), and several studies

report mixed results (Bonfatti et al., 2011; Rutten et al., 2011). This is likely because of the

unique characteristics of each dataset, indicating that in the development of a new calibration, it

is advisable to compare a number of approaches to determine their effectiveness. Notably, even

when different pre-processing strategies are examined in a study, authors often only report the

best model, making it difficult to compare the effectiveness of other pre-processing strategies

(De Marchi et al., 2014).

5.4.2 Outliers and removal of low signal-to-noise regions of the mid-

infrared spectrum

Outliers in FT-MIR datasets are often identified using a squared Mahalanobis distance (MD)

metric, where the MD is a multivariate indicator of the distance between a spectral record and the

average spectral response. Many studies are based on spectra from a single instrument, and are

therefore not required to account for the different variance-covariance structures of measurements

from different instruments. In a study of spectra from 66 instruments, Grelet et al. (2015) showed

considerable variability in the spectral responses of the instruments, while we have also observed

that the distribution of MD values can be heterogeneous across instruments (Tiplady et al., 2019).
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These results highlight the need to apply MD thresholds within instrument for the purpose of

outlier removal.

Bands of the infrared spectrum with low repeatability of sample measurement due to the

water content in milk are typically reported in the O-H bending (~1,600 to 1,700 cm−1) and O-H

stretching bands (>~3,000 cm−1). These regions have low signal-to-noise ratios, with varying

boundaries reported across publications: 1,600 to 1,700 cm−1 and 3,040 to 3,470 cm−1 (Bonfatti

et al., 2011); 1,586 to 1,698 cm−1 and 3,052 to 3,669 cm−1 (Bittante and Cecchinato, 2013); 1,600

to 1,689 cm−1 and 3,008 to 5,010 cm−1 (Grelet et al., 2015). Although it is common practice

to remove spectra from low signal-to-noise ratio regions, some studies indicate that there may

be wavenumbers within these regions that carry valuable information. For example, Wang et

al. (2016) and Wang and Bovenhuis (2018) identified wavenumbers in these regions that are

affected by a polymorphism in the DGAT1 gene, and Toledo-Alvarado et al. (2018a) identified a

significant association between the 3,683 cm−1 wavenumber and pregnancy status. More generally,

Bittante and Cecchinato (2013) showed that the transmittance of individual spectra wavenumbers

had moderate to high heritability across most of the mid-infrared region and highlighted that

absorbance peaks for non-water milk components were present in low signal-to-noise ratio regions

and should be considered for investigation. The findings of these studies indicate that a prudent

approach to removal of wavenumbers in low signal-to-noise ratio regions should be taken, retaining

spectra from all regions in applications where the wavenumbers are considered independently,

but removing them in applications where wavenumbers are considered in a multivariate manner

(Tiplady et al., 2019).

5.4.3 Managing systematic instrument variation

The instrument calibration approach outlined by Lynch et al. (2006) has been widely used to

standardize instrument predictions for major milk composition traits and reduce the impact of

systematic variation between and within instruments across time. With this approach, a small

set of reference samples are analysed through the instrument, where the reference samples have

also been measured for traits of interest using benchmarked standards, such as the Rose-Gottlieb

method for fat determination and the Kjeldahl method for protein determination. For these

samples, unadjusted trait predictions are made from the spectral data, and instrument-specific

correction coefficients are evaluated by comparing the unadjusted predictions to the measured

trait values according to the benchmarked standard. A limitation of this approach is that it can

only be used to adjust predictions for traits with pre-evaluated correction coefficients. More recent

standardisation strategies have instead proposed calibrating the individual wavenumbers (Bonfatti
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et al., 2017a; Grelet et al., 2015, 2017; Tiplady et al., 2019), allowing the correction of any trait

predicted as a function of the spectral wavenumbers. Studies have shown that standardising

individual wavenumbers can effectively reduce prediction errors when transferring calibration

models between instruments for fat composition traits (Bonfatti et al., 2017a; Grelet et al., 2015),

as well as for calibration models for traits that are more difficult to predict reliably such as methane

emissions and cheese yield (Grelet et al., 2017). Tiplady et al. (2019) showed that the most

consistent standardisation approach for reducing prediction errors relies on analysing identical

reference samples across all instruments, as outlined by Grelet et al. (2015). Ideally, global

reference sample sharing would be established, facilitating standardisation across instruments in

different countries. That would enable the consolidation of spectral data collected on different

instruments, and improve accuracy when applying calibration models developed on one instrument

to spectral data collected on other instruments. Global reference sample sharing, however, is reliant

on resolving issues related to sample preservation, and on adherence to the bio-security legislation

of different countries. Instrument manufacturers such as FOSS (Hillerød, Denmark) and Bentley

(Chaska, MN) have started to offer alternative standardisation procedures. The FOSS procedure

uses a liquid equaliser with a known spectral response to adjust spectral results (Winning et al.,

2014), whereas the Bentley procedure uses a polystyrene film to adjust for interferometer laser

frequency shifts across time (Gupta et al., 1995), and infrared flow cell information to adjust for

shifts in absorbance measurement (Parsons and Lyder, 2018). While these within-instrument

standardisation procedures offer promise for automatic spectral standardisation, there have been

no independent studies to validate their effectiveness for standardisation of milk samples collected

across or within networks.

5.5 The genetics of FT-MIR predicted traits

Predictions of major milk composition traits from FT-MIR spectra are already widely incorporated

into dairy improvement programs. Other FT-MIR predicted traits that could be of interest to

industry improvement programs include milk fatty acids and protein fractions, and traits that

form proxy indicators for milk processability properties, and animal health and environmental

outcomes. The accuracy of FT-MIR predictions is an important indicator of their utility, but for

breeding purposes, the critical parameters are the extent of genetic variation in the benchmarked

trait, the heritability of the FT-MIR predictions, and the genetic correlations between the FT-MIR

predictions and the benchmarked trait.
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5.5.1 Milk fatty acid and protein composition traits

Heritability estimates for FT-MIR predicted individual and grouped fatty acids, and their genetic

correlations with gas chromatography (GC) based measurements are shown in Table 5.1. Where

available, standard errors are shown in brackets. For individual milk fatty acids, heritability

estimates ranged from 0.05 to 0.54 (Lopez-Villalobos et al., 2014; Rutten et al., 2010; Soyeurt

et al., 2007b). Heritability estimates for grouped fatty acids ranged from 0.11 to 0.51 (Fleming

et al., 2018; Hein et al., 2018; Lopez-Villalobos et al., 2014; Narayana et al., 2017), with the

lowest heritability estimates reported by Hein et al. (2018). In the studies by Fleming et al.

(2018) and Narayana et al. (2017), heritability estimates were consistently higher for saturated

fat and short- and medium-chain fatty acid groups, compared to unsaturated fat and long-chain

fatty acid groups. Rutten et al. (2010) was the only study to report genetic correlations between

FT-MIR predicted and GC-based fatty acids. These genetic correlations were high, ranging from

0.82 to 0.99.

Fewer studies exist of the genetic parameter estimates of FT-MIR predicted individual milk

proteins. Sanchez et al. (2017a) reported moderate to high heritability estimates (0.25 to 0.72)

for a number of FT-MIR predicted milk protein contents/fractions (not shown), with especially

high estimates for β-lactoglobulin (0.61 to 0.86). Moderate heritability estimates for FT-MIR

predicted lactoferrin, ranging from 0.16 to 0.22 have also been reported (Arnould et al., 2009b;

Lopez-Villalobos et al., 2009; Soyeurt et al., 2007a). These studies quantify the useful extent of

genetic variation in FT-MIR predicted fatty acids and individual milk proteins, and suggest that

these predicted traits could be incorporated into cattle improvement programs to change the

fatty acid profile and the protein composition of bovine milk.

5.5.2 Milk processability traits

Heritability estimates and genetic correlations between measured and FT-MIR predicted milk

processability traits are shown in Table 5.2. Where available, standard errors are shown in

brackets. For coagulation traits, heritability estimates ranged from 0.16 to 0.43 (Cecchinato et al.,

2009; Costa et al., 2019; Visentin et al., 2017). Cecchinato et al. (2009) was the only study

reporting genetic correlations between FT-MIR predicted and measured coagulation traits (not

shown). Those ranged from 0.91 to 0.96 for rennet coagulation time (RCT), and from 0.71 to 0.87

for curd firmness after 30 minutes (a30). Heritability estimates for FT-MIR predicted minerals

ranged from 0.32 to 0.56, with phosphorus having the highest estimated heritability, and sodium

having the lowest estimated heritability in both studies presented (Costa et al., 2019; Sanchez

et al., 2018). Heritability estimates for nutrient recovery traits were typically higher than for
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cheese yield traits (Bittante et al., 2014; Cecchinato et al., 2015). Bittante et al. (2014) was

the only study reporting genetic correlations between FT-MIR predicted and measured cheese

yield and nutrient recovery traits. These ranged from 0.76 to 0.98 for cheese yield traits, and

from 0.79 to 0.98 for nutrient recovery traits. Overall, these studies show that many FT-MIR

predicted processability traits are heritable, and that sufficient variation exists to use FT-MIR

predicted traits to change milk processing and cheese-making characteristics in cattle improvement

programs.

5.5.3 Animal health traits

Health and fertility traits are valuable targets for breeding programs and selection for these traits

would be considerably enhanced if they could be reliably predicted from FT-MIR spectra. A

recent review by Bastin et al. (2016) across a wide range of FT-MIR predicted traits related

to fertility, mastitis, ketosis and other disease traits highlighted that more research is required

to understand the relationships between health and fertility indicators and FT-MIR predicted

traits, and to estimate the genetic parameters of these traits. Since then, Belay et al. (2017) have

reported moderate heritability estimates for FT-MIR predicted blood β-hydroxybutyrate (BHB),

ranging from 0.25 to 0.37 across different stages of lactation, and moderate genetic correlations

between clinical ketosis and the FT-MIR predicted BHB (0.47). More research is required in this

area to realise the value that FT-MIR spectra might add to animal health breeding goals.

5.5.4 Environment traits

Despite increasing interest in FT-MIR predictions of environmental traits related to methane

(CH4) and nitrogen outputs from dairy systems, there have been few reports of the genetic

parameter estimates of these FT-MIR predicted traits, or of the genetic correlations between

measured and FT-MIR predicted trait values. Kandel et al. (2017) report moderate heritability

estimates, ranging from 0.22 to 0.25 for predicted daily CH4 emissions and 0.17 to 0.18 for

log-transformed predicted CH4 intensity. There is, therefore, some potential for the future

incorporation of FT-MIR predicted methane traits into breeding programs. However, there are

still issues to be resolved to address uncertainties and discrepancies in methane datasets and

measurement methods, and to improve the accuracy and robustness of prediction equations

to make them applicable across a broader range of production systems and environments (van

Gastelen et al., 2018b; Hristov et al., 2018; Negussie et al., 2017; Vanlierde et al., 2018).
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Table 5.1: Heritability estimates for FT-MIR predicted fatty acids (h2), and their genetic
correlations (ra) with GC-based1 fatty acids

Lopez-Villalobos Soyeurt et al. Rutten et al.
Individual fatty acids2 et al. (2014) (2007b) (2010)

h2 (SE) h2 (SE) h2 (SE) ra (SE)

C4:0 0.38 (0.03) – 0.42 (0.09) 0.94 (0.03)
C6:0 0.32 (0.03) – 0.35 (0.09) 0.97 (0.02)
C8:0 0.29 (0.03) – 0.38 (0.09) 0.99 (0.01)
C10:0 0.17 (0.02) – 0.46 (0.10) 0.98 (0.01)
C10:1 0.30 (0.02) – – –
C12:0 0.16 (0.02) 0.29 (0.02) 0.54 (0.11) 0.97 (0.02)
C12:1 0.41 (0.03) – – –
C14:0 0.19 (0.02) 0.31 (0.03) 0.50 (0.10) 0.99 (0.01)
C14:1 0.27 (0.01) – – –
C15:0 0.22 (0.02) – – –
C16:0 0.29 (0.02) 0.38 (0.02) 0.30 (0.09) 0.86 (0.07)
C16:1 0.30 (0.02) – – –
C17:0 0.41 (0.03) – – –
C17:1 0.14 (0.02) – – –
C18:0 0.26 (0.02) 0.30 (0.02) 0.52 (0.10) 0.82 (0.08)
C18:1 0.43 (0.03) 0.05 (0.01) – –
C18:1 cis-9 0.22 (0.02) – 0.25 (0.08) 0.93 (0.05)
C18:1 trans-11 0.27 (0.03) – – –
C18:2 cis-9,cis-12 0.45 (0.03) 0.20 (0.02) – –
C18:2 cis-9,trans-11 0.41 (0.03) – – –
C20:0 0.38 (0.03) – – –
C20:1 cis-11 0.37 (0.03) – – –
C22:0 0.35 (0.03) – – –

Lopez-Villalobos Hein et al. Fleming et al. Narayana et al.
Grouped fatty acids3 et al. (2014) (2007b) (2007b) (2007b)

h2 (SE) h2 (SE) h2 (SE) ra (SE)

SCFA 0.39 (0.03) 0.16 0.42 0.24
MCFA 0.30 (0.03) 0.12 0.50 0.32
LCFA 0.50 (0.03) 0.11 0.26 0.23
SFA 0.46 (0.03) 0.15 0.51 0.33
UFA 0.48 (0.03) – 0.26 0.21
PUFA 0.42 (0.03) – – –

1 GC-based: Gas chromotography based.
2 Individual fatty acids: All fatty acids expressed as a % of the total fatty acids.
3 SCFA = Short-chain fatty acids; MCFA = Medium-chain fatty acids; LCFA = Long-chain fatty acids;
SFA = Saturated fatty acids; UFA = Unsaturated fatty acids; PUFA = Polyunsaturated fatty acids.
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Table 5.2: Heritability estimates for FT-MIR predicted milk processability traits (h2), and their
genetic correlations (ra) with measured traits

Visentin et al. Cecchinato et Costa et al. Sanchez et al.
Trait1 (2017) al. (2009) (2019) (2018)

h2 (SE) h2 range2 (SE) h2 (SE) h2 (SE)

Coagulation traits
RCT, min 0.28 (0.01) 0.30–0.34 (0.08) 0.35 (0.05) –
k20, min 0.43 (0.02) – 0.43 (0.03) –
a30, mm 0.36 (0.02) 0.22-0.27 (0.07) 0.39 (0.03) –
a60, mm 0.27 (0.01) – – –
HCT, min 0.16 (0.01) – – –
CMS, nm 0.31 (0.02) – – –

Acidity
pH, units 0.27 (0.01) – – 0.37 (0.01)

Minerals, mg/kg milk
Calcium – – 0.45 (0.02) 0.50 (0.01)
Phosphorus – – 0.53 (0.03) 0.56 (0.01)
Magnesium – – 0.47 (0.03) 0.52 (0.01)
Potassium – – 0.45 (0.03) 0.53 (0.01)
Sodium – – 0.38 (0.03) 0.32 (0.01)

Sanchez et al. Bittante et al. Cecchinato et al.
(2018) (2014) (2015)

h2 (SE) h2 (SE) ra h2 range3

Cheese yield, %
CYCURD 0.38 (0.01) 0.21 (0.09) 0.97 0.18–0.33
CYSOLIDS 0.39 (0.01) 0.22 (0.08) 0.98 0.18–0.28
CYWATER – 0.18 (0.05) 0.76 0.14–0.29

Nutrient recovery, %
RECPROTEIN – 0.44 (0.09) 0.88 0.32–0.41
RECFAT – 0.28 (0.07) 0.79 0.15–0.33
RECENERGY – 0.21 (0.07) 0.96 0.19–0.30
RECSOLIDS – 0.24 (0.08) 0.98 0.17–0.29

1 RCT = Rennet coagulation time; k20 = curd-firming time; a30 = curd firmness after 30 min; a60 =
curd firmness after 60 min; HCT = heat coagulation time; CMS = casein micelle size; CY = cheese
yield: weight of fresh curd, curd solids, and curd as a percentage of weight of milk processed; REC =
nutrient recovery: protein, fat, energy and solids of the curd as a percentage of the protein, fat, energy
and solids of the milk processed.

2 Range of estimates from 4 subsets of data used to validate calibration equations.
3 Range of estimates from 3 different breeds.
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Milk urea nitrogen (MUN) concentrations are routinely predicted using FT-MIR spectroscopy

(Gengler et al., 2016), however, there are few studies of the genetic parameters of FT-MIR

predicted MUN and its relationship with other production traits (Miglior et al., 2007). Amongst

those studies, moderate to high heritability estimates, ranging from 0.38 to 0.59 were reported by

Miglior et al. (2007) and Wood et al. (2003), with lower estimates of 0.22 and 0.14 reported in

studies by Mitchell et al. (2005) and Stoop et al. (2007), respectively. Mitchell et al. (2005) was

the only study reporting genetic correlations between wet-chemistry direct measurements of MUN

and FT-MIR predicted MUN, which were 0.38 and 0.23 in lactations 1 and 2, respectively. These

genetic correlations are significantly lower than those reported for fatty acids (0.82 to 0.99; Rutten

et al., 2010) and milk processability traits (0.76 to 0.98; Bittante et al., 2014), and indicate that

wet-chemistry measurements of MUN and FT-MIR predicted MUN are genetically different traits.

Large differences in heritability estimates across studies of FT-MIR predicted MUN indicate that

there may be underlying instability in prediction equations. This highlights the importance of

developing prediction models that are robust across different breeds and production systems.

Research is ongoing to determine the role that FT-MIR predicted MUN could have in reducing

nitrogen outputs from dairy systems.

5.6 The genetics of individual FT-MIR wavenumbers
In contrast to the prevalence of studies reporting genetic parameter estimates of FT-MIR predicted

traits, there are relatively few studies reporting genetic parameter estimates for the individual

spectra wavenumbers. Nevertheless, the transmittance of FT-MIR spectral wavenumbers is

moderately to highly heritable across a large proportion of the mid-infrared region (Bittante

and Cecchinato, 2013; Rovere et al., 2019; Soyeurt et al., 2010; Wang et al., 2016; Zaalberg

et al., 2019). Although heritability estimates were consistently low in water absorption regions

across all studies, estimates greater than 0.2 were reported across most of the mid-infrared region

in studies by Soyeurt et al. (2010) and Wang et al. (2016). This indicates that genetic gain

may be obtained by directly selecting on a linear function of estimated breeding values (EBV)

for individual FT-MIR wavenumbers; rather than indirect selection as currently practised on

EBV of composite indicator traits which are linear functions of individual FT-MIR wavenumber

absorbance values. Recent studies have confirmed this, showing that the accuracies of breeding

value predictions estimated directly from FT-MIR spectra can be higher than for breeding value

predictions estimated indirectly from the FT-MIR predicted composite traits (Belay et al., 2018;

Bonfatti et al., 2017c; Dagnachew et al., 2013). Estimating breeding values directly from FT-

MIR spectra requires that spectral data is routinely stored, rather than just the spectral based

predictions of milk components, and that has not historically been the case in most dairy nations.
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5.7 GWAS of individual FT-MIR wavenumbers

Many GWAS have been published in the last decade for FT-MIR predicted major milk production

traits (Jiang et al., 2010; Kemper et al., 2015b; Littlejohn et al., 2016; Lopdell et al., 2017;

Raven et al., 2014), and for fatty acid and protein fractions (Bouwman et al., 2011; Buitenhuis

et al., 2014, 2016; Li et al., 2014; Sanchez et al., 2016). However, only two studies report GWAS

results for individual FT-MIR wavenumbers. In a study of 1,748 Dutch Holsteins across 50,688

SNP, Wang and Bovenhuis (2018) conducted a GWAS on a subset of 50 wavenumbers, selected

using a clustering approach to capture more than 95% of the phenotypic variation. In that

study, significant associations between individual wavenumbers and over 20 genomic regions were

identified. While most of these genomic regions had already been reported for having significant

associations with other milk production traits, three new regions were identified. In a larger study

of 5,202 Holstein, Jersey and crossbred cows across 626,777 SNP, Benedet et al. (2019) used a

PLS approach to associate genotypes to spectral data, and showed that FT-MIR spectra could

be used to increase the power of a GWAS, and assist with distinguishing milk composition QTL.

The studies by Wang and Bovenhuis (2018) and Benedet et al. (2019) both demonstrate that

there are genetic signals in the individual FT-MIR wavenumbers that we do not observe in the

currently-used portfolio of composite FT-MIR predicted traits. This confirms that the individual

FT-MIR wavenumbers can provide an additional layer of granularity to assist with establishing

causal links between the genome and observed phenotypes. Notably, both studies use relatively

low numbers of animals compared to recent GWAS published for other traits, and applying these

methodologies to larger datasets, with higher genotype densities, promises to increase the power

of these approaches. This should enable the discovery of QTL with smaller effect sizes in addition

to novel QTL characterised by lower minor allele frequencies than those QTL discovered with

datasets numbering only thousands of animals.

5.7.1 Computational challenges

Over the last two decades, the scope of genomic resources available for GWAS has increased, both

in terms of the number of genotyped individuals, and in terms of variant density. Developing

strategies for managing GWAS on large numbers of densely genotyped individuals is an active

area of research, as we look to generate new, more efficient algorithms that will enable the

processing of these datasets within acceptable timeframes and computational limits of RAM

and CPU. The importance of efficient algorithms is further highlighted when we conduct GWAS

across large numbers of FT-MIR predicted traits and the individual FT-MIR wavenumbers.
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Existing mixed-linear model-based methods for conducting GWAS, such as GCTA-MLMA (Yang

et al., 2011) primarily run in O(mn2) or O(m2n) time per trait, where m is the number of

variants and n is the number of animals. These models become prohibitively slow as the numbers

of genotyped individuals and variants increase (Loh et al., 2015). The ever-increasing cohort

sizes of densely-genotyped individuals frequently requires subsampling to use these methods

within acceptable computation constraints. This has spurred the development of faster, more

memory-efficient algorithms and software. One software package, Bolt-LMM (Loh et al., 2015,

2018) runs in approximately O(mn1.5) time; however, it makes assumptions that are only valid

for larger sample sizes. Recent versions are capable of running the entire UK biobank data set

(n=459k) in a few days on a single computational node (Loh et al., 2018). Another algorithm,

fastGWA (Jiang et al., 2019c), available as a recent enhancement of the GCTA software package,

provides further reductions in algorithmic complexity, running in approximately O(mn) time.

These improvements mean that it is capable of running n=400k UK biobank samples in around

20 minutes, compared to 22 hours for BOLT-LMM on the same hardware. Developments such as

this make GWAS across sizeable populations with large numbers of FT-MIR phenotypes feasible.

5.8 Consolidating FT-MIR spectra with other omics data

sources for QTL mapping

After conducting a GWAS, it is useful to identify the candidate genes and mutations underlying

genomic loci with signal for a trait of interest. This can aid marker-assisted selection and improve

our understanding of the biological pathways regulating the trait. Moreover, it has been shown

that genomic prediction can be improved by including variants close to the causative mutations

(van den Berg et al., 2016). Software such as Ensembl’s Variant Effect Predictor (McLaren

et al., 2016) is commonly used to identify candidate causal variants that have protein-coding or

loss-of-function effects, with the expectation that these variants are more likely to impact the trait

than other variants. However, recent studies in both humans (Lee et al., 2015; Maurano et al.,

2012) and dairy cattle (Lopdell et al., 2017; Pausch et al., 2016) have highlighted the prevalence

of QTL underpinned by expression-based mechanisms, and demonstrate that the majority of

variance for at least some traits can be explained by non-coding variants located in regulatory

elements. These variants are typically identified by considering the expression levels of genes as

phenotypes, and using these data for genetic mapping studies in an approach known as expression

QTL (eQTL) analysis.
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5.8.1 Expression-based phenotypes

Assuming a causality chain hypothesis, as illustrated in Fig. 5.1, observation of an eQTL, co-

located with a QTL for an FT-MIR predicted trait can inform on the mechanism of the trait of

interest. This methodology can also be used to identify mechanisms underlying QTL observed

for individual FT-MIR wavenumbers. A strong correlation between the variant effects for the

two QTL (expression and FT-MIR related) suggest a shared underlying genetic architecture

regulating both, while a weak correlation suggests that the two QTL, though co-located, do not

co-segregate, and therefore represent distinct genetic signals with different causal variants.

Similar to eQTL analysis, a range of additional omics data sources can be used for QTL

mapping, and the resulting QTL could be applied to identify causative genes for FT-MIR predicted

traits and individual FT-MIR wavenumbers. The factors yielding these omics data sources can

occur before or after mRNA transcription. Factors acting before transcription can help unravel

causative regulatory variants by highlighting actively-transcribed regions of the genome, and the

variants that sit within them. One of these factors is chromatin accessibility. Transcriptionally

active genes, as well as active regulatory elements (such as enhancers), are found in regions

of open chromatin (euchromatin); whereas inactive regions of the genome are typically much

more densely compacted into a structure known as heterochromatin. Genome features found

in euchromatin are therefore more accessible to transcription factors and other factors involved

in gene expression, and so are more likely to influence traits of interest compared to factors

located in inactive regions. Methods to assay chromatin accessibility include ChIP-seq (O’Neill

and Turner, 2003), DNase-seq (Boyle et al., 2008), and ATAC-seq (Buenrostro et al., 2015).

Other factors acting during or after transcription provide intermediate phenotypes that can aid

in understanding the underlying biological control of these traits (Kemper et al., 2016). One such

factor is RNA-editing, i.e., direct enzymatic conversion of bases within the mRNA transcripts,

with the most common form of editing in vertebrates being the conversion of adenosine nucleotides

into inosine (Savva et al., 2012). Biologically, RNA editing is involved in protection against

dsRNA viruses (Liddicoat et al., 2015) and in adaptation to different environmental conditions

(Garrett and Rosenthal, 2012), and therefore has potential relevance to variation in animal health

and in providing for animal adaptability to changing environments. RNA-editing QTL (edQTL)

were initially identified in Drosophila (Ramaswami et al., 2015), followed soon after by mice (Gu

et al., 2016) and humans (Park et al., 2017). Recently, edQTL were reported for the first time

within the bovine mammary gland (Lopdell et al., 2019a), and subsequently used to characterise

candidate causative genes underlying a milk yield QTL at the CSF2RB/NCF4 locus (Lopdell
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et al., 2019b). That study highlighted the manner in which intermediate molecular phenotypes

can be used to investigate mechanisms underlying FT-MIR predicted trait QTL, and exemplifies

how other similarly novel molecular phenotypes can be applied.

5.8.2 Metabolomics

Absorbance levels for individual FT-MIR wavenumbers provide insights into the presence of

particular chemical bonds in the sample and accordingly provide information as to the chemical

composition of a milk sample. Analysing the chemical composition of a sample in more detail,

using methodologies such as nuclear magnetic resonance (NMR) spectroscopy or mass spectroscopy

(MS), yields the metabolome, i.e., a more complete set of all small molecules present in a tissue

sample. Metabolomics can provide detailed information about enzymatic activity in the pathways

that exist between gene expression and FT-MIR predicted traits, providing a near-terminal link in

the chain of causality. For example, rumen volatile fatty acid (VFA) levels can provide information

on measuring and controlling methane production (Knapp et al., 2014). Levels of VFAs in the

rumen could therefore provide a proxy measurement for methane production. Identifying QTL

that underlie variation in the concentrations of these metabolites could complement genetic

signals identified using FT-MIR wavenumbers and FT-MIR based methane trait predictions, and

facilitate selection of low-methane emitting animals.

5.9 Conclusions

Over the last 100 years, milk composition phenotyping for dairy cattle has evolved from manual

on-farm methods for determining yield and fat levels in milk, to high-tech analysis at centralised

laboratories, with many novel FT-MIR predicted traits now being considered for incorporation

into improvement programs. Multiple studies have demonstrated that the accuracy of FT-MIR

predictions are strongly influenced by how well the variation in the prediction population is

represented in the calibration population. Trait prediction accuracy is also strongly affected by how

well instrument-specific measurement differences are accounted for, particularly when transferring

calibration equations developed on one instrument to spectra collected on other instruments.

Utilising FT-MIR data to generate proxies for novel traits has grown in popularity, however,

compared to FT-MIR predictions of major milk components, there are relatively few studies of

the genetics of other FT-MIR predicted traits, and even fewer of the genetics of the individual

wavenumbers. This is despite the individual wavenumbers exhibiting additional genetic signal that

is often not observed in FT-MIR predictions of major milk composition traits. Integrating results
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from GWAS applied to FT-MIR predicted traits and GWAS applied to individual wavenumbers

with other molecular datasets could improve our understanding of the underlying biological

systems controlling traits of interest. However, integration of these data sources also brings

computational challenges due to the size and complexity of the datasets involved. Resolving

the challenges of effectively integrating FT-MIR datasets with other omics data sources will

require a mix of both bioinformatics and molecular biology approaches. Successfully consolidating

these approaches promises to improve our knowledge of milk composition and enable the future

enhancement of animal breeding programs.
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6.1 Abstract

6.1.1 Background

Fourier-transform mid-infrared (FT-MIR) spectroscopy provides a high-throughput and inexpen-

sive method for predicting milk composition and other novel traits from milk samples. While there

have been many genome-wide association studies (GWAS) conducted on FT-MIR predicted traits,

there have been few GWAS for individual FT-MIR wavenumbers. Using imputed whole-genome

sequence for 38,085 mixed-breed New Zealand dairy cattle, we conducted GWAS on 895 individual

FT-MIR wavenumber phenotypes, and assessed the value of these direct phenotypes for identifying

candidate causal genes and variants, and improving our understanding of the physico-chemical

properties of milk.

6.1.2 Results

Separate GWAS conducted for each of 895 individual FT-MIR wavenumber phenotypes, identified

450 1-Mbp genomic regions with significant FT-MIR wavenumber QTL, compared to 246 1-Mbp

genomic regions with QTL identified for FT-MIR predicted milk composition traits. Use of

mammary RNA-seq data and gene annotation information identified 38 co-localized and co-

segregating expression QTL (eQTL), and 31 protein-sequence mutations for FT-MIR wavenumber

phenotypes, the latter including a null mutation in the ABO gene that has a potential role in

changing milk oligosaccharide profiles. For the candidate causative genes implicated in these

analyses, we examined the strength of association between relevant loci and each wavenumber

across the mid-infrared spectrum. This revealed shared association patterns for groups of

genomically-distant loci, highlighting clusters of loci linked through their biological roles in

lactation and their presumed impacts on the chemical composition of milk.

6.1.3 Conclusions

This study demonstrates the utility of FT-MIR wavenumber phenotypes for improving our

understanding of milk composition, presenting a larger number of QTL and putative causative

genes and variants than found from FT-MIR predicted composition traits. Examining patterns of

significance across the mid-infrared spectrum for loci of interest further highlighted commonalities

of association, which likely reflects the physico-chemical properties of milk constituents.
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6.2 Background

Fourier-transform mid-infrared (FT-MIR) spectroscopy is a high-throughput and inexpensive

method for predicting milk composition. The FT-MIR methodology determines the presence

of specific chemical bonds in milk by measuring the absorbance of infrared light as the light

interacts with molecules in the sample. Data from FT-MIR spectroscopy comprises a spectrum

of absorbance values across the mid-infrared range that are readily available through routine milk

testing. This technology is widely used to estimate the concentrations of major milk components

such as fat and protein for incorporation into milk payment and animal evaluation systems.

Over the last decade, there has been increased interest in using FT-MIR data to predict other

milk composition and novel traits. Applications of FT-MIR spectroscopy as a phenotyping tool

have been widely studied and reviewed (De Marchi et al., 2014, 2018; Egger-Danner et al., 2015;

Gengler et al., 2016). Recent research includes studies of milk composition traits that are relevant

to manufacturing traits (Toffanin et al., 2015; Visentin et al., 2015, 2018), individual fatty acids

and milk proteins (Bonfatti et al., 2017b; Sanchez et al., 2017a), and indirect traits that are

related to energy status (Luke et al., 2019b; McParland et al., 2015), pregnancy and fertility (Ho

et al., 2019; Lainé et al., 2017; Toledo-Alvarado et al., 2018a), methane emissions (Bittante and

Cipolat-Gotet, 2018; van Gastelen et al., 2018b; Vanlierde et al., 2018) and bovine tuberculosis

(Denholm et al., 2020).

Successful utilisation of FT-MIR data as a phenotyping tool depends on the strength of the

phenotypic correlation between the predicted trait, and the trait as measured by a benchmarked

standard; and successful incorporation of FT-MIR predicted traits into breeding programmes

further depends on the heritability of the FT-MIR predicted trait, and the genetic correlation

between the FT-MIR prediction and the benchmarked trait (Tiplady et al., 2020). Studies have

reported moderate to high heritability estimates for a range of FT-MIR predicted traits, including

fatty acids (Hein et al., 2018; Lopez-Villalobos et al., 2014; Rutten et al., 2010), milk proteins

(Bonfatti et al., 2017d; Sanchez et al., 2017a), cheese-making and milk-coagulation properties

(Cecchinato et al., 2015; Poulsen et al., 2015; Visentin et al., 2017), and lactoferrin concentrations

(Lopez-Villalobos et al., 2009; Soyeurt et al., 2007a). Studies of individual FT-MIR spectra

wavenumbers show that across most of the mid-infrared region, absorbances of individual FT-MIR

spectra wavenumbers are moderately to highly heritable (Bittante and Cecchinato, 2013; Rovere

et al., 2019; Soyeurt et al., 2010; Wang et al., 2016). This suggests that there is potential

for achieving genetic gain through the direct use of FT-MIR spectra for selection, rather than
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selection on FT-MIR predicted milk composition traits, which are themselves a function of the

absorbance spectra at various wavenumbers.

Although there have been many genome-wide association studies (GWAS) for FT-MIR

predicted milk composition traits such as fat, protein, and lactose concentrations (Jiang et al.,

2010; Kemper et al., 2015b; Littlejohn et al., 2016; Lopdell et al., 2017; Raven et al., 2014),

and individual fatty acid and protein fractions (Bouwman et al., 2011; Buitenhuis et al., 2016;

Li et al., 2014), there are comparatively few studies reporting GWAS results for individual

FT-MIR wavenumber phenotypes (Benedet et al., 2019; Wang and Bovenhuis, 2018; Zaalberg

et al., 2020). Two such GWAS were conducted on medium density SNP-chip (~50k markers)

genotypes for a subset of wavenumbers, which were identified either by clustering analysis (Wang

and Bovenhuis, 2018), or by using phenotypic correlation structures and heritability estimates

within each breed (Zaalberg et al., 2020). A third study explored relationships between FT-MIR

wavenumber phenotypes and a subset of SNPs that had previously been implicated in a GWAS

of milk composition and fatty acid traits (Benedet et al., 2019). Across these studies, a number

of FT-MIR wavenumber QTL were identified. Most of the detected genomic regions had been

previously reported in studies of major milk composition traits, but new regions with potential

links to milk contents such as phosphorus, orotic acid or citric acid were identified (Wang and

Bovenhuis, 2018). Thus, these findings have demonstrated that it is possible to identify genomic

regions that are specifically related to individual FT-MIR wavenumber phenotypes.

Previous studies have examined the effects of variants in individual genes and their encoded

proteins on FT-MIR wavenumber phenotypes (Benedet et al., 2019; Wang et al., 2016). Wang

et al. (2016) observed that the DGAT1 K232A polymorphism had highly significant effects on

wavenumbers associated with carboxylic and ester C=O bond stretching, triglyceride ester linkage

C-O stretching and alkyl C-H stretching. In that same study, a polymorphism in the CSN3 gene

had effects on wavenumbers that coincided with amide II, amide III and phosphate bands, and a

polymorphism in the PAEP gene had effects on wavenumbers in a mid-infrared band that was

attributed to C-N stretching (Wang et al., 2016). Similar effects were also observed by Benedet et

al. (2019), with an additional absorption band associated with unsaturated fatty acids that was

reported for a polymorphism near CSN3. Across those studies, association patterns varied widely

for loci in different genes, with DGAT1 having highly significant effects across many wavenumbers,

while PAEP had significant effects across fewer wavenumbers that were concentrated within a

small number of spectral bands. Assessing association patterns across the mid-infrared spectrum

for a wider range of loci could improve our understanding of the impact that different genes have
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on the molecular structure of milk. Moreover, comparing these association patterns could provide

insights into commonalities in the way genes influence milk composition and how these impacts

are detected.

The purpose of the current study was to investigate the underlying genetics of dairy cattle

milk composition, by conducting GWAS on 895 individual FT-MIR wavenumber phenotypes, and

comparing these results to GWAS conducted on three FT-MIR predicted major milk composition

traits. We report the use of a much larger sample (n=38,085) than previous such studies and at a

higher genomic resolution, with imputed whole-genome sequence consisting of 17,873,880 variants.

We further report molecular dissection of these signals through the use of variant annotation

information and a large mammary RNA-seq resource, and identification of candidate causative

genes and variants for a substantial number of loci. Finally, we evaluated patterns of significance

across the mid-infrared range for different loci, highlighting clusters of QTL that are broadly

defined by the biochemical properties of the molecules that they encode.

6.3 Methods

6.3.1 Study population, animals and milk samples

In total, 100,571 FT-MIR spectra records from individual milk test samples for 38,085 multi-breed

and crossbred cows across 1,645 herds were included for analysis. This dataset was a subset of a

wider set of 2,044,094 FT-MIR spectra records analysed on six Bentley FTS (Chaska, MN, USA)

instruments as part of routine milk testing conducted by Livestock Improvement Corporation

(LIC), over the period from September 2017 to May 2018 (Tiplady et al., 2019). Records were

included in the present study if they passed outlier removal based on the squared Mahalanobis

distance between each spectrum and the average within-instrument spectra for each analyser,

and had imputed sequence available for the cow from which the milk sample was taken. The

pedigree-based breed composition of cows comprised 11,235 cows with ≥ 14/16 Holstein (HOL) or

Friesian (FR) genetics; 5,374 cows with ≥ 14/16 Jersey (JE) genetics; 19,915 crossbred cows with

HOL-FR (≥ 3/16) and JE (≥ 3/16) genetics only; 17 cows with ≥ 14/16 Ayrshire (AY) genetics;

and 1,544 cows from other breeds or crosses. Individual FT-MIR wavenumbers were subjected to

piecewise direct standardization (Grelet et al., 2015), with standardization coefficients evaluated

from 16 weeks of reference sample calibration data collected across six Bentley instruments as in

Tiplady et al. (2019).
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6.3.2 Pre-adjustment of individual FT-MIR wavenumber and predicted

milk composition phenotypes

Prior to conducting GWAS, adjusted cow phenotypes were generated for 895 individual FT-MIR

wavenumbers and three FT-MIR predicted milk composition traits. Adjusted phenotypes were

generated from one or more test-day samples on the same cow by fitting repeated measures

models in ASReml-R (Butler et al., 2009), comprising:

yijkl = µ + parityj + dimk + HDl +
∑
αmbrdim +

∑
δnhetin + anmli + eijkl

(6.1)

where yijkl is a test-day phenotype (e.g., absorbance for one wavenumber) for the ith individual

in parity class j within the days in milk class k and the herd-by-test date group l; µ is the overall

mean; parityj is the fixed effect for parity j (5 classes: 1, 2, 3, 4, ≥ 5); dimk is the fixed effect for

the days in milk class k (9 intervals of 30 days each from the start of lactation); HDl is the fixed

effect for the herd by test day class l; αm are breed linear regression coefficients for Holstein (HOL),

Friesian (FR) and Jersey (JE) proportions and brdim are the corresponding breed proportions

for individual i; δn are heterosis linear regression coefficients between breeds (FRxJE, FRxHOL,

JExHOL, FRxAY, JExAY, AYxHOL) and hetin are the corresponding heterosis proportions for

individual i, according to sire and dam breed proportions; anmli is the random animal effect

with anmli~N (0,Iσ2
anml); and eijkl is the random error effect with eijkl~N (0,Iσ2

e), where I is an

identity matrix and σ2
anml and σ2

e are the variances of the independent and identically distributed

animal and error variances, respectively. Adjusted phenotypes were evaluated for individual i

as y minus all the relevant fixed effects averaged over all observations for a cow, or equivalently,

the sum of the prediction of anmli and the average of the predicted error terms for all test-day

records for the animal, i.e., ŷi(adj) = anmli + ēij .

6.3.3 Genotypes and imputation

Animals were genotyped on Illumina BovineHD (HD; n=138; ~777k SNP), Illumina BovineSNP50k

(50k; n=4,087; ~53k SNP), and/or custom GeneSeek Genomic Profiler LDv3 BeadChip (GGP;

n=33,976; ~26k SNP) panels, with the resultant genotypes imputed to sequence density as part of

a wider set of 153,357 animals, as described by Jivanji et al. (2019). More detailed descriptions of

SNP-chip data handling and imputation criteria are given below, and as a summary, this process

consisted of step-wise imputation of animals to whole-genome sequence genotypes via references
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of GGP, 50k and HD genotypes. Whole-genome sequences for 565 animals had been mapped

and called from the UMD3.1 Bos taurus reference genome using BWA-MEM (v0.78-r455) (Li

and Durbin, 2009), and GATK (v3.2) (DePristo et al., 2011) respectively, as previously described

(Jivanji et al., 2019; Littlejohn et al., 2016; Lopdell et al., 2017). The pedigree-based breed

composition of sequenced animals comprised 138 Holstein-Friesians, 99 Jerseys, 316 Holstein-

Friesian×Jersey crossbreeds and 12 from other breeds or crosses. Only variants located on Bos

taurus autosomes were considered, and phasing with genotype probabilities was undertaken using

Beagle 4.0 (Browning and Browning, 2007). Variants were filtered to remove those for which the

allelic R2, defined as the estimated squared correlation between the most likely allele dosage and

the true allele dosage (Browning and Browning, 2009) for missing genotypes was less than 0.95.

This resulted in a sequence reference comprising 19,659,361 segregating variants spanning all 29

bovine autosomes.

SNP-chip imputation references

The reference sets for SNP-chip panels used at each imputation step were generated based on a

uniform set of criteria. Genotypes were eligible for inclusion in a reference if the sample call rate

was ≥ 0.95, and the proportion of Mendelian inconsistences observed between parent-offspring

pairs of genotypes was lower than 0.005. The 50k reference included eligible Illumina BovineSNP50

BeadChip genotypes for all males, and females that were a dam of a genotyped sire or had at

least five recorded progeny (46,621 SNPs; 10,786 animals). The GGP reference included eligible

GGP LD BeadChip genotypes for all males, and females that had recorded progeny (20,846

SNPs; 11,872 animals). Additional 50k reference SNPs that were not on the GGP panel were also

included as a background scaffold, resulting in a reference with 57,493 SNPs across 11,872 animals.

The HD reference included all available Illumina BovineHD BeadChip genotypes, predominantly

from widely-used sires and/or sequenced animals (n=3,389), with 675,321 SNPs remaining after

eligibility filters were applied.

For all references, SNPs that were monomorphic or had a batch call rate lower than 0.9 were

excluded. Quality checks were made to ensure that allele frequencies in the reference population

reflected those in the wider population. That is, for SNPs with a count of more than 1000 minor

alleles in the overall population, the relationship between the minor allele frequency (MAF) in the

reference population (MAFref ) and the MAF in the overall population (MAFoverall) satisfied the

criteria: |MAFref -MAFoverall|/MAFref < 0.4. This resulted in the removal of 12 SNPs from the

Illumina BovineSNP50 BeadChip, and three SNPs from the GGP LDv3 BeadChip. In addition,
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for all references, SNPs that were in common with sequence variants with more than 30x depth

coverage were removed if the concordance between genotype and sequencing calls was ≤ 0.7.

Likewise, for GGP and 50k references, any SNPs that were shared with the BovineHD panel were

removed if the concordance between genotype calls from each panel was ≤ 0.7; and for the HD

reference, any SNPs that were shared with the BovineSNP50 panel were removed if the genotypic

concordance between panels was ≤ 0.7.

Imputation

All imputation steps were carried out ignoring pedigree information using Beagle 4.0 (Browning

and Browning, 2007). Imputation of animals to GGP, 50k and HD references was carried out

using default parameters, except for window sizes which were adjusted to ensure that whole

chromosomes were imputed as one window. After each imputation step, SNPs with an allelic R2

< 0.7 were removed. Imputation to the sequence level was carried out by using default parameters

except for window sizes which were set at 50,000 SNPs. The overall median imputation allelic

R2 for the wider set of 153,357 animals was 0.986, the same value for the set of 38,085 animals

included in this study.

6.3.4 Genome-wide association studies

Separate GWAS were conducted using the Bolt-LMM software (Loh et al., 2015) for each of

the 898 pre-adjusted phenotypes that included the 895 FT-MIR wavenumber phenotypes and

three FT-MIR predicted milk composition traits, namely, fat, lactose and protein concentrations

(FP, LP, and PP). In total, 17,873,880 imputed sequence variants were included in each GWAS

after applying a MAF threshold of 0.1%, based on allele frequencies in the study population of

38,085 animals. Mixed model association statistics were evaluated under an infinitesimal model

(as defined by the Bolt-LMM software) to assess the additive effect of each SNP. A genomic

relationship matrix (GRM) based on a subset of 43,851 SNPs was simultaneously fitted to

account for population structure. That subset of SNPs was derived by filtering the 50k SNP-chip

imputation reference (previously described) to exclude SNPs with a MAF lower than 0.1%. To

avoid proximal contamination, a leave-one-segment-out (LOSO) approach was used in the GWAS,

with segments of 5 Mbp used to subdivide the autosomes. A conservative Bonferroni significance

threshold was used, which considered all tests across the 898 traits and 17,873,880 variants as

independent. Based on a genome-wide threshold of α = 0.01, the nominal p-value was 6.2e-13

and the corresponding Bonferroni threshold was –log10(6.2e-13) = 12.21. The proportion of
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phenotypic variance explained by each SNP was evaluated as 2pqa2

σ2
t

where p is the frequency

of the minor allele, q = 1 - p, a is the estimated allele substitution effect, and σ2
t is the total

phenotypic variance. Similarly, the proportion of genetic variance accounted for by each SNP was

evaluated as 2pqa2

σ2
g

where σ2
g is the estimated genetic variance according to SNP-based estimates

generated by the Bolt-LMM software.

To distinguish between multiple QTL segregating within the same region of a chromosome,

an iterative conditional approach was undertaken for each phenotype. After running an initial

GWAS that we refer to as the ‘base GWAS’, chromosomes with a significant p-value based on

the Bonferroni threshold were identified; and for each of these chromosomes, the most significant

variant was identified and added to the set of covariates included in the next iteration. These

subsequent iterations were only conducted on chromosomes that retained significant effects,

whereby the process was repeated until these analyses ceased to highlight significant effects. For

each of these iterations, the set of 43,851 SNPs representing genomic relationships continued to

be fitted (using the LOSO approach) to account for population structure. These analyses resulted

in a list of variants for each phenotype that aimed at capturing all the significant association

analysis signal.

6.3.5 Gene expression phenotypes and eQTL identification

Gene expression phenotypes and the resulting eQTL were generated as part of a previously

described study (Lopdell et al., 2017). Briefly, tissue from 411 cows was used to conduct high-

depth mammary RNA-seq, yielding approximately 89 million read pairs per sample. Reads were

mapped to the UMD3.1 Bos taurus reference genome using the Tophat2 program (version 2.0.12)

(Kim et al., 2013), and filtered to remove outliers based on a principal components analysis of

the gene expression values. Additional filters were applied to remove animals with excessively

low call rates, and those with genotypes that were not concordant with sire or dam genotypes.

This resulted in a dataset containing 357 animals, 62 of which were in common with the 38,085

animals in the current study. Transformed gene expression phenotypes for genes overlapping 1-Mb

windows of whole-genome sequences were used to identify significant eQTL (Lopdell et al., 2017).

Genetic impacts on gene expression were evaluated by fitting a generalised least-squares model

that assessed the relationship between genotype and transformed gene expression phenotypes, with

covariances between animals accounted for by the numerator relationship (A) matrix. Resulting

χ2 statistics with 1 degree of freedom were used to identify eQTL p-values. The Bonferroni

significance threshold had been set at –log10(2.53e-07), based on α = 0.05, corrected for 197,338

tests.
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6.3.6 Identification of protein-coding variants and co-localized eQTL

Whole-genome sequence resolution genotypes within a 1-Mbp window were annotated using the

SnpEff software (version 4.1d; build 2015-04-13) (Cingolani et al., 2012) and Ensembl UMD3.1.78

gene annotations, to assess the candidacy of each wavenumber and predicted-trait QTL from the

iterative GWAS. To focus on the most plausible candidates, variants in QTL regions were filtered

to include only those in high linkage disequilibrium (LD) (R2 > 0.9) with a putative impact

variant (PIV), where we have defined a PIV as being a splice region variant, or a moderate or

high impact coding variant, according to the SnpEff classification. For variants in QTL regions

that met these criteria, emphasis was placed on those with ‘highly significant’ effects. That is,

the correlation between the PIV and the QTL was in the range (0.975, 1] and the –log10(p-value)

for the effect was greater than 1.5x the Bonferroni threshold; or the correlation between the PIV

and the QTL was in the range (0.95, 0.975] and the –log10(p-value) for the effect was greater

than 2x the Bonferroni threshold; or the correlation between the PIV and the QTL was in the

range (0.925, 0.95] and the –log10(p-value) for the effect was greater than 2.5x the Bonferroni

threshold. All other variants in QTL regions where the correlation between the PIV and the

QTL was higher than 0.9, and the –log10(p-value) for the effect was greater than the Bonferroni

threshold, were classified as ‘moderately significant’.

Wavenumber and predicted-trait QTL were scrutinized to identify co-localized eQTL, following

the methodology of Lopdell et al. (2017). This approach compares association statistics from the

trait QTL to association statistics from variants in the same interval for an eQTL mapping to

the same general locus, with the expectation that trait QTL underpinned by eQTL will have

common top-associated variants, and/or will have similar patterns of association across the wider

spectrum of variants within that interval. Briefly, for each QTL from the iterative GWAS, any

significant, pre-computed eQTL within the same 1-Mbp window were identified. To identify cases

where trait and expression QTL shared the same top-associated variant, LD criteria were used to

highlight tag variants that, at R2 > 0.9, were linked to the most significant, co-localized eQTL

variant. To assess commonalities of association within the broader interval (i.e., beyond pairwise

analysis of the top-associated trait QTL/eQTL tag variants), Pearson correlation coefficients

between the log-scaled p-values of the trait QTL and all eQTL within the interval of interest were

computed. To account for regional differences in LD structure, Pearson correlation coefficients

were evaluated across the entire 1-Mbp region of interest, and a smaller 500-kbp region, with

the strongest correlation used to assess the relationship between the trait and expression QTL

p-values. Trait QTL were filtered to those for which the Pearson correlation from either window

was higher than 0.7.
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6.3.7 FT-MIR wavenumber association effect patterns for genes of

interest

After conducting GWAS across FT-MIR wavenumbers, wavenumber QTL that were in strong LD

with a PIV, or had a co-localized eQTL (as described in detail above) were identified. In cases

where there were multiple candidate genes implicated for a QTL, the gene with a PIV in highest

LD with the QTL was selected as representative of the locus. Where multiple loci were implicated

for the same gene, the variant in highest LD with either the corresponding PIV or the top

variant of the eQTL was used. For the identified genes, the –log10(p-values) for the representative

tag variant were compiled across FT-MIR wavenumbers, creating significance ‘profiles’ that

allowed patterns of association across the mid-infrared region to be compared between loci. To

facilitate these comparisons and account for differences in p-value magnitudes between loci, the

–log10(p-values) were scaled to sum to unity. Differences between scaled significance profiles for

loci were evaluated based on the Euclidean distance between corresponding points on the profiles

for pairs of genes, and clustering of the distances based on the largest pairwise dissimilarity across

elements was performed using the hclust function in R (v4.0.2) (R Core Team, 2020) with default

parameters.

6.4 Results

6.4.1 Sequence-based genome-wide association analysis

The first-round pre-iteration (base) GWAS, including 17,873,880 imputed sequence variants,

resulted in significant associations for 37,779 variants for FP, 17,159 variants for LP, and 36,067

variants for PP. The number of significant associations for individual FT-MIR wavenumbers

ranged from 50 to 60,242, with a mean and median of 24,505 and 25,895 variants, respectively. For

18 of the 895 individual wavenumber phenotypes, the Bolt-LMM GWAS did not converge, due to

insufficient genetic variation in the trait. Among the remaining wavenumbers, 830 had at least one

significant association in the base GWAS. The numbers of significant variants in the base GWAS

for individual wavenumbers across the mid-infrared range are shown in Fig. 6.1. Regions of the

spectrum associated with low signal-to-noise ratios and poor sample measurement repeatability,

due to the water content in milk are shaded in blue, according to the definitions in Tiplady et

al. (2019). Significant associations were identified across most of the spectrum, including within

regions that were commonly associated with low signal-to-noise ratios. Among the significant
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Figure 6.1: Number of significant variants from GWAS for each individual FT-MIR wavenumber. Noise
regions (blue) with low repeatability are defined as from 649 to 970 cm−1, from 1,608 to 1,682 cm−1, and
from 3,021 to 3,849 cm−1

associations observed, 17.0% were positioned within the first 3 Mbp of chromosome 14, which

encompasses the DGAT1 gene that has been widely reported as impacting many milk composition

traits (Grisart et al., 2002; Schennink et al., 2007). For the FP and PP phenotypes, the proportion

of significant associations that were positioned within the first 3 Mbp of chromosome 14 were

16.5% and 13.6%, respectively. None of the significant associations for the LP phenotype localized

to that region.

In the base GWAS, individual FT-MIR wavenumber QTL were observed on 27 of the 29

bovine autosomes (Fig. 6.2) within 450 different 1-Mbp regions. In contrast, QTL for FT-MIR

predicted milk composition traits were observed on 25 of the 29 autosomes (Fig. 6.3) within

246 different 1-Mbp regions. The number of iterations required after the base GWAS until the

analyses ceased to highlight significant effects for the FT-MIR wavenumber phenotypes ranged

from 0 to 10, with an average of 3.9. For the FT-MIR predicted milk composition traits, FP, LP

and PP, the number of iterations required after the base GWAS was 6, 8 and 7, respectively. For

the FT-MIR wavenumber phenotypes, all significant signals were captured by no more than 68

tag variants, with the mean and median number of tag variants required to capture the signal for

an individual wavenumber being 26 and 29, respectively. For FT-MIR predictions of FP, LP and

PP, all significant signals were captured by 55, 72 and 86 tag variants, respectively.



124 6. GWAS OF FT-MIR WAVENUMBERS IN DAIRY CATTLE

Figure 6.2: Manhattan plot showing association effects for FT-MIR wavenumbers. Consolidated
association effects shown for FT-MIR wavenumbers. Chromosomes and genomic positions based on the
UMD3.1 Bos taurus reference genome are represented on the x-axis. The strength of association signals
are represented as the -log10(p-value) on the y-axis which has been truncated to facilitate visualisation of
the results. The horizontal red line shows the Bonferroni significance threshold of -log10(6.2e–13)

Figure 6.3: Manhattan plot showing association effects for FT-MIR predicted milk composition traits.
Consolidated association effects shown for FT-MIR predicted milk production traits (Fat %, Lactose %
and Protein %). Chromosomes and genomic positions based on the UMD3.1 Bos taurus reference genome
are represented on the x-axis. The strength of association signals are represented as the -log10(p-value)
on the y-axis which has been truncated to facilitate visualisation of the results. The horizontal red line
shows the Bonferroni significance threshold of -log10(6.2e–13)

6.4.2 Identification of candidate causative variants

To identify candidate causative variants for wavenumber and predicted-trait QTL, we used func-

tional annotation to find PIV in strong LD (R2 > 0.9) with trait QTL from the GWAS iterations.

Those criteria yielded 42 1-Mbp regions, encompassing 55 effects with a PIV for at least one FT-

MIR wavenumber. Based on our categorisation of signals into moderately and highly significant

groups, 31 of the 55 wavenumber QTL were classified as highly significant. Details of these 31

effects are in Table 6.1. Manhattan plots of a 1-Mbp region centred on the QTL tag variant for each

of the 31 highly significant wavenumber QTL from the base GWAS are provided in Additional file 1:

Fig. S1 of the original paper (https://gsejournal.biomedcentral.com/articles/10.1186/

s12711-021-00648-9#additional-information). Details of the wavenumber QTL classified as

https://gsejournal.biomedcentral.com/articles/10.1186/s12711-021-00648-9#additional-information
https://gsejournal.biomedcentral.com/articles/10.1186/s12711-021-00648-9#additional-information
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moderately significant are provided in Appendix 6.A.1. Note that there are three effects where

the locus has been identified as highly significant based on the LD with one or more other loci

(Table 6.1), and moderately significant based on the LD with other loci (Appendix 6.A.1). Effect

sizes and MAF details for the tag SNP of the 31 highly significant wavenumber QTL are provided

in Appendix 6.A.2. For each of these 31 QTL, the proportions of phenotypic and genetic variance

that they account for across FT-MIR wavenumber and predicted composition traits are provided

in Additional file 2: Table S4 of the original paper (https://gsejournal.biomedcentral.

com/articles/10.1186/s12711-021-00648-9#additional-information). Of the 31 highly

significant wavenumber QTL, 14 were identified in the base GWAS (Iteration 0). For the 17

highly significant wavenumber QTL identified in subsequent GWAS iterations after the base

GWAS (Table 6.1), p-values at previous iterations for the phenotype, and p-values for the

corresponding top chromosomal SNP in that iteration are provided in Additional file 2: Table S5

of the original paper (https://gsejournal.biomedcentral.com/articles/10.1186/s12711-

021-00648-9#additional-information).

For predicted composition traits, 27 effects with a PIV were identified within 15 1-Mbp

regions. Of the 27 predicted-trait QTL, 18 were classified as highly significant. Details of

these effects are in Table 6.2, with details of the QTL classified as moderately significant

provided in Appendix 6.A.3. Effect sizes and MAF details for highly significant predicted-

trait QTL are provided in Appendix 6.A.4. Details of highly significant predicted-trait QTL

from iterations subsequent to the base GWAS are provided in Additional file 2: Table S8

of the original paper (https://gsejournal.biomedcentral.com/articles/10.1186/s12711-

021-00648-9#additional-information).

Of all candidate protein coding mutations identified, we were particularly interested in those

identified as having a high impact according to the SnpEff classification, in which variants that

are expected to strongly disrupt or ablate gene function could a priori be considered as excellent

candidates for these QTL. Three such PIV from the wavenumber and predicted-trait QTL fit

this definition, comprising frameshift mutations in the FCGR2B or KCNH4 genes, and a splice

donor mutation in the ABO gene (Tables 6.1 and 6.2). Since this class of variants was likely to

be enriched for annotation errors (MacArthur et al., 2012), we manually visualized mammary

RNA-seq alignments for these mutations to help confirm their predicted impacts as disruptive of

coding sequences. Although the FCGR2B rs381714237 variant was represented in the RNA-seq

reads, the mutation appeared to be intronic. Annotation of the KCNH4 mutation appeared

similarly dubious, with limited evidence suggesting that it was localized in a mammary-expressed

https://gsejournal.biomedcentral.com/articles/10.1186/s12711-021-00648-9#additional-information
https://gsejournal.biomedcentral.com/articles/10.1186/s12711-021-00648-9#additional-information
https://gsejournal.biomedcentral.com/articles/10.1186/s12711-021-00648-9#additional-information
https://gsejournal.biomedcentral.com/articles/10.1186/s12711-021-00648-9#additional-information
https://gsejournal.biomedcentral.com/articles/10.1186/s12711-021-00648-9#additional-information
https://gsejournal.biomedcentral.com/articles/10.1186/s12711-021-00648-9#additional-information
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exon. The ABO rs207688357 mutation was clearly localized in the donor site of the splice junction

of intron/exon 5, with animals that carried the mutation showing activation of cryptic alternative

splice sites. These alternative transcripts comprised an 8-bp contraction, or 33-bp expansion of

exon 5 (splicing at chr11:104242578 and chr11:1042425462 respectively, Fig. 6.4), which suggests

that the ABO protein in animals homozygous for the mutation is non-functional.

Figure 6.4: Mammary RNA-seq alignments representing ABO intron/exon 5 splicing structures of the
chr11:104242578GG and chr11:104242578CC genotypes. The site of the proposed chr11:104242578C>G
essential splice donor SNP is indicated, with individual reads and coverage data showing alternate splice
forms in the animal carrying the mutation. This coverage track also represents the cryptic, ‘+33 bp long
splice’ transcript as the minority splice form relative to the ‘- 8 bp short splice’ transcript, the former
representing an in-frame variant, with the latter causing a predicted frame-shifted protein isoform
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Table 6.1: Peak variants for FT-MIR wavenumbers with highly significant protein sequence association effects

Chr Position Tag variant No. of Top wvn Iter P-value Protein coding LD Gene Impact Description
ID hits cm−1 variant ID

3 7908611 rs137763930 11 940 1 6.7e-20 rs110560331 0.976 FCRLA L c.233-3T>C
3 7931694 rs211402696 20 1462 2 1.2e-23 rs381714237 0.989 FCGR2B H c.899dupC
3 15411459 rs134900385 6 1022 1 4.3e-19 rs382689947 0.994 FAM189B M c.1237T>C
3 15411459 rs134900385 6 1022 1 4.3e-19 rs134844772 0.990 GBA M c.1080C>A
3 15411459 rs134900385 6 1022 1 4.3 e-19 rs132659643 0.999 HCN3 M c.1699A>G
3 15411459 rs134900385 6 1022 1 4.3e-19 rs109330809 0.990 MTX1 L c.508-6T>C
3 15517871 rs109328483 6 1007 1 4.4e-19 rs136761456 0.992 SCAMP3 M c.151G>C
3 15517871 rs109328483 6 1007 1 4.4e-19 rs43706482 0.994 THBS3 L c.2075-3T>C
3 15550598 rs380597285 327 1462 0 1.3e-54 rs109816684 0.994 SLC50A1 L c.282+7G>A
5 75729880 rs384734208 50 1466 1 5.0e-47 rs207628090 0.930 CSF2RB M c.41T>C
5 75758989 rs210094995 2 1447 0 5.8e-40 rs210937722 0.926 NCF4 M c.841G>C
5 118246868 rs136859160 308 1261 0 3.0e-44 rs456403270 0.937 TBC1D22A M c.1063C>T
6 38027010 rs43702337 455 1119 0 7.3e-948 rs43702337 1 ABCG2 M c.1742A>C
6 87181619 rs43703011 17 3633 2 2.5e-22 rs43703011 1 CSN2 M c.245C>A
6 87274397 rs378808772 3 1283 2 9.9e-51 rs43703010 0.974 CSN1S1 M c.620A>G
6 87390576 rs43703015 18 1473 1 4.0e-108 rs43703015 1 CSN3 M c.470T>C
11 103304757 rs109625649 329 1593 0 1.2e-134 rs109625649 1 PAEP M c.401T>C
11 104242578 rs207688357 11 1462 0 5.5e-33 rs207688357 1 ABO H c.233+1G>C
12 69612955 rs383509255 132 1716 0 6.4e-45 rs208744187 0.950 TGDS M c.204A>C
14 1726650 rs133611586 6 3514 1 1.6e-75 . 0.992 WDR97 L c.2656-5_2656-4insG
14 1732043 rs437406031 384 2846 1 6.3e-42 rs450710918 0.990 ENS..39978 M c.352G>A
14 1732043 rs437406031 384 2846 1 6.3e-42 rs476736066 0.997 MROH1 M c.3549G>C
14 1755742 rs384226556 5 2656 0 4.0e-20 rs209542297 0.9998 CPSF1 L c.4287T>C
14 1802265 rs109234250 310 1716 0 1.5e-2607 rs109234250 1 DGAT1 M c.694G>A
14 1802265 rs109234250 310 1716 0 1.5e-2607 rs134364612 0.999 SLC52A2 M c.724A>G
14 66328304 rs446084949 19 1029 1 2.7e-20 rs446084949 1 SPAG1 M c.2044G>A
15 28347165 rs210034037 5 1537 0 7.7e-35 rs208325660 0.999 RNF214 M c.314G>A
15 53940444 rs382926661 23 1205 1 4.2e-19 rs380220394 0.993 DNAJB13 L c.69-4T>C
16 24977696 rs111027377 62 2742 2 4.8e-25 rs109896036 0.988 MTARC1 L c.628-5C>T
16 24977696 rs111027377 62 2742 2 4.8e-25 rs110899826 0.988 MTARC1 M c.581C>G
19 42428366 rs209808022 4 1250 1 3.1e-25 rs209302038 0.991 KRT9 M c.196C>T
19 42488389 rs379667889 8 1447 0 7.8e-34 rs209756857 0.969 KRT42 L c.57+7C>T
19 42488389 rs379667889 8 1447 0 7.8e-34 rs383013355 0.963 KRT16 M c.896A>G
19 42488389 rs379667889 8 1447 0 7.8e-34 rs208923483 0.966 KRT17 M c.146G>C
19 42488389 rs379667889 8 1447 0 7.8e-34 rs385937063 0.966 KRT17 L c.1233C>T
19 43036265 rs210324533 11 1029 1 5.3e-43 rs207799702 0.944 KAT2A L c.700-7C>G
19 43036265 rs210324533 11 1029 1 5.3e-43 rs209410283 0.945 KCNH4 M c.408C>G
19 43036265 rs210324533 11 1029 1 5.3e-43 rs377779402 0.945 KCNH4 H c.2663+2T>C
19 43053995 rs481837688 24 1212 1 6.6e-26 rs481837688 1 STAT5A M c.2305C>A
19 51303887 rs41921224 65 1499 0 1.9e-35 rs41921160 0.993 CCDC57 M c.1907T>C
19 57087981 rs41920620 6 1216 0 1.8e-21 rs469721022 0.999 HID1 L c.1147-7G>C
28 6559147 rs133101552 3 1261 0 8.6e-23 rs133101552 1 KCNK1 M c.934C>A
29 41821270 rs207854419 14 1257 1 4.6e-30 rs384900272 0.998 NXF1 M c.1555G>A

Peak variants and association effects for FT-MIR wavenumbers classified as highly significant. Highly significant effects are
classified such that: the -log10(p-value) for the effect was greater than 1.5 x the Bonferroni threshold and the correlation
between the tag variant and the protein sequence variant was in the range (0.975, 1]; or the -log10(p-value) for the effect was
greater than 2 x the Bonferroni threshold and the correlation between the tag variant and the protein sequence variant was in
the range (0.95, 0.975]; or the -log10(p-value) for the effect was greater than 2.5 x the Bonferroni threshold and the correlation
between the tag variant and the protein sequence variant was in the range (0.925,0.95]. Bonferroni threshold: -log10(6.2e-13).
No. of hits = number of wavenumbers for which the variant was selected as the representative (most significant) tag variant for
a peak. Iterations (Iter) are defined relative to the base GWAS, with the base GWAS represented as iteration 0.
Abbreviations: L = Low impact splice region variant; M = Moderate impact missense variant; H = High impact splice donor.
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Table 6.2: Peak variants for composite milk production traits with highly significant protein sequence
association effects

Trait Chr Position
Tag variant

Iteration P-value
Protein coding

LD Gene Impact Description
ID variant ID

FP 5 75698283 rs385866519 1 4.0e-19 rs207628090 0.979 CSF2RB M c.41T>C
FP 11 103304757 rs109625649 0 4.3e-46 rs109625649 1 PAEP M c.401T>C
FP 12 69608900 rs211406918 0 4.2e-33 rs208744187 0.951 TGDS M c.204A>C
FP 14 1732043 rs437406031 1 7.2e-37 rs450710918 0.990 ENS..39978 M c.352G>A
FP 14 1732043 rs437406031 1 7.2e-37 rs476736066 0.997 MROH1 M c.3549G>C
FP 14 1800439 rs209876151 0 8.9e-2225 rs109326954 0.9999 DGAT1 M c.695C>A
FP 14 1800439 rs209876151 0 8.9e-2225 rs134364612 0.9998 SLC52A2 M c.724A>G
LP 3 15433518 rs109749506 1 1.3e-20 rs382689947 0.995 TENT5A M c.1237T>C
LP 3 15433518 rs109749506 1 1.3e-20 rs134844772 0.992 GBA M c.1080C>A
LP 3 15433518 rs109749506 1 1.3e-20 rs109330809 0.992 MTX1 L c.508-6T>C
LP 3 15545091 rs379353107 0 2.2e-42 rs109816684 0.998 SLC50A1 L c.282+7G>A
LP 6 38027010 rs43702337 0 9.0e-717 rs43702337 1 ABCG2 M c.1742A>C
LP 16 24983926 rs110162358 2 1.0e-19 rs109896036 0.999 MTARC1 L c.628-5C>T
LP 16 24983926 rs110162358 2 1.0e-19 rs110899826 0.999 MTARC1 M c.581C>G
LP 19 43036265 rs210324533 3 9.4e-40 rs207799702 0.944 KAT2A L c.700-7C>G
LP 19 43036265 rs210324533 3 9.4e-40 rs209410283 0.945 KCNH4 M c.408C>G
LP 19 43036265 rs210324533 3 9.4e-40 rs377779402 0.945 KCNH4 H c.2663+2T>C
PP 3 15550598 rs380597285 0 1.7e-37 rs109816684 0.994 SLC50A1 L c.282+7G>A
PP 5 75758989 rs210094995 0 3.3e-34 rs209394772 0.935 CSF2RB M c.227G>A
PP 5 75758989 rs210094995 0 3.3e-34 rs210937722 0.926 NCF4 M c.841G>C
PP 5 118239754 rs384479185 2 3.9e-32 rs456403270 0.976 TBC1D22A M c.1063C>T
PP 6 38027010 rs43702337 0 6.4e-115 rs43702337 1 ABCG2 M c.1742A>C
PP 14 1763380 rs135017891 0 5.9e-718 rs135258919 0.999 HSF1 M c.1031T>C
PP 14 1802265 rs109234250 1 1.2e-61 rs109234250 1 DGAT1 M c.694G>A
PP 14 1802265 rs109234250 1 1.2e-61 rs134364612 0.999 SLC52A2 M c.724A>G
PP 15 53940444 rs382926661 1 2.9e-20 rs380220394 0.992 DNAJB13 L c.69-4T>C
PP 19 43035006 rs209494359 0 1.6e-40 rs207799702 0.944 KAT2A L c.700-7C>G
PP 19 43035006 rs209494359 0 1.6e-40 rs209410283 0.945 KCNH4 M c.408C>G
PP 19 43035006 rs209494359 0 1.6e-40 rs377779402 0.945 KCNH4 H c.2663+2T>C

Peak variants for composite milk production traits with highly significant protein sequence effects whereby: the
-log10(p-value) for the effect was greater than 1.5 x the Bonferroni threshold and the correlation between the tag
variant and the protein sequence variant was in the range (0.975, 1]; or the -log10(p-value) for the effect was greater
than 2 x the Bonferroni threshold and the correlation between the tag variant and the protein sequence variant was
in the range (0.95, 0.975]; or the -log10(p-value) for the effect was greater than 2.5 x the Bonferroni threshold and
the correlation between the tag variant and the protein sequence variant was in the range (0.925,0.95]. Bonferroni
threshold: -log10(6.2e-13). Iterations (Iter) are defined relative to the base GWAS, with the base GWAS represented
as iteration 0.
Abbreviations: FP = Fat %; LP = Lactose %; PP = Protein %; L = Low impact splice region variant; M = Moderate
impact missense variant; H = High impact splice donor.
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6.4.3 Identification of co-localized eQTL

Comparisons of association statistics from trait QTL to those representing mammary eQTL

variants in the same interval identified co-localized eQTL for 38 wavenumber QTL (see details in

Table 6.3). For 19 of these identified from the base GWAS (Iteration = 0), Manhattan plots are

provided for 1-Mbp regions centred on the trait QTL tag variant in Additional file 3: Fig. S9

of the original paper (https://gsejournal.biomedcentral.com/articles/10.1186/s12711-

021-00648-9#additional-information). Effect sizes and MAF details for all 38 loci with a

co-localized trait QTL and eQTL pair are provided in Appendix 6.A.5. For each of these 38

loci, the proportions of phenotypic and genetic variance explained across FT-MIR wavenumber

and predicted composition traits are provided in Additional file 4: Table S11 of the original

paper (https://gsejournal.biomedcentral.com/articles/10.1186/s12711-021-00648-9#

additional-information). For the 19 trait QTL identified in subsequent GWAS iterations

after the base GWAS, p-values at previous iterations for the phenotype, and p-values for the

corresponding top chromosomal SNP in that iteration are provided in Additional file 4: Table S12

of the original paper (https://gsejournal.biomedcentral.com/articles/10.1186/s12711-

021-00648-9#additional-information).

Co-localized eQTL were identified for 25 predicted-trait QTL. Details of these trait QTL

and eQTL pairs are in Table 6.4, with effect sizes and MAF details provided in Appendix 6.A.6.

Further details of the 12 QTL identified in iterations subsequent to the base GWAS are provided

in Additional file 4: Table S14 of the original paper (https://gsejournal.biomedcentral.com/

articles/10.1186/s12711-021-00648-9#additional-information).

6.4.4 Investigation of patterns of FT-MIR wavenumber associations

for genes of interest

In total, 70 genes were implicated whereby the tag locus of the wavenumber QTL was in high

LD with a PIV (Table 6.1), or in high LD with the top variant of a co-localized eQTL (Table

6.3). In cases where multiple candidate genes were implicated for a QTL, the gene with the

PIV in highest LD with the QTL tag variant was used to represent the locus. This resulted in

tag loci representing 59 genes, for which scaled significance profiles were generated to represent

their association patterns across the mid-infrared region. Clustering analysis based on the largest

pairwise dissimilarity between corresponding points on profiles for pairs of genes resulted in > 20

clusters (Fig. 6.5). Significance profiles for all 59 genes are provided in Additional file 5: Fig. S15

of the original paper (https://gsejournal.biomedcentral.com/articles/10.1186/s12711-

021-00648-9#additional-information).

https://gsejournal.biomedcentral.com/articles/10.1186/s12711-021-00648-9#additional-information
https://gsejournal.biomedcentral.com/articles/10.1186/s12711-021-00648-9#additional-information
https://gsejournal.biomedcentral.com/articles/10.1186/s12711-021-00648-9#additional-information
https://gsejournal.biomedcentral.com/articles/10.1186/s12711-021-00648-9#additional-information
https://gsejournal.biomedcentral.com/articles/10.1186/s12711-021-00648-9#additional-information
https://gsejournal.biomedcentral.com/articles/10.1186/s12711-021-00648-9#additional-information
https://gsejournal.biomedcentral.com/articles/10.1186/s12711-021-00648-9#additional-information
https://gsejournal.biomedcentral.com/articles/10.1186/s12711-021-00648-9#additional-information
https://gsejournal.biomedcentral.com/articles/10.1186/s12711-021-00648-9#additional-information
https://gsejournal.biomedcentral.com/articles/10.1186/s12711-021-00648-9#additional-information
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Table 6.3: Peak variants for FT-MIR wavenumbers with co-localized eQTL

Chr Position
Tag variant

Iter
Top wvn No. of

P-value Gene
Top eQTL

Top eQTL
LD Pearson

Pearson

ID cm−1 hits variant ID
variant window
P-value (Mb)

1 5120248 rs42317521 2 2794 55 4.0e-18 CLDN8 rs42317521 4.3e-17 1 0.764 0.5
1 144377960 rs208161466 0 2592 22 2.3e-85 SLC37A1 rs208161466 4.1e-15 1 0.710 1.0
1 146481250 rs383691757 1 1071 1 4.7e-15 CSTB rs210595016 1.4e-52 0.992 0.938 0.5
1 154125158 rs207836083 0 1130 142 3.6e-68 SH3BP5 rs207836083 2.6e-32 1 0.816 0.5
3 15411459 rs134900385 1 1022 6 4.3e-19 KRTCAP2 rs133285846 9.7e-09 0.996 0.938 1.0
3 15550598 rs380597285 0 1462 325 1.3e-54 SLC50A1 rs380597285 8.7e-16 1 0.854 0.5
3 34387618 rs109030498 1 1466 157 3.5e-25 ELAPOR1 rs109030498 3.2e-30 1 0.817 0.5
3 53755929 rs209271975 1 1089 15 8.6e-22 LRRC8C rs466686834 3.5e-39 0.99 0.927 0.5
5 75729880 rs384734208 1 1466 44 5.0e-47 CSF2RB rs210641868 9.2e-27 0.926 0.752 1.0
5 75732526 rs210305241 1 1458 5 4.4e-42 NCF4 rs209273109 9.3e-16 0.91 0.813 1.0
5 93945738 rs211210569 0 1171 544 1.8e-131 MGST1 rs209372883 3.2e-43 0.919 0.925 1.0
6 46568418 rs210515595 3 1772 5 7.7e-22 SLC34A2 rs110805476 2.5e-07 0.979 0.805 0.5
6 87388064 rs379473589 1 1436 17 1.1e-97 CSN3 rs208009847 9.9e-33 0.963 0.878 0.5
9 21637056 rs209222932 0 1003 33 9.4e-20 YRMY5A rs209222932 2.8e-36 1 0.634 0.5
9 26534109 rs208123385 0 1462 36 1.9e-24 RNF217 rs208173647 1.3e-16 0.986 0.856 0.5
9 87585031 rs110986237 1 1470 6 7.4e-15 TAB2 rs110986237 9.5e-12 1 0.851 0.5
9 102874726 rs137238900 0 1768 1 1.0e-14 MPC1 rs134094426 6.9e-15 0.969 0.849 0.5
10 46581015 rs109326466 0 1246 15 2.0e-46 USP3 rs109326466 2.0e-31 1 0.961 0.5
11 14180010 rs110527112 1 2760 23 3.6e-29 XDH rs207554031 8.8e-26 0.978 0.709 0.5
11 78868975 . 1 1112 10 1.2e-19 LAPTM4A rs110552157 1.3e-40 0.998 0.920 0.5
11 103292402 rs383398415 0 2548 1 3.5e-56 PAEP rs109333988 1.2e-29 0.933 0.956 0.5
11 104229609 rs110534892 0 3648 10 1.2e-21 ABO rs109750996 3.9e-28 0.944 0.803 0.5
14 1754287 rs135443540 0 1085 3 1.6e-39 DGAT1 rs137202508 8.9e-42 0.905 0.944 0.5
15 57266467 rs136337092 0 3935 1 2.7e-13 CAPN5 rs136208815 9.3e-46 0.997 0.940 0.5
16 66314547 rs42579412 2 1425 1 1.0e-15 RGL1 rs42579412 6.3e-14 1 0.727 0.5
16 67730371 rs380453838 1 1757 125 3.8e-21 IVNS1ABP rs380453838 4.5e-27 1 0.876 0.5
18 2203322 rs132899112 1 1466 7 1.4e-15 FA2H rs137235970 1.9e-27 0.998 0.875 0.5
19 33517487 rs434248431 0 1100 23 2.9e-46 PMP22 rs434248431 8.6e-38 1 0.832 0.5
19 43036265 rs210324533 1 1029 11 5.3e-43 GHDC rs381442991 1.8e-22 0.945 0.975 0.5
19 57079881 rs381175117 2 1220 9 2.0e-23 HID1 rs109407913 1.2e-32 0.936 0.803 0.5
19 61134515 rs41923843 0 1130 45 3.2e-46 KCNJ2 rs41923843 1.7e-26 1 0.882 0.5
20 58454531 rs135636613 0 1391 23 4.3e-441 ANKH rs135636613 2.4e-16 1 0.860 0.5
22 53519865 rs109233889 0 1235 7 5.3e-15 LTF rs109233889 1.3e-32 1 0.813 0.5
24 58817202 rs208779762 0 1220 23 6.8e-34 LMAN1 rs207893260 1.3e-27 0.958 0.713 1.0
27 36211708 rs209855549 0 1731 157 6.2e-188 GPAT4 rs209855549 3.7e-21 1 0.848 0.5
27 41267242 rs109068627 1 2977 23 3.5e-26 THRB rs109068627 1.7e-22 1 0.704 0.5
29 9546217 rs380868305 0 1130 8 4.6e-186 PICALM rs380868305 2.4e-54 1 0.831 0.5
29 44579245 rs439384463 2 1548 3 4.3e-16 MUS81 . 3.0e-21 0.924 0.913 0.5

Peak variants for FT-MIR wavenumbers with a co-localized eQTL. Co-localized eQTL are defined such that: the Pearson
correlation between the -log10(p-values) of the trait QTL and the -log10(p-values) of the eQTL is higher than 0.7; and the LD
between the tag variant for the trait QTL and the top eQTL variant is higher than 0.9. The Pearson correlation shown is the
highest from two different size windows (0.5 Mbp and 1 Mbp), centred on the top tag variant. Iterations are defined relative
to the base GWAS, with the base GWAS represented as iteration 0. No. of hits: number of wavenumbers for which the variant
was selected as the representative (most significant) tag variant for a peak.
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Table 6.4: Peak variants for milk production traits with co-localized eQTL

Trait Chr Position
Tag variant

Iter P-value Gene
Top eQTL

Top eQTL
LD Pearson

Pearson

ID variant ID
variant window
P-value (Mb)

FP 3 34387618 rs109030498 2 6.0e-13 ELAPOR1 rs109030498 3.2e-30 1 0.832 0.5
FP 5 75698283 rs385866519 1 4.0e-19 CSF2RB rs210641868 9.2e-27 0.910 0.701 1
FP 5 93945738 rs211210569 0 6.7e-106 MGST1 rs209372883 3.2e-43 0.919 0.928 1
FP 10 46483019 rs133089336 0 4.5e-13 USP3 rs208181306 2.0e-31 0.909 0.905 0.5
FP 11 104229609 rs110534892 1 2.6e-14 ABO rs109750996 3.9e-28 0.944 0.727 1
FP 16 67730371 rs380453838 1 2.6e-19 IVNS1ABP rs380453838 4.5e-27 1 0.886 0.5
FP 27 36211708 rs209855549 0 9.7e-132 GPAT4 rs209855549 3.7e-21 1 0.819 0.5
LP 1 154122887 rs42167460 0 1.2e-50 SH3BP5 rs380642859 2.6e-32 0.999 0.859 0.5
LP 3 15433518 rs109749506 1 1.3e-20 KRTCAP2 rs133285846 9.7e-09 0.995 0.940 1
LP 3 15545091 rs379353107 0 2.2e-42 SLC50A1 rs379353107 8.7e-16 1 0.806 0.5
LP 3 53994057 rs211488591 2 6.7e-18 LRRC8C rs466686834 3.5e-39 0.986 0.753 1
LP 19 43036265 rs210324533 3 9.4e-40 GHDC rs381442991 1.8e-22 0.945 0.963 0.5
LP 19 61134515 rs41923843 1 1.1e-46 KCNJ2 rs41923843 1.7e-26 1 0.857 0.5
LP 20 58448763 rs134813825 0 3.2e-18 ANKH rs134813825 2.4e-16 1 0.809 0.5
LP 27 36204066 rs208306200 0 1.9e-21 GPAT4 rs208306200 3.7e-21 1 0.767 0.5
LP 29 9577372 rs380473328 0 2.1e-140 PICALM rs384691767 2.4e-54 0.996 0.845 0.5
PP 3 15520971 rs109098377 2 7.5e-16 KRTCAP2 rs133285846 9.7e-09 0.989 0.928 0.5
PP 3 15550598 rs380597285 0 1.7e-37 SLC50A1 rs380597285 8.7e-16 1 0.832 0.5
PP 5 75680825 rs208925020 4 8.5e-23 CSF2RB rs210641868 9.2e-27 0.947 0.871 1
PP 5 93945738 rs211210569 1 3.7e-42 MGST1 rs209372883 3.2e-43 0.919 0.817 0.5
PP 6 87387870 rs382652853 2 2.9e-45 CSN3 rs208009847 9.9e-33 0.963 0.891 0.5
PP 10 46581015 rs109326466 0 4.0e-38 USP3 rs109326466 2.0e-31 1 0.961 0.5
PP 18 2203325 rs135350753 0 2.1e-13 FA2H rs137235970 1.9e-27 0.997 0.831 0.5
PP 19 43035006 rs209494359 0 1.6e-40 GHDC rs381442991 1.8e-22 0.945 0.976 0.5
PP 24 58817202 rs208779762 0 5.7e-26 LMAN1 rs207893260 1.3e-27 0.958 0.737 0.5

Peak variants for composite milk production traits with a co-localized eQTL. Co-localized eQTL are defined such that:
the Pearson correlation between the -log10(p-values) of the trait QTL and the -log10(p-values) of the eQTL is higher than
0.7; and the LD between the tag variant for the trait QTL and the top eQTL variant is higher than 0.9. The Pearson
correlation shown is the highest from two different size windows (0.5 Mbp and 1 Mbp), centred on the top tag variant.
Iterations are defined relative to the base GWAS, with the base GWAS represented as iteration 0.
Abbreviations: FP = Fat %; LP = Lactose %; PP = Protein %.
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Significance profiles for a subset of gene clusters from Fig. 6.5 are presented in Fig. 6.6. For

each cluster, the significance profile for the gene with the largest QTL is shown in dark grey with

the profiles for other genes within the cluster (according to highlighted clusters in Fig. 6.5) shown

in light grey. Significance profiles varied widely between clusters, but were highly consistent

within clusters. The first cluster (Fig. 6.6a) includes genes with significant associations for the

LP (ABCG2, SH3BP5, KCNJ2, PICALM ) and PP phenotypes (ABCG2 ). For this cluster of

genes, prominent peaks were observed in bands of the mid-infrared spectrum from ~1,020 to 1,180

cm−1, from ~1,200 to 1,470 cm−1, from ~2,610 to 2,840 cm−1 and from ~2,870 to 2,980 cm−1.

The second cluster (Fig. 6.6b) includes genes with significant associations for the FP (USP3,

ELAPOR1, TBC1D22A) and PP (USP3, LMAN1, FA2H, TBC1D22A, STAT5A) phenotypes,

with multiple peaks observed across the mid-infrared spectrum, with the most prominent of

these being in the ranges from ~910 to 1,010 cm−1, from ~1,070 to 1,560 cm−1, from ~1,700 to

2,450 cm−1, from ~2,630 to 2,980 cm−1 and from ~3,620 to 3,680 cm−1. The third cluster (Fig.

6.6c) includes a number of genes with significant associations for the FP (DGAT1, ABO, TGDS,

GPAT4, MGST1, MROH1 ) and PP (DGAT1, MGST1 ) phenotypes. For this cluster of genes,

peaks were observed in many bands of the mid-infrared spectrum in common with peaks for

ABCG2 and USP3 (Fig. 6.6a; 6.6b), including from ~910 to 1,010 cm−1, from ~1,130 to 1,260

cm−1, from ~1,450 to 1,500 cm−1, from ~1,700 to 2,450 cm−1, and from 3,620 to 3,680 cm−1.

Other notable peaks observed for this cluster were from ~1,570 to 1,700 cm−1, from ~2,820 to

3,150 cm−1, and from ~3,460 to 3,530 cm−1.

Significance profiles for gene clusters represented by CSN3, PAEP and ANKH are shown in

Fig. 6.7. The pattern of significance in the profiles represented by CSN3 and PAEP (Fig. 6.7a

and 6.7b) were similar, in that a large proportion of the signal was captured within a small part

of the mid-infrared range; namely from ~1,220 to 1,780 cm−1 for the gene cluster represented

by CSN3, and from ~1,350 to ~1,650 cm−1 for the gene cluster represented by PAEP. Although

ANKH appeared to be an outlier in the clustering analysis (Fig. 6.5), a similar pattern was

observed with most of the signal captured within three prominent peaks in the range from ~1,260

to 1,620 cm−1. Two of these peaks, centred at ~1,391 cm−1 and 1,582 cm−1 were in common with

peaks observed for the PAEP profile. From the first cluster (Fig. 6.7a), CSN3 was the only gene

with a significant association for a predicted milk composition trait, namely PP. From the second

cluster of genes (Fig. 6.7b), the PAEP and CCDC57 genes had significant associations with the

FP phenotype, whilst ANKH had a significant association with the LP phenotype (Fig. 6.7c).
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Figure 6.6: Significance profiles across the mid-infrared spectrum for tag variants of candidate genes within
gene clusters. Y-axis values represent the strength of association signals as the -log10(p-value) of the effect,
scaled to sum to unity across the mid-infrared spectral range. The significance profile for the most highly
associated tag variant is shown in dark grey with the profiles for the other genes within the cluster shown
in light grey: a) ABCG2 (Chr6:38027010; dark grey), SH3BP5 (Chr1:154125158), RGL1 (Chr16:66314547),
PMP22 (Chr19:33517487), KCNJ2 (Chr19:61134515), PICALM (Chr29:9546217); b) USP3 (Chr10:46581015;
dark grey), ELAPOR1 (Chr3:34387618), TBC1D22A (Chr5:118246868), FA2H (Chr18:2203322), STAT5A
(Chr19:43053995), LTF (Chr22:53519865), LMAN1 (Chr24:58817202); and c) DGAT1 (Chr14:1802265; dark
grey), FCRLA (Chr3:7908611), FCGR2B (Chr3:7931694), MGST1 (Chr5:93945738), ABO (Chr11:104242578),
TGDS (Chr12:69612955), MROH1 (Chr14:1732043), CPSF1 (Chr14:1755742), GPAT4 (Chr27:36211708)
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Figure 6.7: Significance profiles across the mid-infrared spectrum for tag variants of candidate genes within
gene clusters. Y-axis values represent the strength of association signals as the -log10(p-value) of the effect,
scaled to sum to unity across the mid-infrared spectral range. The significance profile for the most highly
associated tag variant is shown in dark grey with the profiles for the other genes within the cluster shown
in light grey: a) CSN3 (Chr6:87390576; dark grey), CSN1S1 (Chr6:87274397), TAB2 (Chr9:87585031);
b) PAEP (Chr11:103304757; dark grey), MPC1 (Chr9:102874726), WDR97 (Chr14:1726650), CCDC57
(Chr19:51303887); and c) ANKH (Chr20:58454531)
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6.5 Discussion

6.5.1 GWAS for FT-MIR wavenumbers

While there have been many GWAS for FT-MIR predicted milk composition traits, there are

relatively few studies reporting GWAS results for individual FT-MIR wavenumber phenotypes.

This is not withstanding the fact that individual wavenumbers exhibit additional genetic signal,

compared to that observed in FT-MIR predictions of major milk composition traits (Wang and

Bovenhuis, 2018; Benedet et al., 2019), and that direct analysis of the individual wavenumbers

could provide additional granularity to establish causal links between the genome and underlying

milk composition. Here, we present the results of GWAS that were conducted across individual

FT-MIR wavenumber phenotypes, and the use of an iterative approach to help differentiate

multiple, overlapping QTL. In total, wavenumber QTL were observed across 450 1-Mbp genomic

regions, whereas predicted-trait QTL were observed across only 246 1-Mbp genomic regions.

Notably, many of the observed wavenumber QTL were for wavenumbers within mid-infrared

regions that were characterised by low signal-to-noise ratios. Typically, spectral data in these

low signal-to-noise regions are discarded from analyses; however, these results indicate that

wavenumbers in these regions are potentially informative. The signals that we observed in these

noise regions were within several genes, with the highest frequency and strongest signals for

variants in the DGAT1 gene. This corroborates findings from previous studies which also observed

significant associations between the DGAT1 K232A polymorphism and wavenumbers in the

regions from 1,619 to 1,674 cm−1 and from 3,073 to 3,667 cm−1 (Wang et al., 2016; Wang and

Bovenhuis, 2018).

6.5.2 Multiple FT-MIR wavenumber QTL observed

In total, 31 wavenumber QTL were identified that we deemed to be ‘highly significant’ (see

Methods for definition). Highly significant QTL were also observed for 12 of these same loci

in at least one FT-MIR predicted milk composition trait, whereby the locus was in high LD

(R2 > 0.9) with the same PIV. The loci for the three largest of these effects were in perfect

LD with missense mutations in the ABCG2, PAEP and DGAT1 genes, respectively, that have

been proposed to have major impacts on milk composition (Cohen-Zinder et al., 2005; Ganai

et al., 2009; Grisart et al., 2002). Notably, the missense variant in the ABCG2 gene identified

here (rs43702337) is the same Y581S variant that was previously reported to be associated

with milk yield and composition in Holstein cattle (Cohen-Zinder et al., 2005). The role of
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the ABCG2 mutation in milk composition regulation can be assumed to derive from osmotic

impacts due to its function as an efflux transporter (Lopdell et al., 2017), although the gene has

recently also been implicated in the modulation of mammary epithelial cell proliferation (Wei

et al., 2012). The PAEP gene encodes the major whey protein β-lactoglobulin. The variant

rs109625649 reported here (V134A) is one of the variants that distinguishes the ‘A’ and ‘B’

haplotypes of β-lactoglobulin (Caroli et al., 2009). The PAEP gene also exhibited an eQTL that

was significantly correlated with wavenumber 2,548 cm−1, which is concordant with previous

reports of PAEP promotor variants associated with milk composition (Zakizadeh et al., 2012).

The gene DGAT1 encodes diacylglycerol O-acyltransferase 1, which catalyses the final step in

triglyceride production and which, given the substantial quantities of fat secreted during milk

production, makes DGAT1 a well-demonstrated and straightforward candidate gene for this effect.

The variant rs109234250 (K232A) reported here has been widely ascribed to the effects of the

DGAT1 gene on milk production, with a recent study showing that these effects may be due in

part to an expression-based mechanism (Fink et al., 2020).

For the effects observed in the ABCG2, PAEP and DGAT1 genes, the p-values for the most

significant FT-MIR wavenumber were always more significant than the comparable values for any

of the milk composition traits. For example, the p-value for the most significant wavenumber at

the chr6:38027010 locus, the missense mutation in ABCG2 highlighted above (Y581S, rs43702337)

(Cohen-Zinder et al., 2005) was 7.3e-948, whereas the p-values for the same variant for LP

and PP were 9.0e-717 and 6.4e-115, respectively. Similarly, the p-value for the most significant

wavenumber at the chr11:103304757 locus, the V134A PAEP mutation (rs109625649) was 1.2e-

134, whereas the p-value for the same variant for FP was 4.3e-46; and the p-value for the most

significant wavenumber at the chr14:1802265 locus, represented by the K232A DGAT1 mutation

(rs109234250) (Grisart et al., 2002) was 1.5e-2607, whereas the p-value for the same locus for PP

was 1.2e-61.

Multiple protein-coding mutations could be attributed to loci with QTL in both wavenumber

and milk composition traits, highlighting genes that appear to be novel to the present study

(TGDS and DNAJB13 ), and genes previously reported in other studies of milk composition

traits: GBA (Jiang et al., 2019b; Raven et al., 2014), MTX1 (Raven et al., 2016), SLC50A1

(Jiang et al., 2018; Lopdell et al., 2017), CSF2RB (Kemper et al., 2015a; Lopdell et al., 2019b;

Raven et al., 2016), NCF4 (Lopdell et al., 2019b; Raven et al., 2016), TBC1D22A (Pausch et al.,

2017), MROH1 (Sanchez et al., 2017b) and MTARC1 (Lopdell et al., 2017). A number of other

QTL that were in strong LD with a PIV were observed in FT-MIR wavenumbers, but not in

the FT-MIR predicted milk composition traits. This included QTL highlighting genes that have
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been previously reported in other studies of bovine milk composition: FCGR2B (Jiang et al.,

2019a), SCAMP3 (Raven et al., 2016), THBS3 (Raven et al., 2016), CSN1S1, CSN2 and CSN3

(Jiang et al., 2019b; Sanchez et al., 2017b), ABO (Liu et al., 2019; Poulsen et al., 2019), CPSF1

(Buitenhuis et al., 2014; Cochran et al., 2013), SPAG1 (Jiang et al., 2018), RNF214 (Lopdell

et al., 2017), KAT2A (Lopdell et al., 2017), STAT5A (Brym et al., 2004; He et al., 2012; Schennink

et al., 2009) and CCDC57 (Bouwman et al., 2014; Li et al., 2014); and QTL highlighting genes

that appear novel: FCRLA, WDR97, KRT9, KRT16, KRT17, HID1, KCNK1 and NXF1.

Although many regions highlighted single mutations that could be considered excellent

candidate mutations for a given QTL, other loci presented more complex regions with multiple

competing candidates. In some cases, candidate genes at these loci have previously been proposed;

however, it is possible that one or more novel genes may explain minor QTL that map to the same

positions. For example, the chr3:15.4-15.6 Mbp region which includes the genes FAM189B, GBA,

HCN3, MTX1, SCAMP3, THBS3 and SLC50A1 ; the chr14:1.7-1.8 Mbp region, which includes

the genes WDR97, MROH1, CPSF1, SLC52A2 and the DGAT1 K232A amino acid substitution;

the chr19:42.4-42.5 Mbp region which includes the genes KRT9, KRT42, KRT16 and KRT17 ;

and the chr19:43.0-43.1 Mbp region which includes the genes KAT2A, KCNH4 and STAT5A.

These regions might represent multiple, linked QTL, or instances of single QTL where the LD

structure and our relatively simple approach for identifying candidate genes was ineffective at

differentiating them. Another possibility is that wavenumbers in these regions detect the presence

of multiple chemically-similar compounds, with milk concentrations being influenced by different

proteins, such as enzymes or transporters that are encoded by different genes.

6.5.3 Co-localized eQTL suggest widespread regulatory impacts on FT-

MIR wavenumbers

Of the 38 significant FT-MIR wavenumber QTL with co-localized eQTL, 18 also had co-localized

eQTL that were observed for an FT-MIR predicted milk composition trait. In many cases, the

tag variant for the wavenumber QTL was also the top variant for the co-localized eQTL. Genes

corresponding to these effects have previously been published in other studies of bovine milk

composition: SH3BP5 (Lopdell et al., 2017), SLC50A1 (Jiang et al., 2018; Lopdell et al., 2017),

USP3 (Fang et al., 2014; Wang et al., 2019a), IVNS1ABP (Lopdell et al., 2017), KCJN2 (Lopdell

et al., 2017), ANKH (Lopdell et al., 2017; Sanchez et al., 2017b), GPAT4 (Littlejohn et al.,

2014; Wang et al., 2012) and PICALM (Lopdell et al., 2017; Sanchez et al., 2017b). Other

cases for which the wavenumber QTL was in high LD (R2 > 0.9) with the top eQTL variant
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highlighted genes previously published in other studies of bovine milk composition: LRRC8C

(Lopdell et al., 2017), CSF2RB (Kemper et al., 2015a; Lopdell et al., 2019b; Raven et al., 2016),

MGST1 (Littlejohn et al., 2016; Pausch et al., 2017), CSN3 (Jiang et al., 2019b; Sanchez et al.,

2017b), ABO (Liu et al., 2019; Poulsen et al., 2019), GHDC (Lopdell et al., 2017; Raven et al.,

2016) and LMAN1 (Pausch et al., 2017; Sanchez et al., 2019); and genes that appear to be novel

to the present study: KRTCAP2 and FA2H. Pearson correlations between log-scaled p-values for

the trait and expression QTL for the latter two effects were 0.94 and 0.88, respectively, with both

displaying very strong LD between the trait QTL and the most highly significant eQTL variant

(R2 > 0.995).

Many wavenumber QTL with a co-localized eQTL also had a co-localized eQTL identified

for a predicted milk composition trait. In these cases, a common pattern was observed whereby

the wavenumber QTL had more highly significant p-values, compared to the p-values for the

predicted trait. This was the case for MGST1, ANKH, GPAT4 and PICALM. Notably, significant

wavenumber QTL were detected for several additional milk proteins, with either highly-significant

coding variants (CSN1S1, CSN2, CSN3 ) or a co-localized eQTL (LTF). To our surprise, only

the CSN3 eQTL was identified by analysis of the milk composition traits, with a p-value of

2.9e-45 for the PP phenotype, which was less significant than the p-value for the most significant

wavenumber (p-value=1.1e-97).

Other wavenumber QTL where a co-localized eQTL was identified within FT-MIR wavenum-

bers, but not the predicted milk composition traits, included effects that highlighted a number

of genes that appear novel to the present study: CLDN8, CSTB, TAB2, LAPTM4A, CAPN5,

PMP22, HID1 and THRB; and a number of genes previously reported as having an effect on

bovine milk composition: SLC37A1 (Kemper et al., 2016; Raven et al., 2016), NCF4 (Lopdell

et al., 2019b; Raven et al., 2016), SLC34A2 (Liu et al., 2013), TENT5A (Li et al., 2014), RNF217

(Jiang et al., 2018), MPC1 (Sanchez et al., 2019), XDH (Ogorevc et al., 2009; Pegolo et al., 2016),

PAEP (Ganai et al., 2009), DGAT1 (Grisart et al., 2002), RGL1 (Yodklaew et al., 2017), LTF

(Mao et al., 2015; Viale et al., 2017) and MUS81 (Reynolds et al., 2021). These results underscore

the gain in power that is available when using individual FT-MIR wavenumber phenotypes,

compared to using predicted milk composition phenotypes which are linear functions of FT-MIR

absorbance values.
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6.5.4 Candidate causative variants of note

Although we identified a large number of candidate causative variants for FT-MIR wavenumbers

and predicted milk composition phenotypes, variants in perfect LD with a tag locus (R2=1)

warrant further discussion. These associations presented missense variants for genes mentioned

previously (ABCG2, PAEP and DGAT1 ), in addition to other genes that have previously been

linked to bovine milk composition phenotypes (CSN2, CSN3, ABO, SPAG1 and STAT5A). Of

these, the ABO exon 5 splice donor mutation (rs207688357; chr11:104242578C>G) is a particularly

interesting and seemingly novel candidate causative variant identified through our GWAS of

FT-MIR wavenumbers.

The rs207688357 variant was selected as the representative peak tag variant for 11 wavenumbers,

with the most significant peak association observed for wavenumber 1,462 cm−1. Visualisation

of RNA-seq alignments confirmed that this variant disrupts splicing in carrier and homozygous

animals (Fig. 6.4), where the mutation appears to activate two cryptic splice sites. The first

and comparatively higher expressed form of these alternative transcripts is a -8-bp frameshifted

isoform predicted to lead to premature termination, while the lowly expressed in-frame form is

predicted to introduce 11 new amino acids following the 78th residue (due to a +33bp exon 5

extension). In humans, ABO has a widely recognised role as encoding the glycosyltransferases

that catalyse the synthesis of the oligosaccharide ABO blood group antigens (Kermarrec et al.,

1999; Yamamoto et al., 1990). Since both the alternatively spliced forms of bovine ABO generated

by rs207688357 could be assumed to be non-functional (or at least dysfunctional for the minority

in-frame isoform), this mutation would be akin to the human O blood group in homozygotes,

where analogous human null alleles generate a non-functional enzyme (Chester and Olsson, 2001).

These antigens are best known due to their expression on the surface of red blood cells, although

they are also expressed on epithelial cells, as well as appearing as free oligosaccharides in milk

(Le Pendu, 2004). This finding suggests a mechanism by which non- or partially-functional bovine

ABO alleles change carbohydrate structures in milk, therefore presenting differing FT-MIR signals

detected by GWAS.

It should also be noted that although we are unaware of other studies proposing the rs207688357

(chr11:104242578) mutation as underlying such effects, other studies have reported genetic

associations for bovine milk oligosaccharides for the broader ABO locus (Liu et al., 2019; Poulsen

et al., 2019). One of these studies proposed an ABO p.Arg206Gln (R206Q; chr11:104232763;

rs110960674) amino acid substitution present on the Illumina BovineHD chip as a potential

causative mutation for this effect (Poulsen et al., 2019). The other study reported associations
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with non-coding variants downstream of the ABO coding sequence (lead variant chr11:104229609;

rs110534892), in this case using imputed sequence-based genotypes (Liu et al., 2019). Both

the p.Arg206Gln variant and the non-coding rs110534892 variant are also significant in our

population, alongside the rs207688357 splice donor mutation, with peak association observed for

the 1,462 cm−1 wavenumber phenotype. These alternative candidates are less strongly associated

than the rs207688357 splice donor mutation (p-value = 1.1e-23 and 1.8e-28, for the p.Arg206Gln

and rs110534892 variants, respectively, compared to 5.5e-33). While these findings might suggest

that these variants are simply linked to the functionally more compelling rs207688357 splice donor

mutation, LD between the variants and the splice donor mutation is moderate to low (R2=0.486

and R2=0.296 for the p.Arg206Gln and rs110534892 variants, respectively). Furthermore, when

fitting the rs207688357 splice donor mutation as a covariate in the iterative association analysis of

wavenumber 1,462 cm−1, both variants retain residual signal (p-values of 4.2e-04 and 1.4e-07 for

the p.Arg206Gln and rs110534892 variants, respectively), which suggests that all three variants

might contribute to the oligosaccharide content of milk. In support of this concept, we also note

that the non-coding rs110534892 variant proposed by Liu et al. (2019) is in strong LD with

the lead variant representing a strong ABO eQTL highlighted in our study (R2=0.944; Table

6.3). By contrast, the splice donor mutation is comparatively modestly associated with ABO

expression at the whole transcript level (p-value = 9.1e-11 versus 5.9e-27), which suggests that

multiple molecular mechanisms (missense, non-sense, and cis-regulatory effects) might contribute

to oligosaccharide modulation at this locus.

6.5.5 FT-MIR wavenumber association patterns for genes of interest

Although FT-MIR spectroscopy is a valuable tool for predicting a range of milk composition traits,

there are limitations to the approach, i.e., it is often unable to detect molecules that are present in

small quantities, and does not discriminate well between compounds that are chemically similar.

Nevertheless, we have demonstrated that individual FT-MIR wavenumber phenotypes can provide

valuable insights for establishing causal links between the genome and milk composition. Having

observed patterns of association across multiple FT-MIR wavenumbers for individual loci (i.e.,

genome positions that appeared to highlight specific subsets of wavenumbers), our aim was to

formally detect these patterns of association through cluster analysis. We hypothesised that the

identified clusters could be rationalised based on shared biology or the physico-chemical properties

of the encoded molecules – given that these signatures would presumably reflect common functions

and structures in milk.
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The cluster with the largest number of individual attributed loci included genes with prominent

roles in the regulation of fat synthesis such as DGAT1, GPAT4, and MGST1 (Fig. 6.5). These

three loci have been implicated in previous studies of milk fat percentage and fatty acid synthesis

(Grisart et al., 2002; Littlejohn et al., 2014, 2016; Pausch et al., 2017; Schennink et al., 2007;

Wang et al., 2012). DGAT1 and GPAT4 encode acyltransferase enzymes that are responsible for

mammary triglyceride synthesis, so it seems likely that the highlighted cluster reflects wavenumbers

that are sensitive to changes in milk fat content. Notably, the pattern of the effects observed for

DGAT1 (Fig. 6.6c) was very similar to those reported previously (Wang et al., 2016; Zaalberg

et al., 2020). Highly significant effects were observed for the DGAT1 K232A polymorphism in

bands of the spectrum that could be attributed to a number of different chemical bond interactions

including: phosphorus compounds (from ~910 to 1,010 cm−1) (Fleming and Williams, 2019),

triglyceride ester C-O stretching (from ~1,130 to 1,260 cm−1) (Karoui et al., 2003; Safar et al.,

1994), C-H bending vibrations of –CH2 and –CH3 (from ~1,450 to 1,500 cm−1) (Fleming and

Williams, 2019; Grelet et al., 2015), C=O stretching in polypeptides within the amide I band of

protein (from ~1,600 to 1,700 cm−1) (Safar et al., 1994), carboxylic acid and C=O rotation and

stretching of ester groups of fat (from ~1,700 to 1,800 cm−1) (Lefier et al., 1996), and acyl chain

C-H stretching (from ~2,820 to 3,150 cm−1) (Karoui et al., 2003).

The cluster that included the ABCG2 Y581S polymorphism (Fig. 6.5) had highly significant

association effects across numerous FT-MIR wavenumbers, with the largest effects concentrated

within the regions from ~1,020 to 1,470 cm−1 and from ~2,610 to 2,980 cm−1 (Fig. 6.6a). Bands

of the mid-infrared spectrum related to the largest effects for the ABCG2 Y581S polymorphism

were attributable to hydroxyl groups related to lactose (from ~1,020 to 1,180 cm−1) (Fleming

and Williams, 2019; Picque et al., 1993), amide III and phosphate bands (from ~1,200 to 1,390

cm−1) (Hewavitharana and van Brakel, 1997; Safar et al., 1994), C-H bending vibrations for

CH2 and –CH3 (from ~1,410 to 1,470 cm−1) (Fleming and Williams, 2019), overtones and bands

of lactose (~2,600 upwards) (Luinge et al., 1993), and C-H stretching vibrations of CH2 and

–CH3 (from ~2,700 to 2,980 cm−1) (Fleming and Williams, 2019). Many of the mid-infrared

bands with significant effects were ascribed to chemical bond interactions related to lactose,

which is unsurprising, given that ABCG2 and many of the other genes classified in the same

cluster (SH3BP5, PMP22, KCNJ2, and PICALM ) have been previously associated with lactose

phenotypes (Lopdell et al., 2017; Sanchez et al., 2017b). Notably, the strongest association effects

for the ABCG2 Y581S polymorphism were in different bands of the mid-infrared spectrum to the

DGAT1 K232A polymorphism, assumedly reflecting the different roles that these two genes play

in altering milk composition.
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Three other notable gene clusters were those represented by the CSN3, PAEP and ANKH

genes (Fig. 6.7), which had a large proportion of significant signal captured within a small part

of the mid-infrared range: CSN3 (from ~1,220 to 1,780 cm−1), PAEP (from ~1,350 to 1,650

cm−1) and ANKH (from ~1,260 to 1,620 cm−1). The CSN3 gene encodes κ-casein, one of the

most abundantly expressed proteins in milk. Bound at the aqueous-hydrophobic interface of

casein micelles, κ-casein content influences the size of these structures, thereby affecting various

coagulation and cheese-making properties (Creamer et al., 1998; Poulsen et al., 2013). The

missense mutation reported here at chr6:87390576 (rs43703015) has been associated with milk

composition traits and differential expression in mammary tissue (MacLeod et al., 2016). The

largest effects for the CSN3 locus were in spectral regions related to amide III and phosphate

bands (from ~1,220 to 1,320 cm−1), C-H stretching vibrations of CH2 and –CH3 (from ~1,370

to 1,480 cm−1), and N-H bending and C-N stretching in the amide II band (from ~1,490 to

1,590 cm−1) (Garidel and Schott, 2006). Previous studies have reported association effects for

CSN3 in similar bands of the mid-infrared spectrum, with specific wavenumbers coinciding with

highly significant association effects observed in our study (Benedet et al., 2019; Wang et al.,

2016; Zaalberg et al., 2020). The ANKH gene encodes a transmembrane protein involved in

pyrophosphate transport regulation, and is associated with lactose concentrations in milk (Lopdell

et al., 2017; Sanchez et al., 2017b). Interestingly, ANKH and PAEP shared a prominent peak for

adjacent wavenumbers, 1,391 cm−1 and 1,395 cm−1, respectively. These wavenumbers were in a

region related to carboxylic acid C=O bond stretching (Fleming and Williams, 2019). Another

peak in common between these genes was centred on the 1,582 cm−1 wavenumber, also in a region

related to carboxylic acid C=O bond stretching (Fleming and Williams, 2019). Association effects

in similar bands of the mid-infrared spectrum for PAEP have been reported in previous studies

(Benedet et al., 2019; Wang et al., 2016; Zaalberg et al., 2020). Although ANKH and PAEP

shared peaks in their significance profiles, it is notable that they also had exclusive peaks. For

ANKH, a distinct peak was observed in a region related to amide III and phosphate bands (from

~1,270 to 1,290 cm−1) (Hewavitharana and van Brakel, 1997; Safar et al., 1994), and for PAEP a

distinct peak was observed in a region related to C-NH peptide bonds and N-H stretching and

bending vibrations of NH2 (from ~1,600 to 1,640 cm−1) (Dufour, 2009; Fleming and Williams,

2019), which shows that although commonalities exist, there are also differences in the roles that

these genes play in altering milk composition.
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6.5.6 Limitations of the present study and future perspectives

In this study, we demonstrated that GWAS conducted on individual FT-MIR wavenumbers can

improve power for identifying QTL and candidate causal variants, compared to GWAS conducted

on FT-MIR predicted milk composition traits. Although many QTL were successfully identified,

several refinements to our approach could be expected to enable the identification of additional

QTL. The first of these relates to the approach used in adjusting phenotypes prior to conducting

the GWAS. The repeated measures model that we used for adjusting phenotypes included a

random effect to capture individual animal variation, but did not use pedigree information

to account for covariance between individuals. This means that genetic trend may have been

captured in herd by test day effects. A more optimal, but computationally more expensive

approach, would have been to fit a repeatability model including the additive relationship matrix,

thereby ensuring more accurate partitioning of fixed and random effects. To assess the potential

impact of this on the final GWAS results in our study, we generated adjusted phenotypes for FP,

LP and PP using a full animal model with an additive relationship matrix, and compared these

to the adjusted phenotypes evaluated from the simplified repeated measures model we report.

The correlations between the adjusted phenotypes from the two models were all high: 0.983,

0.994 and 0.987 for FP, LP and PP respectively. This implies that although the model that we

used may be considered suboptimal, it is likely that the use of this model would have only a very

minor impact on the final GWAS results.

Other potential refinements to our approach specifically relate to genomic information and

our strategy for identifying QTL. First, our study relied on datasets that were mapped to the

UMD3.1 genome, whereas a newer reference genome (ARS-UCD1.2) that has improved sequence

continuity and per-base accuracy (Rosen et al., 2020) is now available. Future use of that reference

genome might yield additional QTL, as well as reveal additional candidate mutations given the

improvements in accompanying transcript annotations. Second, our approach could be extended

to account for non-additive QTL. Recently, we conducted non-additive association mapping of

growth and development traits in cattle, which highlighted a number of major-effect mutations

that had not been identified through application of standard additive models (Reynolds et al.,

2021). Although the low MAF variants identified in that study would require larger samples than

those explored here, future analyses based on larger populations might be expected to identify

similar non-additive effects for FT-MIR wavenumber and predicted milk composition traits. Third,

a more sophisticated methodology could be used for the selection of representative variants in

each QTL peak. In our approach, we have iteratively taken the top variant from each peak based
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on the p-value of the association effect, and fitted this as a covariate in subsequent rounds of

GWAS. This approach does not take nonlinear interactions between variants into account, and

can lead to the selection of multiple variants in high LD with a single QTL, if that QTL is not

itself represented by a single biallelic variant. Alternatively, multiple QTL at a single locus might

be best tagged by a single, non-causal variant that captures multiple signals. In both these

instances, factors such as imputation or genotyping error may also further compound these issues.

To address this, a modified approach could be adopted, whereby gene annotation information

and other genomic and molecular data sources are used to assist with variant selection. Finally,

although we tried to identify causal variants representing a variety of molecular mechanisms

including coding variants (missense and non-sense) and regulatory effects (through integration of

mammary eQTL data), these approaches are far from comprehensive, and will still miss many

candidates. Improved variant prediction methods, and generation of other functional datasets

(e.g., ChIP-seq) could be used to map additional molecular QTL, where integration of those data

would enhance fine mapping and identification of candidate variants (Tiplady et al., 2020).

6.6 Conclusions

We conducted a sequence-based GWAS on individual FT-MIR wavenumber phenotypes, and

employed gene annotation and mammary tissue gene expression datasets to identify candidate

causative genes and variants. Compared to GWAS on predicted milk composition traits, GWAS

on individual FT-MIR wavenumbers resulted in stronger association effects, and improved power

for identifying candidate causal variants. Although many of the genomic regions with significant

associations that we identified in this work have previously been linked to milk composition

traits, we report the discovery of several loci that have never previously been linked to milk

phenotypes. Examining patterns of significance across wavenumbers in the mid-infrared range

for loci of interest provided further insights into the relationships between specific genes and

the underlying chemical structure of milk. Leveraging this information and incorporating the

candidate causative mutations that we have identified into genomic prediction could result in

improved selection of dairy cattle for the ever-growing range of traits of interest to the industry.
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Table 6.A.1: Peak variants for FT-MIR wavenumbers with moderately significant protein-sequence association
effects

Chr Position
Tag variant No. of Top wvn

Iter P-value
Protein coding

LD Gene Impact Description
ID hits cm−1 variant ID

1 143,874,528 rs210853796 1 2544 1 4.50E-13 rs210853796 1.000 UMODL1 M c.1982C>T

1 144,192,782 rs208749212 2 2954 1 8.10E-14 rs208749212 1.000 TFF1 M c.224G>T

3 54,258,151 rs208197051 7 1130 0 5.20E-18 rs209968430 0.970 ENS..14857 L c.301-8G>A

3 54,258,151 rs208197051 7 1130 0 5.20E-18 rs207922427 0.971 ENS..17670 M c.655A>C

3 54,258,151 rs208197051 7 1130 0 5.20E-18 rs209038383 0.972 GBP5 M c.9G>A

5 27,835,741 rs135284663 10 1085 2 3.40E-18 rs110130901 1.000 KRT7 M c.908A>G

5 112,121,312 rs209287637 2 2671 1 5.60E-16 rs209287637 1.000 TNRC6B M c.797G>A

6 86,335,083 rs462124622 9 1369 3 3.70E-22 rs384429777 0.973 ENS..03523 L c.1014+3A>G

6 86,335,083 rs462124622 9 1369 3 3.70E-22 rs382793163 0.961 UGT2B10 M c.1406G>A

6 87,534,452 rs433620526 1 2973 3 3.80E-16 rs438534592 0.962 CABS1 M c.810C>A

6 88,851,143 rs384262616 2 1276 3 2.80E-28 rs110326785 0.913 NPFFR2 M c.1174G>A

10 46,514,558 rs109205360 18 1235 0 1.70E-48 rs137170204 0.904 HERC1 L c.14079+3G>A

10 46,514,558 rs109205360 18 1235 0 1.70E-48 rs135013504 0.904 USP3 L c.1332+5T>C

12 72,110,595 rs42593480 2 3674 0 1.90E-27 rs42593493 0.941 ENS..45751 L c.1659+4C>T

14 1,802,265 rs109234250 310 1716 0 1.5e-2607 rs135258919 0.903 HSF1 M c.1031T>C

14 1,842,932 rs135134051 1 3189 0 3.80E-15 rs135134051 1.000 BOP1 L c.1215+6G>C

15 52,197,561 rs480295644 1 1555 1 5.30E-14 rs41768351 0.931 CHRNA10 M c.1085G>A

15 53,940,444 rs382926661 23 1205 1 4.20E-19 rs380813700 0.941 ARHGEF17 M c.1756G>A

16 1,455,243 rs380323951 10 1216 1 7.60E-36 rs379734240 0.904 ZC3H11A L c.503-7A>C

16 60,784,946 rs209235878 6 1451 4 8.40E-17 rs42733251 0.992 SEC16B M c.1907G>A

17 70,309,223 rs42288202 6 1276 0 1.00E-17 rs42288202 1.000 HSCB L c.424-3T>C

18 2,203,322 rs132899112 7 1466 1 1.40E-15 rs134184381 0.997 FA2H L c.271-8T>C

19 33,515,473 rs382520566 3 1399 4 3.30E-15 rs210304540 0.995 CDRT4 L c.-38G>T

19 42,604,860 rs134093156 18 1462 0 1.90E-39 rs209920132 0.918 ACLY L c.1846-3T>C

19 42,604,860 rs134093156 18 1462 0 1.90E-39 rs209373086 0.919 JUP L c.1055-4C>G

19 43,036,265 rs210324533 11 1029 1 5.30E-43 rs381010891 0.921 ZNF385C M c.628C>G

19 51,515,451 rs41925642 22 2984 1 2.50E-18 rs41925642 1.000 ENS..47973 M c.298A>C

25 36,089,539 rs210232064 10 1029 0 2.80E-16 rs210065065 0.915 PLOD3 M c.432G>C

26 21,098,102 rs479414226 9 1138 0 5.20E-20 rs454657689 0.970 PKD2L1 M c.325G>A

26 22,719,393 rs209022793 13 1205 1 1.30E-27 rs110483942 0.902 GBF1 M c.3143C>T

29 44,579,245 rs439384463 3 1548 2 4.30E-16 . 0.924 DPF2 M c.647A>G

29 47,036,875 rs379471283 1 1723 1 6.60E-14 rs208818475 0.988 TPCN2 L c.894C>T

Peak variants of 27 protein-sequence association effects classified as moderately significant for FT-MIR wavenumber
phenotypes. Moderately significant effects are those for which the -log10(p-value) of the effect was greater than 1 x the
Bonferroni threshold of -log10(6.2e-13) and the correlation between the tag variant and the protein-sequence variant was
higher than 0.9, but the effect did not meet the criteria of a highly significant effect (see Table 6.1). Effects where the
locus has been identified as highly significant based on the LD with one or more other genes (and is also present in Table
6.1) are shaded yellow. No. of hits: number of wavenumbers for which the variant was selected as the representative (most
significant) tag variant for a peak. Iterations (Iter) are defined relative to the base GWAS, with the base GWAS represented
as iteration 0.
Abbreviations: L = Low impact splice region variant; M = Moderate impact missense variant; H = High impact splice donor.
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Table 6.A.2: Minor allele frequencies and allele effects for whole-genome sequence tag variants
with a highly significant protein-sequence association effect in at least one FT-MIR wavenumber

Chr Position
Tag variant Minor allele Top Beta SE

P-value
ID frequency wavenumber (x1000) (x1000)

3 7,908,611 rs137763930 0.1518 940 0.4188 0.0459 6.70E-20

3 7,931,694 rs211402696 0.2395 1462 -0.3167 0.0316 1.20E-23

3 15,411,459 rs134900385 0.1263 1022 -0.5463 0.0612 4.30E-19

3 15,517,871 rs109328483 0.1250 1007 -0.3493 0.0391 4.40E-19

3 15,550,598 rs380597285 0.4784 1462 -0.5088 0.0327 1.30E-54

5 75,729,880 rs384734208 0.4177 1466 -0.3909 0.0271 5.00E-47

5 75,758,989 rs210094995 0.1668 1447 -0.4454 0.0337 5.80E-40

5 118,246,868 rs136859160 0.1561 1261 -0.3272 0.0235 3.00E-44

6 38,027,010 rs43702337 0.0042 1119 -19.7003 0.2986 7.3e-948

6 87,181,619 rs43703011 0.2815 3633 0.2972 0.0306 2.50E-22

6 87,274,397 rs378808772 0.3338 1283 0.2153 0.0144 9.90E-51

6 87,390,576 rs43703015 0.3452 1473 -0.3384 0.0153 4.00E-108

11 103,304,757 rs109625649 0.4996 1593 -1.4129 0.0572 1.20E-134

11 104,242,578 rs207688357 0.2629 1462 -0.4434 0.0371 5.50E-33

12 69,612,955 rs383509255 0.2383 1716 -0.4691 0.0334 6.40E-45

14 1,726,650 rs133611586 0.0247 3514 2.8141 0.1530 1.60E-75

14 1,732,043 rs437406031 0.3740 2846 1.3614 0.1003 6.30E-42

14 1,755,742 rs384226556 0.4814 2656 0.0497 0.0054 4.00E-20

14 1,802,265 rs109234250 0.4294 1716 2.8769 0.0263 1.5e-2607

14 66,328,304 rs446084949 0.0069 1029 2.4117 0.2612 2.70E-20

15 28,347,165 rs210034037 0.0799 1537 1.4247 0.1157 7.70E-35

15 53,940,444 rs382926661 0.1019 1205 -0.2217 0.0248 4.20E-19

16 24,977,696 rs111027377 0.3124 2742 -0.0848 0.0082 4.80E-25

19 42,428,366 rs209808022 0.0871 1250 -0.3449 0.0332 3.10E-25

19 42,488,389 rs379667889 0.1000 1447 -0.5064 0.0418 7.80E-34

19 43,036,265 rs210324533 0.0846 1029 1.0710 0.0779 5.30E-43

19 43,053,995 rs481837688 0.1496 1212 0.2164 0.0206 6.60E-26

19 51,303,887 rs41921224 0.2525 1499 -0.4115 0.0331 1.90E-35

19 57,087,981 rs41920620 0.4825 1216 -0.1445 0.0152 1.80E-21

28 6,559,147 rs133101552 0.4215 1261 0.1653 0.0168 8.60E-23

29 41,821,270 rs207854419 0.1077 1257 -0.2990 0.0262 4.60E-30
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Table 6.A.3: Peak variants for composite milk production traits with moderately significant protein-sequence
association effects

Trait Chr Position
Tag variant

Iteration P-value
Protein coding

LD Gene Impact Description
ID variant ID

FP 5 118,246,868 rs136859160 2 1.40E-16 rs456403270 0.937 TBC1D22A M c.1063C>T

FP 14 1,800,439 rs209876151 0 8.9e-2225 rs135258919 0.904 HSF1 M c.1031T>C

FP 19 42,604,653 rs135024837 1 6.70E-19 rs135261291 0.928 JUP L c.1925-7C>T

FP 19 51,303,887 rs41921224 0 3.80E-15 rs41921160 0.993 CCDC57 M c.1907T>C

LP 5 27,835,741 rs135284663 1 1.60E-15 rs110130901 1.000 KRT7 M c.908A>G

LP 19 43,036,265 rs210324533 3 9.40E-40 rs381010891 0.921 ZNF385C M c.628C>G

PP 3 15,520,971 rs109098377 2 7.50E-16 rs382689947 0.991 FAM189B M c.1237T>C

PP 3 15,520,971 rs109098377 2 7.50E-16 rs134844772 0.990 GBA M c.1080C>A

PP 3 15,520,971 rs109098377 2 7.50E-16 rs109330809 0.990 MTX1 L c.508-6T>C

PP 3 15,520,971 rs109098377 2 7.50E-16 rs136761456 0.991 SCAMP3 M c.151G>C

PP 3 15,520,971 rs109098377 2 7.50E-16 rs43706482 0.993 THBS3 L c.2075-3T>C

PP 14 1,763,380 rs135017891 0 5.9e-718 rs109326954 0.904 DGAT1 M c.695C>A

PP 14 1,855,915 rs379497765 4 7.00E-14 rs476736066 0.999 MROH1 M c.3549G>C

PP 15 53,940,444 rs382926661 1 2.90E-20 rs380813700 0.941 ARHGEF17 M c.1756G>A

PP 16 60,784,946 rs209235878 4 7.50E-17 rs42733251 0.992 SEC16B M c.1907G>A

PP 18 2,203,325 rs135350753 0 2.10E-13 rs134184381 0.997 FA2H L c.271-8T>C

PP 19 43,035,006 rs209494359 0 1.60E-40 rs381010891 0.921 ZNF385C M c.628C>G

PP 19 43,053,995 rs481837688 2 8.60E-17 rs481837688 1.000 STAT5A M c.2305C>A

Peak variants of 14 protein-sequence association effects classified as moderately significant for FT-MIR predicted milk
composition traits. Moderately significant effects are those where the -log10(p-value) of the effect was greater than 1 x the
Bonferroni threshold of -log10(6.2e-13) and the correlation between the tag variant and the protein-sequence variant was
higher than 0.9, but the effect did not meet the criteria of a highly significant effect (see Table 6.2). Effects where the locus
has been identified as highly significant based on the LD with one or more other genes (and is also present in Table 6.2) are
shaded yellow. Iterations are defined relative to the base GWAS, with the base GWAS represented as iteration 0.
Abbreviations: FP = Fat %; LP = Lactose %; PP = Protein %; L = Low impact splice region variant; M = Moderate
impact missense variant; H = High impact splice donor.
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Table 6.A.4: Minor allele frequencies and allele effects for whole-genome sequence tag variants
with a highly significant protein-sequence association effect in at least one FT-MIR predicted
milk composition trait

Chr Position
Tag variant Minor allele

Trait Beta SE P-value
ID frequency

3 15,433,518 rs109749506 0.1263 LP -0.0181 0.0019 1.30E-20
3 15,545,091 rs379353107 0.4787 LP 0.0165 0.0012 2.20E-42
3 15,550,598 rs380597285 0.4784 PP -0.0265 0.0021 1.70E-37
5 75,698,283 rs385866519 0.4049 FP -0.0398 0.0045 4.00E-19
5 75,758,989 rs210094995 0.1668 PP -0.0337 0.0028 3.30E-34
5 118,239,754 rs384479185 0.1488 PP -0.0334 0.0028 3.90E-32
6 38,027,010 rs43702337 0.0042 LP -0.5339 0.0093 9.0e-717
6 38,027,010 rs43702337 0.0042 PP -0.3652 0.0160 6.40E-115
11 103,304,757 rs109625649 0.4996 FP 0.0720 0.0050 4.30E-46
12 69,608,900 rs211406918 0.2370 FP 0.0709 0.0059 4.20E-33
14 1,732,043 rs437406031 0.3741 FP 0.0782 0.0062 7.20E-37
14 1,763,380 rs135017891 0.4542 PP -0.1146 0.0020 5.9e-718
14 1,800,439 rs209876151 0.4293 FP -0.4675 0.0046 8.9e-2225
14 1,802,265 rs109234250 0.4233 PP -0.1194 0.0072 1.20E-61
15 53,940,444 rs382926661 0.1030 PP -0.0341 0.0037 2.90E-20
16 24,983,926 rs110162358 0.3098 LP -0.0113 0.0012 1.00E-19
19 43,035,006 rs209494359 0.0846 PP -0.0493 0.0037 1.60E-40
19 43,036,265 rs210324533 0.0846 LP 0.0263 0.0020 9.40E-40

Abbreviations: FP = Fat %; LP = Lactose %; PP = Protein %.
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Table 6.A.5: Minor allele frequencies and allele effects for whole-genome sequence tag variants
with a significant association effect in FT-MIR wavenumbers and a co-localized eQTL

Chr Position
Tag variant Minor allele Top Beta SE

P-value
ID frequency wavenumber (x1000) (x1000)

1 5,120,248 rs42317521 0.2643 2794 0.0925 0.0107 4.00E-18
1 144,377,960 rs208161466 0.2474 2592 -0.0977 0.0050 2.30E-85
1 146,481,250 rs383691757 0.4870 1071 0.4008 0.0512 4.70E-15
1 154,125,158 rs207836083 0.2297 1130 0.586 0.0336 3.60E-68
3 15,411,459 rs134900385 0.1263 1022 -0.5463 0.0612 4.30E-19
3 15,550,598 rs380597285 0.4784 1462 -0.5088 0.0327 1.30E-54
3 34,387,618 rs109030498 0.3017 1466 0.3052 0.0294 3.50E-25
3 53,755,929 rs209271975 0.3108 1089 -0.4860 0.0507 8.60E-22
5 75,729,880 rs384734208 0.4177 1466 -0.3909 0.0271 5.00E-47
5 75,732,526 rs210305241 0.4119 1458 -0.3931 0.0289 4.40E-42
5 93,945,738 rs211210569 0.3393 1171 -1.5185 0.0622 1.80E-131
6 46,568,418 rs210515595 0.3680 1772 -0.0487 0.0051 7.70E-22
6 87,388,064 rs379473589 0.3115 1436 -0.4089 0.0195 1.10E-97
9 21,637,056 rs209222932 0.2412 1003 -0.2801 0.0308 9.40E-20
9 26,534,109 rs208123385 0.2709 1462 0.3742 0.0367 1.90E-24
9 87,585,031 rs110986237 0.4760 1470 -0.1477 0.019 7.40E-15
9 102,874,726 rs137238900 0.1260 1768 0.0653 0.0084 1.00E-14
10 46,581,015 rs109326466 0.2011 1246 0.4317 0.0302 2.00E-46
11 14,180,010 rs110527112 0.3997 2760 0.0937 0.0084 3.60E-29
11 78,868,975 . 0.4700 1112 -0.3273 0.0361 1.20E-19
11 103,292,402 rs383398415 0.4990 2548 -0.0745 0.0047 3.50E-56
11 104,229,609 rs110534892 0.4536 3648 -0.4614 0.0483 1.20E-21
14 1,754,287 rs135443540 0.4938 1085 -0.6561 0.0499 1.60E-39
15 57,266,467 rs136337092 0.3748 3935 -0.2425 0.0332 2.70E-13
16 66,314,547 rs42579412 0.4307 1425 -0.1758 0.0219 1.00E-15
16 67,730,371 rs380453838 0.3392 1757 -0.6245 0.0662 3.80E-21
18 2,203,322 rs132899112 0.2848 1466 -0.2376 0.0298 1.40E-15
19 33,517,487 rs434248431 0.2931 1100 0.6755 0.0473 2.90E-46
19 43,036,265 rs210324533 0.0846 1029 1.0710 0.0779 5.30E-43
19 57,079,881 rs381175117 0.4797 1220 0.1572 0.0158 2.00E-23
19 61,134,515 rs41923843 0.3283 1130 0.4304 0.0302 3.20E-46
20 58,454,531 rs135636613 0.2153 1391 1.4139 0.0315 4.3e-441
22 53,519,865 rs109233889 0.4403 1235 0.1920 0.0246 5.30E-15
24 58,817,202 rs208779762 0.1281 1220 0.3141 0.0259 6.80E-34
27 36,211,708 rs209855549 0.4361 1731 -0.8576 0.0293 6.20E-188
27 41,267,242 rs109068627 0.2187 2977 0.2361 0.0223 3.50E-26
29 9,546,217 rs380868305 0.2688 1130 0.9258 0.0318 4.60E-186
29 44,579,245 rs439384463 0.0473 1548 1.3728 0.1688 4.30E-16

Abbreviations: FP = Fat %; LP = Lactose %; PP = Protein %.
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Table 6.A.6: Minor allele frequencies and allele effects for whole-genome sequence tag variants
with a significant association effect in at least one FT-MIR predicted milk composition trait and
a co-localized eQTL

Chr Position
Tag variant Minor allele

Trait Beta SE P-value
ID frequency

3 34,387,618 rs109030498 0.3034 FP 0.0348 0.0048 6.00E-13
5 75,698,283 rs385866519 0.4049 FP -0.0398 0.0045 4.00E-19
5 93,945,738 rs211210569 0.3393 FP -0.1130 0.0052 6.70E-106
10 46,483,019 rs133089336 0.1873 FP 0.0467 0.0064 4.50E-13
11 104,229,609 rs110534892 0.4536 FP 0.0338 0.0044 2.60E-14
16 67,730,371 rs380453838 0.3391 FP -0.0412 0.0046 2.60E-19
27 36,211,708 rs209855549 0.4361 FP -0.1223 0.005 9.70E-132
1 154,122,887 rs42167460 0.229 LP 0.0215 0.0014 1.20E-50
3 15,433,518 rs109749506 0.1263 LP -0.0181 0.0019 1.30E-20
3 15,545,091 rs379353107 0.4787 LP 0.0165 0.0012 2.20E-42
3 53,994,057 rs211488591 0.3084 LP -0.0112 0.0013 6.70E-18
19 43,036,265 rs210324533 0.0846 LP 0.0263 0.002 9.40E-40
19 61,134,515 rs41923843 0.3283 LP 0.0179 0.0012 1.10E-46
20 58,448,763 rs134813825 0.2146 LP -0.0128 0.0015 3.20E-18
27 36,204,066 rs208306200 0.4372 LP 0.0114 0.0012 1.90E-21
29 9,577,372 rs380473328 0.2701 LP 0.0342 0.0014 2.10E-140
3 15,520,971 rs109098377 0.1245 PP 0.0270 0.0033 7.50E-16
3 15,550,598 rs380597285 0.4784 PP -0.0265 0.0021 1.70E-37
5 75,680,825 rs208925020 0.4325 PP -0.0234 0.0024 8.50E-23
5 93,945,738 rs211210569 0.3306 PP -0.0328 0.0024 3.70E-42
6 87,387,870 rs382652853 0.3056 PP -0.0409 0.0029 2.90E-45
10 46,581,015 rs109326466 0.2011 PP 0.0331 0.0026 4.00E-38
18 2,203,325 rs135350753 0.2848 PP -0.0168 0.0023 2.10E-13
19 43,035,006 rs209494359 0.0846 PP -0.0493 0.0037 1.60E-40
24 58,817,202 rs208779762 0.1281 PP 0.0324 0.0031 5.70E-26

Abbreviations: FP = Fat %; LP = Lactose %; PP = Protein %.
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7.1 Interpretive summary

Fourier-transform mid-infrared (FT-MIR) spectroscopy is a high-throughput, and inexpensive

methodology commonly used to evaluate concentrations of fat and protein in dairy cattle milk

samples. This methodology is also of interest for predicting fatty acids and individual milk

proteins. The objective of this study was to compare the genetic characteristics for these predicted

traits with those that had been measured directly using gas and liquid chromatography methods.

We show that genetic correlations between directly measured and FT-MIR predicted fatty acids

and proteins are generally high, but that the underlying genetic architecture is not always the

same.

7.2 Abstract

Fourier-transform mid-infrared (FT-MIR) spectroscopy is a high-throughput, and inexpensive

methodology used to evaluate concentrations of fat and protein in dairy cattle milk samples. The

objective of this study was to compare the genetic characteristics of FT-MIR predicted fatty acids

and individual milk proteins with those that had been measured directly using gas and liquid

chromatography methods. The data used in this study was based on 2,005 milk samples collected

from 706 Holstein-Friesian x Jersey animals that were managed in a seasonal, pasture-based

dairy system, with milk samples collected across two consecutive seasons. Concentrations of fatty

acids and protein fractions in milk samples were directly determined by gas chromatography and

high-performance liquid chromatography, respectively. Models to predict each directly measured

trait based on FT-MIR spectra were developed using partial least squares (PLS) regression, with

spectra from a random selection of half the cows used to train the models, and predictions for the

remaining cows used as validation. Variance parameters for each trait and genetic correlations

for each pair of measured/predicted traits were estimated from pedigree-based bivariate models

using REML procedures. A genome-wide association study was undertaken using imputed

whole-genome sequence, and QTL from directly measured traits were compared to QTL from the

corresponding FT-MIR predicted traits. Cross-validation prediction accuracies based on PLS

for individual and grouped fatty acids ranged from 0.18 to 0.65. Trait prediction accuracies in

cross-validation for protein fractions were 0.53, 0.19 and 0.48 for α-, β- and κ-casein, 0.31 for

α-lactalbumin, 0.68 for β-lactoglobulin and 0.36 for lactoferrin. Heritability estimates for directly

measured traits ranged from 0.07 to 0.55 for fatty acids; and from 0.14 to 0.63 for individual milk
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proteins. For FT-MIR predicted traits, heritability estimates were mostly higher than for the

corresponding measured traits, ranging from 0.14 to 0.46 for fatty acids, and from 0.30 to 0.70

for individual proteins. Genetic correlations between directly measured and FT-MIR predicted

protein fractions were consistently above 0.75, with the exceptions of C18:0 and C18:3 cis-3 which

had genetic correlations of 0.72 and 0.74, respectively. The GWAS identified trait QTL for fatty

acids with likely candidates in the DGAT1, CCDC57, SCD and GPAT4 genes. Notably, QTL

for SCD were largely absent in the FT-MIR predicted traits, and QTL for GPAT4 were absent

in directly measured traits. Similarly, for directly measured individual proteins, we identified

QTL with likely candidates in the CSN1S1, CSN3, PAEP and LTF genes, but the QTL for

CSN3 and LTF were absent in the FT-MIR predicted traits. Our study indicates that genetic

correlations between directly measured and FT-MIR predicted fatty acid and protein fractions

are typically high, but that phenotypic variation in these traits may be underpinned by differing

genetic architecture.

Key words: Fourier-transform mid-infrared spectroscopy, milk composition, genome-wide

association study, dairy cattle

7.3 Introduction

Bovine milk is a rich source of dietary nutrients that are important to human health, including

proteins, fats, carbohydrates, vitamins, and minerals. The concentrations of these components

are determined by genetic factors such as breed and sire, as well as non-genetic factors related

to the environment, stage of lactation, feed, and the nutritional status of the animal. Fats are

important to human health due to the role they play in growth, development, hormone regulation

and inflammation management. In bovine milk, a typical fatty acid profile comprises about 70%

saturated, 25% monounsaturated and 5% polyunsaturated fatty acids.

Bovine milk is also a common source of protein, an important nutrient in the human diet

because of the role it has in body maintenance and the growth and repair of cells. However, the

concentrations of casein and whey proteins in bovine milk differ to that of human milk, with

bovine milk protein comprising approximately 80% casein and 20% whey proteins, whereas most of

the protein in human milk represents whey proteins. These differences in protein composition are

important because casein and whey proteins have different digestibilities and amino acid profiles.

Moreover, the protein profiles have implications for cheese processing and the manufacture of

casein supplements.
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Fourier-transform mid-infrared (FT-MIR) spectroscopy is a method to determine the presence

of specific chemical bonds in a composite substance such as milk, and is widely used in the

dairy industry to characterise milk composition. The approach involves directing infrared light

through a milk sample, leading to interactions between the infrared light and molecules in the

milk that cause vibrations and rotational changes in molecular bonds, resulting in the differential

absorption of the various infrared light wavelengths. From this process, a spectrum of absorbance

values for light wavelengths across the mid-infrared range is generated, which can be used to

predict a variety of traits. This is a high-throughput and inexpensive method for predicting milk

composition from milk samples and is widely used to reliably quantify concentrations of fat and

protein for dairy cattle. This methodology is also of interest for characterizing fat composition,

and casein and whey proteins in milk, because of the implications these milk components may

have for human health and milk processability, and because the FT-MIR spectra are already

available from routine milk testing.

Applications using FT-MIR spectral data to predict milk composition traits typically involve

using a set of samples with directly measured trait values to develop a calibration equation

based on the spectrum of absorbance values, using methods such as partial least squares (PLS)

regression. The resulting calibration equation can then be applied to future samples to predict

trait values as a linear combination of individual wavenumber absorbances from any milk sample

with FT-MIR spectral data. The success of using FT-MIR data as a phenotyping tool relies on

the strength of the phenotypic correlation between the directly measured trait and the FT-MIR

predicted trait. However, the success of using an FT-MIR predicted trait in breeding programs is

further dependent on the heritability of the predicted trait, and the genetic correlation between

the directly measured and predicted trait.

Previous studies have indicated that FT-MIR spectra can be used to predict fatty acids

(Bonfatti et al., 2016; Lopez-Villalobos et al., 2014; Rutten et al., 2009; Soyeurt et al., 2006)

and protein fractions in milk (Bonfatti et al., 2011, 2016; De Marchi et al., 2009a; McDermott

et al., 2016; Rutten et al., 2011; Soyeurt et al., 2012). Moreover, moderate to high heritability

estimates have been reported for a range of FT-MIR predicted fatty acids (Bonfatti et al., 2017d;

Fleming et al., 2018; Lopez-Villalobos et al., 2014; Narayana et al., 2017; Rutten et al., 2010) and

protein fractions (Arnould et al., 2009b; Bonfatti et al., 2017d; Sanchez et al., 2017b; Soyeurt

et al., 2007a). Few studies report the genetic correlations between directly measured and FT-MIR

predicted fatty acids and/or protein fractions, but in those studies the genetic correlations are

typically high (Bonfatti et al., 2017d; Rutten et al., 2010).
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Several GWAS have been conducted on fatty acids and protein fractions in bovine milk,

across a range of genotype densities. This includes studies of directly measured fatty acids

using 50k (Bouwman et al., 2011) or HD genotypes (Buitenhuis et al., 2014; Palombo et al.,

2018), and FT-MIR predicted fatty acids using 50k (Cruz et al., 2019; Freitas et al., 2020; Iung

et al., 2019), HD (Olsen et al., 2017) or imputed whole-genome sequence (Sanchez et al., 2019)

genotypes. Studies of directly measured protein fractions include those using 50k (Pegolo et al.,

2018; Schopen et al., 2011) or HD (Buitenhuis et al., 2016; Zhou et al., 2019) genotypes, and

studies of FT-MIR predicted protein fractions include those using imputed sequence genotypes

(Sanchez et al., 2017b, 2019). Aside from differences in genotype density, the breed composition of

animals in these studies also varies. In particular, studies of directly measured fatty acids include

Dutch Holstein-Friesians (Bouwman et al., 2011), Danish Holsteins and Jerseys (Buitenhuis et al.,

2014) and Italian Simmental and Holsteins (Palombo et al., 2018), whereas studies of FT-MIR

predicted fatty acids include Holstein (Cruz et al., 2019; Freitas et al., 2020; Iung et al., 2019),

Norwegian Red (Olsen et al., 2017) and Montbéliarde (Sanchez et al., 2019) cows. Studies of

directly measured protein fractions in milk include Dutch Holstein-Friesians (Schopen et al., 2011),

Italian Brown Swiss cows (Pegolo et al., 2018) and Danish Holsteins and Jerseys (Buitenhuis et al.,

2016), whereas studies of FT-MIR predicted protein fractions include Montbéliarde, Normande

and Holstein cows (Sanchez et al., 2017b, 2019). Differences in genotype density and breed

composition for GWAS conducted on directly measured and FT-MIR predicted fatty acid and

protein traits make it difficult to compare QTL between studies. To date, as far as we are aware,

there have been no GWAS that compare QTL for directly measured fatty acids and protein traits

to QTL for the corresponding FT-MIR predicted traits within the same study population.

The objective of this study was to compare the genetic characteristics of directly measured

fatty acids and protein fractions to the same traits predicted from FT-MIR spectra. Calibration

equations were developed using milk samples from New Zealand crossbred dairy cattle, and

pedigree-based models were used to evaluate the (co)variance parameters of each directly measured

trait and its corresponding FT-MIR predicted trait. To understand the underlying differences in

the genetic architecture of directly measured and FT-MIR predicted traits, we conducted GWAS

using imputed whole-genome sequence, and compared QTL from directly measured traits to

QTL from the corresponding FT-MIR predicted traits. It was expected that the use of imputed

whole-genome sequence genotypes from an F2 study population would enhance our ability to

identify trait QTL and candidate causative mutations, and that using the same dataset to conduct

GWAS across directly measured and FT-MIR predicted traits would be valuable for determining

differences between QTL.
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7.4 Materials and methods

7.4.1 Ethics statement

Animal ethics approval for the collection of data used in this study was granted by the Ruakura

Animal Ethics Committee (Hamilton, New Zealand), approval numbers 4232, 4621 and 10,174,

according to the rules and guidelines outlined in the New Zealand Animal Welfare Act 1999.

7.4.2 Study population / animals and milk samples

Animals included in this study were from an F2 design crossbreeding experiment with a half-sibling

family structure as previously described (Berry et al., 2010; Spelman et al., 2001). Briefly, six F1

bulls were generated from reciprocal crosses of Holstein-Friesian and Jersey animals that were

then mated to high genetic-merit F1 cows. This resulted in a herd of 850 F2 female progeny

consisting of two cohorts produced over consecutive seasons, which were managed in a seasonal,

pasture-based dairy system. Because of the phenotypic differences between milk composition for

Friesian and Jersey animals, it was expected that the genetic variation exhibited in F2 animals

would typically be higher compared to what would be seen in a study of purebred animals, and

that this could assist in the identification of trait QTL. Measurements of FT-MIR spectra, and

fatty acid and protein composition were evaluated from second lactation milk samples collected

at peak-, mid- and late-lactation in the 2003/04 season for cohort 1 and the 2004/05 season for

cohort 2. Calving for each cohort took place over ~3 months between July and October. Samples

for each cohort representing peak milk were collected on a daily basis for those cows at 35 days

post calving, whilst mid- and late-lactation samples were collected at a fixed date across the herd

within the season. A frequency distribution of the number of samples classified by days in milk

at the time of sampling has been provided in Appendix 7.A.1.

Concentrations of fatty acids were directly determined in milk fat samples by fatty acid

methyl ester analysis using gas chromatography (GC) (MacGibbon and Reynolds, 2011), within

one of up to five batches on a given sample collection day, and were expressed as g/100g of

total fat content. In this study, we report an analysis for 17 individual fatty acids and 6 fatty

acid groups that were classified based on the degree of saturation and the length of the carbon

chain: (i) saturated fatty acids (SFA; no double bonds); (ii) unsaturated fatty acids (UFA; one

or more double bonds); (iii) polyunsaturated fatty acids (PUFA; two or more double bonds);

(iv) short-chain fatty acids (SCFA; 4, 6 or 8 carbons); (v) medium-chain fatty acids (MCFA;

10, 12 or 14 carbons); and (vi) long-chain fatty-acids (LCFA; 18 carbons). Milk proteins were

determined using high-performance liquid chromatography (HPLC) as described by Palmano
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and Elgar (2002) and were analysed within one of up to six batches on a given sample collection

day, and were expressed as g/L of total milk volume. Traits were assessed for deviation from

normality by visual inspection of normal quantile plots and by evaluating asymmetry according

to skewness. With the exception of lactoferrin, all directly measured traits were approximately

normally distributed with absolute skewness values less than 1. For lactoferrin, log, square- and

cube-root transformations were applied to determine which transformation minimised skewness.

A cube-root transformation was the most effective of those investigated for minimising skewness

and was applied to lactoferrin trait values for all downstream analyses. Frequency distributions of

untransformed lactoferrin concentrations and lactoferrin concentrations after applying a cube-root

transformation are provided in Appendix 7.A.2. Outliers for each fatty acid and protein trait

were identified and removed if the trait value was more than 3 standard deviations from the

mean for the corresponding season and stage of lactation (peak, mid, late). After removal of

outliers, each trait was adjusted to remove batch effects, where batch effects were evaluated from

a random effects model with batch nested within season and stage of lactation, using Nelder-Mead

optimization as implemented in the lme4 package in R (Bates et al., 2015).

The same milk samples assessed for fatty acid and protein composition were also analysed on

a Foss MilkoScan FT6000 (FOSS, Hillerød, Denmark) instrument, to generate spectral records

consisting of 1,060 wavenumbers across the range from 925.66 to 5,010.15 cm−1. Spectral data

from regions associated with low signal-to-noise ratios and poor sample measurement repeatability

due to the water content in milk were excluded according to the definitions by Tiplady et al.

(2019). Specifically, the excluded low signal-to-noise regions were: 649 to 970 cm−1, 1,608 to

1,682 cm−1 and ≥ 3,021 cm−1. This resulted in 542 wavenumbers for use in the development

of prediction equations. Outliers in the spectral data were identified using the methodology

described in Tiplady et al. (2019). Briefly, the squared Mahalanobis distance (MD) between each

spectral record and the average spectra were evaluated using the 542 wavenumbers identified as

being outside noise regions. The distributions of MD values for each season were compared and

found to be similar, indicating that although the spectra were collected in two different seasons,

the impact of instrument drift across time was likely to be small. Based on the lowest average

information criterion, a logistic distribution with location and scale parameters of 541.7 and

27.3, respectively had the best fit to the overall MD values, and based on a p-value of 0.001, 18

outliers were identified and removed. In total, after outlier removal, there were 2,005 samples for

706 animals with FT-MIR spectra and either a fatty acid or protein composition result. Traits

varied in the final number of records available for analysis, ranging from 1,686 to 1,977 records,

and representing from 699 to 704 animals. The overall mean fat and protein concentrations as
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predicted from the FOSS instrument calibration equation were 5.40 (sd=0.70) and 3.98 (sd=0.36),

respectively.

7.4.3 Development and validation of calibration equations

Phenotypic calibration equations for each fatty acid and protein fraction were evaluated within

a cross-validation framework, whereby records for a random selection of half the animals were

assigned to a training dataset, and the remaining records were assigned to a validation dataset.

This ensured that validation was cow-independent in that none of the records for animals included

in the training dataset were included in the validation dataset. Partial least squares (PLS) models

for each trait were developed using 542 spectral wavenumbers with the caret package in R (Kuhn,

2008), based on training data with 10 repeats of 10-fold cross-validation. Besides the untreated

spectra, several mathematical treatments of spectra were assessed using the mdatools package in R

(Kucheryavskiy, 2020): standard normal variate transformation, multiplicative scatter correction,

and first-order Savitzky-Golay derivative (Savitzky and Golay, 1964) treatments. First-derivative

treatments were applied to untreated spectra and spectra after SNV or MSC treatments using a

range of window sizes with up to 1 and 10 points either side. For each trait, the performance of

the PLS model was assessed according to the coefficient of determination between actual and

predicted phenotypic trait values in the validation dataset (R2
cv); and the relative prediction error

between actual and predicted trait values in the validation dataset (RPEcv), as described by

Lopez-Villalobos et al. (2014).

7.4.4 Genetic parameters of traits

Genetic (co)variances of each directly measured trait and its corresponding FT-MIR predicted

trait were estimated using a pairwise bivariate repeated measures animal model in ASReml-R

(Butler et al., 2009) based on a pedigree comprising 5,943 animals. The model was defined as

follows:

 y1

y2

 =

X1 0

0 X2


 b1

b2

 +

Z1 0

0 Z2


 u1

u2

 +

W 1 0

0 W 2


 p1

p2

 +

 e1

e2

 (7.1)

where y1 is a vector of the directly measured fatty acid or protein fraction, y2 is a vector of the

corresponding FT-MIR predicted trait; X1, Z1, W 1, X2, Z2 and W 2 are design matrices for

the fixed, additive genetic and permanent environment effects respectively for y1 and y2; b1 and

b2 are vectors of the fixed effect of days in milk (represented as 35-day windows from the start
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of lactation) within season (2003, 2004) for the directly measured and the FT-MIR predicted

trait, respectively; u1 and u2 are vectors of random additive genetic effects for each trait; p1

and p2 are vectors of permanent environment effects for each trait; and e1 and e2 are vectors

of residuals. The following (co)variance structure for each directly measured (y1) and FT-MIR

predicted (y2) trait pair is assumed:

var



u

p

e


=



G
⊗

A 0 0

0 C
⊗

Ip 0

0 0 R
⊗

Ie


, where u =

 u1

u2

, p =

 p1

p2

 and e =

 e1

e2


(7.2)

where A is the numerator relationship matrix, Ip is an identity matrix of order corresponding to

the length of the vector p, Ie is an identity matrix of order corresponding to the length of the

vector e,
⊗

is the Kronecker product; and G, C and R are genetic, permanent environment and

residual (co)variance matrices, respectively, defined as follows:

G =

 σ2
u1

σu1u2

σu1u2 σ2
u2

, C =

 σ2
p1

σp1p2

σp1p2 σ2
p1

 and R =

 σ2
e1

σe1e2

σe1e2 σ2
e1

 (7.3)

The heritability and repeatability for each trait were calculated as functions of the estimated

(co)variance components based on their parametric definitions of h2
i =

σ2
ui

σ2
ui

+ σ2
pi

+ σ2
ei

and

ti =
σ2
ui

+ σ2
pi

σ2
ui

+ σ2
pi

+ σ2
ei

, where i = 1 or 2 for traits y1 and y2, respectively; and the genetic correlation

for each pair of measured/predicted traits was calculated as ra = σu1u2

σu1σui

. For each bivariate

analysis, starting values for additive genetic and residual (co)variances were estimated from

single trait models. A range of covariance starting values were iteratively assessed for model

convergence, with starting values of
a(σ2

u1
+ σ2

u2
)

2 and
b(σ2

e1
+ σ2

e2
)

2 for additive genetic and

residual covariances, respectively, where a and b ranged from 0.1 to 0.9 in increments of 0.1.

Amongst models that converged for each pair of traits, genetic parameter estimates were highly

consistent. For traits that had different solutions from different models, the model that minimised

the squared sum of the difference between single- and multi-trait model heritability estimates

was selected.
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7.4.5 Genotypes and imputation

Of the 706 animals with phenotypic data, 685 were genotyped on Illumina BovineHD (HD; N=12;

~777k SNP) and/or Illumina BovineSNP50k (50k; N=685; ~53k SNP) panels. The resultant

genotypes were imputed to sequence density as part of a wider set of 153,357 animals, as described

previously (Jivanji et al., 2019; Tiplady et al., 2021b). Briefly, the imputation process consisted of

stepwise imputation of animals to whole-genome sequence genotypes via references of GGP, 50k

and HD genotypes. The whole-genome sequence reference consisted of 565 animals, comprised

of 138 Holstein-Friesians, 99 Jerseys, 316 Holstein-Friesian x Jersey crossbreeds, and 12 from

other breeds or crosses. Notably, the 6 F1 sires included in our study were included in this

whole-genome sequence reference and were sequenced with a target of 60x read-depth coverage.

Phasing was undertaken using Beagle 4.0 (Browning and Browning, 2007), based on genotype

probabilities, and variants were filtered to remove those where the allelic R2 for missing genotypes

was less than 0.95. Only variants located on Bos taurus autosomes were considered, resulting

in a sequence reference comprising 19,659,361 segregating variants spanning all 29 autosomes.

Imputation was carried out using Beagle 4.0 (Browning and Browning, 2007) ignoring pedigree

information, and SNP with allelic R2 < 0.7 were removed after each imputation step. The overall

median imputation allelic R2 for the wider set of 153,357 animals was 0.986, but was 0.992 for

the 685 genotyped animals included in this study.

7.4.6 Genome-wide association studies

Prior to conducting GWAS, adjusted fatty acid and protein phenotypes were generated for directly

measured and FT-MIR predicted traits. The generation of the adjusted phenotypes was based on

one or more samples measured on the same cow which were fitted to a univariate pedigree-based

repeated measures model in ASReml-R (Butler et al., 2009), comprising:

y = Xb + Zu + W p + e (7.4)

where y is a vector of the measured or predicted trait, X , Z and W are design matrices for the

fixed, additive genetic and permanent environment effects; b is the fixed effect of days in milk

(represented as 35-day windows from the start of lactation) within season (2003, 2004) for the

trait; u is a vector of random additive genetic effects with u~N (0,Aσ2
u); p~N (0,Ipσ2

p) is a vector

of random permanent environment effects; and e is a vector of random residuals with e~N (0,Ieσ2
e)

where A is the numerator relationship matrix, Ip is an identity matrix of order corresponding to
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the length of the vector p, Ie is an identity matrix of order corresponding to the length of the

vector e, σ2
u is the additive genetic variance, σ2

p is the permanent environment variance and σ2
e is

the residual variance. Adjusted phenotypes used in the GWAS were the average of y over all

observations for a cow minus the relevant fixed effects.

For each directly measured fatty acid or protein trait, and its corresponding FT-MIR predicted

trait, a GWAS was conducted using Bolt-LMM software (Loh et al., 2015). Prior to conducting

GWAS, a MAF threshold of 1% based on allele frequencies in the 685 animal study population

was applied, resulting in 14,990,779 imputed sequence variants included in each GWAS. To assess

the additive effect of each SNP, mixed model association statistics were evaluated under an

infinitesimal model. To account for population structure, a genomic relationship matrix (GRM)

based on a subset of 42,374 SNP was simultaneously fitted. That subset of SNP was derived by

applying a MAF threshold of 1% to the 50k SNP-chip imputation reference (previously described).

A leave-one-segment-out (LOSO) approach was used to avoid proximal contamination in the

GWAS, whereby a 5-Mbp region flanking the sequence variant of interest was excluded from the

set of SNPs used to estimate the GRM.

An adjusted Bonferroni threshold was adopted to determine variants with significant associa-

tions for each trait. Because a Bonferroni correction threshold based on all 14,990,779 variants

is highly conservative, a modified threshold was evaluated based on the effective number of

independent variants, as proposed by Duggal et al. (2008) and implemented in other studies

(Wang et al., 2019b; Zhu et al., 2017). The effective number of independent variants were identified

using a sliding window approach in Plink software (Purcell et al., 2007), with an R2 threshold of

0.9, a window size of 100kb and a step size of 5 variants. These criteria resulted in a set of 2,303,435

variants and enabled the calculation of an adjusted Bonferroni threshold which considered all tests

across 2,303,435 variants as independent. Based on α=0.05, this resulted in a nominal p-value

of 4.3e-09 and a corresponding Bonferroni threshold of -log10(4.3e-09)=8.36. Whole-genome

sequence resolution genotypes within a 1-Mbp window were annotated using SnpEff (version 4.3t;

build 2017-11-24) (Cingolani et al., 2012) and Ensembl UMD3.1.86 gene annotations to assess

the candidacy of QTL identified from the GWAS for each trait. We used an LD-based approach

to prioritise variants, similar to that described by Lopdell et al. (2017) because the association

rankings of candidate variants are expected to be impacted by phenotyping, genotyping and

imputation errors. Specifically, we identified QTL regions where the most highly associated

variant was in high LD (R2 > 0.7) with either a splice region variant, or a moderate or high

impact coding variant, according to SnpEff classification.
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7.5 Results and discussion

7.5.1 Trait prediction models

Cross-validation prediction model accuracies (R2
cv) were assessed for untreated spectra, as well as

for spectra treated using standard normal variate (SNV) transformation, multiplicative scatter

correction (MSC) or first-derivative treatments (Appendix 7.A.1). Window sizes of 15 data points

(7 points either side) had consistently higher R2
cv values, compared to other window sizes, so only

these have been presented. Applying treatments to spectral data resulted in marginally higher

R2
cv values on average, compared to not treating spectra, and treating spectra with a SNV and

first- derivative transformation prior to fitting PLS models resulted in the highest average R2
cv

value and was thus used in all further analysis. Descriptive statistics of fatty acid and protein

traits, and goodness of fit measures of PLS calibration models (applied to SNV + first-derivative

transformed spectra) for training and validation datasets are presented in Table 7.1.

For individual fatty acids, coefficient of determination values for the validation dataset (R2
cv)

were generally higher for short-chain fatty acids (C4 to C8), ranging from 0.54 to 0.62, compared

to medium-chain fatty acids (C10 to C14) which ranged from 0.30 to 0.63 and long-chain fatty

acids (C16 to C18) which ranged from 0.18 to 0.57. Concentrations of individual saturated

fatty acids were typically higher and had higher average R2
cv values, compared to individual

unsaturated fatty acids. For grouped fatty acids, R2
cv values were higher for UFA and SFA groups,

compared to PUFA; and for fatty acids grouped by carbon chain length, the highest R2
cv value of

0.65 was observed for SCFA. It is notable that although there was an overall trend of higher R2
cv

values coinciding with lower RPEcv values, there were exceptions to this. For example, amongst

individual fatty acids, C16:1 had a particularly low R2
cv of 0.18, but an RPEcv of 0.13 which

was comparable to other traits such as C10:0 and C12:0 which had R2
cv values of ~0.60. This

highlights the difference between R2
cv and RPEcv as accuracy metrics, the former indicating how

well the prediction model explains the variation in the directly measured trait, whilst the latter

provides a comparison of how similar the predicted values are to the directly measured trait

values. In the present study, most comparisons of accuracy with other studies will be based on

R2
cv values because that is the accuracy metric that is most commonly reported, however, the

example above shows that other metrics can also be valuable for assessing FT-MIR prediction

model accuracy.

The R2
cv values we report are consistent with those from previous studies where fatty acids

were expressed as a proportion of total fat content, with our values being similar to those reported

by Soyeurt et al. (2006), but lower than those reported in other studies (Bonfatti et al., 2016;
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Lopez-Villalobos et al., 2014; Rutten et al., 2009). In the present study, for grouped short-,

medium- and long-chain fatty acids, R2
cv values were lower than in other studies (Bonfatti et al.,

2016; Lopez-Villalobos et al., 2014; Rutten et al., 2009). Accuracies for fatty acids predicted

using FT-MIR spectra were variable in previous studies and were affected by factors such as the

production system and the breed composition diversity present in calibration samples, the number

of samples used to develop calibration equations, and the variability of fatty acid composition

present in the calibration samples. Rutten et al. (2009) demonstrated that increasing the

number of observations used in the calibration equations resulted in better predictions for fat

composition. Soyeurt et al. (2006, 2011) demonstrated that prediction accuracy could be improved

by increasing the sample size of their study, and by increasing the range of variation present in

the fatty acids. Importantly, studies with the highest accuracies were those where the range of

fatty acid values present in the validation samples were encompassed within the range of fatty

acid values represented in calibration samples.

For individual milk proteins, R2
cv values were generally lower than for fatty acids, ranging

from 0.19 for β-casein (β-CN) to 0.69 for β-lactoglobulin (β-LG). Notably, although the R2
cv values

for β-CN and β-LG were very different, the RPEcv values for these two traits were similar (0.11

and 0.10, respectively). The R2
cv values we report for individual milk proteins were typically

higher than those reported in previous studies of individual milk proteins, with the exceptions of

β-CN and Lactoferrin (Lf) which were consistently lower than in other studies (Bonfatti et al.,

2016; De Marchi et al., 2009a; Lopez-Villalobos et al., 2009; McDermott et al., 2016; Rutten

et al., 2011; Soyeurt et al., 2012). Fuentes-Pila et al. (1996) suggest that a relative prediction

error (RPE) of lower than 0.1 is an indicator of satisfactory prediction; a RPE between 0.1 to 0.2

is an indicator of relatively good or acceptable predictions; and a RPE greater than 0.2 is an

indicator of unsatisfactory prediction. Based on these criteria, 21 of 23 individual and grouped

fatty acids, and all six protein fractions had good or satisfactory predictions in the validation

datasets. Although the guidelines proposed by Fuentes-Pila et al. (1996) are useful as an indicator

of prediction acceptability, they are potentially less meaningful when we are considering the

value of incorporating FT-MIR predicted traits into animal breeding programs. This is because

FT-MIR predictions can provide indicator traits across large numbers of animals at little or no

cost, whereas it may be infeasible to directly measure these traits across even a small number of

animals. Moreover, when we are considering the potential for incorporating an FT-MIR predicted

trait into a breeding program, we are not only interested in the phenotypic correlation between

the directly measured and FT-MIR predicted trait, but also the heritability of the FT-MIR

predicted trait, and the genetic correlation between the directly measured and FT-MIR predicted

trait.
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Table 7.1: Descriptive statistics of fatty acid and protein traits, and goodness of fit measures of PLS calibration
models for training and validation datasets

Trait Description and units
Trait summary Training Validation

n Mean SD R2
t RPEt R2

cv RPEcv

Individual fatty acids

C4:0 Butyric acid, g/100g of total fat 1963 3.90 0.32 0.706 0.043 0.602 0.053
C6:0 Caproic acid, g/100g of total fat 1969 2.52 0.19 0.591 0.049 0.542 0.052
C8:0 Caprylic acid, g/100g of total fat 1968 1.54 0.18 0.697 0.064 0.622 0.073
C10:0 Capric acid, g/100g of total fat 1975 3.51 0.61 0.701 0.094 0.627 0.108
C10:1 Caproleic acid, g/100g of total fat 1969 0.31 0.06 0.469 0.151 0.300 0.162
C12:0 Lauric acid, g/100g of total fat 1972 3.92 0.74 0.685 0.106 0.590 0.121
C12:1 Lauroleic acid, g/100g of total fat 1925 0.13 0.03 0.47 0.169 0.353 0.181
C14:0 Myristic acid, g/100g of total fat 1967 11.46 1.17 0.599 0.065 0.491 0.073
C14:1 Myristoleic acid, g/100g of total fat 1970 0.75 0.23 0.517 0.211 0.414 0.233
C16:0 Palmitic acid, g/100g of total fat 1977 27.64 3.27 0.633 0.073 0.574 0.076
C16:1 Palmitoleic acid, g/100g of total fat 1958 1.54 0.22 0.301 0.123 0.184 0.132
C18:0 Stearic acid, g/100g of total fat 1968 11.95 2.00 0.544 0.115 0.445 0.124

C18:1 cis-7 cis-Vaccenic Acid, g/100g of total fat 1936 4.53 0.70 0.531 0.107 0.411 0.118
C18:1 cis-9 Oleic acid, g/100g of total fat 1963 17.31 2.55 0.653 0.088 0.569 0.096

C18:2 cis-9, trans-11 Conjugated linoleic acid, g/100g of total fat 1929 0.87 0.25 0.587 0.185 0.498 0.210
C18:2 cis-6 Linoleic acid, g/100g of total fat 1963 1.20 0.14 0.561 0.078 0.480 0.085
C18:3 cis-3 α-linolenic acid, g/100g of total fat 1954 0.80 0.11 0.387 0.112 0.360 0.105

Grouped fatty acids

SFA Saturated fatty acids, g/100g of total fat 1965 70.59 3.08 0.703 0.024 0.591 0.028
PUFA Polyunsaturated fatty acids, g/100g of total fat 1972 4.16 0.46 0.641 0.065 0.490 0.081
UFA Unsaturated fatty acids, g/100g of total fat 1964 29.42 3.08 0.711 0.057 0.597 0.066
SCFA Short-chain fatty acids, g/100g of total fat 1970 7.96 0.59 0.695 0.041 0.648 0.043
MCFA Medium-chain fatty acids, g/100g of total fat 1969 20.09 2.43 0.659 0.071 0.567 0.080
LCFA Long-chain fatty acids, g/100g of total fat 1974 36.82 4.45 0.609 0.076 0.568 0.079

Individual milk proteins

α-CN α-casein, g/L of total volume 1695 15.79 1.76 0.585 0.072 0.532 0.076
β-CN β-casein, g/L of total volume 1686 14.78 1.84 0.128 0.116 0.190 0.113
κ-CN κ-casein, g/L of total volume 1687 4.24 0.59 0.575 0.087 0.476 0.105
α-LA α-lactalbumin, g/L of total volume 1942 1.21 0.15 0.379 0.099 0.306 0.104
β-LG β-lactoglobulin, g/L of total volume 1959 3.84 0.70 0.773 0.087 0.678 0.104
Lf 1 Lactoferrin, g/L of total volume 1936 0.51 0.12 0.411 0.188 0.356 0.194

1 Cube-root transformation of lactoferrin.
Abbreviations: n=number of samples; SD=standard deviation; R2

t=coefficient of determination between actual and predicted trait
values in the training dataset; RPEt=relative prediction error between actual and predicted trait values in the training dataset;
R2

cv=coefficient of determination between actual and predicted trait values in the validation dataset; RPEcv=relative prediction error
between actual and predicted trait values in the validation dataset; SCFA=Short-chain fatty acids (sum of C4:0, C6:0 and C8:0);
MCFA=Medium-chain fatty acids (sum of 10:0, 10:1, 12:0, 12:1, 14:0 and 14:1); LCFA=Long-chain fatty acids (sum of C18 fatty
acids); SFA=Saturated fatty acids; UFA=Unsaturated fatty acids.
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Table 7.2: Variance component estimates for directly measured and FT-MIR predicted fatty acid and protein
traits

Trait1 Directly measured trait FT-MIR predicted trait
ra

σ2
u σ2

T h2 t σ2
u σ2

T h2 t

Individual fatty acids (g/100g of total fat)

C4:0 0.022 0.069 0.31 (0.12) 0.52 (0.03) 0.014 0.042 0.34 (0.13) 0.57 (0.03) 0.988 (0.014)
C6:0 0.005 0.025 0.20 (0.10) 0.35 (0.03) 0.003 0.011 0.24 (0.11) 0.45 (0.03) 0.925 (0.099)
C8:0 0.005 0.019 0.29 (0.11) 0.44 (0.03) 0.003 0.009 0.33 (0.12) 0.45 (0.03) 0.983 (0.020)
C10:0 0.098 0.241 0.41 (0.14) 0.54 (0.03) 0.057 0.125 0.46 (0.14) 0.52 (0.03) 0.986 (0.027)
C10:1 0.001 0.003 0.33 (0.13) 0.54 (0.03) 0.0003 0.001 0.27 (0.10) 0.42 (0.03) 0.811 (0.124)
C12:0 0.132 0.378 0.35 (0.13) 0.52 (0.03) 0.083 0.197 0.42 (0.14) 0.53 (0.03) 0.996 (0.017)
C12:1 2e-4 0.001 0.24 (0.10) 0.33 (0.03) 1e-4 0.0003 0.25 (0.10) 0.41 (0.03) 0.849 (0.125)
C14:0 0.342 0.997 0.34 (0.14) 0.47 (0.03) 0.161 0.449 0.36 (0.13) 0.41 (0.04) 0.947 (0.043)
C14:1 0.021 0.037 0.55 (0.17) 0.71 (0.02) 0.003 0.012 0.26 (0.11) 0.42 (0.03) 0.866 (0.100)
C16:0 2.187 5.782 0.38 (0.12) 0.58 (0.03) 1.214 3.123 0.39 (0.12) 0.46 (0.03) 0.954 (0.058)
C16:1 0.008 0.043 0.20 (0.10) 0.48 (0.03) 0.002 0.011 0.16 (0.08) 0.38 (0.03) 0.773 (0.173)
C18:0 0.176 2.714 0.07 (0.05) 0.48 (0.02) 0.149 1.034 0.14 (0.08) 0.37 (0.03) 0.718 (0.259)

C18:1 cis-7 0.125 0.412 0.30 (0.12) 0.51 (0.03) 0.063 0.193 0.33 (0.12) 0.51 (0.03) 0.947 (0.040)
C18:1 cis-9 0.881 3.986 0.22 (0.09) 0.41 (0.03) 0.551 1.955 0.28 (0.11) 0.42 (0.03) 0.986 (0.024)
C18:2 c9, t11 0.017 0.048 0.35 (0.13) 0.60 (0.03) 0.010 0.023 0.46 (0.16) 0.62 (0.03) 0.939 (0.047)
C18:2 cis-6 0.004 0.013 0.33 (0.12) 0.45 (0.03) 0.002 0.006 0.32 (0.12) 0.44 (0.03) 0.904 (0.077)
C18:3 cis-3 0.004 0.009 0.40 (0.13) 0.46 (0.03) 0.001 0.002 0.45 (0.12) 0.51 (0.03) 0.743 (0.144)

Grouped fatty acids (g/100g of total fat)

SFA 1.472 6.175 0.24 (0.09) 0.49 (0.03) 1.293 3.469 0.37 (0.14) 0.56 (0.03) 0.977 (0.035)
PUFA 0.078 0.181 0.43 (0.14) 0.57 (0.03) 0.049 0.105 0.46 (0.15) 0.63 (0.03) 0.980 (0.019)
UFA 1.468 6.167 0.24 (0.09) 0.49 (0.03) 1.299 3.474 0.37 (0.14) 0.56 (0.03) 0.975 (0.037)
SCFA 0.037 0.196 0.19 (0.09) 0.40 (0.03) 0.026 0.101 0.26 (0.12) 0.51 (0.03) 0.961 (0.040)
MCFA 1.293 4.206 0.31 (0.12) 0.45 (0.03) 0.797 2.158 0.37 (0.13) 0.46 (0.03) 0.974 (0.040)
LCFA 0.852 11.70 0.07 (0.05) 0.40 (0.03) 0.813 5.301 0.15 (0.08) 0.36 (0.03) 0.925 (0.099)

Individual milk proteins (g/L of total volume)

α-CN 0.579 2.029 0.29 (0.12) 0.45 (0.03) 0.559 1.109 0.50 (0.18) 0.61 (0.03) 0.941 (0.067)
β-CN 0.421 3.105 0.14 (0.07) 0.17 (0.03) 0.204 0.537 0.38 (0.15) 0.65 (0.03) 0.802 (0.222)
κ-CN 0.172 0.315 0.55 (0.18) 0.57 (0.04) 0.083 0.162 0.51 (0.16) 0.68 (0.03) 0.956 (0.050)
α-LA 0.008 0.019 0.42 (0.14) 0.51 (0.03) 0.002 0.005 0.39 (0.14) 0.56 (0.03) 0.755 (0.130)
β-LG 0.282 0.448 0.63 (0.18) 0.80 (0.02) 0.240 0.343 0.70 (0.19) 0.80 (0.02) 0.995 (0.006)
Lf 2 0.007 0.012 0.59 (0.17) 0.61 (0.03) 0.001 0.003 0.30 (0.12) 0.45 (0.03) 0.771 (0.148)

1 Trait definitions and units as described in Table 7.1. Standard errors shown in brackets.
2 Cube-root transformation of lactoferrin.
Abbreviations: n=number of samples; σ2

u=additive genetic variance; σ2
T=total variance (σ2

u+σ2
p+σ2

e); h2=heritability estimate;
t=repeatability estimate; ra=genetic correlation between directly measured and FT-MIR predicted trait.
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7.5.2 Genetic parameters of directly measured and FT-MIR predicted

traits

Estimates of variance components for directly measured and FT-MIR predicted fatty acid and

protein traits are shown in Table 7.2 and Appendix 7.A.2. Heritability estimates (h2) for the

majority of traits were moderate to high, with 17 of the directly measured traits, and 20 of the

FT-MIR predicted traits having an estimated heritability greater than 0.3. Because this is an F2

study, genetic variances will include a segregation variance component that would typically inflate

these values compared to what would be seen in a study of purebred animals. In general, lower

heritability and repeatability estimates were observed for directly measured traits, compared to

FT-MIR predicted traits. This was driven by higher total variation (σ2
T ) in the directly measured

traits, coupled with a lower magnitude increase in the additive genetic variance component (σ2
u),

compared to the FT-MIR predicted traits. Despite this, the genetic correlations between measured

and predicted traits remained high and were mostly greater than 0.75.

Fatty acid traits

In individual fatty acid traits, the lowest heritability estimates were observed for C18:0 and LCFA,

with heritability estimates of 0.07 for the directly measured traits, and heritability estimates of

0.14 and 0.15 in the FT-MIR predicted traits, respectively. Although heritability estimates were

typically higher in the FT-MIR predicted traits, there were exceptions to this. In particular,

C14:1 had an estimated heritability for the measured trait that was substantially higher than that

of the FT-MIR predicted trait (0.55 vs 0.26). Genetic correlations between directly measured

and FT-MIR predicted traits were greater than 0.85 for 18 of 23 individual and grouped fatty

acids, and for 11 of these traits the genetic correlation was greater than 0.95. The lowest genetic

correlations were observed for C18:0 (ra=0.72) and C18:3 cis-3 (ra=0.74). In general, there was a

consistent trend for individual and grouped fatty acids, where lower genetic correlations coincided

with low R2
cv values.

Whilst there are a number of studies that report genetic parameter estimates for directly

measured and/or FT-MIR predicted fatty acid traits, these studies vary in the specific individual

fatty acids (if any) presented, and whether or not they present parameter estimates for grouped

fatty acids. Many studies report genetic parameter estimates for FT-MIR predicted traits only

(Fleming et al., 2018; Lopez-Villalobos et al., 2014; Narayana et al., 2017; Soyeurt et al., 2007b),

with only two studies reporting genetic parameters for both directly measured and FT-MIR
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predicted traits (Bonfatti et al., 2017d; Rutten et al., 2010). These latter two studies also report

genetic correlations between directly measured and FT-MIR predicted fatty acids, with Bonfatti

et al. (2017d) presenting these for individual and grouped fatty acids, while Rutten et al. (2010)

present these for individual fatty acids only.

The heritability, repeatability and genetic correlation estimates we report in the present study

were broadly consistent with those from previous studies. For directly measured fatty acids,

the heritability estimates we report were typically higher than those reported by Bonfatti et al.

(2017d), but lower than those reported by Rutten et al. (2010). For FT-MIR predicted fatty

acids, the heritability and repeatability estimates we report for individual and grouped fatty

acids were similar to those presented by Lopez-Villalobos et al. (2014), but lower than those

presented by Narayana et al. (2017) and higher than those presented in other studies (Bonfatti

et al., 2017d; Soyeurt et al., 2007b). Compared to other studies that report genetic correlations

between directly measured and FT-MIR predicted fatty acids, the genetic correlations we report

were similar, with standard errors of a similar magnitude (Bonfatti et al., 2017d; Rutten et al.,

2010). The moderate to high heritability estimates we report, alongside high genetic correlations

between directly measured and FT-MIR predicted fatty acid traits indicate that there is genetic

variation in the FT-MIR predicted traits that could potentially be exploited in animal breeding

programs, and in most cases, that selection for an FT-MIR predicted fatty acid trait would be

expected to provide genetic gain in the actual fatty acid trait of interest.

7.5.3 Individual milk protein traits

Heritability estimates were moderate to high for nearly all directly measured and FT-MIR

predicted individual milk proteins (Table 7.2). The exception to this was for directly measured

β-CN which had a heritability of 0.14. The highest heritability estimates were for β-LG, with

h2=0.63 and h2=0.70 for directly measured and FT-MIR predicted β-LG, respectively. In general,

heritability estimates for measured and FT-MIR predicted proteins were similar. An exception to

this was β-CN, which had heritability estimates for the directly measured and FT-MIR predicted

trait of 0.14 and 0.38, respectively. Another exception was Lf, which had an estimated heritability

for the measured trait that was substantially higher than that of the FT-MIR predicted trait (0.59

vs 0.30). With the exceptions of α-LA and Lf, genetic correlations between directly measured and

FT-MIR predicted individual milk proteins were greater than 0.8. In general, as we observed

for fatty acid traits, there was a trend of low R2
cv values coinciding with low genetic correlations

between directly measured and FT-MIR predicted traits.
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There are few studies that report genetic parameters for directly measured and/or FT-MIR

predicted milk proteins, but those studies vary in the breed composition of the cows. Specifically,

study populations include Dutch Holstein-Friesians (Schopen et al., 2009), Danish Holsteins

and Jerseys (Buitenhuis et al., 2016), Italian Simmentals (Bonfatti et al., 2017d), or French

Montbéliarde, Normande, and Holstein cows (Sanchez et al., 2017a). Studies also vary in that

some report on individual proteins as a proportion of total protein or whey protein (Buitenhuis

et al., 2016; Schopen et al., 2009), whilst other studies report on individual proteins as a proportion

of total protein or as a proportion of total milk volume (Bonfatti et al., 2017d; Sanchez et al.,

2017a). The heritability estimates we report for directly measured α-, β- and κ-CN were lower

than those previously reported by Bonfatti et al. (2017d), but the heritability estimates we

report for directly measured α-LA and β-LG were substantially higher. In contrast, for FT-MIR

predicted α-, β- and κ-CN, the heritability estimates we report were consistently higher than those

reported by Bonfatti et al. (2017d), but were similar to those reported by Sanchez et al. (2017a).

The only study to report genetic correlations between directly measured and FT-MIR predicted

milk proteins that we are aware of is that of Bonfatti et al. (2017d). The genetic correlations that

we report were higher than in that study. Specifically, for the protein fractions we studied, genetic

correlations ranged from 0.76 for α-LA to 0.995 for β-LG, whereas in Bonfatti et al. (2017d),

genetic correlations for these traits ranged from 0.24 for α-LA to 0.48 for β-LG. Interestingly,

Bonfatti et al. (2017d) reported moderate heritability estimates for directly measured milk

proteins (0.12 to 0.59), but much lower heritability estimates for FT-MIR predicted milk proteins

(0.07 to 0.21). In contrast, the heritability estimates we observed for directly measured proteins

(0.14 to 0.63) were similar to (and often lower than) the heritability estimates we observed for

FT-MIR predicted proteins (0.30 to 0.70). These differences in heritability were likely due to

factors related to differences in the breed composition and population structure between the two

studies (i.e., Italian Simmental cows from herds enrolled in the Italian national milk recording

program vs Holstein-Friesian Jersey F2 cows from a single research herd).

Moderate to high heritability estimates and high genetic correlations between directly measured

and FT-MIR predicted milk proteins in our study indicate that indirect selection on FT-MIR

predicted milk proteins could be used in animal breeding programs to achieve desired changes

to milk protein composition. Moreover, high genetic correlations from pedigree-based models

imply that directly measured and FT-MIR predicted traits may have a similar underlying genetic

architecture and that genes contributing to the traits are likely to be co-inherited (Lynch and

Walsh, 1998). To assess this directly, we conducted GWAS on directly measured traits and their

corresponding FT-MIR predictions and compared the QTL for each trait.
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7.5.4 Sequence-based genome-wide association analyses

Previously, there have been a number of GWAS that used a range of genotype densities for

fatty acids in bovine milk samples determined by gas chromatography (GC) (Bouwman et al.,

2011; Buitenhuis et al., 2014; Palombo et al., 2018) or fatty acids predicted using FT-MIR

spectra (Cruz et al., 2019; Freitas et al., 2020; Iung et al., 2019; Olsen et al., 2017; Sanchez

et al., 2019). Similarly, there have been multiple GWAS conducted on protein fractions in milk

samples determined by high-performance liquid chromatography (HPLC) (Buitenhuis et al., 2016;

Pegolo et al., 2018; Schopen et al., 2011; Zhou et al., 2019) or FT-MIR predicted protein fractions

(Sanchez et al., 2017b, 2019). Each of those studies was conducted using either the directly

measured trait (GC-based for fatty acids; HPLC-based for protein fractions) or the FT-MIR

predicted trait, though none of these presented comparisons between the GWAS for directly

measured and FT-MIR predicted traits. In the present study, we have sought to make these

comparisons using imputed whole-genome sequence genotypes from an F2 study population to

enhance our ability to identify trait QTL and candidate causative mutations.

For each of 17 individual fatty acids, 6 grouped fatty acids and 6 protein traits, GWAS

were conducted using 14,990,779 imputed sequence variants. These analyses resulted in the

identification of 40,946 variants with significant effects for directly measured traits and 18,843

variants with significant association effects for the FT-MIR predicted traits. There were more

than twice as many variants with significant effects for directly measured traits, compared to

FT-MIR predicted traits, which was largely due to 20,949 variants with significant effects on

BTA26 for directly measured traits compared to only 110 variants with significant effects on

BTA26 for FT-MIR predicted traits. It was also notable that there were 3,579 variants with

significant effects on BTA22 for directly measured Lf but no variants with significant effects on

BTA22 for FT-MIR predicted traits. Manhattan plots showing the strength of association signals

are presented in Figs. 7.1-7.4 for individual fatty acids, Fig. 7.5 for grouped fatty acids and Fig.

7.6 for individual protein traits. To assess the candidacy of QTL, relevant protein coding variants

that were in high LD (R2 > 0.7) with the most highly associated variant from each peak were

identified. The most highly associated variant from each trait QTL and any relevant protein

coding variants are shown in Table 7.3 for directly measured fatty acid and protein traits and

Table 7.4 for FT-MIR predicted fatty acid and protein traits. Effect sizes and MAF details for

relevant variants and effects are provided in Appendix 7.A.3 for fatty acids and Appendix 7.A.4

for protein traits.
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Table 7.3: Peak variants for directly measured fatty acid and protein traits with significant association effects

Trait1 Chr Position Tag variant P-value Protein coding LD Gene Class Description
ID variant ID

Individual fatty acids (g/100g of total fat)
C18:1 cis-9 14 1756075 rs208417762 1.3e-10 rs134364612 0.915 SLC52A2 Missense c.724A>G
C18:1 cis-9 14 1756075 rs208417762 1.3e-10 rs109234250 0.915 DGAT1 Missense c.694G>A

C16:0 14 1799066 rs385135066 1.2e-12 rs134364612 0.737 SLC52A2 Missense c.724A>G
C16:0 14 1799066 rs385135066 1.2e-12 rs109234250 0.737 DGAT1 Missense c.694G>A
C6:0 17 52971731 rs207997694 9.6e-10 . . . . .
C4:0 17 53034516 rs461037541 7.2e-18 . . . . .
C10:0 19 51319673 rs137270097 1.2e-10 rs41921160 0.974 CCDC57 Missense c.1907T>C
C12:0 19 51319673 rs137270097 8.3e-13 rs41921160 0.974 CCDC57 Missense c.1907T>C
C14:0 19 51326050 rs136424304 1.4e-11 rs41921160 0.996 CCDC57 Missense c.1907T>C
C10:0 26 21141279 rs41255696 2.2e-10 rs41255693 0.799 SCD Splice region c.569C>T
C14:0 26 21141279 rs41255696 2.7e-10 rs41255693 0.799 SCD Splice region c.569C>T
C10:1 26 21148111 rs41255688 1.8e-48 rs41255693 0.915 SCD Splice region c.569C>T
C14:1 26 21149680 rs385285356 6.1e-61 rs41255693 0.915 SCD Splice region c.569C>T
C10:1 26 26458006 rs445758306 2.6e-10 rs379463458 0.761 ITPRIP Missense c.1301G>A
C12:1 26 26458006 rs445758306 2.4e-10 rs379463458 0.761 ITPRIP Missense c.1301G>A

Grouped fatty acids (g/100g of total fat)
SCFA 17 53034516 rs461037541 1.2e-14 . . . . .
SFA 19 36187954 rs110980742 5.0e-10 rs210064667 0.816 UTP18 Missense c.85G>A
SFA 19 36187954 rs110980742 5.0e-10 rs382000222 0.848 UTP18 Missense c.79T>A
UFA 19 36187954 rs110980742 4.8e-10 rs210064667 0.816 UTP18 Missense c.85G>A
UFA 19 36187954 rs110980742 4.8e-10 rs382000222 0.848 UTP18 Missense c.79T>A
MCFA 19 51319673 rs137270097 1.4e-13 rs41921160 0.974 CCDC57 Missense c.1907T>C
SFA 26 21149680 rs385285356 2.1e-10 rs41255693 0.915 SCD Splice region c.569C>T
UFA 26 21149680 rs385285356 1.1e-10 rs41255693 0.915 SCD Splice region c.569C>T

Individual milk proteins (g/L of total volume)
α-CN 6 87133508 rs109500363 4.3e-12 rs382793163 0.856 ENS.. 39991 Missense c.1406G>A
α-CN 6 87133508 rs109500363 4.3e-12 rs385603965 0.839 ENS..03523 Missense c.1378C>T
α-CN 6 87133508 rs109500363 4.3e-12 rs43703010 0.923 CSN1S1 Missense c.620A>G
κ-CN 6 87405588 rs110794953 6.4e-28 rs109739692 0.805 ODAM Missense c.520G>A
κ-CN 6 87405588 rs110794953 6.4e-28 rs43703015 0.988 CSN3 Missense c.470T>C
κ-CN 6 87405588 rs110794953 6.4e-28 rs43703016 0.985 CSN3 Missense c.506C>A
β-LG 11 103291134 rs110270048 8.7e-117 rs110066229 1 PAEP Missense c.239G>A
β-LG 11 103291134 rs110270048 8.7e-117 rs109990218 0.997 PAEP Splice region c.305-5A>T
β-LG 11 103291134 rs110270048 8.7e-117 rs109625649 0.985 PAEP Missense c.401T>C
α-CN 11 103292575 rs381050299 5.6e-10 rs110066229 0.965 PAEP Missense c.239G>A
α-CN 11 103292575 rs381050299 5.6e-10 rs109990218 0.962 PAEP Splice region c.305-5A>T
α-CN 11 103292575 rs381050299 5.6e-10 rs109625649 0.95 PAEP Missense c.401T>C
Lf 2 22 53538882 rs43765460 1.8e-41 . . . . .

1 Trait definitions and units as described in Table 7.1.
2 Cube-root transformation of lactoferrin.
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Table 7.4: Peak variants for FT-MIR predicted fatty acid and protein traits with significant association effects

Trait1 Chr Position
Tag variant

P-value
Protein coding

LD Gene Class Description
ID variant ID

Individual fatty acids (g/100g of total fat)

C12:1 11 103301736 rs41255687 6.3e-11 rs110066229 0.988 PAEP Missense c.239G>A
C12:1 11 103301736 rs41255687 6.3e-11 rs109625649 0.991 PAEP Missense c.401T>C

C18:3 cis-3 14 2502770 rs137422574 1.0e-12 rs109403601 0.988 ENS..03606 Missense c.154C>G
C18:1 cis-9 14 2528807 rs110275497 1.3e-10 rs109403601 1 ENS..03606 Missense c.154C>G

C6:0 17 52971731 rs207997694 9.9e-16 . . . . .
C4:0 17 53034516 rs461037541 1.5e-17 . . . . .
C10:0 19 51314476 rs41922143 7.0e-13 rs41921160 0.989 CCDC57 Missense c.1907T>C
C12:0 19 51314476 rs41922143 3.8e-12 rs41921160 0.989 CCDC57 Missense c.1907T>C
C14:0 19 51314476 rs41922143 7.0e-12 rs41921160 0.989 CCDC57 Missense c.1907T>C
C8:0 19 51326050 rs136424304 8.9e-10 rs41921160 0.996 CCDC57 Missense c.1907T>C
C14:1 26 21174891 rs209445650 1.9e-09 . . . . .
C10:1 26 25584818 rs210921941 5.8e-10 . . . . .

C18:3 cis-3 27 36200888 rs110950972 9.9e-15 . . . . .
C16:0 27 36204679 . 1.6e-09 . . . . .

Grouped fatty acids (g/100g of total fat)

UFA 14 2319003 rs110182536 8.1e-10 rs109403601 0.947 ENS..03606 Missense c.154C>G
SCFA 17 53034516 rs461037541 7.1e-22 . . . . .
UFA 19 50919823 rs380534925 8.8e-10 . . . . .
MCFA 19 51314476 rs41922143 9.2e-13 rs41921160 0.989 CCDC57 Missense c.1907T>C
UFA 26 21138011 rs381655271 2.6e-10 rs41255693 0.914 SCD Splice region c.569C>T

Individual milk proteins (g/L of total volume)

κ-CN 6 87085918 . 8.2e-21 rs209798512 0.761 ENS..38520 Missense c.1623G>C
κ-CN 6 87085918 . 8.2e-21 rs211555767 0.761 ENS..38520 Missense c.1301C>T
κ-CN 6 87085918 . 8.2e-21 rs382793163 0.725 ENS..39991 Missense c.1406G>A
κ-CN 6 87085918 . 8.2e-21 rs385603965 0.711 ENS..03523 Missense c.1378C>T
κ-CN 6 87085918 . 8.2e-21 rs43703010 0.787 CSN1S1 Missense c.620A>G
α-CN 6 87133508 rs109500363 7.0e-11 rs382793163 0.856 ENS..39991 Missense c.1406G>A
α-CN 6 87133508 rs109500363 7.0e-11 rs385603965 0.839 ENS..03523 Missense c.1378C>T
α-CN 6 87133508 rs109500363 7.0e-11 rs43703010 0.923 CSN1S1 Missense c.620A>G
β-CN 11 103299272 rs110563549 8.3e-19 rs110066229 0.997 PAEP Missense c.239G>A
β-CN 11 103299272 rs110563549 8.3e-19 rs109625649 0.988 PAEP Missense c.401T>C
β-LG 11 103299272 rs110563549 5.4e-116 rs110066229 0.997 PAEP Missense c.239G>A
β-LG 11 103299272 rs110563549 5.4e-116 rs109625649 0.988 PAEP Missense c.401T>C
α-CN 14 1799066 rs385135066 4.8e-12 rs134364612 0.737 SLC52A2 Missense c.724A>G
α-CN 14 1799066 rs385135066 4.8e-12 rs109234250 0.737 DGAT1 Missense c.694G>A

1 Trait definitions and units as described in Table 7.1.
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Figure 7.1: Manhattan plots showing association effects for directly measured (GC-based) and FT-MIR
predicted individual short-chain fatty acid traits. Dark and light blue data points represent association signals
for GC-based traits and red data points represent association signals for FT-MIR predicted traits. Chromosomes
and genomic position based on the UMD3.1 Bos taurus reference genome are represented on the x-axis. The
strength of association signals are represented as the –log10(p-value) on the y-axis. The horizontal red line
shows the Bonferroni significance threshold of –log10(4.3e-09). GC=gas chromatography.
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Short-chain fatty acids

Prominent peaks were observed on BTA17 for the short-chain fatty acids, C4:0 and C6:0 (Tables

7.3 and 7.4; Fig. 7.1). For directly measured and FT-MIR predicted C4:0, these peaks were

underpinned by the same QTL at Chr17:53.03 Mbp (rs461037541). A peak of similar magnitude

was also observed for FT-MIR predicted C6:0 at a nearby locus (rs207997694), with a less

significant peak for directly measured C6:0 at that same locus. Other significant effects were

also observed at this locus for directly measured SCFA (p-value=1.2e-14) and FT-MIR predicted

SCFA (p-value=7.1e-22). The two implicated loci for the peaks on BTA17 were situated between

the AACS and BRI3BP genes, and visual examination revealed several significant variants across

both genes. The AACS gene codes for the enzyme acetoacetyl-CoA synthetase, which forms an

important metabolic link between the ketone body acetoacetate on one hand, and the tricarboxylic

acid cycle and fat synthesis on the other (Bergman, 1971). As this gene is highly expressed in

both adipose and mammary tissue (NCBI Bioprojects PRJEB4337 and PRJEB2445), AACS

makes a good candidate for the causal gene underlying fatty acid QTL in this region. Knutsen et

al. (2018) also reported an effect for C4:0 fatty acids in this region and suggested that the QTL

may be the result of a regulatory effect.

Medium-chain fatty acids

Significant effects were observed on BTA11, BTA19 and BTA26 for medium-chain fatty acids

(Tables 7.3 and 7.4; Fig. 7.2). The peak on BTA11 was underpinned by a Chr11:103.30 locus

(rs41255687) and was observed for FT-MIR predicted C12:1, but was absent for directly measured

C12:1. This locus was in high LD (R2 > 0.98) with two missense mutations in the PAEP

gene, which encodes the major whey protein, β-LG. One of the missense mutations reported

(rs109625649; V134A) is a variant that distinguishes the ‘A’ and ‘B’ haplotypes of β-LG (Caroli

et al., 2009), where the ‘A’ haplotype is known to be associated with higher levels of β-LG

expression. The PAEP locus has also been linked to FT-MIR wavenumbers characterised by

carboxylic C=O bond stretching (Tiplady et al., 2021b). This type of bond is found in both fats

and proteins, strongly suggesting that the peak observed for the FT-MIR predicted phenotype is

a false positive due to contamination of the signal by varying levels of β-LG expression.

Several QTL were identified for directly measured and FT-MIR predicted medium-chain fatty

acids (C10:0, C12:0, C14:0) on BTA19 that were in high LD (R2 > 0.97) with a missense mutation

(rs41921160) in the CCDC57 gene (Tables 7.3 and 7.4; Fig. 7.2). Significant effects were also ob-

served in this region for FT-MIR predicted C8:0 (p-value=8.9e-10; Fig. 7.1), and directly measured

(p-value=1.4e-13) and FT-MIR predicted MCFA (p-value=9.2e-13; Fig. 7.5). The CCDC57 gene
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encodes a coiled-coil domain-containing protein that is expressed in the bovine mammary gland

(Medrano et al., 2010). Previous studies have implicated the same or a nearby locus to the one

reported here as having a significant association for fatty acids (Bouwman et al., 2014; Knutsen

et al., 2018; Palombo et al., 2018) and fat composition (Tribout et al., 2020) in bovine milk.

Significant effects have also been reported at a nearby locus for a number of FT-MIR wavenumbers

characterised by carboxylic C=O bond stretching (Tiplady et al., 2021b). Bouwman et al. (2014)

examined this region in depth using HD genotypes and identified two possible genes underlying an

effect for C14:0 – CCDC57 and FASN. The missense mutation we have highlighted (rs41921160)

is located within the same region as the most highly associated variants in the study by Bouwman

et al. (2014), and was in perfect LD with the set of eight intronic HD variants with the most

highly associated effects. On closer examination of the association effects for C10:0, C12:0 and

C14:0 in our study, we determined that alongside the most highly associated variants in the

QTL peaks, there were 47 other imputed whole-genome sequence variants between 51,306,219

and 51,330,072 bp that were in perfect LD with one another (including the missense variant

rs41921160), with only marginally less significant p-values. A small cluster of association effects

near to or in the FASN gene were also observed, with the most significant of these being at

51,380,689 bp, but the p-value for that effect was not significant (p-value=2.4e-07). To assess

whether multiple QTL were present in this region, we repeated the GWAS, correcting for the

rs136424304 locus by including it as a covariate in the Bolt-LMM model. This resulted in no

significant effects remaining in a 1-Mbp region around the Chr19:51.32 locus, and the association

effect near to the FASN gene at 51,380,689 bp dropping in significance to a p-value of 3.9e-02.

Although our analysis provides evidence that the effect in this region may be underpinned by a

missense mutation in the CCDC57 gene, the functional candidacy of FASN remains and such an

effect would need to be confirmed by functional analysis.

Multiple QTL were identified for directly measured medium-chain fatty acids on BTA26

(Table 7.3; Fig. 7.2). The most significant effects were observed at Chr26:21.15 Mbp for directly

measured C10:1 (rs41255688; p-value=1.8e-48) and C14:1 (rs385285356; p-value=6.1e-61). These

loci were in high LD (R2=0.92) with a splice region variant (rs41255693) in the SCD gene. The

SCD gene was also identified as encompassing other effects with less significant p-values for

directly measured C10:0, C14:0, SFA and UFA (Table 7.3) and FT-MIR predicted UFA (Table

7.4). Stearoyl-CoA desaturase is an enzyme that plays an important role in biosynthesis of

monounsaturated fatty acids (Bernard et al., 2006; Paton and Ntambi, 2009), and has previously

been reported in other studies of fatty acids in bovine milk (Bouwman et al., 2011; Conte et al.,
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2010; Kgwatalala et al., 2009; Mele et al., 2007; Moioli et al., 2007; Schennink et al., 2008). The

strong effect we see for directly measured C14:1 in the SCD gene is unsurprising, given that C14:0

in milk fat is predominantly derived from de novo synthesis in the mammary gland, meaning that

almost all C14:1 cis-9 is likely to have been synthesised by stearoyl-CoA desaturase (Bernard

et al., 2006). Interestingly, although there was a significant effect for FT-MIR predicted UFA at

a nearby locus that was also in high LD with the rs41255693 splice region variant (R2=0.91), no

other effects were identified within the SCD gene for individual FT-MIR predicted fatty acids. A

peak for FT-MIR predicted C14:1 was tagged by a nearby Chr26:21.17 Mbp locus (rs209445650;

Table 7.4). However, the LD between the rs209445650 locus and the splice region variant identified

for directly measured fatty acids (rs41255693) was moderately low (R2=0.32). Moreover, in a

recent GWAS of individual FT-MIR wavenumbers, there was no evidence of an association effect

linked to the SCD gene (Tiplady et al., 2021b), indicating that changes in milk composition due to

this gene may be difficult to detect using FT-MIR spectral data. However, we may also view the

absence of FT-MIR predicted trait QTL in the SCD gene within the context of trait prediction

accuracy. The largest QTL underpinned by SCD in directly measured fatty acids were for C10:1

(p-value=1.8e-48) and C14:1 (p-value=6.1e-61). The prediction accuracies for these traits were

relatively poor: C10:1 (R2
cv=0.30; RPEcv=0.16) and C14:1 (R2

cv=0.41; RPEcv=0.23) (Table 7.1).

Also, it is notable that for C10:1 and C14:1, the heritability estimates of the FT-MIR predictions

were lower than those for direct measurements of these traits. This contrasts with the typical

pattern for nearly all other fatty acids where the heritability for the FT-MIR prediction was

greater than the heritability for the directly measured trait. In particular, the heritability estimate

for directly measured C14:1 was 0.55, whereas the heritability estimate for FT-MIR predicted

C14:1 was 0.26 (Table 7.2). Low prediction accuracy and a substantially lower heritability

estimate for FT-MIR predicted C14:1 may in part be explained by C14:1 being at relatively low

concentrations in milk samples, particularly compared to saturated fatty acids. Specifically, C14:1

had a mean concentration of 0.75g/100 g total fat; compared to mean concentrations of 1.54 to

27.64g/100g total fat for the individual saturated fatty acids included in this study (Table 7.1).

Potentially, it may be possible to improve trait prediction accuracies, heritability estimates and

QTL identification for C14:1 by basing FT-MIR predictions on the ratio of C14:1 to C14:0 as in

the study by Arnould et al. (2009a). In that study, they highlight that genetic variation and

heritability estimates change throughout lactation for the ratio of C14:1 to C14:0, so it may also

be valuable to examine other methods of accounting for stage of lactation such as using Legendre

polynomials.
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One further QTL was observed for directly measured C10:1 on BTA26 at a Chr26:26.46

Mbp locus (rs445758306; Table 7.3; Fig. 7.2). This locus was in high LD (R2=0.76) with a

missense mutation in the ITPRIP gene (rs379463458). The ITPRIP gene modulates intracellular

messaging by binding the inositol 1,4,5-triphosphate receptor ITPR. This gene has not previously

been reported in GWAS of bovine milk composition, and the potential role it may play in the

regulation of bovine milk fatty acids is unclear. An alternative potential candidate gene that the

Chr26:26.46 Mbp locus maps close to is SORCS3, which encodes the sortilin-related receptor

SorCS3. Sortilins are involved in regulating glucose transport into cells in response to insulin

(Huang et al., 2013). A potential mechanism by which this gene could influence milk fatty acid

concentrations is via changing the supply of glucose available for the pentose phosphate pathway,

which in turn provides the nicotinamide adenine dinucleotide phosphate necessary for fatty acid

synthesis.

Figure 7.3: Manhattan plot showing association effects for directly measured (GC-based) and FT-MIR
predicted C16 fatty acid traits. Dark and light blue data points represent association signals for GC-based
traits and red data points represent association signals for FT-MIR predicted traits. Chromosomes and
genomic position based on the UMD3.1 Bos taurus reference genome are represented on the x-axis. The
strength of association signals are represented as the –log10(p-value) on the y-axis. The horizontal red
line shows the Bonferroni significance threshold of –log10(4.3e-09). GC=gas chromatography.
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Long-chain fatty acids

Two QTL were identified on BTA14 for directly measured individual long-chain fatty acids (Table

7.3; Figs. 7.3 and 7.4). One of these was at a Chr14:1.80 Mbp (rs385135066) locus that had

a significant effect for directly measured C16:0 (p-value=1.2e-12). This locus was in high LD

(R2=0.74) with missense mutations in the SLC52A2 and DGAT1 genes. The other QTL was for

directly measured C18:1 cis-9 at a Chr14:1.76 Mbp (rs208417762) locus, that was also in high

LD (R2=0.92) with missense mutations in the SLC52A2 and DGAT1 genes. Closer examination

of association effects for FT-MIR predicted C16:0 revealed evidence of a peak at this locus,

but the peak was marginally below the significance threshold. Notably, in the present study,

the identified protein coding mutation in the SLC52A2 gene (rs134364612) was in perfect LD

with the DGAT1 K232A polymorphism (rs109234250) which has been attributed to changes in

bovine milk fat composition (Fink et al., 2020; Grisart et al., 2002) and fatty acids (Bouwman

et al., 2011; Buitenhuis et al., 2014; Li et al., 2014). The DGAT1 gene encodes diacylglycerol

O-acyltransferase 1, an enzyme that catalyses the final step in triglyceride production, thus

making this a compelling candidate for the observed effects.

Two further QTL were identified for FT-MIR predicted C16:0 and C18:3 cis-3 at Chr27:36.20

Mbp loci, that were not ascribed to any protein coding mutations in genes (Table 7.4; Figs.

7.3 and 7.4). However, the locus for C18:3 cis-3 (rs110950972) was in perfect LD with a 5’

untranslated region (UTR; rs208675276) in GPAT4, and the locus for C16:0 was also in high LD

(R2=0.997) with that same 5’ UTR. Interestingly, there was no evidence of QTL on BTA27 for

the corresponding directly measured traits (Figs. 7.3 and 7.4). The Chr27:36.20 Mbp loci are

situated in the GPAT4 gene, which encodes the triglyceride synthesis enzyme glycerol-3-phosphate

acyltransferase 4. As the milk fat percentage and other QTL at this locus have previously been

shown to operate via a mechanism linked to gene expression (Littlejohn et al., 2014), it is not

surprising that no significant coding mutations were identified in GPAT4.

Other grouped fatty acid effects

Further significant effects were observed for directly measured SFA and UFA at a Chr19:36.19

Mbp locus (rs110980742), that was in high LD (R2 > 0.81) with missense mutations in the

UTP18 gene (Table 7.3; Fig. 7.5). This effect was not observed in any other individual or grouped

fatty acid traits. The UTP18 gene is involved in the nucleolar processing of pre-18S ribosomal

RNA, and has not previously been reported in GWAS of bovine milk composition. The signal at

Chr19:36.19 is close to the locus of the KCNJ12 gene, which has a similar function to the KCNJ2

gene that has previously been shown to impact milk phenotypes (Tiplady et al., 2021b), although

a mechanism by which this gene could impact fatty acids is unclear.
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Individual milk proteins

Significant effects were observed on BTA6, BTA11, BTA14 and BTA22 for individual milk proteins

(Tables 7.3 and 7.4; Fig. 7.6). Four QTL were identified on BTA6, two of which were for directly

measured and FT-MIR predicted α-CN and the other two for directly measured and FT-MIR

predicted κ-CN, respectively. The effects for α-CN were observed at a Chr6:87.13 Mbp locus

(rs109500363) that was in high LD (R2=0.92) with a missense mutation in the CSN1S1 gene

(rs43703010). As the CSN1S1 gene codes for the α-CN protein (along with CSN1S2 ), it is not

surprising that genetic signals affecting α-CN were enriched at this locus. Interestingly, FT-MIR

predicted κ-CN also had a significant effect in the same region that was also in high LD (R2=0.79)

with rs43703010. The effect for directly measured κ-CN was observed at a Chr6:87.41 Mbp locus

(rs110794953) which was in high LD (R2 > 0.98) with two missense mutations in the CSN3

gene (rs43703015; rs43703016). The CSN3 gene encodes κ-casein, an abundantly expressed milk

protein. One of the missense mutations reported here (rs43703015) has previously been associated

with milk composition traits and differential expression in mammary tissue (MacLeod et al., 2016).

Significant effects have also been reported at this locus for a number of FT-MIR wavenumbers

characterised by amide III and phosphate bands, C–H stretching vibrations of CH2 and –CH3,

and N–H bending and C–N stretching in the amide II band (Tiplady et al., 2021b).

Several QTL were identified for individual milk proteins on BTA11 that were in high LD (R2

> 0.95) with missense mutations in the PAEP gene (rs110066229; rs109625649; Tables 7.3 and

7.4; Fig. 7.6). Of these, the QTL with the most significant effects were observed for directly

measured β-LG (p-value=8.7e-117) and FT-MIR predicted β-LG (p-value=5.4e-116). Smaller

association effects were also observed for directly measured α-CN (p-value=5.6e-10) and FT-MIR

predicted β-CN (p-value=8.3e-19). One of the implicated missense mutations in the PAEP gene

was the V134A PAEP mutation (rs109625649) that distinguishes the ‘A’ and ‘B’ haplotypes of

β-LG (previously described). This locus is likely driven by a regulatory effect, with a promoter

variant reported to be in LD with the V134A mutation previously reported (Lum et al., 1997) to

affect the binding of the Activator Protein-2 transcription factor. An eQTL for PAEP was also

reported in lactating bovine mammary tissue (Davis et al., 2022; Tiplady et al., 2021b).

One further QTL of interest was for directly measured Lf at a Chr22:53.54 Mbp locus

(rs43765460; Table 7.3; Fig. 7.6). The association effect at this locus had a p-value of 1.8e-41, but

there was no relevant splice region variant or moderate or high impact coding variant ascribed to

this effect. However, the rs43765460 locus is a synonymous variant in the LTF gene. Using our

previously published mammary RNA sequence dataset and eQTL mapping methodology (Lopdell
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et al., 2017; Tiplady et al., 2021b), we identified the presence of a co-localized expression-based

effect for LTF in this region. The rs43765460 locus we identified was in high LD with the top

associated eQTL variant for LTF (R2=0.88), and the Pearson correlation between the –log10(p-

values) of the directly measured Lf QTL and the –log10(p-values) of the Lf eQTL within a 1-Mbp

region flanking the rs43765460 variant was 0.92. The LTF gene is a major iron-binding protein in

milk that is linked to iron homeostasis and plays a key role in immune system response and cell

growth. Previous studies have shown that the LTF gene is linked to changes in Lf concentrations

in bovine milk (Bahar et al., 2011; Pawlik et al., 2014). Notably, there was no evidence of an

association effect at or near this locus for FT-MIR predicted Lf (Table 7.4). Further, in a recent

GWAS of individual FT-MIR wavenumbers, there was also no evidence of an association effect

linked to the LTF gene (Tiplady et al., 2021b), indicating that changes in milk composition

due to this gene may not be easily detectable using FT-MIR spectral data. However, it is also

important to note that prediction accuracies for Lf in the present study were relatively poor

(R2
cv=0.36; RPEcv=0.19; Table 7.1), and the heritability estimate for FT-MIR predicted Lf was

only 0.30, compared to the heritability estimate for directly measured Lf which was 0.59 (Table

7.2). This pattern is similar to that which we observed for C14:1 and the SCD gene, i.e., the

component was in relatively low concentrations in the milk sample, model prediction accuracy

was relatively poor, the heritability for the measured trait was substantially higher than for the

FT-MIR predicted trait, and a compelling peak was observed for the directly measured trait; but

no corresponding peak was observed for the FT-MIR predicted trait.

7.5.5 Perspectives on FT-MIR trait predictions for dairy cattle selection

Utilising FT-MIR predictions for fatty acids and proteins in milk can provide indicator traits

across large numbers of animals at little or no marginal cost, because FT-MIR spectral data is

already generated as part of routine milk testing to predict total fat and protein concentrations.

The alternative to using FT-MIR trait predictions is to directly measure traits, which may be

infeasible across even relatively small numbers of animals. Phenotypic correlations between

directly measured and FT-MIR predicted traits provide a useful indication of the utility of

FT-MIR trait predictions, particularly for herd management and milk processibility traits. For

breeding programs, however, we are also interested in the heritability of the FT-MIR predicted

trait and the genetic correlation between the directly measured and FT-MIR predicted trait. This

is because the heritability of the FT-MIR predicted trait defines the level of genetic variation

present, whilst the genetic correlation between the directly measured and FT-MIR predicted trait
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defines the breeding progress we could expect in the directly measured trait if we were to select

animals based on the FT-MIR predicted trait. Specifically, within the context of dairy cattle

progeny test schemes, the genetic correlation will limit the relative amount of selection response

that will result from using FT-MIR predictions instead of directly measured traits (Rutten et al.,

2010). Based on this assumption, the genetic gain from selection using FT-MIR predictions for all

traits we have studied would be greater than 70% of the gains achievable by direct selection on

these traits; and for 21 of the 29 traits, the genetic gains achievable would be greater than 85% of

the gains achievable by direct selection. It is important to note, however that this assumes that

there is no true difference in heritability between the directly measured and FT-MIR predicted

trait. For traits like Lf and C14:1 where the estimated heritability of the direct measurement was

lower than the heritability of the FT-MIR prediction, the genetic gain achievable would also be

lower.

Although we observed high genetic correlations between directly measured and FT-MIR

predicted traits in this study, the QTL underlying each trait were not always the same. An

example of this includes where we observed a large association effect within the GPAT4 gene on

BTA27 for FT-MIR predicted C18:3 cis-3, but no corresponding association effect was observed

for directly measured C18:3 cis-3 (Fig. 7.4). Similarly, a large association effect was observed for

FT-MIR predicted β-CN within the PAEP gene on BTA11, but no corresponding association

effect was observed in directly measured β-CN (Fig. 7.6). The presence of QTL with significant

effects in an FT-MIR predicted trait only are not entirely surprising, given that FT-MIR predicted

traits are a weighted linear function of absorbance values for individual wavenumbers, each of

which may be underpinned by multiple genetic signals and QTL (Benedet et al., 2019; Tiplady

et al., 2021b; Wang and Bovenhuis, 2018; Zaalberg et al., 2020). This means that when a spectral

wavenumber is included in a trait prediction equation, multiple genetic signals will also be present,

some of which are specifically related to the trait of interest and some that are not. It is important

that when FT-MIR predicted traits are used as proxies for other traits that we are mindful of this,

particularly when using SNP-based approaches in our estimation of breeding values, whereby the

impact will be determined by the relative proportion of genetic variation captured by each SNP

and the interaction of additive effects between SNP.

Instances also arose where a QTL was observed for a directly measured trait, but there

was no corresponding QTL observed in the FT-MIR predicted trait. Examples of this include

large association effects within the SCD gene for directly measured C10:1 and C14:1, but no

corresponding association effects for individual FT-MIR predicted fatty acids (Fig. 7.2). Similarly,
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a large association effect was observed within the LTF gene for directly measured Lf, but a

corresponding association effect for FT-MIR predicted Lf was absent (Fig. 7.6). In these examples,

there was a consistent pattern where we have a component in relatively low concentrations in the

milk sample with relatively poor model prediction accuracies and lower heritability estimates for

the FT-MIR predicted trait, compared to the directly measured trait (Tables 7.1 and 7.2). While

it might be argued that the failure to detect QTL in the SCD and LTF genes was because the

calibration equations were inadequate for the task of quantifying the milk component targets

(C10:1, C14:1 and Lf), it is also notable that in a previous GWAS we conducted on individual

FT-MIR wavenumbers (Tiplady et al., 2021b), no significant associations were identified between

FT-MIR wavenumbers and variants within the SCD and LTF genes. Potentially, this means that

changes in milk composition attributable to these two genes may be difficult to quantify directly

using FT-MIR wavenumber spectra. For Lf to be detected using FT-MIR spectral data, it needs

to provide a unique signal that distinguishes it from other whey proteins in solution that are at

much higher concentrations. But when the mean concentration of Lf is around 0.1g/L and the

major whey protein β-LG is at a 20-40 fold higher concentration, it is not surprising that a QTL

is seen within the PAEP gene and not within the LTF gene.

With the growing interest in using FT-MIR spectral data to predict molecules at low

concentrations in milk, it is important to understand that the predictive performance of these

models may be limited, compared to models for predicting major milk components such as

total fat and protein concentrations (Grelet et al., 2021). In the context of the present study,

we have shown that for many fatty acids and protein traits, model prediction accuracies are

moderate, but that genetic correlations between directly measured and FT-MIR predicted fatty

acid and protein fractions are typically high. However, it is also clear that phenotypic variation

between directly measured and FT-MIR predicted traits may be underpinned by differing genetic

architecture. This may be due to several related factors including the trait of interest being at low

concentrations in the milk sample, low prediction model accuracy, or that the trait is not easily

detectable using FT-MIR spectroscopy. Improving calibration equations is central to optimising

our use of FT-MIR spectra to generate proxies for traits of interest to the industry such as fatty

acids and protein fractions. Collaboration between research groups to generate datasets that

include data from a range of herds that capture differences in climate, management systems, diet

and breed composition might improve calibration equations (Grelet et al., 2021). However, a key

barrier to consolidating FT-MIR spectral datasets from different research groups is variation in

spectral measurements between instruments and within instruments across time. Standardization



7.5. RESULTS AND DISCUSSION 193

of individual FT-MIR spectra wavenumbers using reference samples can effectively address these

sources of variation (Grelet et al., 2015, 2017; Tiplady et al., 2019), however outside the European

OptiMIR network, reference sample sharing and standardization is not common practice. Other

approaches such as those offered by FOSS (Hillerød, Denmark) or Bentley (Chaska, MN), are

appealing in that they are not reliant on perishable milk samples. However, as far as we are

aware, the effectiveness of these procedures has not been independently evaluated. Validation of

these within-instrument standardization procedures is important, because if the procedures work

well, they could facilitate the consolidation of spectral data from different networks/countries,

and assist with the development of better prediction equations and improve trait prediction

accuracies.

7.5.6 Study limitations

In this study, we developed PLS prediction equations and compared the genetic characteristics of

directly measured fatty acids and protein fractions to the same traits predicted from FT-MIR

spectra. There are several areas of refinement that might improve prediction equations and

the identification of QTL. First, prior to the development of prediction equations, we assessed

several mathematical treatments of spectra, but we only assessed the prediction accuracies of

those treatments using PLS models. Although PLS is a widely-used method for developing

calibration models from FT-MIR spectra, it may be possible to develop better prediction models

for some traits by employing Bayesian or other machine learning approaches, as demonstrated in

other studies of milk composition (Bonfatti et al., 2017b; El Jabri et al., 2019; Frizzarin et al.,

2021a) or animal health and feed intake traits (Brand et al., 2021; Contla Hernández et al.,

2021; Dórea et al., 2018). Second, it is expected that increasing the number of samples in the

study and including data from different herds would also improve trait prediction accuracies,

particularly for fatty acids and protein fractions at low concentrations in milk samples. Extending

the study to include data from different herds would also facilitate a more robust validation

strategy. Although the cow-independent validation approach we have used is commonly practiced

in studies of FT-MIR spectra trait prediction, it has been shown that record- or cow-independent

validation can overinflate prediction accuracies, compared to herd-independent validation (Dórea

et al., 2018; Lahart et al., 2019; Luke et al., 2019b; Wang and Bovenhuis, 2019). Improving and

validating the prediction equations we have developed in this study are important steps for future

research, to confirm their utility for prediction and use in future breeding programs.
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Other potential refinements for the present study relate to genomic information and the

strategy for identifying QTL. Specifically, we have used datasets mapped to the UMD3.1 genome,

however, it is expected that the improved sequence continuity and per-base accuracy of the

ARS-UCD1.2 reference genome (Rosen et al., 2020) may yield a few additional QTL and reveal

additional candidate mutations given improvements in accompanying transcript annotations.

Also, the approach we used to identify QTL could be extended to account for non-additive QTL

in a similar manner to that outlined in Reynolds et al. (2021). Finally, the approach we used

to identify causative genes and variants only considered protein-altering variants as candidates,

which we acknowledge is relatively simple and crude, and that many of the identified signals could

be underpinned by regulatory effects (e.g., gene expression-based mechanisms). It is expected that

integration of other functional datasets such as mammary eQTL and ChIP-seq datasets could

map additional molecular QTL and enhance fine mapping and candidate variant identification

(Tiplady et al., 2020).

7.6 Conclusions

We developed PLS calibration equations to predict bovine fatty acids and protein fractions in

milk samples, and compared the genetic architecture underlying directly measured traits to that

of corresponding FT-MIR predicted traits. Low to moderate prediction accuracies were observed,

indicating that the potential application of using FT-MIR prediction equations for some traits may

be limited. However, for most traits, heritability estimates were moderate to high, indicating that

genetic variation exists that could potentially be exploited for the purposes of animal selection.

Moreover, high genetic correlations between directly measured and FT-MIR predicted fatty acids

and individual milk proteins indicated that selection based on FT-MIR predicted traits could

provide high rates of genetic gain in the corresponding trait of interest. Trait QTL for fatty

acids were identified with likely candidates in the DGAT1, CCDC57, SCD and GPAT4 genes,

but QTL underpinned by SCD were largely absent in FT-MIR predicted fatty acids, and the

QTL underpinned by GPAT4 were absent in directly measured fatty acids. Similarly, likely

candidates were identified for directly measured proteins in the CSN1S1, CSN3, PAEP and LTF

genes, but the QTL for CSN3 and LTF were absent in corresponding FT-MIR predicted traits.

Our study highlights the potential value of FT-MIR predictions as indicators for fatty acid and

protein fractions in milk, and that selection based on FT-MIR predictions can provide genetic

gain in specific milk components of interest. We also highlight that for many traits the genes

implicated in phenotypic variation were similar, but that in some instances, phenotypic variation

was underpinned by differing genetic architecture and segregation of alleles at QTL.
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Figure 7.A.1: Frequency distribution of samples across days in milk (n=2,005).

Figure 7.A.2: Frequency distributions of (a) untransformed lactoferrin concentrations and (b)
lactoferrin concentrations after cube-root transformation (n=1,936).
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Table 7.A.1: Goodness of fit (R2
cv) of PLS calibration models for untreated and pre-treated

spectra based on cow-independent validation

Trait1 Spectral pre-treatment3

Untreated First-derivative MSC MSC+1st SNV SNV+1st

Individual fatty acids (g/100g of total fat)

C4:0 0.627 0.617 0.625 0.602 0.623 0.602
C6:0 0.534 0.544 0.533 0.548 0.534 0.542
C8:0 0.622 0.610 0.625 0.622 0.628 0.622
C10:0 0.627 0.622 0.642 0.627 0.641 0.627
C10:1 0.344 0.360 0.353 0.365 0.348 0.360
C12:0 0.590 0.587 0.594 0.590 0.596 0.590
C12:1 0.321 0.352 0.323 0.353 0.326 0.353
C14:0 0.494 0.492 0.498 0.499 0.501 0.491
C14:1 0.408 0.413 0.418 0.416 0.412 0.414
C16:0 0.600 0.573 0.603 0.578 0.612 0.574
C16:1 0.205 0.226 0.209 0.182 0.212 0.184
C18:0 0.466 0.452 0.446 0.447 0.475 0.445

C18:1 cis-7 0.403 0.408 0.431 0.409 0.444 0.411
C18:1 cis-9 0.562 0.553 0.554 0.565 0.554 0.569

C18:2 cis-9, trans-11 0.475 0.497 0.508 0.497 0.508 0.498
C18:2 cis-6 0.431 0.465 0.451 0.480 0.455 0.480
C18:3 cis-3 0.356 0.364 0.356 0.351 0.356 0.360

Grouped fatty acids (g/100g of total fat)

SFA 0.587 0.590 0.601 0.595 0.598 0.591
PUFA 0.449 0.471 0.482 0.470 0.477 0.490
UFA 0.588 0.587 0.601 0.593 0.595 0.597
SCFA 0.655 0.653 0.652 0.647 0.651 0.648
MCFA 0.539 0.566 0.553 0.564 0.557 0.567
LCFA 0.561 0.567 0.563 0.569 0.568 0.568

Individual milk proteins (g/L of total volume)

α-CN 0.476 0.528 0.458 0.534 0.460 0.532
β-CN 0.193 0.185 0.184 0.188 0.184 0.190
κ-CN 0.467 0.486 0.449 0.471 0.452 0.476
α-LA 0.324 0.307 0.324 0.306 0.322 0.306
β-LG 0.660 0.686 0.667 0.675 0.661 0.678
Lf 2 0.347 0.344 0.356 0.355 0.356 0.356

Mean R2
cv 0.472 0.479 0.477 0.479 0.479 0.480

1 Trait definitions and units as described in Table 7.1.
2 Cube-root transformation of lactoferrin.
3 Untreated=untreated spectral data; First-derivative=spectra pre-treated with a first-order Savitzky-Golay
derivative with a window of 7 data points either side; MSC=spectra pre-treated with multiplicative scatter
correction; MSC+1st=spectra pre-treated with MSC followed by first-derivative transformation; SNV=spectra
pre-treated with a standard normal variate transformation; SNV+1st=spectra pre-treated with SNV followed by
first-derivative transformation.
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Table 7.A.2: Variance component estimates for directly measured and FT-MIR predicted fatty acid and protein traits

Trait1 Directly measured trait FT-MIR predicted trait

σ2
u σ2

p σ2
e σ2

T σ2
u σ2

p σ2
e σ2

T

Individual fatty acids (g/100g of total fat)

C4:0 0.022 (0.009) 0.014 (0.007) 0.033 (0.001) 0.069 (0.004) 0.014 (0.006) 0.009 (0.005) 0.018 (0.001) 0.042 (0.002)

C6:0 0.005 (0.003) 0.004 (0.002) 0.016 (0.001) 0.025 (0.001) 0.003 (0.001) 0.002 (0.001) 0.006 (2e-4) 0.011 (0.001)

C8:0 0.005 (0.002) 0.003 (0.002) 0.011 (4e-4) 0.019 (0.001) 0.003 (0.001) 0.001 (0.001) 0.005 (2e-4) 0.009 (5e-4)

C10:0 0.098 (0.039) 0.032 (0.028) 0.110 (0.004) 0.241 (0.015) 0.057 (0.020) 0.008 (0.014) 0.060 (0.002) 0.125 (0.008)

C10:1 0.001 (4e-4) 0.001 (3e-4) 0.001 (1e-4) 0.003 (2e-4) 0.0003 (1e-4) 0.0002 (1e-4) 0.001 (0.00003) 0.001 (1e-4)

C12:0 0.132 (0.055) 0.064 (0.04) 0.182 (0.007) 0.378 (0.021) 0.083 (0.031) 0.020 (0.022) 0.094 (0.004) 0.197 (0.012)

C12:1 2e-4 (1e-4) 7e-5 (1e-4) 5e-4 (2e-5) 0.001 (3e-5) 1e-4 (3e-5) 4e-5 (2e-5) 2e-4 (1e-5) 3e-4 (1e-5)

C14:0 0.342 (0.154) 0.122 (0.111) 0.532 (0.021) 0.997 (0.058) 0.161 (0.065) 0.022 (0.046) 0.266 (0.011) 0.449 (0.025)

C14:1 0.021 (0.007) 0.006 (0.005) 0.011 (4e-4) 0.037 (0.003) 0.003 (0.001) 0.002 (0.001) 0.007 (3e-4) 0.012 (0.001)

C16:0 2.187 (0.804) 1.145 (0.579) 2.451 (0.098) 5.782 (0.327) 1.214 (0.424) 0.209 (0.302) 1.700 (0.068) 3.123 (0.169)

C16:1 0.008 (0.004) 0.012 (0.003) 0.022 (0.001) 0.043 (0.002) 0.002 (0.001) 0.003 (0.001) 0.007 (3e-4) 0.011 (5e-4)

C18:0 0.176 (0.130) 1.137 (0.135) 1.400 (0.056) 2.714 (0.108) 0.149 (0.087) 0.232 (0.070) 0.653 (0.026) 1.034 (0.044)

C18:1 cis-7 0.125 (0.053) 0.084 (0.039) 0.202 (0.008) 0.412 (0.022) 0.063 (0.026) 0.036 (0.019) 0.095 (0.004) 0.193 (0.011)

C18:1 cis-9 0.881 (0.379) 0.770 (0.288) 2.335 (0.093) 3.986 (0.180) 0.551 (0.234) 0.264 (0.172) 1.140 (0.046) 1.955 (0.097)

C18:2 c-9, t-11 0.017 (0.007) 0.012 (0.005) 0.019 (0.001) 0.048 (0.003) 0.010 (0.004) 0.004 (0.003) 0.009 (4e-4) 0.023 (0.002)

C18:2 cis-6 0.004 (0.002) 0.001 (0.001) 0.007 (3e-4) 0.013 (0.001) 0.002 (0.001) 0.001 (5e-4) 0.003 (1e-4) 0.006 (3e-4)

C18:3 cis-3 0.004 (0.001) 5e-4 (0.001) 0.005 (2e-4) 0.009 (5e-4) 0.001 (3e-4) 1e-4 (2e-4) 0.001 (4e-5) 0.002 (1e-4)

Grouped fatty acids (g/100g of total fat)

SFA 1.472 (0.626) 1.541 (0.478) 3.162 (0.126) 6.175 (0.291) 1.293 (0.530) 0.646 (0.381) 1.530 (0.062) 3.469 (0.206)

PUFA 0.078 (0.029) 0.026 (0.021) 0.077 (0.003) 0.181 (0.011) 0.049 (0.018) 0.017 (0.013) 0.039 (0.002) 0.105 (0.007)

UFA 1.468 (0.626) 1.544 (0.478) 3.156 (0.126) 6.167 (0.291) 1.299 (0.531) 0.640 (0.382) 1.535 (0.062) 3.474 (0.206)

SCFA 0.037 (0.020) 0.041 (0.015) 0.117 (0.005) 0.196 (0.009) 0.026 (0.013) 0.025 (0.010) 0.050 (0.002) 0.101 (0.005)

MCFA 1.293 (0.564) 0.610 (0.410) 2.302 (0.092) 4.206 (0.223) 0.797 (0.311) 0.203 (0.222) 1.158 (0.046) 2.158 (0.121)

LCFA 0.852 (0.546) 3.787 (0.549) 7.060 (0.282) 11.699 (0.445) 0.813 (0.445) 1.102 (0.355) 3.386 (0.137) 5.301 (0.223)

Individual milk proteins (g/L of total volume)

α-CN 0.579 (0.260) 0.337 (0.191) 1.112 (0.049) 2.029 (0.108) 0.559 (0.230) 0.122 (0.162) 0.428 (0.019) 1.109 (0.082)

β-CN 0.421 (0.241) 0.097 (0.193) 2.586 (0.115) 3.105 (0.126) 0.204 (0.091) 0.146 (0.066) 0.187 (0.008) 0.537 (0.035)

κ-CN 0.172 (0.067) 0.007 (0.047) 0.136 (0.006) 0.315 (0.024) 0.083 (0.031) 0.027 (0.022) 0.052 (0.002) 0.162 (0.012)

α-LA 0.008 (0.003) 0.002 (0.002) 0.009 (4e-4) 0.019 (0.001) 0.002 (0.001) 0.001 (5e-4) 0.002 (9e-5) 0.005 (3e-4)

β-LG 0.282 (0.103) 0.076 (0.072) 0.09 (0.004) 0.448 (0.037) 0.240 (0.084) 0.034 (0.058) 0.07 (0.003) 0.343 (0.03)

Lf 2 0.007 (0.003) 2e-4 (0.002) 0.005 (2e-4) 0.0122 (0.001) 0.001 (4e-4) 0.001 (0.0003) 0.0018 (7e-5) 0.003 (2e-4)

1 Trait definitions and units as described in Table 7.1. Standard errors shown in brackets.
2 Cube-root transformation of lactoferrin.
Abbreviations: σ2

u=additive genetic variance; σ2
p=permanent environment variance; σ2

e=residual variance; σ2
T =total variance (σ2

u+σ2
p+σ2

e).
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Table 7.A.3: Effect sizes and minor allele frequency details for fatty acid traits with a significant
association effect

Chr Position Tag variant Minor allele Trait1 Trait type Beta SE P-value
ID frequency

Individual fatty acids (g/100g of total fat)
14 1756075 rs208417762 0.311 C18:1 cis-9 Measured 0.682 0.106 1.3e-10
14 1799066 rs385135066 0.238 C16:0 Measured -1.039 0.146 1.2e-12
14 1799066 rs385135066 0.238 C16:0 Measured -1.039 0.146 1.2e-12
17 52971731 rs207997694 0.085 C6:0 Measured 0.081 0.013 9.6e-10
17 53034516 rs461037541 0.083 C4:0 Measured 0.208 0.024 7.2e-18
19 51319673 rs137270097 0.265 C10:0 Measured 0.162 0.025 1.2e-10
19 51319673 rs137270097 0.263 C12:0 Measured 0.239 0.033 8.3e-13
19 51326050 rs136424304 0.262 C14:0 Measured 0.338 0.050 1.4e-11
26 21141279 rs41255696 0.476 C10:0 Measured -0.145 0.023 2.2e-10
26 21141279 rs41255696 0.475 C14:0 Measured -0.288 0.046 2.7e-10
26 21148111 rs41255688 0.493 C10:1 Measured -0.037 0.003 1.8e-48
26 21149680 rs385285356 0.496 C14:1 Measured -0.136 0.008 6.1e-61
26 26458006 rs445758306 0.318 C10:1 Measured -0.017 0.003 2.6e-10
26 26458006 rs445758306 0.308 C12:1 Measured -0.008 0.001 2.4e-10
11 103301736 rs41255687 0.420 C12:1 Predicted -0.005 0.001 6.3e-11
14 2502770 rs137422574 0.414 C18:3 cis-3 Predicted 0.016 0.002 1.0e-12
14 2528807 rs110275497 0.415 C18:1 cis-9 Predicted 0.429 0.067 1.3e-10
17 52971731 rs207997694 0.085 C6:0 Predicted 0.068 0.009 9.9e-16
17 53034516 rs461037541 0.083 C4:0 Predicted 0.150 0.018 1.5e-17
19 51314476 rs41922143 0.262 C10:0 Predicted 0.134 0.019 7.0e-13
19 51314476 rs41922143 0.260 C12:0 Predicted 0.158 0.023 3.8e-12
19 51314476 rs41922143 0.264 C14:0 Predicted 0.230 0.033 7.0e-12
19 51326050 rs136424304 0.261 C8:0 Predicted 0.032 0.005 8.9e-10
26 21174891 rs209445650 0.452 C14:1 Predicted 0.029 0.005 1.9e-09
26 25584818 rs210921941 0.485 C10:1 Predicted -0.010 0.002 5.8e-10
27 36200888 rs110950972 0.455 C18:3 cis-3 Predicted 0.017 0.002 9.9e-15
27 36204679 . 0.464 C16:0 Predicted -0.485 0.080 1.6e-09

Grouped fatty acids (g/100g of total fat)
17 53034516 rs461037541 0.081 SCFA Measured 0.304 0.039 1.2e-14
19 36187954 rs110980742 0.260 SFA Measured -0.927 0.149 5.0e-10
19 36187954 rs110980742 0.259 UFA Measured 0.933 0.150 4.8e-10
19 51319673 rs137270097 0.265 MCFA Measured 0.791 0.107 1.4e-13
26 21149680 rs385285356 0.495 SFA Measured 0.818 0.129 2.1e-10
26 21149680 rs385285356 0.495 UFA Measured -0.832 0.129 1.1e-10
14 2319003 rs110182536 0.408 UFA Predicted 0.593 0.097 8.1e-10
17 53034516 rs461037541 0.081 SCFA Predicted 0.275 0.029 7.1e-22
19 50919823 rs380534925 0.171 UFA Predicted -0.825 0.135 8.8e-10
19 51314476 rs41922143 0.262 MCFA Predicted 0.544 0.076 9.2e-13
26 21138011 rs381655271 0.493 UFA Predicted -0.628 0.099 2.6e-10

1 Trait definitions and units as described in Table 7.1.
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Table 7.A.4: Effect sizes and minor allele frequency details for protein traits with a significant association
effect

Chr Position Tag variant Minor allele Trait1 Trait type Beta SE P-value
ID frequency

6 87133508 rs109500363 0.329 α-CN Measured 0.659 0.095 4.3e-12
6 87405588 rs110794953 0.450 κ-CN Measured -0.412 0.038 6.4e-28
11 103291134 rs110270048 0.421 β-LG Measured 0.838 0.036 8.7e-117
11 103292575 rs381050299 0.455 α-CN Measured -0.540 0.087 5.6e-10
22 53538882 rs43765460 0.457 Lf 2 Measured -0.072 0.005 1.8e-41

6 87085918 . 0.361 κ-CN Predicted 0.256 0.027 8.2e-21
6 87133508 rs109500363 0.329 α-CN Predicted 0.461 0.071 7.0e-11
11 103299272 rs110563549 0.440 β-CN Predicted -0.429 0.048 8.3e-19
11 103299272 rs110563549 0.420 β-LG Predicted 0.728 0.032 5.4e-116
14 1799066 rs385135066 0.237 α-CN Predicted -0.527 0.076 4.8e-12

1 Trait definitions and units as described in Table 7.1.
2 Cube-root transformation of lactoferrin.





DRC 16 

GRS Version 5 – 13 December 2019 
DRC 19/09/10 

STATEMENT OF CONTRIBUTION 
 DOCTORATE WITH PUBLICATIONS/MANUSCRIPTS

We, the candidate and the candidate’s Primary Supervisor, certify that all co-authors have consented to 
their work being included in the thesis and they have accepted the candidate’s contribution as indicated 
below in the Statement of Originality. 

Name of candidate: 

Name/title of Primary Supervisor: 

In which chapter is the manuscript /published work: 

Please select one of the following three options: 

The manuscript/published work is published or in press 

• Please provide the full reference of the Research Output:

The manuscript is currently under review for publication – please indicate: 

• The name of the journal:

• The percentage of the manuscript/published work that
was contributed by the candidate:

• Describe the contribution that the candidate has made to the manuscript/published work:

It is intended that the manuscript will be published, but it has not yet been submitted to a journal 

Candidate’s Signature: 

Date: 

Primary Supervisor’s Signature: 

Date: 

This form should appear at the end of each thesis chapter/section/appendix submitted as a manuscript/ 
publication or collected as an appendix at the end of the thesis. 

Kathryn Maree Tiplady

Professor Dorian Garrick

Chapter Seven

Phenotypic analysis, pedigree-based genetic analysis, genome wide association study, writing the 
manuscript.

25-Mar-2022

Journal of Dairy Science

90.00

Kathryn Tiplady Digitally signed by Kathryn Tiplady 
Date: 2022.03.23 18:23:11 +13'00'

Dorian Garrick





Chapter 8

General discussion

207





8.1. DISCUSSION OVERVIEW 209

8.1 Discussion overview

Fourier-transform mid-infrared (FT-MIR) spectroscopy plays a key role in generating phenotypes

for major milk composition traits and is a cornerstone of modern dairy cattle milk payment and

animal evaluation systems. Increasingly, there has been interest in utilising FT-MIR spectra to

predict other novel traits and improve our understanding of milk composition. In this thesis

I have examined a range of topics relating to phenotypic and genetic applications of FT-MIR

spectra, and the role that these data may play in predicting new traits or improving the prediction

of existing traits in dairy cattle. Each chapter includes discussion specific to individual topics.

In the following sections, I will consolidate the most important themes and findings from each

chapter, and highlight key areas of consideration for the use of FT-MIR spectra to improve dairy

cattle trait prediction and advance selective breeding into the future.

8.2 Phenotyping using FT-MIR spectra

Fourier-transform mid-infrared spectroscopy is an analytical technique used to determine the

presence of specific chemical bonds in milk samples and is widely used in the dairy industry to

quantify major milk components such as fat and protein. Whilst there are many other potentially

valuable applications for FT-MIR spectra in the dairy industry, the accuracy of trait prediction

can be hindered by a number of sources of unwanted variation. Prior to the development of

FT-MIR spectra prediction models, it is important that these sources of variation are addressed

to improve the quality of FT-MIR spectral data and prepare it for downstream analysis. In

this section, I will discuss methods for improving the quality of FT-MIR spectral data, and will

address topics related to the development of prediction models and validation approaches for

FT-MIR spectra phenotyping applications.

8.2.1 Pre-processing of FT-MIR spectra to improve data quality

Sources of variation in FT-MIR spectra that affect trait prediction and the transferability of

prediction equations to other spectral datasets include: variation in measurement for specific

regions of the infrared spectrum due to the water content of milk, and variation in spectral

measurements between instruments and within instruments across time. A detailed discussion

of these topics has been provided in Chapter 3. In this section, we will discuss important

findings related to outlier removal within multi-instrument networks and strategies for managing

systematic variation in spectral measurement between and within instruments across time.
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Outlier removal within multi-instrument networks

Fourier-transform mid-infrared spectral data is of a high-dimensional nature with a complex

correlation structure due to the lack of independence between individual wavenumber spectral

responses. Commonly, outlier detection in FT-MIR spectral datasets is conducted using

multivariate methods, employing metrics like the squared Mahalanobis distance (MD), which is an

indicator of the distance between each spectral record and the average expected spectral response.

In Chapter 3, we presented a study where the spectral data were collected from a multi-instrument

network. When we evaluated MD values based on the distance between each spectral record and

the average spectral response across all instruments, we showed that the distribution of MD values

was multimodal and that variance structures for each instrument were not homogeneous. This

highlighted that for milk samples analysed within a multi-instrument network, it is important

to conduct outlier detection in a manner that takes into account instrument-specific variance

structures and is based on the distance of each spectral record from the instrument-specific

average spectral response. Failure to do this could result in the removal of a large proportion

of records from one instrument and not removing anomalies from others. Within-instrument

outlier identification and removal has been employed in Chapter 4 of this thesis prior to the

evaluation of prediction models, and in Chapter 6 prior to generating adjusted wavenumber and

milk composition phenotypes.

Managing systematic instrument variation

Variation in spectral measurements between instruments and within instruments across time

can result in prediction errors and bias. To address these instrument measurement differences,

a common approach is to adjust FT-MIR trait predictions by instrument-specific correction

coefficients that have been previously evaluated from the analysis of reference samples (Lynch

et al., 2006). However, this approach is only possible where reference samples have been analysed

on the instrument and a trait-specific set of correction coefficients have been evaluated. Because

trait-specific correction coefficients are not always available, there has been an increased interest

in standardizing individual FT-MIR spectra wavenumbers directly.

In Chapter 3 we compared two strategies for standardizing individual spectra wavenumbers.

The first strategy, piecewise direct standardization (PDS) (Grelet et al., 2015, 2017), utilises milk-

based reference samples measured across all instruments in a network to relate the response for each

wavenumber on the primary instrument to a small window around the same wavenumber on each

secondary instrument. The second strategy, retroactive percentile standardization (RPS), is not
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reliant on spectra from milk-based references samples, but instead uses spectral responses for each

wavenumber from milk testing samples to map the primary/secondary instrument relationships

(Bonfatti et al., 2017a). To assess the performance of these standardization strategies for reducing

the prediction errors of major milk composition traits, we applied both strategies to a large

dataset of over 2 million spectra records (Chapter 3). We showed that PDS provided the most

consistent reduction in prediction errors across time, with reductions of between 38% and 63% for

major milk composition traits. We also showed that similar reductions could be achieved using

RPS, provided that correction coefficients were updated regularly, and adjustments were made to

the approach to account for expected regional differences in milk composition.

Although it has been shown in previous studies (Grelet et al., 2015, 2017) and in Chapter 3

of this thesis that PDS applied to individual wavenumbers can consistently reduce prediction

errors for FT-MIR predicted traits, the downside of this approach is that it requires the analysis

of identical reference samples across all instruments. This means that to standardize spectra

from instruments across multiple countries, global reference sample sharing would be required.

Reference sample sharing and standardization between instruments in different countries already

takes place across the European OptiMIR network, a transnational network that includes ~69

FT-MIR spectrometers in 29 milk laboratories across seven countries (Belgium, England, Ireland,

France, Germany, Luxembourg, Scotland). Outside Europe, however, this reference sample

sharing and standardization process is not common practice. For other countries like New Zealand

to participate in a process like this, there are barriers related to sample preservation and bio-

security issues with sharing milk samples between countries. Instrument manufacturers such as

FOSS (Hillerød, Denmark) and Bentley (Chaska, MN) have proposed alternative standardization

approaches that are not reliant on perishable milk samples. The FOSS procedure uses a liquid

equaliser with a known spectral response to adjust spectral results (Winning et al., 2014),

whereas the Bentley procedure uses a polystyrene film to adjust for interferometer laser frequency

shifts across time (Gupta et al., 1995), and infrared flow cell information to adjust for shifts in

absorbance measurement (Parsons and Lyder, 2018). These within-instrument standardization

procedures offer promise for automatic spectral standardization and the sharing of prediction

equations between countries because they are not reliant on perishable milk samples. However,

there are no independent studies to validate the effectiveness of these procedures. Validating the

effectiveness of these standardization procedures is an important area for future research, because

if the procedures work well, they could provide a robust way for spectral data from different

networks/countries to be consolidated, and lead to more accurate trait prediction.
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8.2.2 Trait prediction

Trait prediction based on FT-MIR spectra for major milk components is already widely used to

quantify concentrations of fat and protein for dairy cattle. Applications using FT-MIR spectra to

predict other traits are appealing because of the opportunity to obtain indicator traits across large

numbers of animals at little or no marginal cost, due to the spectral data already being available

as a by-product of routine milk testing. The use of FT-MIR spectra as a phenotyping strategy

has been widely studied for traits that can be directly measured in milk such as individual fatty

acids (Bonfatti et al., 2016; Lopez-Villalobos et al., 2014; Rutten et al., 2009; Soyeurt et al., 2006)

and protein fractions (Bonfatti et al., 2016; De Marchi et al., 2009a; Lopez-Villalobos et al., 2009;

McDermott et al., 2016; Rutten et al., 2011; Soyeurt et al., 2012), and traits related to milk

technological properties (Bittante et al., 2014; Cecchinato et al., 2009; De Marchi et al., 2009b;

Toffanin et al., 2015; Visentin et al., 2015). Other studies have focussed on traits not directly

measurable in milk, including those related to pregnancy (Brand et al., 2021; Delhez et al., 2020;

Lainé et al., 2017; Toledo-Alvarado et al., 2018a), animal health (Belay et al., 2017; Grelet et al.,

2016; Ho et al., 2021; Luke et al., 2019b) and the environment (Bittante and Cipolat-Gotet,

2018; Mitchell et al., 2005; Vanlierde et al., 2013, 2015). In this section we will discuss FT-MIR

spectra trait prediction within the context of two types of traits that were studied as part of

this thesis: fatty acids and protein fractions measured directly in the milk using chromatography

methods (Chapter 7); and pregnancy status, indirectly inferred from artificial insemination (AI)

and calving information (Chapter 4). We also briefly discuss different types of models used for

FT-MIR spectra trait prediction and highlight strategies to account for other on-farm and stage

of lactation effects.

Trait predictions for individual fatty acid and protein traits

Prediction models based on FT-MIR spectra for individual fatty acids and protein fractions are

typically evaluated using a modest set of samples that have corresponding trait values measured

by gas or liquid chromatography. In previous studies, prediction accuracies for these traits have

varied, often due to factors including breed composition and differences in farming systems, the

number of samples and extent of trait variation present in the calibration model dataset, and the

validation strategy used. In Chapter 7, we presented a study where milk fatty acids and protein

fractions were predicted using ~2,000 FT-MIR spectra records from crossbred cows raised in a

New Zealand seasonal calving pasture-based dairy system. Using a cow-independent validation

approach we reported prediction accuracies that were consistent with those from previous studies
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of individual fatty acids (Bonfatti et al., 2016; Lopez-Villalobos et al., 2014; Rutten et al., 2009;

Soyeurt et al., 2006, 2011) and protein fractions (Bonfatti et al., 2016; De Marchi et al., 2009a;

Lopez-Villalobos et al., 2009; McDermott et al., 2016; Rutten et al., 2011; Soyeurt et al., 2012).

Based on guidelines outlined by Fuentes-Pila et al. (1996), 21 of 23 individual and grouped fatty

acids, and all six protein fractions included in our study had good or satisfactory predictions.

This confirmed the findings of previous studies and highlighted the potential of FT-MIR spectra

to provide useful proxies for directly measured fatty acids and protein fractions. Validation of the

prediction equations developed from the study presented in Chapter 7 is an important step for

future research, to confirm their utility for prediction and use in future breeding programs.

Prediction of pregnancy status

Pregnancy status is an appealing target for FT-MIR spectra prediction because of the important

role that timely pregnancy diagnosis has in effective herd management of dairy cattle. Previous

studies have typically utilised other available data sources such as AI and calving information

to infer pregnancy status, thus enabling the use of large datasets for developing and validating

FT-MIR prediction models (Brand et al., 2021; Delhez et al., 2020; Toledo-Alvarado et al., 2018a).

Notably, however, those studies have important differences in the manner in which records are

selected for inclusion in analysis and how records are classified as pregnant or non-pregnant.

In Chapter 4, we developed PLS-DA models to assess the accuracy of using FT-MIR spectra

to predict pregnancy status for different strategies of inclusion and classifying records as pregnant

and non-pregnant, broadly based on three previous studies (Brand et al., 2021; Delhez et al.,

2020; Toledo-Alvarado et al., 2018a). Using a dataset of over 800,000 spectra records from

seasonal calving pasture-based herds, we showed that there were large differences in prediction

accuracy depending on the strategy used for inclusion and classification of spectra records. When

we assigned spectra records as non-pregnant if the milk sample was taken prior to the first

mating, and pregnant if the milk sample was taken after successful AI (broadly similar to the

definition used by Brand et al., 2021), we encountered problems in prediction because pregnancy

status using that definition was highly confounded with stage of lactation. Specifically, based

on herd-independent validation, the sensitivity to correctly classify records as pregnant and

the specificity to correctly classify records as non-pregnant were above 0.90. However, when

prediction equations were applied to an independent pregnancy-associated glycoproteins (PAG)

dataset, the specificity to correctly classify non-pregnant records was particularly poor (0.002).

Closer examination of pregnancy predictions revealed that when the allocation of pregnancy
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status was so highly confounded with stage of lactation, there was a tendency to assign nearly

all PAG records as pregnant. An alternative strategy was to assign records as non-pregnant if

the milk sample was taken before successful AI or there was no subsequent calving recorded

for the cow (broadly similar to the definition used by Delhez et al., 2020). This resulted in a

better representation of non-pregnant records across lactation, and the most consistently accurate

pregnancy prediction models. Using this strategy, based on herd-independent validation, the

sensitivity to correctly classify records as pregnant and the specificity to correctly classify records

as non-pregnant were both ~0.60. When the prediction equation was applied to an external PAG

dataset, the sensitivity of correctly classifying records as pregnant was 0.67 and the specificity of

correctly classifying records as non-pregnant was 0.57. The consistency in validation accuracy for

the herd-independent and PAG datasets demonstrated that by including a better representation

of non-pregnant records across lactation, the effect of confounding between pregnancy status and

stage of lactation was reduced. Notably, however, prediction sensitivity and specificity values were

only moderate (~0.60), indicating that FT-MIR predictions from these models are not accurate

enough to be used as a sole indicator of pregnancy status.

The prediction accuracies we present in Chapter 4 for classifying pregnancy status are similar

to those reported in other studies (Delhez et al., 2020, Khanal and Tempelman, 2022, Toledo-

Alvarado et al., 2018a). In contrast, the prediction accuracies reported by Brand et al. (2021)

were significantly higher, possible in part due to confounding between pregnant/non-pregnant

status and stage of lactation, a point that has also been highlighted by Khanal et al. (2022).

Nonetheless, the gains in prediction accuracy Brand et al. (2021) observed from adopting a deep

learning approach were notable. Specifically, compared to using a PLS-DA model, when they

used a deep learning model the sensitivity to correctly classify records as pregnant increased

from 0.73 to 0.90, and the specificity to correctly classify records as non-pregnant increased from

0.82 to 0.92. In the study we presented in Chapter 4, for a subset of modelling strategies, we

also assessed pregnancy status prediction accuracies for two types of deep learning models, one

using a multilayer perceptron (MLP) feed-forward artificial neural network to classify pregnancy

status based on raw spectra, and the other using a convolutional neural network (CNN). We

did not observe gains in prediction accuracy of a similar magnitude to Brand et al. (2021),

with prediction accuracies for the MLP approach being similar to those from PLS-DA models,

and prediction accuracies for an image-based CNN approach being only marginally better than

those from PLS-DA models. These findings highlighted that deep learning approaches applied to

FT-MIR spectra can provide improvements to prediction accuracy, but that their utility can vary

considerably between studies.
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Trait prediction models

Trait prediction models developed from FT-MIR spectra are typically based on small datasets

with more predictors than observations. For this reason, approaches based on PLS regression are

commonly used to reduce the predictors to a smaller set of uncorrelated components, from which

least squares regression can be performed. Although PLS regression is the most widely-used

method for developing FT-MIR spectra calibration equations, there are studies that employ

Bayesian methods (Bonfatti et al., 2017b; El Jabri et al., 2019; Ferragina et al., 2015; Toledo-

Alvarado et al., 2018a) or other machine learning algorithms (Brand et al., 2021; Contla Hernández

et al., 2021; Denholm et al., 2020; Dórea et al., 2018; Frizzarin et al., 2021a, 2021b; Hempstalk

et al., 2015; Pralle et al., 2018).

Typically, FT-MIR spectra prediction models are based on spectral data alone, but there are

studies that also include factors to account for other on-farm and stage of lactation effects. Ho et

al. (2019) used PLS-DA models to examine the potential of using FT-MIR spectra alongside other

FT-MIR derived traits and on-farm data for discriminating cows of good versus poor fertility

outcomes. In that study, 10-fold random cross-validation AUC values increased from 0.72 to

0.75 when fertility genomic estimate breeding values and animal genotypes were included in the

models. Similarly, Toledo-Alvarado et al. (2018a) reported that cross-validation AUC values

for pregnancy status predictions increased from 0.57 to 0.68 when year and herd were fitted

alongside FT-MIR spectra. In Chapter 5, we examined different ways of accounting for stage

of lactation in pregnancy status prediction models, either by including it as a predictor in the

model, or by pre-adjusting spectra for stage of lactation before fitting the model. We also assessed

whether the accuracy of prediction could be improved by fitting separate models for different

stages of lactation. Our findings showed that prediction accuracies for PLS-DA models that

included stage of lactation as a predictor were only marginally different to those for models that

used FT-MIR spectra alone as predictors. We also observed that the prediction accuracies for

models where the spectra were pre-adjusted for stage of lactation effects were consistently lower

than those where the spectra were not pre-adjusted. Interestingly, when we fitted separate models

for different stages of lactation, we observed consistently higher cross-validation AUC values after

210 days of lactation (0.68–0.76), compared to up to 210 days of lactation (0.64 to 0.68). This

was consistent with findings by Delhez et al. (2020) where they developed separate models for

different stages of lactation and found that models using data after 150 days of pregnancy had

promising prediction accuracies with AUC values between 0.71 to 0.86, compared to AUC values

of 0.63 for up to 150 days of pregnancy.
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When using FT-MIR spectra to develop trait prediction models, there are multiple approaches

(e.g., PLS, Bayesian, other machine/deep-learning approaches) that can be used. Additionally,

knowledge of the trait can be useful when deciding whether to include predictors in the model

other than the FT-MIR spectra. Of particular importance is to identify and minimise the impact

of any confounding effects related to climate, diet and/or stage of lactation. Including multiple

seasons of data across a range of herds may help to address some of these confounding issues,

however the incorporation of other information such as knowledge of climatic differences, feed

management and supplementation may also play an important role. Using this information, it

may be possible to develop models on homogenous sets of herds based on dietary systems and

regional classification.

8.2.3 Validation of FT-MIR prediction equations

Validation of an FT-MIR prediction equation is critically important to understanding the level

of accuracy we can expect when that equation is applied to other spectral datasets. A common

approach to validation is to use record- or cow-independent validation, whereby the prediction

model is developed on a subset of the available records and the remaining records are used to

validate the accuracy of the model. However, studies have shown that record- or cow-independent

validation can overinflate prediction accuracies, compared to herd-independent validation (Dórea

et al., 2018; Lahart et al., 2019; Luke et al., 2019b; Wang and Bovenhuis, 2019). This highlights

that validation should ideally be conducted using a dataset that is from an independent herd,

trial or season. However, a recent review of validation strategies used for FT-MIR predicted traits

found that of 113 studies, 67 used internal record-independent validation, 15 used cow-independent

validation, and only 17 conducted validation using an independent dataset based on herd, trial or

season (Bresolin and Dórea, 2020). Given that it is common practice to use internal record- or

cow-independent validation to assess the accuracy of an FT-MIR prediction model, it is important

that when the potential utility of a prediction equation is being assessed, that consideration is

given to the validation strategy that has been used in the study.

A robust validation strategy should ensure that expected accuracies for FT-MIR predicted

traits are not overstated and should ideally be based on herd- or trial-independent validation

datasets. However, in the study we presented in Chapter 4, we demonstrated that even when a

herd-independent validation is used, estimates of prediction accuracy can be misleading when

there is systematic confounding between the trait of interest and other factors such as stage

of lactation. Systematic confounding in FT-MIR prediction models due to changes in milk
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composition across lactation can be particularly problematic for spectral data from seasonal

pasture-based farming systems, due to the use of compact calving periods to ensure that peak

lactation volumes are matched with peak grass growth (Timlin et al., 2021). In the New Zealand

setting, these issues are further exacerbated by the use of palm kernel extract and maize silage

supplements to offset the effect of high stocking rates. This is particularly problematic when

FT-MIR spectra are used to predict a trait like pregnancy status, because as lactation progresses,

changes in milk composition due to stage of lactation and dietary supplements coincide with

the advent of a cow becoming pregnant (Khanal and Tempelman, 2022; Tiplady et al., 2022).

In general, when a model is developed to predict trait values using FT-MIR spectra, careful

consideration should be given to how the model can account for the effect of confounding factors

such as lactation stage, feed management and seasonality.

8.2.4 Machine learning approaches

Partial least squares regression is a machine learning technique that is widely used for developing

calibration models for FT-MIR spectral datasets. This technique is a supervised methodology

that uses principal component analysis to reduce the large number of correlated wavenumber

responses to a smaller set of uncorrelated latent variables from which least squares regression can

be performed. Recently, there has also been a high level of interest in the use of other machine

learning algorithms to generate prediction models from FT-MIR spectral datasets, including for

the prediction of health traits (Contla Hernández et al., 2021; Denholm et al., 2020; Pralle et al.,

2018), pregnancy (Brand et al., 2021), milk quality traits (Frizzarin et al., 2021a), dry matter

intake (Dórea et al., 2018) and classification of cow diet (Frizzarin et al., 2021b).

Contla et al. (2021) compared a range of machine learning techniques for predicting health

status from FT-MIR spectra. They found that a neural network (NN) outperformed PLS-DA

and other support vector machine (SVM), random forest (RF) and ensemble approaches for

classifying animals based on health status. In studies that compared PLS models to other machine

learning methods for evaluating β-hydroxybuterate, Pralle et al. (2018) showed that artificial

neural network (ANN) models outperformed PLS, whilst Mota et al. (2021) showed that gradient

boosting machine and RF models outperformed PLS. Brand et al. (2021) compared pregnancy

status classification accuracies for PLS-DA and two deep learning methods, one developed using

genetic algorithms for feature selection and network design, and the other using transfer learning

models with a pre-trained Dense Convolutional Network (DenseNet). Prediction accuracies for

the pre-trained DenseNet model outperformed those of the PLS-DA model. In the study we

presented in Chapter 4, we also compared the prediction performance of a DenseNet model to
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that of PLS-DA for pregnancy status classification, and showed that although the DenseNet

models outperformed the PLS-DA models, the differences in performance were only marginal and

the gains from employing a DenseNet model were much lower than those observed by Brand et al.

(2021).

Frizzarin et al. (2021a) compared prediction accuracies for milk quality traits between

PLS/PLS-DA models to other approaches including ridge regression (RR), least absolute shrinkage

and selection operator (LASSO), elastic net (EN), RF, NN, SVM and boosting decision trees.

Results varied for different traits, but for continuous traits, PLS was outperformed by other

machine learning approaches, whereas for class traits, PLS-DA and SVM models had the

highest prediction accuracies. In a separate study, Frizzarin et al. (2021b) compared prediction

accuracies between PLS-DA and a number of other machine learning approaches for discriminating

between grass-fed versus nongrass-fed milks. They showed that PLS-DA outperformed all other

classification methods including RR, LASSO, EN, RF, SVM and boosting decision trees. Notably,

the performance of PLS-DA was very similar to that of linear discriminant analysis (LDA),

something I have also observed whilst conducting the work for this thesis. Although I have not

published these results, for the pregnancy prediction models presented in Chapter 4, when LDA

was used instead of PLS-DA the results were almost identical, even though the run-time for LDA

was often 5 to 10 times faster.

Although PLS and PLS-DA models are widely used to develop FT-MIR prediction equations,

it is clear that other machine learning approaches have merit and that in some instances, they

may be able to provide more accurate trait predictions. Of particular note is the emergence of

deep learning approaches which have been recently shown to provide promising predictions for

bovine tuberculosis (Denholm et al., 2020) and pregnancy status (Brand et al., 2021) in individual

cows. Deep learning is a subclass of machine learning that extracts features from data using

neural networks with multiple layers of densely interconnected processing nodes. The complexity

of these networks enable training models to be developed on datasets with multiple connections,

which make them a good choice for managing high-dimensional datasets such as those presented

from FT-MIR spectra. However, applications for deep learning models rely on large datasets, so

will not always be a suitable choice. There are no absolute rules as to which type of model is the

best one to use for any given study. Partial least squares models are often a good choice due

to their relative simplicity, but aside from the choice of machine learning method, input data

quality, model optimisation and validation are important, as overfitting complex models can lead

to misleading results (Mendez et al., 2019; Shine and Murphy, 2022).
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8.3 The genetics of FT-MIR predicted traits

The incorporation of FT-MIR predictions for major milk composition traits into breeding programs

has played a significant role in the transformation of dairy cattle milk composition. Whilst the

accuracy of FT-MIR predictions is an important indicator of their utility for traits where we

are interested in phenotypic values, for breeding purposes, the extent of genetic variation in the

benchmarked trait, the heritability of the FT-MIR predicted trait, and the genetic correlation

between the benchmarked and FT-MIR predicted trait are also important. This is because the

heritability of the FT-MIR predicted trait defines the extent of genetic variation that could

potentially be exploited in animal breeding programs, whilst the genetic correlation between the

benchmarked or directly measured trait and the FT-MIR predicted trait defines the breeding

progress we could expect in the directly measured trait if we were to select for animals based on

the FT-MIR predicted trait.

In Chapter 5, we have reviewed the genetics of FT-MIR predicted traits including fatty

acids (Bonfatti et al., 2017d; Lopez-Villalobos et al., 2014; Rutten et al., 2010; Soyeurt et al.,

2007b) and protein fractions (Arnould et al., 2009b; Bonfatti et al., 2017d; Buitenhuis et al.,

2016; Lopez-Villalobos et al., 2009; Sanchez et al., 2017a; Soyeurt et al., 2007a). Moderate to

high heritability estimates were reported for many of these traits, but few studies presented

genetic correlations between benchmarked or directly measured traits and corresponding FT-MIR

predicted traits. For those studies, genetic correlations between directly measured and FT-MIR

predicted traits were generally high for fatty acids (0.64 to 0.99) (Bonfatti et al., 2017d; Rutten

et al., 2010) and protein fractions (0.57 to 0.94) (Bonfatti et al., 2017d). To further understand

the genetic characteristics of directly measured and FT-MIR predicted fatty acids and protein

fractions, we conducted a study to evaluate heritability and genetic correlation estimates for

17 individual fatty acids, 6 grouped fatty acids and 6 individual protein fractions (Chapter 7).

Heritability estimates for most traits were moderate to high, with 17 of the directly measured

traits, and 20 of the FT-MIR predicted traits having an estimated heritability greater than

0.3. These results were broadly consistent with those of previous studies (Bonfatti et al., 2017d;

Rutten et al., 2010). In general, our findings were that lower heritability estimates were observed

for directly measured traits, compared to FT-MIR predicted traits. This was caused by higher

total variation in the directly measured traits, but a lower magnitude increase in the additive

genetic variance component, compared to the FT-MIR predicted traits. Nevertheless, the genetic

correlations between directly measured and FT-MIR predicted traits remained high and were

mostly greater than 0.75. Moderate to high heritability estimates across individual fatty acid

and protein traits indicate that these traits have genetic variation that could potentially be



220 8. GENERAL DISCUSSION

exploited for the purposes of animal selection. Moreover, high genetic correlations between

directly measured and FT-MIR predicted fatty acids and individual protein fractions indicate

that selection based on FT-MIR predictions for these traits could provide favourable genetic gains

in milk fatty acid and protein composition.

In Chapter 5, we also reviewed the genetics of FT-MIR predicted traits related to milk

processability (Cecchinato et al., 2009; Costa et al., 2019; Visentin et al., 2017), cheese yield

(Bittante et al., 2014; Cecchinato et al., 2015), animal health (Bastin et al., 2016; Belay et al.,

2017; van den Berg et al., 2021a, 2021b; Luke et al., 2019a) and the environment (Kandel et al.,

2017; Miglior et al., 2007; Mitchell et al., 2005; Stoop et al., 2007; Wood et al., 2003). For milk

coagulation traits, moderate heritability estimates and moderate to high genetic correlations

ranging from 0.71 to 0.96 were reported (Cecchinato et al., 2009). For cheese yield and nutrient

recovery traits, high genetic correlations were reported, ranging from 0.76 to 0.98 (Bittante et al.,

2014). With respect to using FT-MIR spectra to provide proxies for animal health traits, results

were less clear, and more research is required to understand the relationships between health

and fertility indicators and FT-MIR predicted traits, and to realise the value that FT-MIR

spectra might add to animal health breeding goals (Bastin et al., 2016). To date, there have

been few studies of the genetics of FT-MIR predictions related to methane and nitrogen outputs.

For FT-MIR predictions of methane traits, studies have indicated that there is potential to

incorporate these into breeding programs, but more research is required to improve the robustness

and accuracy of prediction equations and make them suitable to use across a range of production

systems (van Gastelen et al., 2018b; Hristov et al., 2018; Negussie et al., 2017; Vanlierde et al.,

2018). For FT-MIR predicted MUN, moderate to high heritability estimates have been reported

(Mitchell et al., 2005; Miglior et al., 2007; Stoop et al., 2007; Wood et al., 2003). Of those

studies, Mitchell et al. (2005) was the only one that reported genetic correlations between direct

measurements of MUN and FT-MIR predicted MUN, which were 0.38 and 0.23 in lactations 1

and 2, respectively. These genetic correlations were significantly lower than those observed for

fatty acids and milk processibility traits (Bittante et al., 2014; Rutten et al., 2010), and indicate

that directly measured MUN and FT-MIR predicted MUN may be genetically different traits.

Moreover, the heritability estimates across studies of FT-MIR predicted MUN were highly variable,

indicating that underlying instability may be present in these prediction equations. Notably,

however, promising genetic parameter estimates have been reported for FT-MIR predicted BUN,

with heritability estimates ranging from 0.08 to 0.13 and genetic correlations between BUN and

its FT-MIR prediction ranging from 0.96 to 0.98 (van den Berg et al., 2021b). Further research is

required to determine the role that FT-MIR predicted nitrogen indicators could have in reducing

nitrogen outputs from dairy cattle milk production systems.
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8.4 Genome-wide association studies

Genome-wide association studies are commonly used to associate genetic variations with complex

dairy cattle traits. Many GWAS have been published in the last decade for FT-MIR predicted

major milk production traits (Jiang et al., 2010; Kemper et al., 2015b; Littlejohn et al., 2016;

Lopdell et al., 2017; Raven et al., 2014), and for fatty acid and protein fractions (Bouwman

et al., 2011; Buitenhuis et al., 2014, 2016; Li et al., 2014; Sanchez et al., 2016). However, there

are comparatively few studies that report GWAS results for individual FT-MIR wavenumber

phenotypes. Benedet et al. (2019) examined relationships between FT-MIR wavenumber

phenotypes and a subset of SNP previously implicated in a GWAS of milk composition and fatty

acid traits. Two other studies used medium density SNP-chip genotypes to conduct GWAS on a

subset of wavenumbers, identified either by clustering analysis (Wang and Bovenhuis, 2018), or

by using phenotypic correlation structures and heritability estimates within each breed (Zaalberg

et al., 2020). Across those studies, a number of FT-MIR wavenumber QTL were identified, many

of which were in genomic regions that have been previously reported from GWAS for major

milk composition traits, but new regions were also identified. These findings highlighted the

potential that GWAS on individual FT-MIR wavenumbers may have for the discovery of new

QTL, particularly if analyses are conducted using higher density genotypes across larger numbers

of animals.

8.4.1 Computational challenges for conducting large-scale GWAS

Computational challenges already exist for conducting GWAS across even a handful of traits, due

to the increase in the number of genotyped individuals and the increase in density of available

genotypes, including to the whole-genome sequence level. Mixed-linear model-based methods for

conducting GWAS such as GCTA-MLMA (Yang et al., 2011) can become prohibitively slow as

the number of variants and genotyped individuals increases, and frequently require subsampling

to use these methods within acceptable computational constraints. Developing strategies for

managing GWAS on large numbers of densely genotyped individuals is an active area of research,

and has resulted in the development of more efficient algorithms such as BOLT-LMM (Loh

et al., 2015, 2018) and fastGWA (Jiang et al., 2019c) that enable the processing of these datasets

within acceptable timeframes and computational constraints. BOLT-LMM software is capable of

running the ~400k UK biobank samples in a few days on a single computational node (Loh et al.,

2018). The fastGWA software provides further reductions in algorithmic complexity, making it

possible to run GWAS on ~400k UK biobank samples in around 20 minutes, compared to 22



222 8. GENERAL DISCUSSION

hours for BOLT-LMM on the same hardware. The development of these algorithms have made

GWAS across large populations of densely genotyped individuals feasible, and are of particular

importance when we aim to conduct GWAS across datasets with large numbers of phenotypes.

8.4.2 Sequence-based GWAS of individual FT-MIR wavenumbers

In Chapter 6 we used BOLT-LMM software (Loh et al., 2015) to run sequence-based GWAS

for 895 individual FT-MIR wavenumber phenotypes and three FT-MIR predicted major milk

composition traits, using records for 38,085 mixed-breed New Zealand dairy cattle. Separate

GWAS were conducted for each of 898 phenotypes using 17,873,880 imputed sequence variants,

and mixed-model association statistics were evaluated under an infinitesimal model (as defined

by BOLT-LMM software) using a genomic relationship matrix (GRM) to account for population

structure. To avoid proximal contamination, a leave-one-segment-out (LOSO) approach was used

with segments of 5 Mbp used to subdivide the autosomes, and additive effects for each SNP were

evaluated against a conservative Bonferroni significance threshold to identify QTL.

Many GWAS for dairy cattle include only a handful of traits, making it possible to manually

assess QTL for underlying genes and potential protein-coding effects. However, because our

GWAS included such a large number of traits, this was not feasible. To distinguish between

multiple QTL segregating within the same region of a chromosome, an iterative conditional

methodology was developed whereby the most significant variant was identified in each peak and

added to a set of covariates that were used in subsequent GWAS iterations. Subsequent iterations

were conducted on chromosomes that retained significant effects, and the process was repeated

until these analyses ceased to highlight significant effects. Employing this approach resulted in

the identification of a list of variants for each phenotype that aimed to collectively capture all the

significant association analysis signal.

Evaluating the list of QTL identified across 898 FT-MIR individual wavenumber and predicted

trait phenotypes provided a further challenge, as it was infeasible to manually assess the genes

underlying such a large number of effects. To address this challenge, two approaches were

used to identify causative genes and variants underlying QTL using methods that informed on

potential protein function-based effects and regulatory mechanisms, as described in Lopdell et al.

(2017). Potential protein function-based effects were identified using SnpEff (version 4.1d; build

2015-04-13) (Cingolani et al., 2012) and Ensembl UMD3.1.78 gene annotations, and variants in

QTL regions were filtered to include only those in high LD (R2 > 0.9) with a splice region variant,

or a moderate or high impact coding variant. Causative genes with co-segregating expression

QTL (eQTL) were identified using a large previously described RNA sequence resource and eQTL

mapping methodology (Lopdell et al., 2017).
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Gains in number of QTL and power from individual wavenumber GWAS

In the GWAS of individual FT-MIR wavenumbers presented in Chapter 6, a key area of interest

was to assess how well candidate causal genes and variants could be identified using individual FT-

MIR wavenumber phenotypes, compared to using FT-MIR predictions of major milk composition

traits. Specifically, we were interested in comparing the number of QTL identified, the size of QTL,

and the relationship between trait QTL and plausible candidates and co-locating eQTL. In total

we identified 450 1-Mbp genomic regions with significant FT-MIR wavenumber QTL, compared

to 246 1-Mbp genomic regions with QTL identified for FT-MIR predicted milk composition traits.

Protein function-based effects for wavenumber QTL were identified within 42 1-Mbp regions

that encompassed 55 effects with a corresponding splice region variant, or a moderate or high

impact coding variant. For FT-MIR predicted milk composition traits, 27 effects were identified

with a corresponding splice region variant or a moderate or high impact coding variant within 15

1-Mbp regions. Among the FT-MIR wavenumber QTL observed, those with the largest effects

were in perfect LD with missense mutations in the ABCG2, PAEP and DGAT1 genes, all of

which have been proposed to have major impacts on milk composition (Cohen-Zinder et al.,

2005; Ganai et al., 2009; Grisart et al., 2002). Notably, significant association effects were also

observed in those genes for FT-MIR predicted milk composition traits, however the p-values for

the most significant FT-MIR wavenumber were always more significant than comparable values

for any of the FT-MIR predicted milk composition traits. A number of other wavenumber QTL

were identified that were in strong LD with either a splice region variant, or a moderate or high

impact coding variant, that had no corresponding FT-MIR predicted-trait QTL. This included a

previously unreported null mutation in the ABO gene that has a potential role in changing milk

oligosaccharide profiles (Liu et al., 2019; Poulsen et al., 2019). Other QTL highlighted genes that

appeared novel: FCRLA, WDR97, KRT9, KRT16, KRT17, HID1, KCNK1 and NXF1.

Scrutinization of wavenumber and predicted-trait QTL identified 38 wavenumber QTL and 25

predicted-trait QTL that co-located to an eQTL. For the wavenumber QTL, in many cases the

tag variant for the wavenumber QTL was also the top variant for the co-locating eQTL. Many

of the genes corresponding to these effects have previously been reported in other studies of

bovine milk composition, but two genes appeared to be novel: KRTCAP2 and FA2H. In instances

where a co-locating eQTL was identified within FT-MIR wavenumbers and within predicted

milk composition traits, there was a common pattern, whereby the wavenumber QTL had more

highly significant p-values, compared to the p-values for predicted milk composition traits. Other

wavenumber QTL where a co-locating eQTL was identified within FT-MIR wavenumbers, but
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not within FT-MIR predicted milk composition traits, highlighted a number of genes that have

been previously reported and also genes that appeared novel: CLDN8, CSTB, TAB2, LAPTM4A,

CAPN5, PMP22, HID1 and THRB.

The results we presented in Chapter 6 underscore the gain in power available when GWAS

is conducted on individual FT-MIR wavenumber phenotypes, compared to GWAS using FT-

MIR predicted milk composition phenotypes. A greater number of QTL and putative causative

genes and variants were identified, and where the QTL were common to FT-MIR wavenumber

phenotypes and predicted milk composition phenotypes, the p-values for the most significant

FT-MIR wavenumber were always more significant than the comparable values for any of the

FT-MIR predicted milk composition traits. Not only that, but in many instances, the QTL

identified from wavenumber phenotypes were often in perfect LD with a protein-coding mutation

or were the same as the top SNP from eQTL analysis.

8.4.3 Areas of potential improvement for FT-MIR wavenumber GWAS

Conducting a sequence-based GWAS across individual FT-MIR wavenumber phenotypes, and

dissecting QTL using variant annotation information and a mammary RNA-seq resource, enabled

the identification of candidate causative genes and variants for a substantial number of loci

(Chapter 6). Further, through employing an iterative approach, it was possible to distinguish

between multiple QTL segregating within the same region of a chromosome. However, there

are several areas of refinement to that study that could be expected to enable identification of

further QTL. Firstly, it is expected that the improved sequence continuity and per-base accuracy

of the ARS-UCD1.2 reference genome (Rosen et al., 2020) may yield additional QTL and reveal

additional candidate mutations given improvements in accompanying transcript annotations.

Secondly, the approach we used could be extended to account for non-additive QTL, in a similar

manner to that outlined in Reynolds et al. (2021). Thirdly, rather than iteratively selecting the

top variant from each peak based on the p-value of the association effect, a more sophisticated

approach could be used to select the representative variants of each peak by utilising gene

annotation information and other genomic and molecular data sources. Finally, improved variant

prediction methods and integration of other functional datasets (e.g., ChIP-seq) could be used to

enhance fine mapping and candidate variant identification.
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8.5 Comparison of QTL for directly measured and FT-

MIR predicted fatty acid and protein traits

There have been a number of GWAS conducted on fatty acids in bovine milk samples determined

by gas chromatography using a range of genotype densities (Bouwman et al., 2011; Buitenhuis

et al., 2014; Palombo et al., 2018). Many GWAS have also been conducted on FT-MIR predicted

fatty acids in milk (Cruz et al., 2019; Freitas et al., 2020; Iung et al., 2019; Olsen et al., 2017;

Sanchez et al., 2019). Similarly, there have been multiple GWAS conducted on protein fractions

in milk samples determined by high-performance liquid chromatography (Buitenhuis et al., 2016;

Pegolo et al., 2018; Schopen et al., 2011); and GWAS conducted on FT-MIR predicted protein

fractions using whole-genome sequence (Sanchez et al., 2017b, 2019).

In the previously mentioned GWAS for milk fatty acids and protein fractions, the studies

focussed on either directly measured or FT-MIR predicted traits, but none conducted GWAS

across both directly measured and FT-MIR predicted traits, or made comparisons between the

QTL observed for each type of trait. This was a focus for the study outlined in Chapter 7 of

this thesis. Of particular interest was whether the high genetic correlations we observed between

directly measured and FT-MIR predicted traits were underpinned by a similar genetic architecture.

To assess this, we conducted GWAS on direct measurements and FT-MIR predictions for 23

fatty acid and 6 protein traits, and compared the QTL for each pair of measured/predicted

traits (Chapter 7). This resulted in the identification of 40,946 variants with significant effects

for directly measured traits and 18,843 variants with significant association effects for FT-MIR

predicted traits. There were more than twice as many variants with significant effects for directly

measured traits, compared to FT-MIR predicted traits, which was largely due to 20,949 variants

with significant effects on BTA26 for directly measured traits compared to only 110 variants with

significant effects on BTA26 for FT-MIR predicted traits.

To assess the candidacy of QTL, relevant protein coding variants in high LD (R2 > 0.7)

with the most highly associated variant from each peak were identified. This resulted in the

identification of trait QTL for fatty acids with likely candidates in the DGAT1, CCDC57, SCD

and GPAT4 genes, but the QTL underpinned by SCD were absent in FT-MIR predicted fatty

acids. Similarly, likely candidates were identified for directly measured proteins in the CSN1S1,

CSN3, PAEP and LTF genes, but the QTL for CSN3 and LTF were absent in corresponding

FT-MIR predicted traits. For the traits underlying the genetic signals in the SCD and LTF genes

(C10:1, C14:1, Lf), there was a consistent pattern where the milk component was in relatively
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low concentrations in the milk sample with relatively poor model prediction accuracies and lower

heritability estimates for the FT-MIR predicted trait, compared to the directly measured trait.

While it might be argued that the failure to detect QTL in the SCD and LTF genes was because

the calibration equations were inadequate for the task of quantifying the milk component targets,

it is also notable that in a previous GWAS we conducted on individual FT-MIR wavenumbers

(Tiplady et al., 2021), no significant associations were identified between FT-MIR wavenumbers

and variants within the SCD and LTF genes. Potentially, this implies that changes in milk

composition attributable to these two genes may be difficult to quantify directly using FT-MIR

wavenumber spectra.

Interestingly, in the study presented in Chapter 7, instances also arose where a QTL was

observed for an FT-MIR predicted trait, but there was no corresponding QTL observed in the

directly measured trait. An example of this was where large association effects were observed

within the DGAT1 and GPAT4 genes for FT-MIR predicted C18:3 cis-3, but corresponding

association effects were not observed for directly measured C18:3 cis-3. Similarly, a large

association effect was observed for FT-MIR predicted β-CN within the PAEP gene, but no

corresponding association effect was observed in directly measured β-CN. The presence of QTL

with significant effects for an FT-MIR predicted trait without any corresponding QTL for the

directly measured trait is not entirely surprising. This is because FT-MIR predicted traits are a

weighted function of spectral values for individual wavenumbers, each of which is underpinned

by multiple genetic signals and QTL (Benedet et al., 2019; Tiplady et al., 2021b; Wang and

Bovenhuis, 2018; Zaalberg et al., 2020), some of which will be specifically related to the trait of

interest and some that will not. Differences between the QTL for directly measured and FT-MIR

predicted traits may be of particular importance when SNP-based approaches are used to estimate

breeding values, whereby the impact will be determined by the relative proportion of genetic

variation captured by each SNP and the interaction of additive effects between SNP.
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8.6 Future perspectives

Characterisation of milk composition in dairy cattle has a long history of scientific and commercial

interest. Over the last 100 years, advances in refrigeration and transportation technologies,

and the availability of automated on-farm milk meters have resulted in a shift from labour

intensive, on-farm collection and processing of samples, to large-scale processing of samples

through centralised laboratories. More recently, advances in analytical techniques have led to the

widespread use of FT-MIR spectroscopy to estimate major milk components such as fat, protein

and lactose. Over the last decade, there has been a significant amount of research related to the

use of FT-MIR spectra to predict other traits of interest to the industry. In this section I will

discuss some of the challenges still faced and highlight areas of opportunity as we look to the

future use of FT-MIR spectra in dairy cattle milk production systems.

8.6.1 Managing systematic instrument variation

Due to the success of using FT-MIR spectra for phenotyping major milk composition traits and

the availability of the data as a by-product of routine milk testing, there has been a high level

of interest in using these data to provide indicators for other traits to the industry. However,

to generate accurate FT-MIR trait predictions, there are a number of general principles and

caveats that should be considered. In particular, it is important that differences in spectral

measurement between instruments are accounted for as these can result in prediction errors and

bias. Standardization of individual FT-MIR spectra wavenumbers using reference samples is an

approach that can effectively address variation in spectral measurements between instruments

and within instruments across time, but a downside to this approach is that it is reliant on

the analysis of a common set of reference samples across instruments. In many instances this

approach is not feasible or the data is not available for historical spectral datasets. Therefore,

an important area of research going forward is to determine how spectral data from different

networks/countries can be consolidated. FOSS (Hillerød, Denmark) and Bentley (Chaska, MN)

both have within-instrument standardization procedures which could assist with this. However,

to date the effectiveness of these procedures has not been independently evaluated. Validation of

the effectiveness of these within-instrument standardization procedures is important, because if

the procedures work well, they could facilitate the consolidation of spectral data from different

networks/countries and lead to improved trait prediction accuracies.
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8.6.2 Accounting for systematic confounding factors

Systematic confounding in FT-MIR prediction models due to changes in milk composition related

to factors such as stage of lactation and the use of dietary supplements can be problematic.

This is because of the large effect that different dietary systems (Dias, 2010; Elgersma, 2015;

Oliveira et al., 2015) and levels of pasture in the diet (Butler et al., 2011; Couvreur et al., 2006;

O’Callaghan et al., 2016; White et al., 2001) have on milk fatty acid composition. Moreover, even

across different diets, as lactation progresses, consistently lower milk volumes (McAuliffe et al.,

2016) and higher concentrations of fat and crude protein are expected (O’Callaghan et al., 2016).

Confounding between FT-MIR spectra and lactation stage can be particularly problematic for

the prediction of traits such as pregnancy status in pasture-based seasonal calving herds, because

as lactation progresses, changes in dietary supplementation and milk composition coincide with

the advent of a cow becoming pregnant (Khanal and Tempelman, 2022; Tiplady et al., 2022). As

a general principle, when developing prediction models for an FT-MIR predicted trait, careful

consideration should be given to any potential confounding factors, and calibration datasets

should be constructed in a manner to minimise the impact they will have on estimates of trait

prediction accuracy. Whilst some of the effect of these factors can be mitigated by including

multiple seasons of data, integration of other information such as knowledge of feed management

and supplementation may also play an important role.

8.6.3 Validation of prediction equations

Validating the accuracy of an FT-MIR trait prediction equation is typically conducted by

applying the equation to a dataset of records that have not been included in the development

of the prediction equation. Most commonly, validation strategies are based on record- or cow-

independent datasets (Bresolin and Dórea, 2020). There is a risk though that these strategies

may overinflate estimates of prediction accuracy, compared to validation using data from different

herds (Luke et al., 2019b; Wang and Bovenhuis, 2019). Ideally, a robust validation strategy will

ensure that expected prediction accuracies for FT-MIR predicted traits are not overstated, and

should be evaluated using independent validation datasets from a different herd, trial or season

(Bresolin and Dórea, 2020). Moreover, given that the use of record- or cow-independent validation

is common practice, when assessing the potential utility of an already existing FT-MIR trait

prediction equation, careful consideration should be given to the validation strategy that has

been used in the development of the equation.
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8.6.4 Machine learning approaches

Partial least squares regression and PLS-DA are the most widely-used methodologies for developing

calibration models for FT-MIR spectral datasets. However, there is also an increasing interest

in using other machine learning approaches to develop FT-MIR prediction equations. From the

research to date, it is clear that other machine learning approaches have the potential to provide

more accurate trait predictions (Brand et al., 2021; Frizzarin et al., 2021a; Contla Hernández

et al., 2021; Mota et al., 2021; Pralle et al., 2018), however there are no absolute rules as to

which model will provide the best predictions for any given study. Due to their relative simplicity,

PLS and PLS-DA models are often good choices, but aside from the choice of machine learning

method, other factors such as input data quality for the training model and a robust validation

strategy are critical to ensuring that models are optimised and that the capability of a prediction

model is not overestimated (Mendez et al., 2019; Shine and Murphy, 2022). This is of particular

importance for more complex machine learning methods which carry a higher risk of overfitting.

Ideally, analysis pipelines should be developed so that a range of different machine learning

methods can be assessed with relative ease.

8.6.5 Applications

Applications using FT-MIR spectral data for trait prediction have been widely studied, including

for indirect traits related to animal health and the environment, and direct traits such as individual

fatty acids and protein fractions. Although there has been strong interest in using FT-MIR

spectra to provide proxies for animal health and environment traits, prediction accuracies have

varied across studies, and more research is required to realise the value of FT-MIR spectra for

the prediction of these traits. Prediction accuracies for fatty acids and protein fractions have

also varied, but have generally been improved by increasing the number of observations used

to develop prediction equations, and by ensuring that a similar extent of the variation in the

prediction population is represented in the calibration dataset. Moreover, moderate to high

heritability and high genetic correlations between directly measured and FT-MIR predicted fatty

acids and protein fractions indicate that indirect selection on FT-MIR predictions of these traits

could be used in animal breeding programs to achieve desired changes to milk composition. This

is a promising area for future research, however care should be taken if SNP-based approaches are

used to estimate breeding values, because as shown in Chapter 7, the underlying QTL of directly

measured and FT-MIR indicator traits may not always be the same.
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Although the use of dietary supplements can be problematic when developing FT-MIR trait

prediction equations, a growing area of interest is in the use of FT-MIR spectra to specifically

target differences in diet, and discriminate between grass-fed and non-grass-fed milks. This

interest has been spurred by the growth in demand for grass-fed dairy products which is driven

by consumer perceptions of pasture-based production systems being more favourable in terms

of health benefits, animal wellbeing and environmental sustainability (Frizzarin et al., 2021b;

Joubran et al., 2021). Frizzarin et al. (2021b) showed that it was possible to use FT-MIR spectra

to distinguish between milk from cows that were pasture-fed to those that were fed a combination

of grass silage, maize silage and concentrates. This is a promising area of research due to the high

value of grass-fed dairy products in the consumer market. However, further work is required to

improve the prediction equation and validate the transferability of the equation to other spectral

datasets.

8.6.6 Frequency and scope of FT-MIR spectra measurements

One of the current limitations of using FT-MIR spectra to predict traits for animal and herd

management is that milk testing generally only happens at monthly or bi-monthly intervals. If

spectral data were available on a more regular basis, it would enable the monitoring of changes in

milk composition across time. This could be particularly helpful for identifying sudden shifts

in an animal’s physiological status due to health events such as onset of illness or pregnancy

loss. Ideally, spectral data would be available on a daily basis, but that would only be possible if

inline spectrometers were available for installation into milking sheds. Whilst this is an exciting

prospect, it is looking unlikely that any such technology will be available in the near future.

This is because the development of miniaturized spectrometers has been slower than expected

and there are still a number of issues with portable/miniaturized mid-infrared detectors due to

temperature and vibrational sensitivity (Crocombe, 2018). In the absence of inline spectrometers,

an alternative possibility is that FT-MIR spectra from daily bulk tank milk samples could be

used to monitor shifts in milk composition at a herd level. Whilst this would not provide insights

at an individual cow level, it could provide valuable insights into shifts in herd milk composition,

and the overall health and wellbeing of a herd across time.
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8.7 Conclusions

Fourier-transform mid-infrared spectra plays a key role in generating phenotypes for major milk

composition traits and is a cornerstone of modern dairy cattle milk payment and animal evaluation

systems. The objectives of this thesis were to add to the understanding of the phenotypic and

genetic characteristics of FT-MIR spectra and FT-MIR predicted traits, and to assess the role

they may have in further improving dairy cattle milk production systems. A range of topics

have been presented, including strategies for improving the quality of FT-MIR spectral data,

development and validation of prediction models, and the assessment of the genetic characteristics

of FT-MIR predicted traits and individual FT-MIR wavenumbers. Despite there being many

potential applications of FT-MIR spectra for trait prediction, there are challenges in developing

accurate prediction models due to the complex multivariate structure of spectral data, and due

to the presence of other confounding effects such as feed supplementation and stage of lactation.

Variation in spectral measurements between instruments can also be problematic, particularly

when applying trait prediction equations to spectra collected from a different instrument to the

one that was used for developing the prediction equation. International collaboration between

research groups to standardize spectral data could facilitate the consolidation of datasets and assist

with the development of better prediction equations and improved trait prediction accuracies.

Using individual FT-MIR wavenumbers as phenotypes in GWAS can enhance our understand-

ing of the genetics underlying milk composition, and provide stronger association effects and

improved power for identifying candidate causal variants, compared to conducting GWAS on

FT-MIR predicted traits. In applications for genetic improvement using FT-MIR predicted traits,

it is important to understand the genetic relationships between predicted traits and the true traits

of interest. Moreover, it is important to be aware that even when genetic correlations between

directly measured and FT-MIR predicted traits are high, the underlying QTL of each trait may

not always be the same. This may be particularly important when SNP-based approaches are

used to estimate breeding values for FT-MIR predicted traits. Overall, the work presented herein

has added to the body of knowledge of phenotyping and genetic applications of FT-MIR spectral

datasets. Although there are many potential applications of these data, there are also challenges

related to the development and validation of prediction models, and differences in the genetic

architecture underlying directly measured and FT-MIR predicted traits. For applications where

these challenges can be addressed, FT-MIR spectral datasets have the potential to provide new

insights into milk composition, and facilitate the prediction of novel traits that will improve dairy

cattle milk production systems and breeding programs into the future.
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