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Abstract

The MOA-II telescope has been operating at the Mt John Observatory since

2004 as part of a Japan/NZ collaboration looking for microlensing events. The

telescope has a total field of view of 1.6 x 1.3 degrees and surveys the Galactic

Bulge several times each night. This makes it particularly good for observing

short duration events. While it has been successful in discovering exoplanets,

the full scientific potential of the data has not yet been realised. In particular,

numerous known asteroids are hidden amongst the MOA data. These can be

clearly seen upon visual inspection of selected images. There are also potentially

many undiscovered asteroids captured by the telescope. As yet, no tool exists to

effectively mine archival data from large astronomical surveys, such as MOA, for

asteroids. The appeal of deep learning is in its ability to learn useful representa-

tions from data without significant hand-engineering, making it an excellent tool

for asteroid detection. Supervised learning requires labelled datasets, which are

also unavailable.

The goal of this research is to develop datasets suitable for supervised learning

and to apply several CNN-based techniques to identify asteroids in the MOA-II

data. Asteroid tracklets can be clearly seen by combining all the observations on

a given night and these tracklets form the basis of the dataset. Known asteroids

were identified within the composite images, forming the seed dataset for super-

vised learning. These images were used to train several CNNs to classify images

as either containing asteroids or not. The top five networks were then configured

as an ensemble that achieved a recall of 97.67%. Next, the YOLO object detec-

tor was trained to localize asteroid tracklets, achieving a mean average precision

(mAP) of 90.97%. These trained networks will be applied to 16 years of MOA

archival data to find both known and unknown asteroids that have been observed

by the telescope over the years. The methodologies developed can also be used

by other surveys for asteroid recovery and discovery.
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Chapter 1

Introduction

Our fascination with the night sky spans the length of human civilization. Wit-

nessing a celestial body moving against the backdrop of this vast, star-studded

darkness offers us a chance to interact with the universe at our timescale and

perhaps enrich our understanding of it in the process. These moving objects are

almost always bound to the Sun and thus part of our solar neighbourhood. Our

solar system is teeming with millions of small worlds, the detritus from its forma-

tion 4.6 billion years ago. These include asteroids, comets, centaurs, trojans, and

trans-Neptunian objects and are collectively called small solar system objects.

The mention of asteroids generally evokes images of giant space rocks im-

pacting Earth and causing mass extinction events. Indeed, we see evidence of

this with massive impact structures such as the Chicxulub crater, the Sudbury

basin, as well as the multi-cratered surface of the moon. While such collisions

were common in the early years of our solar system, the reality now is that aster-

oids lead largely uneventful lives, orbiting their star just as we do. A significant

proportion of these asteroids could have once coalesced into a planet except for

the disruptive influence of Jupiter in that region. In fact, it is close encounters

with nearby planets that are thought to nudge main belt asteroids into orbits

that bring them close to Earth. Observing and tracking asteroids, then, gives

us a better understanding of their complex orbital dynamics, which in turn aids

with determining the hazard posed by one in Earth’s neighbourhood. Further,

as asteroids have remained virtually unchanged since the early days of the solar

system, studying them informs our understanding of its evolution.
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CHAPTER 1. INTRODUCTION

While early asteroid discoveries were often providential, the recent years have

seen several large astronomical surveys dedicated to discovering small solar system

objects, especially near-Earth asteroids. These include LINEAR, Pan-STARSS,

ATLAS, and the space telescope NEOWISE. Astronomy is an observational sci-

ence and much of the historical work has been done by eye and based on the intu-

itions of the astronomer. But this type of human involvement is no longer feasible

or even remotely practical with the sheer amount of data collected every night

by these modern observatories. For example, the Hubble Space Telescope has

generated about 150TB of data in 28 years of operation and the MOA telescope

has 170TB of observational data in 10 years. However, this pales in comparison

to the volume of data that will be generated by future surveys. The Roman Tele-

scope and the Vera Rubin Observatory, two major next generation telescopes, are

expected to generate 2.4TB and 30TB of data per day, respectively. Automated

software tools are necessary to obtain the maximum scientific return from the

data collected by past, present, and future surveys. The aim of this thesis is to

offer a deep learning solution to aid in both the recovery and discovery of objects

moving in our solar system.

The idea of artificial intelligence has also long intrigued humanity with much

philosophical discourse on whether machines can ever match humans. The ad-

vent of modern computers provided a means to investigate this further, with

Alan Turing’s “Can Machines Think” essay (Turing (1950)) often considered the

foundational challenge. Neural networks were first proposed as a possible rep-

resentation of how a human brain processes information. However, at the time,

neural nets proved slow to train and it was not until the computational speed

of computers improved that they were considered with any seriousness. In the

60 years since Turing’s axiom, we have seen enormous advances in computer

hardware, with a trend towards ever greater storage and computational speeds.

Computers can now store petaflops of data with supercomputers processing this

data in milliseconds. The speed of the hardware is matched with the availability

of large volumes of data that are required to train these algorithms. Neural net-

works have evolved over the years to the sophisticated architectures we see today,

with the goal to achieve human-level performance in every field that they are

applied to. The main challenge facing these algorithms, and indeed the broader

artificial intelligence community, is solving the problems that are intuitive and

trivial to most people but difficult to formally describe to a machine, such as

2



CHAPTER 1. INTRODUCTION

tracking movement.

Big data is the siren call for modern deep learning algorithms and with as-

tronomical data set to get bigger still, the time is ripe for harnessing the power

of deep learning for astronomy research. While work began in this direction in

1992 with star-galaxy classification (Odewahn et al. (1992)), it has been slow

to pick up pace in the field. Indeed, Odewahn et al. (1992) noted that while

their network was reasonably accurate, building a suitable test set for super-

vised learning and choosing a good parameter representation for an image posed

a significant challenge. The latter problem can now be solved with a convolu-

tional neural network (CNN), which takes an entire image as its input. In 2012,

AlexNet (Krizhevsky et al. (2012)) won the prestigious ImageNet Large Scale Vi-

sual Recognition (ILSVR) challenge1 with its state-of-the-art CNN, heralding the

start of the current era in deep learning research. Since then, we have had neural

nets that have surpassed human-level performance in tasks such as face recogni-

tion and natural language processing. Thus, there is currently a lot of interest in

training and applying advanced neural network architectures to everything from

biomedical research to detecting gravitational waves.

Along with star or galaxy classification (Naim (1995); Bazell and Peng (1998);

Ball (2001); Dieleman et al. (2015); Kim and Brunner (2017); Cavanagh et al.

(2021)), artificial neural networks have also been applied to other astronomy

research such as light curve classification (Djorgovski et al. (2016); Charnock

and Moss (2016); Mahabal et al. (2017); Armstrong et al. (2017); Naul et al.

(2018); Pasquet-Itam and Pasquet (2018); George and Huerta (2018); Shallue

and Vanderburg (2018)) and transient detection (Cabrera-Vives et al. (2017);

Gieseke et al. (2017); Sedaghat and Mahabal (2018); Duev et al. (2019a)). The

impetus in each case was the same - developing a robust pipeline for supporting

digitised sky surveys. In each case the researchers noted that while the network

performed well once trained and was of value to the data pipeline, the labelled

dataset required for supervised learning was the weakest link. A trained model is

only as good as the training data used and having an accurate and relevant dataset

is of utmost importance for the robustness of the network. The availability of

such a store of labelled data is by far the greatest hurdle facing the astronomical

research community keen to apply deep learning to its analysis pipeline.

1https://image-net.org/challenges/LSVRC/
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Deep learning research for computer vision has benefited greatly from the

availability of vast repositories of labelled data such as the ImageNet and MS

COCO datasets. Despite being data-rich, no such repository exists for astronom-

ical research. Part of the reason for this is that all observatories have highly

personalised image processing pipelines and the data is rarely shared publicly.

The configuration of the telescope and other instrumentation used by surveys

can also have a significant impact on the images produced. Further, just as there

are surveys that specialize in hunting asteroids, other surveys have a different

focus. MOA-II, for example, exclusively scans its data for microlensing events.

However, just like artificial satellites and cosmic rays, asteroids are part of the

landscape of our night sky and will thus be present in the imaging data from

most surveys. Consequently, archival survey data offers another avenue for both

discovery of small solar system objects as well as an untapped resource to build

a data repository that can be used for supervised learning. This informs an-

other goal for this research, which is a create a repository of labelled data using

techniques that can be applied other surveys.

1.1 Research Goal

The gaps identified were the lack of labelled datasets and no viable solutions for

finding asteroids in archival data. Thus, the goal of this research is two-fold:

• Construct labelled datasets consisting of astronomical images suitable for

training deep neural networks by developing a methodology that can be

replicated by other surveys;

• Find deep learning solutions for recovering and discovering asteroids in sur-

vey data.

At the conclusion, pre-trained weights will be available and can be applied

towards expanding the dataset as well as towards further research.
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1.2 Report Structure

We have discussed the motivations and goals for this research. Next (Chapter

2), we take a look at the families of asteroids, early and current detection tech-

niques, followed by a review of the deep learning research undertaken in the field

to date. Chapter 3 offers a brief overview of the MOA project and the MOA-

II telescope before describing how archival difference images are converted into a

dataset suitable for supervised learning. Chapter 4 presents CNN-based networks

for classifying images as either containing or not containing asteroid tracklets.

Chapter 5 extends CNNs past classification and into localising tracklets in differ-

ence images. Chapter 6 introduces a different paradigm that could leverage the

temporal aspect of the data to discover moving objects. Additionally, four appen-

dices are included with a primer about neural networks (Appendix A), schema of

a database constructed for ease of access to the minor planet data (Appendix B),

the ROC and PR plots from the various classification CNNs (Appendix C), and

further examples of tracklet detections (Appendix D) by YOLOv4. We conclude

(Chapter 7) with a review of the work undertaken and a look to the future.
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Chapter 2

Review of Asteroid Detection

Techniques

Mapping the motions of stars has captivated humankind for generations. Close

observation reveals that some of those tiny points of light in the night sky move ap-

preciably with respect to the more static seeming stars. Early Greek astronomers

called these “wandering stars” or “astēr planētēs” and we now know them as

planets. The most important consequence of this early study of the motions of

planets was establishing the heliocentric model of the solar system. While many

had long suspected that the Sun was the centre of our solar system with planets

including Earth revolving around it, it was not officially accepted until 1543, when

Copernicus published “On the Revolutions of the Celestial Spheres”. The first

asteroid was discovered by Giuseppe Piazzi in 1801, who carefully and laboriously

tracked its path across the celestial sphere for many weeks. Several other aster-

oids were discovered in the following years, but it was with the advent of large

observatories that the rate of asteroid discovery picked up significantly. Since

then, thousands of asteroids have been discovered in our solar system. In the

1980s, scientists theorised (Alvarez et al. (1980)) that an asteroid was the likely

cause of the extinction of the dinosaurs, which renewed efforts to track and cat-

alogue the orbits of all near-Earth asteroids so as to avoid the same fate. These

Earth-crossing asteroids are, however, only one part of the families of ancient

planetesimals that inhabit our solar neighbourhood, as we will see next.
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2.1 Asteroids in Our Solar System

Asteroids are small rocky, sometimes metallic, worlds that orbit the Sun but are

too small to be planets. They are also called minor planets and are the left-

over debris from the formation of our solar system 4.6 billion years ago. Just as

studying fossils tells us more about how life evolved on Earth, studying asteroids

teaches us about the early history of our own solar system.

The current known minor planet count is 1,166,054 1. The largest known

asteroid - Vesta - is about 530 kilometres in diameter and smallest are less than

around 2 meters in diameter.

The vast majority of asteroids in our solar system orbit about 2 to 4 AU (300

million to 600 million kilometres) from the sun, between Mars and Jupiter. This

region is known as the asteroid belt and the asteroids there in are referred to as

main belt asteroids. It is estimated to contain between 1.1 to 1.9 million asteroids

that are larger than one kilometre, including Vesta, and likely millions more that

are smaller. The main belt also contains the dwarf planet Ceres, which is around

950 kilometres in diameter. The asteroids seen in this work are predominantly

from the main belt.

Another family of asteroids, known as Trojans, share the orbit of a larger

planet without colliding with it. The trojans gather at two special regions in a

planet’s orbit called the L4 and L5 Lagrangian points, where the gravitational pull

of the sun and the planet are balanced so that the asteroid can maintain a stable

orbit. Trojans have been discovered sharing the orbits of Jupiter, Neptune, Mars,

and Earth, with Jupiter having the largest population of trojan asteroids. It is

estimated that there are nearly as many trojan asteroids as main belt asteroids.

Figure 2.1 shows the view of the main belt asteroids and Jupiter’s trojans2 as

well as the orbits of Mercury, Venus, Earth, Mars, and Jupiter.

1https://minorplanetcenter.net/about
2https://ssd.jpl.nasa.gov/?ss_inner
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Figure 2.1: Inner solar system diagram with the positions of all numbered as-
teroids (main belt and Jupiter’s trojans) and all numbered comets on the 1st of
January 2018. Asteroids are yellow dots and comets are symbolized by sunward-
pointing wedges. Credit: P. Chodas, NASA/JPL-Caltech

Other asteroids orbit closer to the sun and thus to the Earth. If their orbit

brings them closer than 1.3 AU (195 million kilometres) of the Earth, they are

classified as Near Earth Asteroids (NEA). Some of these asteroids have orbits

that intersect Earth’s and if these come within 0.05 AU (7.5 million kilometres)

of Earth, they are classified as Potentially Hazardous Asteroids (PHA). For refer-

ence, the average distance of the Moon from Earth is about 0.0026 AU (384,402

kilometres). Figure 2.2 displays the orbits of a typical NEA and PHA3 along

with the orbits of the inner solar system planets. Most NEAs emigrated from the

main asteroid belt between Mars and Jupiter either through collisions or as the

3https://www.nasa.gov/mission_pages/WISE/multimedia/gallery/neowise/

pia15628.html
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result of passing too close to the planets.

Figure 2.2: Comparing the orbits of a typical NEA and PHA. Credit: NASA/JPL-
Caltech

There is a further vast store of minor planets beyond the orbit of Neptune in

the Kuiper Belt called the Kuiper Belt Objects (KBOs). The Kuiper belt is a

circumstellar disc that extents from the orbit of Neptune at 30AU to a distance of

approximately 55AU. It is similar to, though much larger than, the main asteroid

belt and its most famous denizen is the dwarf planet Pluto. We are still very

much in the discovery phase with this far flung region of our solar system, which

is thought to contain millions of small icy objects and the theorised origin of

short-period comets (orbital periods of less than 200 years). Figure 2.3 show

Pluto’s orbit (inclined with respect to the plane of the solar system) within the

Kuiper Belt4 along with an illustration of the hundreds of thousands of icy bodies

and comets that are thought to reside within it.

4https://solarsystem.nasa.gov/solar-system/kuiper-belt/overview/
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Figure 2.3: The torus (doughnut-shaped) Kuiper belt, which extends beyond the
orbit of Neptune and is home to Pluto. Credit: NASA/JPL-Caltech

2.2 From Early Detectors to MOPS: An Overview

Early astronomers primarily used a combination of mirrors, lenses, and prisms

to make their visual observations and largely serendipitous discoveries. In the

late 19th century, the advent of photographic plates enabled these observations

to be recorded and studied further. The asteroid 323 Brucia was discovered by

Max Wolf in 1891, heralding a new era in finding solar system objects. The plates

could be used in a device called a blink comparator, which facilitated astronomers

finding differences between two photographs by rapidly switching from viewing

one to the other. This “blinking” back and forth made it easier to spot objects

that had changed position. The most notable discovery using photographic plates

in a blink comparator was of Pluto in 1930 by Clyde Tombaugh.

The Palomar Planet-Crossing Asteroid Survey (PCAS) (Helin and Shoemaker

(1979)) was the first astronomical survey dedicated to finding NEAs and applied

a blink comparator to photographic plates to discover new minor planets. Its

successor was the Palomar Asteroid and Comet Survey (PACS) (Shoemaker et al.
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(1988)), which further utilized a stereoscopic microscope to scan photographic

plates for minor planets. The NEA’s image would appear to “rise” above the

background stars when two different and slightly offset images were viewed with

a special stereo viewing microscope. PACS’s most ground-breaking discovery was

of the comet Shoemaker-Levy 9, which was captured by and crashed into Jupiter

in 1994.

The late 80s saw a digital revolution in observational astronomy with the

introduction of the “charge-coupled device” or CCD. CCDs are small and light-

sensitive microchips on to which the light that a telescope collects is focused. Each

microchip is a grid of several tiny pixels (photodiodes), each of which record the

amount of light falling on it as a build up of charge. They are a powerful tool

for observational astronomy as they enable taking long exposures images, which

lead to collecting more light from an observed region, which in turn allows faint,

far away objects to be photographed. The Hubble Space Telescope has perhaps

the most famous CCD camera and it has given us many awe-inspiring images of

celestial objects in the last 30 years. Of the Earth-based observatories, between

the mid 80s and 90s, Spacewatch, pioneered the first formal survey of near-Earth

asteroids using CCDs and automated detection software (Rabinowitz (1991)),

revolutionizing the way asteroids are discovered and tracked. The detection al-

gorithm required a set of three consecutive exposures of 30 minutes each. The

length of the exposure meant that asteroids would appear as streaks and these

were identified in the first two exposures and their displacement from each other

was calculated with respect to the third. The detections thus reported were then

verified by the observer.

In the decades since, the advances in computer processors, data storage capa-

bilities, and ever-improving detection algorithms has meant the current asteroid

discovery rate is nearly 2000 new NEAs per year. One popular approach was

using the shift-and-stack technique as applied by Cochran et al. (1995) to detect

moving objects in the then-new field of discovering Kuiper Belt Objects (KBOs).

They obtained 34 exposures over a 2-day period of one field near the ecliptic

with the Hubble Space Telescope (HST). Each exposure was between 500-600

seconds long. To maximise the signal to noise ratio, they took the median sum

of all 34 exposures and were left with the “static” objects like the distant stars

and galaxies, but none of the moving objects or radiation noise. This median
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sum image was then subtracted from each exposure, leaving behind the moving

objects and noise. Next, the images were shifted and combined so that each KBO

was highlighted and combined into the same pixel/blob. Median sum was per-

formed again to remove all other noise/radiation, leaving behind the KBO. They

discovered 29 KBOs, ranging between 5-10km in size, marking the first detection

of short-period comets in their theorized reservoir of the Kuiper Belt.

Arguably, the true behemoth in the field is the Pan-STARRS5 Moving Object

Processing System or MOPS (Denneau et al. (2013)). MOPS is a well-developed

and influential software suite for automated asteroid discovery, trained with a sim-

ulated but realistic asteroid distribution for the Pan-STARSS telescopes. MOPS

receives a set of transients not associated with any known source from the Pan-

STARRS Image Processing Pipeline (IPP, Magnier (2006)) and applies a sophis-

ticated tree-based spatial linking algorithm (Kubica et al. (2007)) to further parse

and form associations between these point sources. The potential orbital track

is first estimated for each set of new detections received, followed by scanning

a kd-tree structure consisting of previous detections to find the closest associa-

tion. The detection estimates are then updated accordingly, as is the kd-tree. If

no associations are found, a new track is tentatively proposed. Associations are

maintained both nightly as well as on subsequent nights. This allows the software

to make accurate predictions about the orbital path of the objects and provides

the data points required to confirm whether the objects are solar-bound. One

of the strengths of the MOPS software suite is that it can be ported to other

surveys. Its success over the years means that it will also be used by the next

generation transient survey at the Rubin Observatory (Jones et al. (2016)), which

is currently under construction.

The aforementioned is a snapshot of asteroid detection processes and offers a

glimpse at the procedures involved. These days, all surveys that aim to discover

asteroids employ automated techniques specific to their telescopes and have well

structured pipelines in place to support the process. The aim of this work, how-

ever, is to investigate the application of deep learning for the asteroid discovery

and focuses next on the current research undertaken on that front.

5https://www.ifa.hawaii.edu/research/Pan-STARRS.shtml
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2.3 Deep Learning for Discovering Small Bodies

in our Solar System

A brief primer about neural networks is included in Appendix A.

2.3.1 Meteor Detection

An early and successful application of deep learning for discovering moving astro-

nomical objects was for the detection of meteors. Zoghbi et al. (2017) applied both

LSTM (Long Short Term Memory) and CNN (Convolutional Neural Network) to

look for debris from long-period comets. These objects are potentially hazardous,

but the impact trajectory would likely only be discovered 6-12 months before the

impact, when the object becomes visible. To provide earlier warning, the orbits

of the comet’s debris could be used to guide the search for the comets themselves

while they are still far out. Determining the orbit requires the night sky to be

monitored for an extended period of time (about 60 years) from locations around

the globe and this data (low-light video) is provided by the Cameras for Allsky

Meteor Surveillance (CAMS). The detections are typically made by astronomers

who, on an average night, receive around 500 detections per camera consisting

of images and light curves. That’s a total of 8,000 observations with 16 cameras

per site. Sorting through these every night is not scalable, hence the need to

automate the process. Note that their goal was not to achieving human-level

performance, they simply wanted an automation that was “good enough”.

The advantage of both CNNs and LSTMs is that they can work with raw

data, which was appealing to the researchers. To that end, they trained a single

layer LSTM with 1000 units to distinguish between light curves of meteors and

non-meteors. Of the 200,000 light curves input, only 3% were of meteors. They

also set up a CNN with 5 convolutional layers and 2 fully connected layers with

a softmax classifier to distinguish between images of meteors and non-meteors.

The inputs were 480 x 640 greyscale images, 23% of which were meteors. The

data was augmented by rotating and flipping the images. Both the CNN and

LSTM had a F1 Score of about 89.5%, which is particularly remarkable given the

imbalance between positives and negatives in the data. It’s unclear if there is any
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overlap in their misclassification; it’s also possible that it did not matter because

of the redundancy inherent in the data. Regardless, the researchers were happy

with the result and deployed both networks, presumably to work in tandem. The

paper does not contain any further details. Overall, this endeavour demonstrates

the very real benefit of applying deep learning to astronomy research.

2.3.2 Euclid

Lieu et al. (2018) applied CNNs to the task of detecting small solar system objects

(SSO) in data simulated for the ESA’s Euclid6 space telescope, which is scheduled

to launch in 2023. Euclid is an optical and near-infra red telescope that will

scan about a third of the extragalactic sky. Extensive data simulations were

undertaken for the express purpose of preparing the information pipeline and

system support architectures for the mission.

The researchers use the Euclid Visible InStrument Python Package (VIS-

PP)7 to create the simulated images to mimic what Euclid would see as closely

as possible. The total field of view covers 4096 x 4136 pixels and is composed of

four quadrants, each being 2048 x 2066 pixels. Postage stamp cut-outs centred

on the objects of interest - SSOs, cosmic rays, stars, galaxies - were then taken

from the simulated images, creating a dataset of 3756 (single channel) images.

These are resized as per the requirements of the network architecture applied.

Note that the asteroids are expected to have a “trailed” or streak-like profile

for bright objects and a more diffused, oblong profile for faint objects. It was

hypothesised that as the profiles of cosmic rays, stars, and galaxies were the

most common cause of false positives, teaching the network to recognise them

would prove useful. Next, the researchers added four different sorts of dithering

manoeuvres to the images, three of which were combine to create 3756 additional

3-channel images. They chose to use three network implementations offered in

Google’s Tensorflow; Inception-v4 (Szegedy et al. (2016)), NASNetLarge (Zoph

et al. (2017)), and MobileNets-v1 (Howard et al. (2017)).

All three models are initialised with pre-trained weights (ImageNet) before

6https://sci.esa.int/web/euclid/
7http://www.mssl.ucl.ac.uk/~smn2/
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being fine-tuned with the Euclid simulations. The training/validation/test split

ratios for the dataset were 70%, 20%, and 10% respectively. It is important to

note that their sample dataset is not representative of the true proportions of

each object seen during observation. Rather, they focused on having a balanced

class distribution to focus the training on objects of interest. First, the networks

were trained with the single-channel images to perform binary classification, with

cosmic rays, stars, and galaxies grouped into one class called “non-SSOs”. They

then did the same with the 3-channel images. The results with the 3-channel

images were better and MobileNet performed best with an accuracy of 95.6%

and recall of 93.5%. Next, they split both the single and multi-channel data

into four classes - SSO, cosmic ray, star, and galaxy and retrained the networks.

This time, MobileNet with the single channel images performed better with an

accuracy and recall of 83%. While the researches also made adjustments to these

results based on the expected abundance of the objects in the Euclid images, the

true test will be how well the networks perform with real data. However, their

investigation does gives them a good set of pre-trained weights, which can be

used when fine-tuning the network with real data.

2.3.3 DeepStreaks

Moving back to ground-based observatories, the Zwicky Transient Facility (ZTF)8

has been scanning the entire northern sky for astronomical transients every three

nights since 2018. Among the objects they monitor are near Earth objects (NEO).

Of particular interest were the objects under 140m as only around 30% of the

estimated population had been found.

Duev et al. (2019b) proposed a CNN-based deep learning model, called Deep-

Streaks, to aid in the discovery of these objects. A Random-Forest based classifier

called ZStreak (Ye et al. (2019)) was already part of the data pipeline at ZTF,

however it still produced around 104 − 105 candidate steak detections, which re-

sulted in several human hours spent filtering out false positives. DeepStreaks was

proposed to cut down the number of false positives but still deliver accurate de-

tections. The candidate streaks are referred to as “fast moving objects” (FMOs)

and could have either natural or man-made origins.

8https://www.ztf.caltech.edu/
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The researchers experimented with two approaches to achieve their goal. The

first was to split the task into three binary classification sub-tasks: identifying

all streak-like object (“rb”), identifying all short streaks (“sl”), and identifying

streaks made by real FMOs (“kd”). Each sub-task was solved by a group of

classifiers and, for an object to be considered a candidate, at least one classifier

from each group would need to give it a probability score that passed a pre-defined

threshold. The second approach was to attempt accurate binary classification in

a single step (“os”) where at least one classifier would need to output a score

greater than a given threshold. In both cases, three CNN architectures were

chosen to be used as an ensemble; a small 6-layer CNN, ResNet50 (He et al.

(2016)), and DenseNet101 (Huang et al. (2016)). The rational was that with

their diversity, the classifiers would complement each other. The input image was

144 x 144 pixels, with the streaked object generally centred. The initial dataset

consisted of 1000 real difference images from the ZTF pipeline, 8270 simulated

images, and 6000 non-candidate streaks from satellites, airplanes, cosmic rays,

bad subtractions, and other artefacts commonly seen in astronomical data. This

data was first used to train the classifiers to detect all streak-like object (“rb”).

This ensemble was evaluated on a month of ZTF data, which was then labelled

and used to retrain the classifiers. This process was undertaken several times,

though it is unclear for how long, with how much data, and what the results were

at each step. Eventually, the same technique was employed to train the “sl”,

“kd”, and “os” tasks as well, with “sl” benefiting from the results of “rb” and

“kd” benefiting from the results of “rb” and “sl”.

The ROC curves indicate that, in each case, each individual classifier per-

formed well, with a similar distribution, and had an area-under-the-curve of over

98%. However, tests with raw ZTF data indicated that the “rb”/“sl”/“kd” en-

semble was superior while also significantly reducing the number of candidate

detections flagged for follow up; DeepStreaks found 33,000, while ZStreaks found

1.7 million over the same period. With this, DeepStreaks achieved its stated goal

and reduced the time taken by a human to review the candidates from several

hours to several minutes, without sacrificing detection sensitivity. The crowning

glory was the discovery of 15 NEOs at the time the paper was published.
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2.3.4 ATLAS

Rabeendran and Denneau (2021) developed a deep learning solution for NEO

candidate vetting for the robotic, ground-based astronomical survey and early

warning system, Asteroid Terrestrial-impact Last Alert System (ATLAS)9. AT-

LAS aims to identify small solar system objects within a 0.01 AU distance from

Earth before they impact. As with most astronomical surveys, candidate detec-

tions must be vetted by human observers before being submitted to the Minor

Planet Center (MPC)10 for further evaluation. At the time the paper was pub-

lished, ATLAS had discovered more than 500 NEOs since it became operational

in 2016. While ATLAS can identify thousands of known asteroids nightly, it also

has to contend with hundreds of false positives caused by various spurious arte-

facts that are an expected part of astronomical data. The stated goal with deep

learning was to greatly reduce the number of false detections and thus speed up

the process of follow up observations of new objects. ATLAS uses the MOPS

pipeline, which groups source detections that are consistent with linear motion

through the field of view. Four such detections form a “tracklet”, which ATLAS

then uses to report asteroid observations.

ATLASs’ image processing pipeline generates reference-subtracted images,

which highlight any transient phenomena observed, such as supernovae, variable

stars, and moving objects. Small 100 x 100 pixel cut-out images of the source

detections from the subtracted images form the basis of the input to the CNN.

Note that the objects of interest are once again centred in the images. Tracklets

are classified as real or bogus depending on whether or not they correspond to

a small solar system object. The data is split into eight classes, three of which

are real objects and the rest bogus. Objects classed as real are astronomical

sources (rounded shape - asteroid, variable star, small comets), streaks (trailed

appearance - NEO or satellite), and comets (larger profile with a possible trail).

Objects classed as bogus are noise, cosmic rays, burns (readout artefact caused

by bright sources), scars (result of imperfect subtraction), and spikes (diffraction

spike caused by bright stars). A curated dataset of 3500 images was created with

500 images in each class except tracklet - specific. From each of the seven classes,

470 images were used in the training set and the rest in the validation set. Each

9https://atlas.fallingstar.com/home.php
10https://www.minorplanetcenter.net/iau/mpc.html
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image was only associated with one class, though the authors note that some

classes may be indistinguishable from others. This dataset was augmented by

horizontal and vertical flipping, rotation, and cropping. A second dataset (re-

ferred to as the evaluation set) that consisted of 250,000 images of real known,

real unknown, and bogus tracklets from two lunations of observations was con-

structed in tandem. The data from the first lunation was used for the training

and the second for validation. The images in the evaluation set could contain

objects associated with multiple classes.

The researchers designed a two-stage detector, the first of which was the

Image Classification Network (ICN) to classify images and the second was the

Tracklet Classification Network (TCN) to classify tracklets. The networks were

modelled in the PyTorch11 framework. The ICN was a pre-trained ResNet-18 (He

et al. (2016)), fine-tuned to classify the curated dataset into one of eight classes.

It must be noted that while eight classes are mentioned originally, the curated

dataset only mentions seven. It is unclear if 500 more images were added to the

curated set. The TCN was a multi-layer perceptron that is initially trained with

the evaluation set but is designed to eventually takes the output of the ICN as

input. To keep the false negatives to a minimum, the loss function was weighted

in favour of the real tracklet. The ICN performed well with the disparate classes

(scar vs spike) but had a harder time distinguishing between astronomical sources

and streaks, which was expected as the two can be very similar. The TCN found

99.6% of the real tracklets and 90.8% of the bogus ones. This is expected both

because of the weighted loss and as well as the greater variation seen in the

bogus tracklet images. However, catching nearly 91% of bogus tracklets does

reduced the human workload when vetting tracklet detections, which was one of

the stated goals of the research. This two-stage model is deployed on ATLAS

and used for filtering out bogus tracklets before submission to the MPC and

has proven successful at reducing the NEO candidate list by about 95% without

sacrificing any real tracklets. The model continues to be evaluated and retrained

to identify other artefacts that lead to false detections.

11https://pytorch.org/
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2.3.5 Tails

The team at ZTF undertook another investigation, this time applying deep learn-

ing to automate the search for comets that are detectable solely by their mor-

phology (Duev et al. (2021)). As comets get close to the sun, they start to display

a more pronounced coma and tails, which gives them a distinctive appearance

in survey images. Further, we can get accurate positioning data about known

comets, which would effectively identify the centroid the comet. This data is

leveraged to train an object detection model, EfficientDet (Tan et al. (2020)), to

localize comets in ZTF imaging data. The project was named Tails.

A labelled dataset was built by first identifying all known comet observations

in the ZTF data from March 5, 2018 - March 4, 2020 based on their predicted

position and brightness. The initial ephemerides were obtained from the MPC,

followed by more accurate positional data from JPL Horizons12. It was decided

that, to provide more contextual information, three 256 x 256 pixel images would

be used as the input simultaneously: the science/observation image, the reference

image, and the difference image. Sixty thousand individual observations with

comet magnitude between 10 - 23 were selected, 20,000 of which were chosen

for manual annotation. This gave them 3,000 images of comets with identifiable

morphology, to which they added 20,000 images with various other astronomical

artefacts, but no comets. They then trained a ResNet (no further details given)

for binary classification with this dataset and used its results to supplement their

dataset with a further 2000 comet and 2000 no-comet images. Their final dataset

consisted of 5000 comet images and 22,000 no-comet images. Each triplet input

set was given a label [pc, x, y], where pc (1 for comets) indicates the presence of

a comet in the image and (x, y) the relative position of the comet’s centroid as

reported by JPL Horizon. Negative examples were labelled [0, ?, ?]. The data

was augmented with random horizontal and vertical flipping.

Google’s EfficientDet with its EfficientNet (Tan and Le (2019)) backbone fea-

ture extractor was the chosen object detection architecture. It was customised

to accept and output centroid data similar to the label rather than the usual

bounding box. The network weights were randomly initialized, and they used a

training/validation/test split of 81%/9%/10%. The metric monitored was root

12https://ssd.jpl.nasa.gov/horizons/app.html/
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mean squared error (RMSE). When evaluated on the test set with a class prob-

ability threshold of 0.5, the detector had a false positive and false negative rate

of 1.7% and the RMSE was only 1-2 median pixel RSME from the JPL Hori-

zon’s data. An excepted aspect of object detection models is that the predicted

location will never exactly match the ground truth location. Given this, it is

unclear why object detection was chosen over the more usual classification model

here. The work does not mention if the centroid predicted by Tails is a data

point shared with the MPC. Nonetheless, Tails was deemed to fulfill its brief and

was deployed soon after. As with most astronomical detections, the candidate

detections provided by Tails were vetted by an astronomer. The model is also

regularly retrained with new data to improve its performance. In experiment-

ing with the inputs, the researchers established that the network performs just as

well with the science and reference image alone and the network could potentially

be updated to reflect this. Tails’ notable achievement was the discovery of the

long-period comet C/2020 T2 in October 2020.

2.3.6 Hubble Asteroid Hunter

In early 2022, Kruk et al. (2022) shared their research about identifying asteroid

trails in archival data from the ESA Hubble Space Telescope13 with deep learning.

Space telescopes can capture fainter objects than can be seen by ground-based

observatories and can thus help with constraining their population. In 30 years

of operation, Hubble has taken many memorable images of galaxies, nebulae, and

deep fields. Solar system objects such as asteroids also occasionally move across

the field of view of the telescope, leaving a trailed footprint on the image. While

these were highlighted by Evans et al. (1998), no further work was undertaken

on that front until Kruk et al. (2022)’s research. Finding these trails is a time

consuming process as they are infrequent occurrences. This added to the appeal

of using deep learning as, once trained, the trials could be rapidly discovered.

The images used in the research were from the HST Advanced Camera for

Surveys Wide Field Camera (ACS/WFC) and the Wide Field Camera 3 Ultra-

violet and Visible Channel (WFC3/UVIS) and spanned from 30 April 2002 - 14

March 2021 for the former and 24 June 2009 - 14 March 2021 for the latter.

13https://hubblesite.org/
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Composite HST images were used as they made the asteroid trials appear longer

and thus easier to detect. The trails appear as curved “C” or “S” shaped streaks

because of the motion of both the spacecraft and the asteroid. Cosmic rays,

strong gravitational lenses, and satellites present in the images could be mistaken

for asteroids. Their final dataset contained a total of 149,292 1050 x 1050 pixel

images. The citizen science project, Hubble Asteroid Hunter14, was undertaken

between 2019 - 2020 to aid with the search for asteroid trails in 144,559 of these

images. After a short training tutorial, volunteers were asked to indicate whether

or not an image had an asteroid trail and, if it did, to mark its beginning and

end position. The volunteers also had access to static images with examples of

asteroid trials as well as the objects that could be mistaken as such. They could

also tag these objects that could be confused as asteroids using hashtags (satel-

lite, cosmic ray and gravitational lens) on the project’s forum. Each image was

vetted by 10 volunteers. The project attracted 11,482 volunteers and resulted in

nearly 1.8 million classifications. A total of 1488 asteroid trails were discovered.

The classifications resulting from the citizen science project were used to train

Google Cloud’s AutoML Vision15, a black box object detection algorithm based

on CNNs that makes deep learning more accessible. Training the model with

only asteroid trails resulted in a large number of false positives, so it was instead

trained with four class labels: asteroid, satellite, cosmic ray, and gravitational

lens arc with 1488, 1673, 1343, 698 images each, respectively. The model out-

puts both class probabilities and bounding box coordinates. At a confidence

threshold and IOU of 50% it achieves a precision of 78.3% and a recall of 61.1%.

The AutoML classification returned 2041 asteroid trails, 997 of which were new

candidate detections. The authors visually scanned all the candidate asteroid

trails identified by both volunteers and AutoML and were left with 1701 real

asteroid trails after discounting false detections, duplicates, and known observa-

tion targets. Further research was undertaken to determine which of these trails

belonged to known asteroids and this left the authors with 1031 unidentified/un-

known trails, most of them from faint objects. The authors are continuing their

work with investigating these unknown objects. The study highlights the useful-

ness of deep learning together with effective citizen science for mining archival

data from any astronomical survey spanning decades.

14https://www.zooniverse.org/projects/sandorkruk/hubble-asteroid-hunter
15https://cloud.google.com/vision/automl/object-detection/docs
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2.4 Summary

We have discussed asteroid populations in our solar system and their discovery

through the ages. The large amounts of data produced by astronomical surveys

necessitates the automation of as much of the processing pipeline as possible.

Astronomical data contains many expected man-made and astronomical sources

of noise that add to the complexity of discovering moving objects. It is also

expected that candidate detections will include false positives and that human

observers will be needed to screen these before earmarking a candidate as an SSO.

The application of deep learning for finding SSOs is still in the early stages with

one obstacle being the lack of large labelled datasets. Nonetheless, the appeal of

deep learning is the speed of inference once a network is trained and the potential

to refine and improve networks as more labelled data is obtained. Early research

has demonstrated that deep learning models produce fewer false positives without

adversely affecting the true positives. Some of the early research has even led to

the discovery of new SSOs. With vast archival repositories and planned future

surveys, the potential for future discovery and knowledge expansion abound.
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Chapter 3

MOA-II Telescope: Building The

Dataset

The MOA project is a Japan/NZ collaboration that has been operating the 1.8m

MOA-II optical research telescope1(Figure 3.1) at Mt. John since 2004. It has a

wide-field mosaic CCD camera called the MOA-cam3 (Sako et al. (2008)), which

consists of 10 CCD chips arranged as shown in Figure 3.2. Each CCD chip is 3cm

x 6cm and has 2048 x 4096 pixels, recording over 800 megapixels of data with each

exposure. The telescope has a total field of view of 1.6 x 1.3 degrees. MOA-II

surveys the Galactic Bulge (GB) and the Large Magellanic Cloud (LMC), both

of which are regions of the sky that are densely packed with stars. It operates

at a high sampling rate, which means that the fields are surveyed several times

each night, which in turn makes it particularly good for observing short duration

events. Figure 3.3 is a single exposure of one of the fields surveyed and Figure

3.4 shows us all of the fields surveyed by MOA-II towards the Galactic Bulge.

1http://www.phys.canterbury.ac.nz/moa/index.html
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Figure 3.1: The MOA-II telescope at the Mt John Observatory

Figure 3.2: CCD arrangement for MOA-cam3
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Figure 3.3: Single exposure of a field surveyed by MOA-II
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Figure 3.4: Fields surveyed by the MOA-II telescope towards the Galactic Bulge
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MOA stands for Microlensing Observations in Astrophysics (Sumi et al. (2003))

and the project’s primary research has been to observe gravitational microlensing

events to find exoplanets, dark matter, and to study stellar atmospheres. Gravita-

tional microlensing is a phenomenon where the light of a foreground star acts as a

lens to a background star, causing the background star to momentarily shine a bit

brighter (Einstein (1936); Liebes (1964)). The presence of a planet or planetary

system around the lens star causes a brief spike in the brightness of the source

(Mao et al. (1991); Gould and Loeb (1992); Bennett and Rhie (1996)). Since the

phenomenon requires two stars to line up along our line of sight, the chances of

observing such events is greatly improved by focusing on a dense star field, such

as the Galactic Bulge (Paczynski (1986); Griest et al. (1991)). The MACHO

survey (Alcock et al. (1993)) pioneered scanning for microlensing events and was

joined by EROS (Aubourg et al. (1993)) and OGLE (Udalski et al. (1993)). MOA

joined the collaboration in 1998, though the MOA-II telescope was not active un-

til 2004. KMT (Kim et al. (2016)) is the latest survey to join in the search for

microlensing events. MOA-II led the discovery of the first microlensing planet

(Bond et al. (2004); Bond (2012)) and has played a key role in the discovery of

all 129 confirmed exoplanets discovered via microlensing to date2.

Congruently, Gould and Yee (2013) posit that microlensing surveys are partic-

ularly good for determining the rotation period and orbital trajectory of asteroids

because they survey a given region of space several times each night. This means

that asteroids could spend several nights travelling through the survey field of

the telescope, giving us the opportunity to observe their path and study the light

emitted from them.

2https://exoplanetarchive.ipac.caltech.edu/docs/microlensing.html
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Figure 3.5: Dataflow for the MOA-II telescope

Figure 3.6: Image processing pipeline for the MOA-II telescope
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3.1 Difference Imaging Analysis for MOA-II

Microlensing is a transient astronomical phenomenon and detection relies on a

robust image processing pipeline. Figure 3.5 illustrates the typical dataflow from

data collection by the telescope to meaningful scientific analysis.

Figure 3.7: Difference imaging analysis for generating an image (c) that represents
the changes seen in a new observation image (a) since the reference image (b)
was taken (Bond et al. (2001)).

Figure 3.6 breaks down the image processing pipeline further. Briefly, the raw

image from the CCD is first processed to adjust for pixel-to-pixel variations and

image noise by applying flat-field correction and dark-frame subtraction. Then

the difference image (Tomaney and Crotts (1996); Alard and Lupton (1998);

Alard (2000); Bramich (2008)) is generated. The technique used by MOA (Bond

et al. (2001)) involves calculating a convolutional kernel to extrapolate the dif-

ferences in the seeing (essentially the atmospheric conditions, ambient light, etc.)

between the reference image and the new observation image, convolving the ref-

erence image with this kernel, and then subtracting it from the new observation

image. We are left with an image that records the changes in intensity of the

light received (Figure 3.7). This process is essential as it would otherwise be im-

possible to find transient phenomena is the observations. Each difference image

is then run through a source extraction algorithm, which divides the image into

several patches based on the intensity of the pixels. These patches are further

filtered based on a threshold of negative pixel values. This leaves us with a set of
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possible transient candidates and a sparse light curve is generated for each. False

positives are an expected part of this process. An astronomer reviews the light

curves and selects the ones that should be further analysed. A more detailed light

curve is generated for these, which is then shared on the MOA Alerts page where

an astronomer vets each as a possible microlensing event.

The MOA-II difference images are a key component of this research and where

the search for asteroids begins. Ideally, a difference image would only contain

transient astronomical phenomena but, in reality, there are several spurious arte-

facts to contend with. Figure 3.8 highlights some of these, which are too-bright

saturated stars, imperfect subtractions, satellite trails, and any residue on the

chip or mirror assembly, most often seen at the edges. Additionally, noise could

also be due to atmospheric dust, differential refraction, instrumentation error, or

proximity to a bright astronomical object (like the moon). Consecutive observa-

tions on the same night can also be markedly different, as seen in Figure 3.9. Part

of the challenge is finding objects of interest amongst these spurious artefacts.
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Figure 3.8: Various artefacts present in difference images: a) and b) saturated
stars and imperfect subtractions, c) satellite streak, d) possible imperfections on
the camera
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Figure 3.9: Consecutive observations of the same region on the night of 9 June
2007.
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3.2 Asteroids in MOA-II

The Galactic Bulge is visible in the Southern Hemisphere between February and

October. A combination of long nights and Bulge elevation in the mid-winter

months make them the best time for observation. On clear nights with good

seeing conditions, several of the MOA-II fields are surveyed frequently, at times

as often as every 10 minutes. This provides ideal conditions for observing asteroids

in our solar system.

Figure 3.10: Six consecutive observations of the asteroid (78153) 2002 NX24 on
23-June-2006
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Figure 3.10 demonstrates this with six observations of a bright main-belt as-

teroid (78153) 2002 NX24, with a limiting magnitude (V) of 17.5, taken at 10-12

minute intervals on the 23rd of June, 2006. If we stack these images together by

brightest pixel, we can clearly see the tracklet for this asteroid (Figure 3.11(a)).

A tracklet is part of the orbital arc of the asteroid as it travels through the field of

view of the telescope. The profile or point spread function of the object changes

slightly in each exposure, which is expected due to mild fluctuations in atmo-

spheric conditions. Image (b) in Figure 3.11 is the stack of all the observations

of NX24 on the same night. The asteroid is visible in twelve of the fifteen obser-

vations recorded and the gap between the 5th and 6th observation is due to an

interval of 26 minutes between those two observations.

Figure 3.11: Tracklet for the main-belt asteroid (78153) 2002 NX24 on 23-June-
2006 as seen in the MOA-II data. a) is the tracklet based on the observations in
Figure 3.10 and b) is the tracklet from all the observations on the same night.
Most of the observations are 10-12 minutes apart but there is an interval of 26
minutes between observation 5 and 6.
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3.2.1 MOA-II Archival Data

All of the astronomical data is stored in the Flexible Image Transport System

or FITS3 format that was designed for and has evolved with astronomical data.

Data is stored as an N-dimensional array along with its associated metadata,

which is in a human-readable header. The format is non-lossy, high resolution,

and capable of storing data from multiple passbands in the same file.

Two main sets of archival data from MOA-II were used in this research.

1. GB5-R5: 49,901 difference images in FITS format consisting of all observa-

tions from 2006 - 2019 from one chip (chip 5) in the CCD array for the field

GB5. The reference image used for generating these difference images was

chosen from the night of 23-April-2012, which makes this set different from

the default MOA-II difference images. This amounts to 1.1 TB of data.

The entirety of this dataset was used.

2. GB-All: 905,302 difference images in FITS format consisting of all observa-

tions from all 23 of MOA-II’s fields from 2013 - 2015. The reference images

used for generating these are the default ones used by the MOA project

and were chosen at the start of operations for each chip in each field on a

night with excellent seeing conditions. This amounts to 11 TB of data. The

significant size of this dataset means that only a small portion of it has been

labelled thus far. To start with, one night (28-June-2013) of observations

was extracted to serve as an additional test set for networks trained with

the GB5-R5 data.

Each CCD chip is 2048 x 4096 pixels, with a resolution of 0.01 arc minutes

(0.01’) per pixel. Each exposure is 60 seconds long. Of the 23 fields, some get

surveyed more often than others; GB5 is one such frequently observed field.

3https://fits.gsfc.nasa.gov/fits_documentation.html
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3.2.2 Known Asteroids

The Minor Planet Center4 (MPC) is the official repository for all known minor

planets, which are all the small bodies including asteroids, in our solar system.

They collect observational data, calculate orbits, and provide various free web-

based services for observers to access this information. One such service is the

Minor Planet Checker (MPChecker)5. It can be used to generate a list of all the

known minor planets that are visible at a given location, within a given radius,

at a specific point in time. Figure 3.12 shows the results of one such query, which

includes the asteroid NX24 (Figure 3.11).

To build a repository of all known asteroids in the MOA-II dataset, a screen

scraper was written in Python to submit a query for each observation in the

dataset and the results were saved. For the GB5-R5 data, the right ascension

(RA) and declination (Dec) of the central pixel of the reference image was used,

along with a search radius of 22.89 arc minutes. For the GB-All data, the RA and

Dec of the central pixel of CCD assembly (midpoint of the field being surveyed)

was used, along with a search radius of 100 arc minutes. Both of queries resulted

in asteroids that were potentially outside the CCDs and these were filtered out

in the next step. At the start of this research, the limiting magnitude for minor

planets visible in the data was not known, so a conservative value of 24 was used.

Note that the magnitude is a logarithmic scale and the higher the value, the

fainter the object.

Once all of the celestial coordinates (i.e. the RA and Dec) for the known minor

planets were obtained, astrometric calibration was performed to translate these

into x,y positions on the CCDs for each field. MOA-II’s custom built gnomonic

projection procedure was utilized for this.

For ease of access, all of the minor planet data was stored in a custom-built

database as described in Appendix B.

4https://minorplanetcenter.net/
5https://minorplanetcenter.net/cgi-bin/checkmp.cgi
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Figure 3.12: Results from an MP Checker query to find all known minor planets
visible from the Mt John Observatory within the search radius of one CCD chip
at a specific date-time.

3.2.3 Building The Dataset

Image Stacks

Figure 3.13: Stacking all of a night’s observations on one chip in one field gives
us a clear tracklet for asteroid (78153) 2002 NX24. In (a) the observations are
stacked by brightest pixel; in (b) they are stacked by the median pixel; and in
(c) we see the result of subtracting (b) from (a).

As demonstrated in Figure 3.11, stacking images from the same night by the

brightest pixel will reveal the tracklet of an asteroid moving through the field

of view. Stacking the observations by median pixel results in an image that is

devoid of any random noise or moving objects. Thus, the stack image can be

further simplified by subtracting the brightest pixel stack from the median pixel

stack. This gives us an image without the bright background and saturated stars,
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which highlights the tracklet better (Figure 3.13).

The following process was followed in code to produce the subtracted image

stacks:

1. Convert all of the FITS data to JPGs. This leads to a significant reduction

in storage requirements (1.1 TB to 116 GB for the GB5-R5 data) without

compromising the image composition. The JPG images were encoded to

look resemble the SAOImage DS9’s6 “zscale stretch” format, which applies

a pixel stretching algorithm and is commonly used to analyze difference

images.

2. Group all observations by field/chip/night. This list is saved and referred

to several times.

3. Stack the nightly observations for each chip in each field by brightest pixel

(Figure 3.14).

4. Stack the nightly observations for each chip in each field by median pixel

(Figure 3.14).

5. Subtract the median stack from the corresponding brightest stack; the re-

sulting image (subtracted image) contains noise plus any object moving in

the field of view (Figure 3.15).

Only nights with 3 or more observations were considered when building the

image stacks. The GB5-R5 dataset resulted in 2252 subtracted images with which

the search for asteroid tracklets could begin. Additionally, on the night of 28-

June-2013, 12 of the fields had more than 10 observations, which resulted in 120

subtracted images from the GB-All dataset.

6https://ds9.si.edu
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Figure 3.14: Pseudocode for creating brightest and median pixel stacks.

Figure 3.15: Pseudocode for creating the subtracted stack image.
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Localising Asteroid Tracklets

The minor planet ephemeris data from the MPC, together with the astrometric

calibrations specific to MOA-II, were used to extrapolate the minimum and max-

imum (x, y) positions for asteroid tracklets in stacked images. This was used to

crop sub-regions expected to contain tracklets from each stack. Asteroids that

fell beyond the boundaries of a CCD chip were ignored.

Further, by visual inspection of the tracklets, it was established that only

asteroids with a limiting magnitude of 20.5 or brighter are visible in the MOA-

II exposures. The objects with magnitude between 19.5 and 20.5 are often at

the very edge of visibility, requiring excellent seeing condition and a high signal

to noise ratio to be visible in the observations. Figure 3.16 was one such night

where tracklets of asteroids with a limiting magnitude between 19.5 and 20.4 were

clearly visible.

Altogether, 7840 tracklets, from 3580 distinct asteroids, with a limiting mag-

nitude of 20.5 or brighter were expected to be found in the GB5-R5 data. Careful

examination of this data was undertaken to verify which of these tracklets were

actually visible. This resulted in 2073 tracklets from 1178 distinct asteroids (some

asteroids are visible over multiple nights) over 1078 distinct nights. It was from

these 1078 nights that a single night with good observational data (28-06-2013)

was selected to extract observations from the GB-All dataset.

Figures 3.17 and 3.18 display some of these tracklets. The size of the tracklet

is indicative of how many exposures were taken on the night as well as at what

point the asteroid entered the field of view. Gaps in a tracklet are either caused

by a longer interval between observations or poor seeing conditions. The tracklet

might also not be visible if the object moves to a very noisy part of the CCD like

at the edges as seen in the last frame (c) of Figure 3.17. In certain cases, the PSF

of the asteroid might be so pronounced that the tracklet appears like a solid line

with wavy edges (Figure 3.18b). Tracklets can also be very small, appearing in

only about a 50px by 50px area or smaller (Figure 3.18c).
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Figure 3.16: A stack of all 51 observations from the night of 15-May-2008 reveals
5 asteroid tracklets clearly visible in a sub-region of the stack image. Clockwise
from left to right, these are: (148657) 2001 SX124 (V = 19.6); (338789) 2005
SZ154 (V = 20.4); (103842) 2000 DQ33 (V = 19.5); (152083) 2004 RH30 (V =
19.9); 2016 AT221 (V = 20.4). The line/streak on the top left is from a satellite.
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Figure 3.17: Tracklets seen for 3 different asteroids over 3 consecutive nights.
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Figure 3.18: In addition to the tracklets seen in Figure 3.17, asteroid tracklets
can also appear to move left to right or vice versa across the field of view.
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Uniform Tiles and Line Clipping

Having obtained and verified visible tracklets in the data, the next step was to

assemble the images in a format that could be used for training neural networks.

We have seen that the tracklets come in a variety of sizes, but we need images of

a uniform size going forward. The original size of the observations - 2048 x 4096

- is too big to use as is because of the computational cost as well as the potential

for the tracklets to be lost amongst the other artefacts in the image. Therefore,

a decision was made to split each image into 128 x 128 tiles, giving us 512 tiles

per image. These dimensions were chosen to limit the noise and other artefacts

present with the smaller tracklets. For GB5-R5, this gave us a total of 551,936

tiles from the 1078 nightly stacks that contained visible asteroid tracklets. One

day of data from GB-All gave us 61,440 tiles from 120 nightly stacks.

The next task was to find the tiles with known asteroid tracklets. If we

consider each tracklet to be a line, we can use the first and last observation of

each asteroid each night to determine the line’s direction. If we further consider

each image tile to be a box that the line intersects or is fully contained in, we can

apply a line clipping algorithm to determine which tiles have asteroid tracklets.

The Cohen-Sutherland line clipping algorithm (W. M. Newman and R. F.

Sproull (1973)), which is a well-known computer graphics algorithm, was used

for this purpose because it is efficient at accepting or rejecting lines that are

completely inside or outside the area of interest. The algorithm involves dividing

a rectangular space (in this case, a tile image) into 9 regions - 8 “outside” and 1

“inside” - as seen in Figure 3.19 and determining which lines (tracklets) are fully

or partially inside of the space. Each of the 9 regions have associated outcodes

(4-bit numbers) that are calculated by performing a bitwise OR operation after

comparing the start and end points of the line/tracklet with the coordinates of

the tile. There are three possible solutions for any line:
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Figure 3.19: The Cohen-Sutherland line clipping algorithm was used to reject
tracklets outside the area of interest and determine intersection points of the
ones partially inside.

• If both endpoints of the line are inside the region, the bitwise OR compu-

tation returns 0 (trivial accept).

• If both endpoints of the line are outside the region, they will share at least

one outside region and the bitwise OR computation returns a non 0 value

(trivial reject).

• If both endpoints are in different regions, at least one endpoint will be

outside the image tile. In this case, the intersection point of the tracklet’s

outside point and image tile boundary becomes the new endpoint for the

tracklet and the algorithm repeats until the bitwise OR returns a trivial

accept or reject.
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The application of this algorithm resulted in 8341 tiles from GB-R5 and 4037

tiles from GB-All (28-06-2013) that potentially had visible tracklets. Once again

these were meticulously scanned to ensure that a tracklet could clearly be seen.

Any tile with less that 3 points of a tracklet were rejected, along with tiles that

did not contain a visible portion of a tracklet. Additionally, it was noted that

tracklets from observations that were on average 10 to 20 minutes apart produced

clear and distinctive tracklets and were thus best suited to this research. Figure

3.20 shows a tracklet where the cadence is 15 minutes versus a tracklet where the

cadence is 40 minutes.

At the conclusion of this process, there were 4153 128 x 128 tiles with visible

tracklets and 543,595 without known visible tracklets from GB5-R5. Of the GB-

All (28-06-2013) data, there were 508 visible tracklets along with 57,403 tiles

without visible tracklets. However, only 6 of these GB-ALL fields (GB3, GB4,

GB5, GB9, GB10, and GB14) had a cadence of 15-20 minutes; these gave us 394

images with visible tracklets. Figure 3.21 displays some of these 128 x 128 images

with tracklets. It is of note that while a small portion of this GB-All data covers

GB5-R5, the reference image used is different, thus resulting in both different

noise patterns as well as a shift in the positioning of each feature. An example

of this can be seen in Figure 3.22. The image numbers are summarised in Table

3.1.

Figure 3.20: Tracklets from observations with low (a) and high (b) cadence.
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Table 3.1: Imaging data numbers
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Figure 3.21: A selection of 128 x 128 tiles with tracklets of known asteroids.
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Figure 3.22: What a difference the reference image makes. On the left are images
from the GB5-R5 dataset and on the right are the corresponding sub-regions from
the same night, field (GB5) and, chip (R5) from the GB-All dataset. Differences
are due to a different reference image being used.
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3.3 Summary

The MOA project at the Mt John Observatory has thus far produced over 100

TB of data since start of operations in 2004. The 1.8m MOA-II telescope surveys

23 fields towards the Galactic Bulge and uses a camera fitted with 10 CCD chips,

each of which record 2048 x 4086 pixels of data. There were 2 data sets: 14 years

of observational data from a single chip (R5) of the field GB5 (GB5-R5) and 2

years of data from all of 23 fields surveyed by MOA-II (GB-All). From the GB-

All data, one night (28-06-2013) of observations was extracted with the intention

of using this data as an additional test set for the deep learning networks. The

survey’s high cadence observations make it ideal for finding asteroids in our solar

system. These are clearly visible upon stacking all of a night’s observations by

brightest pixel for each CCD chip in each of the fields surveyed. To further

highlight moving objects, the nightly brightest pixel stack was subtracted from

its corresponding median pixel stack to get a subtracted stack image that only

contained any moving objects and noise. The MPC was queried to get all of the

known asteroids that may have been captured by MOA-II and careful examination

of the data lead to 1178 distinct main-belt asteroids from GB5-R5 with limiting

magnitude of 20.5 and lower. Each of the 1078 nightly stacks from GB5-R5 and

120 stacks from GB-All (28-06-2013) that contained visible tracklets were split

into 512 128 x 128 tiles. The Cohen-Sutherland line clipping algorithm was used

to discover that 8341 of these tiles from GB5-R5 and 4037 GB-All (28-06-2013)

were expected to have tracklets. Further visual inspection of these tiles resulted in

4547 tiles with visible tracklets that could be used as inputs for a neural network,

as we will see in the following chapter.
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Tracklet Classification With

CNNs

The appeal of neural networks and deep learning is in their capacity to make

predictions about complex data in real time after they have been trained with

a representative dataset. In the last decade, deep learning has matured signifi-

cantly and has proven to be highly effective for classification tasks. As we have

seen in Chapter 2, researchers have been steadily gearing up to leverage this abil-

ity for analysing astronomical data. Here, the efficacy of several classification

architectures for identifying images that contain asteroid tracklets is tested. The

tracklets are in essence a sequence of fuzzy dots that could describe a line. The

challenge is to find these in noisy, unevenly sampled data.

4.1 Data

Supervised learning with any neural network requires labelled data to train the

network. In this case, both images with and without tracklets are required to

effectively train the networks and achieve the desired result. The focus is on

tracklets observed when fields are surveyed at 10-20 minute intervals as these

produce well-defined tracklets as seen in the figures from the previous chapter.

Note that the following subsections (4.1.1 and 4.1.2) detail how the GB5-R5

data was structured for the training and validation sets required for supervised
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learning. The GB-All data was kept aside to be exclusively used as an additional

test set. Table 4.1 summaries the data used for classification. Table 4.2 in Section

4.3 summarises how this data is distributed for supervised learning.

4.1.1 Images with Tracklets

Chapter 3 described the creation of a dataset with 4153 128 x 128 subtracted stack

images from GB5-R5 that contained visible tracklets of main belt asteroids. We

have seen examples of these tracklets in Figures 3.21. These were further refined

by removing the images where the tracklet was too obscured by noise or where

there were less than 3 clearly visible adjacent point sources related to a tracklet.

Following this, there were 4072 images with tracklets.

Labelling this data is a time-intensive process, but having plentiful labelled

data is crucial to training neural networks. To make up for the current dearth

of labelled data, several image enhancement procedures were applied to augment

the data. It was decided that each image with a tracklet would be supplemented

by being rotated by 180 degrees, flipped horizontally and vertically, brightened,

darkened, blurred, and with the contrast both increased and decreased. The gives

us 8 augments per tracklet image and these can be seen in Figure 4.1.

Creating and using simulated tracklet data was briefly considered and re-

jected as it is impossible for such data to accurately represent the nuances of real

astronomical observations.
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Figure 4.1: A tracklet image (centre) with its augments. Clockwise from top left:
low contrast, horizontal flip, darkened, brightened, vertical flip, high contrast,
rotated, blurred.
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4.1.2 Images without Tracklets

Image with tracklets form only a small part of the sum total of the imaging data.

For example, from the GB5-R5 data, there were 543,595 (128 x 128) images that

were deemed to have no known asteroid tracklets. Given this, it is essential

that the network be capable of differentiating between images with and without

tracklets. Again, using generated data was considered. An attempt was made

to stack randomly chosen observations from randomly chosen days and generate

the subtracted stack images. However, the generated data did not contain the

variations seen in the real data and thus was discarded.

Since each of the 2048 x 4096 is divided into 128 x 128 tiles, this gives us 512

images from each stack. Of the ones that did not have any known tracklets, 40

images were randomly chosen from each of the 512 sub-regions, giving us 20,480

images that had no known tracklets. This collection was visually inspected and

any images that could potentially have tracklets were removed. This process

resulted in 19,682 images that could be used as a representative sample of no

tracklet data. Figure 4.2 shows a some of these images. Augmenting this data is

discussed in Section 4.3.

Table 4.1: Summary of data from GB5-R5 used for classification
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Figure 4.2: Images with no tracklets. Each row is from the same sub-region, but
different nights.
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4.2 Network Architecture

Appendix A contains a brief description of neural networks in general, with a

short introduction to convolutional neural networks (CNN). To recap, a CNN

takes an image as an input and, through a series of layers that apply weights or

importance to certain features in the images, gives us the desired output. The

desired output in this case is the correct classification of a subtracted stack image

as either having a tracklet or not. Here, CNN-based networks are discussed in

more detail and we take a look at the different architectures applied to the task

of classifying asteroid tracklets.

While several different architectures as well as slight variations of each were

tested during this research, only the ones that produced useful results will be

discussed. All networks were built using TensorFlow and Keras. Further details

about the training environment are in Section 4.3.

4.2.1 Stacked Architectures

The traditional form of a CNN consists of a number of consecutive CNN layers

placed one after the other, as typified by LeNet-5 (Lecun et al. (1998)) and

later AlexNet (Krizhevsky et al. (2012)). In the case of these stacked network

architectures, the input for each layer is the output of the preceding layer. The

number of filters in a layer increases with the depth of the network. The purpose

of the filters in to capture the patterns in the input. These patterns are combined

in each subsequent layer and get more complex further down the network. It is

postulated that the more layers a network has, the better it is at extracting higher

level features from an image, and thus learning from complex data. The limiting

factor here, however, is the size of the input and how localised the features we are

interested in are. After a given number of layers, a network could start overfitting

to the data by focusing on the irregularities in the images. So, while increasing

the number of convolutional layers improves the performance of the network, it

is not the case that the deeper network is always the best option. Part of the

challenge is finding the ideal depth for a network to optimally predict the output.
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The research started with AlexNet, which proved to be the seminal work with

CNNs and popularised the use of GPUs for training neural networks. It consists

of 5 convolutional layers and 3 fully connected layers, the last one being the

output. The ReLU (Glorot et al. (2011); Nair and Hinton (2010)) non-linearity

is used as the activation function, with batch normalization (Ioffe and Szegedy

(2015)) after each convolution and dropout (Srivastava et al. (2014)) between

each fully connected layer. Additionally, the first convolution has a receptive

field (filter size) of 11x11 with stride of 4 and each maxpool layer has a receptive

field of (3x3) with a stride of 2. This architecture was adapted to the research

question by first updating the final output to have a sigmoid output of 1 (binary

classification). A second variation was then implemented which replaced the first

convolutional layer with a 7x7 filters with a stride of 2. This gives us a significant

performance boost, as seen in 4.4. The receptive field for the maxpool layer was

also changed to cover 2x2 pixels in an effort to preserve more information as we

traverse through the network. Both the original and the custom architecture are

represented in Figure 4.3.
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Figure 4.3: Architecture of the original AlexNet (a) and the custom version (b)
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After starting with the AlexNet architecture, the number of convolutional

(conv) layers were gradually increased with performance improving appreciably

from 12 convolutional layers. This brings us to VGG16 and VGG19 (Simonyan

and Zisserman (2015)).

Simonyan and Zisserman (2015) proposed an effective way to increase the

number of convolutional layers to significantly bolster the accuracy of models

thus structured and demonstrate the performance improvement with a greater

number of layers. The crux of the architecture is the convolutional block, which

consists of two or more convolutional layers followed by a pooling layer (usually

maxpool, stride of 1). Figure 4.4(a) displays the general structure of VGG16.

VGG19 has one additional 256 conv layers and two additional 512 conv layers.

These architectures also popularised the use of small receptive fields for filters

and the use of the 3x3 filters is now ubiquitous. These networks have a large

number of parameters, with 14 million for VGG16 and 20 million for VGG19.

Several custom stacked architectures that followed the conventions of the VGG

networks were also created and they are each referred to by the prefix “MOA”

followed by the number of convolutional layers included. Figure 4.4(b) and (c)

are two of the custom architectures implemented: MOA-12 and MOA-14 with 12

and 14 convolutional layers, respectively. Each has three fully connected layers,

the last of which is the sigmoid output. The pooling employed is maxpool with

2x2 filters and a stride of 1 and dropout is used after the two fully connected

layers before the output. The default stride in each case is 1x1 pixels. MOA-13

has one more 512 conv layer than MOA-12 and MOA-15 has one more 32 conv

layer than MOA-14. These custom architectures have far fewer filters, and thus

fewer parameters, than the VGG networks. MOA-12 and MOA-13 have around

5.2 million parameters, MOA-14 has around 10 million parameters, and MOA-15

has 12 million parameters. The number of parameters and the time taken to train

each network architecture is noted in Table 4.3.

One drawback of this architecture, with adding ever more layers and filters

to a model in a bid to improve performance, is that the networks are prone

to overfitting. The architecture we will look at next attempts to address this

problem as well as allow data to be analyzed at different scales.
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Figure 4.4: Architecture of VGG16(a) and the custom architectures MOA-12(b)
and MOA-14(c). VGG19 has one more 256 conv layer and two more 512 conv
layers than VGG16. MOA-13 has one more 512 conv layer than MOA-12 and
MOA-15 has one more 32 conv layer than MOA-14.
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4.2.2 Inception-ResNet

So far we have focused on networks that follow a stacked, linear structure. With

the raising popularity of using CNNs for computer vision tasks came new ar-

chitectures which suggested ways of improving the representational power of a

network without relying solely on increasing the depth and number of filters.

Inception

GoogLeNet (Szegedy et al. (2015a)), more popularly known as Inception, intro-

duced the idea of modifying the width of a network as well as employing filters

of a variety of sizes to better capture multi-scale data from images. Given the

nature of tracklets - some spanning the whole image, others only a few pixels -

utilizing an architecture capable of analysing relevant data at multiple scales was

deemed prudent.

Central to this architecture is the “inception module”, which is a block of

parallel convolutional layers with 1x1, 3x3, and 5x5 filters, and a 3x3 maxpool-

ing layer. These are concatenated and the result passed to the next node in the

model. Additionally, 1x1 convolutional layers are added before the 3x3 and 5x5

convolutions and after the maxpool layer to reduce the depth dimension (chan-

nels) and thus the computational cost of the module. The ReLU activation, used

in all of the convolutional layers, is used on the 1x1 convolutional layer as well,

adding desirable complexity to the output. The structure of the inception module

can be seen in Figure 4.5.

While Szegedy et al. (2015a) do recommend a 22-layer architecture for a net-

work model employing the inception module, it is quite complex and so a simpler

15-layer architecture (with 12 convolutional layers) was implemented for this re-

search. The architecture for the custom model can be seen in Figure 4.7. The

number of filters in each of the layers in an inception module is set by the original

paper (Szegedy et al. (2015a)) and can be seen in Figure 4.6. GlobalAverage-

Pooling, which pools the data across each channel to select an average, is used
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instead of the more tradition “flatten”, further reducing the number of param-

eters. Dropout is once again included between the fully connected layers. Ad-

ditionally, Keras Applications has an implementation of Inception V3 (Szegedy

et al. (2015b)), which was also applied to this problem. The results from both

are in Section 4.4. Note that when counting number of layers in the Inception ar-

chitecture, we only consider the fully connected layers and all convolution layers

except the 1x1 convolutions.

Figure 4.5: Composition of an Inception module

Figure 4.6: Number of filters in each layer of five Inception modules. The “reduce”
columns refer to the 1x1 filters before the 3x3 and 5x5 convolutions.
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Figure 4.7: Custom 15 layer Inception architecture using the Inception module
seen in Figure 4.5
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ResNet

While the key implementation goals for Inception are both accuracy for multi-

scale data and lower computational cost, it still suffers from the vanishing/ex-

ploding gradient problem that has plagued deep neural networks (Bengio et al.

(1994); Glorot and Bengio (2010)). Backpropagation (Rumelhart et al. (1986))

is at the heart of neural networks and works by calculating the error gradient

while traversing the network from output to input. These gradients can get

smaller and smaller, approaching zero, leaving the weights in the earlier layers

unchanged, and so hindering optimization. Conversely, these gradients can also

get very large, once again stopping gradient descent from converging. Very deep

networks also suffered from a degradation in accuracy in the later layers, with

the error increasing with depth.

Residual networks (He et al. (2016)), or ResNets, were introduced to address

this degradation of training accuracy by presenting an alternative pathway for

the algorithm to follow called the “skip connection”. The central element in this

architecture is the “residual block”, which consists of two convolutional layers

with 3x3 filters. The input to this block is added to the output of the second

convolution, thus creating a “shortcut” connection. The added output is then

passed through a ReLU activation function before following on to the next layer.

This structure can be seen in Figure 4.8. Note that while the inception module

concatenates its layers, the residual block adds them. This means that the same

sized filters must be used by all the layers in a residual block. Figure 4.8(a) is

the model used if the previous and current layer have the same number of filters.

If they do not, then a 1x1 filter is applied to the input to adjust the number of

filters before the add function (Figure 4.8(b)).

ResNets proved to be very effective and paved the way for very deep networks

with over 50 layers, some over a 100. Since a network with fewer layers is more

appropriate for this research, a custom 18-layer architecture (Figure 4.9) was

implemented to test its ability to classify asteroid tracklets. “Residual” in the

figure refers to a residual block, with the associated number being the number of

filters in a given block. Maxpooling is use with a 2x2 receptive field and stride

of 1. ReLU activation is the non-linearity applied throughout except in the final

layer where sigmoid activation is used instead.
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Figure 4.8: Residual block when the previous and current layer have the same
(a) and different (b) filters
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Figure 4.9: Custom 18 layer ResNet
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Inception-ResNet Hybrid

With the success of the ResNets, Szegedy et al. (2016) proposed combining the

inception module and the residual block. The proposed architecture - as the

previous ones - was designed to suit the requirements and challenges posed by

the ImageNet database and add support for ever deeper networks for analysing

similarly structured data. While this has proven very successful at solving that

given set of complex tasks, astronomical data is significantly different from the

images that these networks are optimised to handle.

A novel architecture is proposed to suit the goal of finding asteroid tracklets

in the subtracted stack images. A hybrid module was created that combined the

Inception multi-scale architecture with the skip connections of ResNets. A variety

of combinations of the inception module and residual block were considered before

the hybrid module seen in Figure 4.10 was selected.

The hybrid module consists of four branches that are combined by the ’add’

function. The four branches use the same number of filters and are:

• Branch 1 is a 1x1 convolution with a ReLU activation, followed by a 3x3

convolution.

• Branch 2 is a 1x1 convolution with a ReLU activation followed by two 3x3

convolutions. The two 3x3 convolutions serially linked have the effective

receptive field of a 5x5 convolution, but with fewer parameters and thus

calculations.

• Branch 3 is a 1x1 convolution with a ReLU activation.

• Branch 4 is the input. If the number of filters in the previous layer are not

equal to the current layer’s filters, a 1x1 convolution is applied to the input

so the filters can match (a requirement for the add function). Activation

function ReLU works best here as well.

The add function is followed by a ReLU activation before being passed to

the next layer. The many 1x1 convolutions in the module may seem superfluous

but removing even one negatively effects the performance of the network. This
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may be because of the beneficial complexity introduced by the associated non-

linearity. Additionally, a weight constraint was added to the convolutional layers

in the module, limiting the weights to have a magnitude of 3 or less.

Three custom architectures that uses this hybrid module can be seen in Fig-

ure 4.11. Each take the same image as input, but the first convolutional layers

applied to each is slightly different. Each of the architectures start with a 3x3

convolutional layer, but while (a) has a receptive field of 3x3, (b) has an effective

receptive field of 5x5, and (c) has the effective receptive field of 7x7. The numbers

of filters passed to the hybrid module follows the conventional structure in (b),

whereas the increase in filter size is much more gradual in (a) and (c). There

is no performance loss with having fewer filters. Once again, maxpool with a

receptive field of 2x2 and stride of 1 was used along with an aggressive dropout

of 0.4 between the fully connected layers. Networks (a) and (c) have around 6.4

million parameters, (b) has around 5.2 million parameters.
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Figure 4.10: Hybrid module combining salient features of a ResNet block and an
Inception module
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Figure 4.11: Custom architectures using the hybrid module.
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4.3 Training

All of the algorithms were trained on a Linux machine running Ubuntu 18.04 with

a NVIDIA Quadro M4000 GPU (8 GB, 2.5 TFLOPS). The code was written in

Python 3.6 in the Jupyter Notebook environment. TensorFlow GPU 2.4.1 (CUDA

11.0), along with the Keras deep learning API, was used for creating the CNN

models tested.

The training, validation, and test data sets were created from the 4072 tracklet

and 19,682 no tracklet images of dimension 128x128. Both of these sets of images

were first split into the groups before augments were included. Figure 4.2(a) shows

the distribution of the data before it was augmented. “Yes” and “No” refers to

images that either have tracklets (yes) or do not (no). As discussed in Section

4.1.1, the tracklet data was augmented with 8 image. These were generated

only for the training and validation “Yes” sets. The same set of augments was

generated for the no-tracklet training and validation data, but since there was

already significantly more of that than the “Yes” data, only a random 35% of

these augments were added to the “No” sets. None of the data in the test set was

augmented. The final numbers in the train, validation, and test set can be seen

in Figure 4.2(b). There is no overlap between the 3 data sets. An additional test

set composed entirely of images from the GB-All (28-06-2013) subset was also

constructed and had 300 tracklet and 2000 no tracklet images.

A batch size of 32 was used for training each network model. Training was

set to run for 50 epochs, with a callback for early stopping if the validation loss

failed to minimise after a set number of epochs. This number was either 25,

or 30 depending on evaluation following the initial two runs for a model. The

Adam (Kingma and Welling (2014)) optimiser was used along with accuracy as

the metric monitored during training. The loss function to minimise was binary

cross entropy. The metric of recall was also tested but performed poorly in

comparison. The learning rate was initialised at 0.0001 for all networks except

Hybrid(a), which started with a learning rate of 0.001. In each case, the learning

rate was reduced after 15 epochs. Some networks performed better with the

learning rate reduced by a factor of two every even numbered epoch after 15 and

others performed better with a blanket reduction by a factor of 10 after 15 epochs.

Callbacks were included to save the best weights for both validation and training
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accuracy. The Keras models performed better when pre-loaded with ImageNet

weights before fine-tuning with the MOA-II data. The inputs for these were also

pre-processed to best suit the Keras models’ requirements. Table 4.3 details the

number of trainable parameters in each model as well as the time taken to train

them in the environment described here.

Table 4.2: The Train/ Validation/ Test set before (a) and after (b) augmentation.
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Table 4.3: The number of trainable parameters in each network and the time
taken to train them.
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4.4 Results

In order to identify the network(s) most suitable for the task of classifying as-

teroid tracklets, the performance of each is evaluated using the GB5-R5 test set

mentioned previously in Section 4.3 as well as with the GB-All (28-06-2013) data.

To recap, there are 335 images with tracklets and 2048 images without track-

lets from the GB5-R5 the test set, none of which are augmented. In addition,

300 tracklet images and 2000 no tracklet images were also randomly chosen from

GB-All (28-06-2013). The purpose was to evaluate how networks trained only

on data from GB5-R5 would perform with data from the other MOA-II fields,

including the other chips in GB5.

Note that there is no overlap between the test sets and either the training or

validation sets. Each network will make predictions about both sets of test data

at the confidence threshold of 0.5, which will be compared with the ground truth

labels.

The goal is to have a model capable of finding asteroid tracklets in 128x128

subtracted stack images. As there will always be more images without tracklets,

the accuracy metric is a poor measure as a high score is possible simply by

classifying everything in the majority class. Here, the focus will be on other

more robust measures based on the metrics derived from a confusion matrix. A

confusion matrix breaks down the predictions made by a classifier into 4 outcomes:

True Positive (TP), True Negative (TN), False Positive (FP), and False Negative

(FN). An example of this can be seen in Figure 4.12. The “positive” cases are

where an image was classified as containing a tracklet and the “negative” cases

are where an image was classified as without a tracklet. In this case, the ideal

scenarios would be to have as few false negatives as possible together with a

manageable number of false positives.
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Figure 4.12: Confusion matrix for the MOA-15 custom stacked network

The evaluations metrics applied derive from the confusion matrix and are:

• Recall: also known as the true positive rate, it summarizes the number

of correct positive predictions (i.e. images with tracklets) made by the

classifier. This is the metric that tells us how well a classifier minimizes false

negatives and is the most significant one for this research. It is calculated

as follows:

Recall =
True Positive

True Positive + False Negative

• Precision: summarizes the number of positive predictions that are classified

correctly. A large number of false positives leads to a lower precision score.

It is calculated as follows:

Precision =
True Positive

True Positive + False Positive

• F1 Score: a measure that is the balanced harmonic mean of precision and

recall, giving equal weight to both metrics. The F1 score is only high if

both the precision and recall are high. For binary classifications, this is a

better single evaluation measure than accuracy. It is calculated as follows:

F1 =
2 ∗ Precision ∗ Recall

Precision + Recall

75



CHAPTER 4. TRACKLET CLASSIFICATION WITH CNNS

• F2 Score: the weighted mean of precision and recall, which assigns greater

significance to recall via a parameter β with a value of two. This is another

of the metrics that accurately reflects the ideal result for the classifier in

a single metric: a measure that reflects a balance between precision and

recall while seeking to minimising the false negatives. Thus, this value is

only high when the recall high. It is calculated as:

F2 =
(1 + β2) ∗ (Precision ∗ Recall)

(β2 ∗ Precision) + Recall

• Precision-Recall Area Under the Curve (PR AUC): area under the precision-

recall curve that indicates the trade-off between precision and recall for

a given classifier and, here, it indicates the cost of false positives. The

precision-recall curve is obtained by plotting precision (y-axis) and recall

(x-axis) at different probability thresholds.

The tables and figures over the next few pages detail the recall, precision,

F1 score, F2 scores, and PR AUC for the various CNN architectures, along with

the false negative and false positive numbers, when they each where tasked with

making predictions. All of the metrics are taken at the 0.5 confidence threshold,

with values over 0.5 indicating the presence of an asteroid tracklet in the image.

The evaluation metrics for each classifier for the GB5-R5 test set are in Table

4.4 and for the GB-All (28-06-2013) test set are in Table 4.5. On both tables,

the networks that perform well on both test sets are highlighted. Additionally,

the confusion matrices for the top six networks with either test set are in Figure

4.13 and Figure 4.14. Confusion matrices for all other networks are included in

Appendix C, along with the PR and ROC curves (GB5-R5 test set only).

The networks with the best recall value with the GB5-R5 and GB-All (28-06-

2013) test sets were MOA-15 and Hybrid(b), respectively. Overall, the custom,

moderately sized networks with fewer parameters generalized better than the

larger Keras models. The reasons for this are likely two-fold. First, the pattern

the classifiers must learn is likely best represented in the earlier layers and the

custom networks are at the optimal depth to parse and benefit from this. Sec-

ond, the dataset is relatively small, which might cause the networks with a large

number of parameters to overfit to the training set and thus perform poorly with

the test set.
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Figure 4.13: Confusion matrix of the predictions made by the top six CNN ar-
chitectures on the GB5-R5 test set at the 0.5 threshold
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Table 4.4: Evaluating the effectiveness of the various CNNs at finding images
with tracklets in the GB5-R5 test set at the 0.5 threshold
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Figure 4.14: Confusion matrix of the predictions made by the top six CNN ar-
chitectures on the GB-All (28-06-2013) test set at the 0.5 threshold
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Table 4.5: Evaluating the effectiveness of the various CNNs at finding images
with tracklets in the GB-All (28-06-2013) test set at the 0.5 threshold
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While the ideal number of false negatives will always be zero, the results are

encouraging given the small amount of training data. Several of the models report

competitive results and so the metrics were sorted by PR AUC, F2 Score, and

recall (Figure C.7) to get the top five models that perform well on both test sets.

Recall is given higher precedence is general, but where recall values are similar,

networks with a higher PR AUC are chosen. These models - MOA-12, MOA-14,

MOA-15, Hybrid(a) and Hybrid(b) - are highlighted in Tables 4.4 and 4.5. While

VGG-19 performed well with the GB5-R5 set, its performance fell with the GB-

ALL test set. The average number of false negatives from these five models is

33 with the GB5-R5 test set and 17 with GB-All. It is notable that following

an analysis of the false negatives and further filtering/reducing them to the ones

that are shared by each model shows that there are 19 shared false negatives from

GB5-R5 and 7 from GB-All. These can be seen in Figures 4.15 and 4.16.

The false negatives largely seem to be cases where the tracklet appears too

much like a satellite streak, or where the point sources are slightly further apart

and potentially obscured by noise. In some of these cases - for example with

the final image in Figure 4.16 - parts of the tracklet are on other images that

have been correctly classified as containing a tracklet. The issue of hard-to-spot

tracklets with be addressed in Chapter 5.

As several of the classifiers performed equally well, it was clear that choosing

one model as a “winner” was not the best approach for discovering tracklets. It is

proposed that assembling an ensemble structure incorporating predictions from

all five of these models would lead to better predictions.
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Figure 4.15: False negatives shared by the models MOA-12, MOA-14, MOA-15,
Hybrid(a), and Hybrid(b) in the GB5-R5 test set

Figure 4.16: False negatives shared by the models MOA-12, MOA-14, MOA-15,
Hybrid(a), and Hybrid(b) in the GB-All test set.
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4.4.1 Ensemble

The lifeblood of neural networks is the complex nonlinear mathematical represen-

tation of data, which is instrumental for mapping the input to the desired output.

The probability distribution learnt by each network is unique, which means that

each model learns a different mapping to traverse from input to output. Chollet

(2021) states that these differences in representation offer new ways of looking

at the data, which may in turn boost performance by capturing and highlighting

aspects missed by other representations. This potential is harnessed by creating

an ensemble of classifiers where the predictions from each are pooled in order to

make better predictions.

The ensemble consists of predictions from MOA-12, MOA-14, MOA-15, Hy-

brid(a), and Hybrid(b). All of these models perform at a similar level with an

average recall of 90% with the GB5-R5 test set and 94% with the GB-All test

set. Each network makes predictions about an input image and two approaches

to choosing the winning prediction were trialled: averaging the predictions from

all five classifiers or selecting the highest (max) predicted value.

Table 4.6: Evaluating the predictions made by the ensemble of classifiers at the
0.5 threshold

Table 4.6 and Figure 4.17 show the results of both approaches with the GB5-

R5 and the GB-All test set. While the averaging ensemble only offers a slight

reduction in false negatives, a clear improvement is seen with the max-value

ensemble. This comes at the cost of a higher number of false positives, which

translated to lowered precision, F2 Score, and PR AUC. However, since the aim is

to have as few false negatives as possible, choosing the max-value prediction is the
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preferable approach. While this leaves us with a higher number of false positives,

these are easily rejected when the images are verified. The chosen ensemble

achieves a recall of 94.33% with GB5-R5 and 97.67% with GB-All, once again

generalizing well when applied to unseen data. A further look at the PR curve

(Figure 4.18) shows us how the max-value ensemble leans into prioritising the least

number of false negatives at the expense of the false positives. For completeness,

the ROC curve is also included (Figure 4.19), highlighting the distribution of

values favouring a true high positive rate (recall) for the max-value ensemble.

The ROC curve is generated by plotting the true positive rate (recall, y-axis)

against the false positive rate (FP/(TN + FP)) at difference thresholds.

Figure 4.17: Confusion matrix of the predictions made by the ensemble of classi-
fiers at the 0.5 threshold
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Figure 4.18: PR curve for the ensemble of classifiers
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Figure 4.19: ROC curve for the ensemble of classifiers
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4.5 Discussion

The promise of deep learning is to automate those tasks that require a degree of

intuition. Here, it was demonstrated that it is possible to train deep convolutional

neural networks with a relatively small number of parameters to discover tracklet-

like patterns - essentially a series of uniformly spaced blobs - in a set of noisy

images. The ensemble of five CNN-based classifiers, trained with a relatively

small amount of labelled data from just one chip in one field, has a recall of

97.67% when classifying a set of images from other fields and chips, highlighting

that it generalizes well to unseen data. The next steps for this research are to

use the classifier ensemble to find tracklets in the remaining vast store of MOA-II

difference images.

This research is the first work of its kind in the field and as such provides both

a launch pad for future work as well as a template upon which to improve. One

avenue for further research would be to denoise the images without losing the

integrity of the tracklets themselves. This could either mean effectively denoising

the difference images or to focus the denoising effort on the stacked images. Any

reduction in the noise would lead to an immediate improvement in the predictions.

Rejecting poor observations when creating the stack would also improve image

quality.

Experimenting with different ways of generating the image tiles may also lead

to better results, especially for tracklets on the edges. At the moment, tracklets at

the edges could potentially have part of the pixel blob representing an asteroid’s

position end up in an adjacent tile. There are only a handful of instances of this

in the current dataset, but that is only a small fraction of the total available data.

Training the network with more than one input image may also boost per-

formance by giving the network an alternative view to consider. The secondary

image could be the reference image or the corresponding median pixel stack. Both

will be free of the distinctive pattern of blobs that make up a tracklet, offering a

good counterpoint.

Further investigation with other network architectures like DenseNet (Huang

et al. (2016)) and the newer scalable architectures like EfficientNet (Tan and Le
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(2019)) may also lead to interesting results, especially when more labelled data

is available. Adding CSPNet (Wang et al. (2020)) like connections to existing

networks could further boost performance.

Gathering more training data will also be necessary to make the network

more robust. For this research, using the trained classifier together with the

known asteroid data is the preferred approach to generating more labelled data.

To incorporate data from a different survey, the recommended approach is hosting

a citizen science project on Zooniverse1 to separate the line clipping images into

those that have tracklets and those that do not. The added benefit of crowd-

sourcing is the outreach opportunity and raising the profile of the research. The

same techniques could also potentially be used to discover the small worlds in the

farther reaches of our solar system.

1https://www.zooniverse.org/
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Chapter 5

Tracklet localization with YOLO

Stacking a night’s observations gives us distinctive tracklets for asteroids moving

in the field of view of the telescope. These stacked images can, however, be very

noisy, causing the tracklet to be obscured. Here, we investigate the application

of the YOLO object detection architecture for localising asteroid tracklets in the

MOA difference images.

5.1 Background

In recent years, CNNs have been taken beyond classifying images and have been

applied to object detection and localization in images. While there are several

models proposed and used for this, they are broadly split into two categories:

region proposal based detectors and single shot detectors.

The general idea behind region proposal based detectors is that the image

is divided into several “regions of interest” or ROIs. Each pixel starts of in its

own group, then the texture of each group is calculated, and the two closest

are combined into the same group. This process continues until all pixels are

assigned to groups and several (predefined number) of regions are recognised.

Each region is treated as a separate image and passed to a CNN to classify

into various classes. Once each region has an associated class score, the image

is put back together with the detected objects highlighted, together with their
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class probabilities. Examples of this type of detector are R-CNN (Girshick et al.

(2014)), Faster R-CNN (Ren et al. (2017)), and R-FCN (Dai et al. (2016)).

While region proposal networks have been very successful, the models are

complex and computationally expensive, which is why the more streamlined ap-

proach of single shot detectors was considered. These detectors question the need

to have region proposals and make their predictions in a single step by using the

feature maps produced by the CNN. Several convolutional filters are applied to

the output feature map to predict bounding boxes and class probabilities. These

detectors consider the whole image but can tend towards trading accuracy for

speed, especially with small objects. But the gap between the two types of de-

tectors is narrowing thanks to the single-shot detectors adopting more complex

CNNs for feature extraction. Examples of this type of detector are SSD (Liu

et al. (2016)), YOLO (Redmon et al. (2016)), and RetinaNet (Lin et al. (2017b)).

YOLO is the focus of this research and we will discuss the earlier versions of the

YOLO family of models next.

5.1.1 YOLOv1

YOLO (You Only Look Once) is an object detection algorithm that extends a

convolutional neural network (CNN) to both locate and classify the desired object

in an image. The algorithm re-frames object detection as a regression problem

and presents a single network that, given an image, will output bounding box

coordinates and class probability (Redmon et al. (2016)). In the first version of

YOLO (YOLOv1), the CNN at its heart has 24 convolutional layers for feature

extraction, followed by two fully connected layers for refining predictions. The

network model is based on GoogLeNet (Szegedy et al. (2015a)), though it uses

1x1 dimension reduction convolutions together with 3x3 convolutions rather than

the inception module. The network divides each image into N S × S dimension

grids and each grid cell predicts B bounding boxes along with a confidence score

for the boxes. The confidence score represents the likelihood that the cell contains

the object as well as how confident the model is about its predictions. Broadly,

confidence is defined as Pr(Object) ∗ IOU truth
pred . We expect a confidence of zero

from all cells that do not contain the object and the IOU in all other cases.
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Intersection over union (IOU) is a fundamental evaluation metric for object

detectors. To determine this metric, we need both the ground truth and the

predicted bounding box (Figure 5.1). We now calculate IOU as,

Figure 5.1: Tracklet image with both the ground truth and the predicted bound-
ing box

Each predicted bounding box consists of five elements: centre-x, centre-y,

width, height, and confidence. The (centre−x, centre−y) coordinates are relative

to the dimensions of the grid cell; the width and height are relative to the whole

image. Additionally, each grid cell also predicts C conditional class probabilities.

The cell that the midpoint of the object of interest falls in is responsible for

correctly predicting its presence. Hence, each cell attempts to predict the centre

of one object, limiting each cell to one class prediction. As most object detection
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tasks involve finding multiple objects that might be in the same cell, this is a

drawback of YOLOv1. The output tensor is of shape (S × S) × (B ∗ 5 + C). If

S = 7, B = 1, and C = 1, the final prediction will be of shape 7 × 7 × 6. Since

multiple bounding boxes are expected, only the ones above a set confidence and

IOU threshold are selected.

The relative simplicity of YOLO’s network architecture and prediction model

is in direct contrast to the loss function (Figure 5.2) developed to anchor the

framework. The loss function minimises the sum-squared error between the

ground truth and predicted boxes and is composed of three parts:

• Localization loss - calculates the errors in the predicted bounding box. 1obj
ij

is 1 if the jth bounding box in the ith cell is responsible for making the

prediction; 0 otherwise. λcoord is a weighting parameter that increases the

loss on the box prediction, thus focusing the training here.

• Confidence loss - as there are several box predictions that do not contain any

objects, it is desirable to ensure that they do not overwhelm the gradient

calculations. Hence, the loss on low confidence predictions is down weighted

(λnoobj). Ĉi is the box confidence score. 1noobj
ij is the opposite of 1obj

ij .

• Classification loss - if a box is present, sum-squared error is used to calculate

the error in the conditional class probabilities predicted. 1obj
i is 1 if an object

is present in a cell i; 0 otherwise. p̂i(c) is the conditional probability of class

c in cell i.

The loss function is the key to learning good representations and YOLO’s complex

and carefully crafted loss function allows the application of a simpler network

model that boosts the speed of the network.

YOLOv1 demonstrated object detection in real-time at 45 frames per second

(fps) with a mean average precision (mAP) of 63.5% on the PASCAL VOC 2007

dataset (Everingham et al. (2009)), which has 20 classes. The paper also in-

troduced a much smaller version of the detector with only 9 convolutional layers

dubbed Fast YOLO because of its impressive 155 fps processing speed, though the

mAP was lower at 52.5%, with the same dataset. mAP will be further discussed

in Section 5.5.
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Figure 5.2: YOLO’s loss function (Redmon et al. (2016))

5.1.2 YOLOv2

While YOLOv1 was an excellent start for one-stage detectors, its limitations

with generalization, finding small objects, or multiple objects per cell were ripe

for further work. YOLOv2 (Redmon and Farhadi (2017)) introduced a raft of

enhancements, the most significant of which was the introduction of anchor boxes.

Anchor boxes are a set of predefined bounding boxes that are representative of

the dimensions of bounding boxes in the dataset. Thus, during training, these

anchor boxes are adjusted and refined to match the objects in the image. While

the use of anchor boxes reduces the mAP slightly to 62.2%, the recall jumps from

81% to 88%. Rather than use hand-engineered anchor boxes, the researchers

applied the K-means clustering algorithm to the training set to choose the top

K most common boxes. Since it is desirable to have anchors that results in good

IOU scores, the distance metric used compute the clusters is: d(box, centroid) =

1−IOU(box, centroid). Each grid cell now predicts five bounding boxes each and

the predictions are scaled with respect to the anchor boxes based on the location

(centroid) of prediction. YOLOv2 also updated the network architecture from

having 24 convolutional layers to 19 and the fully connected layers were replaced

with global average pooling. These enhancements, together with the addition of

batch normalization as well as training at a higher resolution, result in YOLOv2

achieving an mAP of 76.8% at 67 FPS on the PASCAL VOC 2007 data.
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5.1.3 YOLOv3

The advent of Residual Networks (ResNets)(He et al. (2016)) and the Feature

Pyramid Network (FPN)(Lin et al. (2017a)) led to increased accuracy for object

detection networks. Thus, YOLO evolved further to incorporate these improve-

ments and the result was YOLOv3 (Redmon and Farhadi (2018)). YOLOv3’s

backbone network was reworked to be significantly larger with 53 convolutional

layers and ResNet’s skip connections, makes bounding box predictions at 3 differ-

ent scales similar to FPN. These changes led to increased accuracy with detecting

smaller objects, with an mAP of 57.9% with MS COCO dataset (Lin et al. (2014)),

which has 80 categories.

The trademarks for YOLOv2 and YOLOv3 are currently owned by Apple1.

In Section 5.3 we will discuss YOLOv4, the current installment that will be used

for detecting asteroid tracklets. Ahead of that, we discuss how a suitable dataset

was created.

1https://bit.ly/3yyQudr
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5.2 Data

Chapter 3 describes the process of creating a dataset of stacked differences images

with and without tracklets. This resulted in 4153 128 x 128 images with visible

tracklets and 547,783 without known visible tracklets from chip 5 of the field

GB5. Thus far, all the tracklet images we have seen have been for well defined,

clearly visible tracklets. However, there are also several images where the tracklet

is faint and/or in a noisy background. Some of these images can be seen in Figure

5.3.

Figure 5.3: Images with faint tracklets in a noisy field
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Figure 5.4: Images from Figure 5.3 with tracklets of known asteroids highlighted
with bounding boxes
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The standard size of a difference image stack is 2048 x 4096 pixels and the full

tracklets of known asteroids come in a variety of sizes, either due to the seeing

conditions, the number of nightly observations, or when an asteroid enters the

field of view of the telescope. In order to better suit using this data as input for a

neural network, each 2048 x 4096 image was split into 512 128 x 128 images. The

next step was to find all the images with tracklets of known asteroids. Section

3.2.3 describes applying the Cohen-Sutherland line clipping algorithm to find the

relevant images along with the probable intersection/end points of the tracklets

within a 128 x 128 image. These intersection points were used to extrapolate

bounding boxes for tracklets, thus highlighting them in the images. Further

visual inspection was undertaken to ensure that bounding boxes encapsulated

the tracklets correctly without any superfluous background included. In Figure

5.4 we can see these bounding boxes in action as they highlight the faint tracklets

from Figure 5.3. The bounding box coordinates for each tracklet in each images

is saved in a corresponding file, with one data file per image.

Next, the bounding box data was converted to the format required by the

YOLO algorithm. Rather than absolute values for the coordinates, YOLO ex-

pects the data to be floating point values representing the relative position of

the box with respect to the width and height of the image. One such file with

extension .txt is expected for each image with a tracklet, with multiple tracklets

in the same image on separate lines. The YOLO format is as follows:

< object− class >< x− center >< y − center >< width >< height >

Where:

• < object − class > is an integer representing the object class. As we only

have one class - minor planet - this value is always 0. A separate obj.names

file is maintained that contains a single class “mp”, which stands for “minor

planet”.

• < x − centre >< y − centre > are the centre of the bounding box with

respect to the height and width of the image. Values are expected to be

between 0.0 and 1.0.
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• < width >< height > are the width and height of the bounding box with

respect to the width and height of the image. Values are expected to be

between 0.0 and 1.0.

Figure 5.5: Breaking down the YOLO data format

While the bounding box data is enough for training YOLO, including images

with no tracklets could serve to make the algorithm better at identifying tracklets.

Thus, 8306 images without tracklets - twice the amount of tracklets images - were

added the YOLO training dataset. As they have no tracklets, there is an empty

.txt file included with the no-tracklet images.

Additionally, we also included horizontally flipped, vertically flipped, and ro-

tated the augments for the tracklet images and updated the bounding box data

accordingly.

Thus, we have 16612 images with tracklets with a further 16612 .txt files with

location details of the tracklets there in as well as 8306 images with no tracklets

that will be used to train the YOLO algorithm to localise tracklets. Further

training details are in Section 5.4. Next we look at the architecture of the YOLO

object detection model that was trained for localizing asteroid tracklets with this

dataset.
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5.3 YOLOv4

The foundational premise of YOLO was for object detection to be fast - both to

train and for inference. With ever evolving research about the best methodologies

to apply, YOLO underwent another evolutionary change to adapt state-of-the-art

best practices for improved performance. YOLOv4 (Bochkovskiy et al. (2020))

is the result of testing a variety of enhancements and choosing the best fit for

object detection.

Figure 5.6 illustrates the architecture of YOLOv4. The convolutional back-

bone feature extractor for the architecture is composed of a 53 layer DenseNet

(Huang et al. (2016)) with the cross-stage-partial (CSP) connections of CSPNet

(Wang et al. (2020)). DenseNets extend ResNet’s concept of skip connections

by adding connections between all the layers in the network in a feed-forwards

fashion. Feature maps from all preceding layers are concatenated and form the

input for any given layer, ensuring that low-level features are propagated through

the network. A DenseNet consists of multiple dense blocks (Figure 5.7) with a

transitional convolutional (1x1) and pooling (2x2) layer between each block. CSP

connections involve splitting the input feature map into two parts, one of which

goes through the dense block and the other goes straight through to the next

transitional step (Figure 5.8). Additionally, the network includes spatial pyramid

pooling (SPP) (He et al. (2014)) after the last convolutional layer. This has the

effect of separating out the most important features and increasing the receptive

field. The final feature map is divided into m × m bins, following which maxpool

is applied to each bin. The resulting feature maps are concatenated and represent

the output of the feature extractor.
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Figure 5.6: Architecture of YOLOv4

Figure 5.7: A single block in a DenseNet where the input for a layer is the feature
maps of all preceding layers.
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Figure 5.8: Cross stage partial connection
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CNNs naturally attain a pyramid-like structure with each layer as the image

goes from high to low resolution. As we get deeper in a CNN, we lose the fine-

grained details of the input, which usually makes it harder to detect small objects.

As the resolution lowers, however, the filters learn ever more complex abstractions

about the image, making the feature maps more semantically rich. Thus, is it

desirable to combine the feature maps from the higher resolution layer with the

more semantically rich ones to facilitate detecting objects at multiple scales. This

task falls to a feature aggregator and YOLOv4 uses the approach suggested by

PANet (Liu et al. (2018)). The feature maps are concatenated from both the

top-down and the bottom-up path, ensuring the propagation of semantically rich

localization information through to the final part of the network where the class

and bounding box predictions are made. Predictions are made and output in the

same form as seen in preceding models of YOLO, by predicting the centroid and

location information with respect to the grid cell.

Finally, YOLOv4 also updates the loss function used to train the network.

While it is still composed of three parts, each has been updated to improve

performance. The confidence and classification loss now calculate binary cross

entropy rather than sun-squared error. The localization loss had been overhauled

to implement Complete Intersection over Union (CIoU) loss (Zheng et al. (2020)).

In previous versions of YOLO, the loss function was ineffective at determining

the direction in which to shift the weights when there was no overlap between

the predicted and the ground truth box. Similarly, when there is more than one

predicted box, the loss calculation should be able to determine which one is closer

to the ground truth. CIoU loss addresses both these scenarios and the localization

loss is now calculated as:

LossICoU = 1 − IOU +
p2(b, bgt)

c2
+ αv,

where:

• p2(b, bgt) is the Euclidean distance between the centroid of the predicted

and ground truth box;

• c is the diagonal distance in the smallest closed-space representing the union

of the predicted and ground truth boxes;
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• α is a positive trade-off parameter that facilitates increasing the overlapping

area for non-overlapping boxes and is calculated as:

α =
v

(1 − IOU) + v

• v maintains the consistency of the aspect ratio of the boxes and is calculated

as:

v =
4

π2
(arctan

wgt

hgt
− arctanw

h
)2

The model also includes a raft of new additions: a new activation function,

MISH (Misra (2020)) that provides smoother gradients; updates to the spatial

attention module (Woo et al. (2018)) and multi-input weighted residual connec-

tions (Tan et al. (2020)) to better suit the architecture; new data augmentation

techniques, Mosaic and self-adversarial training. The updated architecture lead

to YOLOv4 achieving state-of-the-art results with 65.7% mAP for the MS COCO

dataset at a real-time speed of 65 FPS on Tesla V100.

In addition, a compressed model architecture, YOLOv4-tiny (Wang et al.

(2021)) with only 29 convolutional layers, was proposed to support object detec-

tion on low-end GPU machines and mobile devices. While not as accurate as the

larger model (42.0% mAP), it is nonetheless very fast (443 FPS on RTX2080Ti)

and potentially makes object detection a viable option for more research projects.

YOLOv4 is currently being used by the Taiwanese Government for traffic man-

agement2, BMW3, and Amazon4. Next, we train both YOLOv4 and YOLOv4-

tiny to detect asteroid tracklets in the MOA dataset.

2https://www.taiwannews.com.tw/en/news/3957400
3https://github.com/BMW-InnovationLab/BMW-YOLOv4-Training-Automation
4https://github.com/amzn/distance-assistant
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5.4 Training

The YOLO family of models are supported by Darknet5, a custom framework

written in C and CUDA and designed for fast object detection. We can access

and train the Darknet implementations6 of YOLOv4 and YOLOv4-tiny with the

MOA-II dataset via the Google Colaboratory with a hosted GPU runtime en-

vironment. YOLOv4 and YOLOv4-tiny were trained with both unaugmented

tracklets-only data (SetA) as well as data containing images with and without

tracklets, including augments for the tracklet images (SetB). The complete ob-

ject detection dataset contains: 4153 unaugmented images with tracklets; 11211

augmented (rotated, flipped horizontally, and flipped vertically) tracklet images

and; 8306 images with no tracklets.

The data is split into a training (90%) and test (10%) dataset. SetA contains

3737 and 416 of the unaugmented tracklet-only images in the training and test

set, respectively. SetB contains 22422 and 2494 original and augmented images

with and without tracklets in the training and test set, respectively. The images

were resized to 416 x 416 by the detector to facilitate better object detection.

The model was first trained with the default anchor boxes, before k-means

clustering was used to discover anchor boxes that were a better fit for the MOA-

II dataset. After several variations were tested, the best combination of anchor

boxes was discovered by hand-engineering the various clusters. The batch size was

set to 32, with 8 subdivisions, 6000 max batches, and with steps set to 4800,5400.

The learning rate of 0.001 was used for YOLOv4 and 0.00261 for YOLOv4-tiny.

Increasing the size of the training dataset had negligible impact on the time it

took to train the model. Training YOLOv4-tiny with both SetA and SetB took

around 1.5 hours to train on a Tesla K80 (12GB, 4.1TFLOPS) and 45 minutes

with a Tesla T4 (16GB, 8.1 TFLOPS) in the Google Colab environment. Training

YOLOv4 with SetA took around 12 hours to train on a Tesla K80 and 6 hours

with a Tesla T4 in the Google Colab environment. Training YOLOv4 with SetB

was unsuccessful as it exceeds the memory capacity of the GPU (Tesla T4).

5https://github.com/pjreddie/darknet
6https://github.com/AlexeyAB/darknet
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5.5 Results

The preferred metric for quantifying the performance of object detection models is

mean Average Precision or mAP. The purpose of an object detector is to localize

and classify a predefined set of objects in input images. The expected output is

bounding boxes coordinates, class predictions, and the model’s confidence in the

predictions for the objects present therein. To measure the efficacy of a model,

it is desirable to have a metric to quantify how the model performs across all of

the images in a test set, which is what mAP gives us.

The evaluation metric precision measures how many of the predictions are

correct and the metric recall measures how good the model is at finding the

positive predictions. The classification models, for example, aim to minimise

false negatives and thus high recall is given preference. Object detection models

aim to have a high overlap between the predicted and the ground truth bounding

boxes (IoU). It is expected that the predicted box will not exactly match the

ground truth box. In general terms, predictions are grouped as follows:

• True Positive: IoU > 0.5

• False Positive: IoU < 0.5 (or a duplicate)

• False Negative: box not detected or the IoU > 0.5 but the object is classified

wrong

Precision and recall are calculated as:

Precision =
True Positive

True Positive + False Positive

Recall =
True Positive

True Positive + False Negative

The average precision (AP) measures the trade-off between precision and recall

and is calculated by integrating the area that falls under the precision-recall curve

for each unique values of recall where the precision value decreases. Calculated

as:
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AP = Σ(r(n+1) − rn)p̃(r(n+1))

p̃(r(n+1)) = max
r̃≥r(n+1)

(p(r̃)),

where r is the recall value, n represents the locations where the precision

decreases, and p̃(r(n+1)) is the maximum precision where the r value changes.

The mAP is the mean of the AP across all object classes that the model can

detect, which is identical to the AP for this dataset.

Table 5.1 details the mAP achieved by using both SetA and SetB to train

YOLOv4 and YOLOv4-tiny with default as well as custom anchor boxes. The

confidence threshold of 25% is used for determining the mAP. The default anchor

boxes proved resilient to the task of detecting asteroid tracklets and performed

fractionally better than the custom boxes. The addition of augmented data as

well as no-tracklet data had the effect of lowering the overall performance of the

model. When only no-tracklet data was added, the mAP fell by 10% even with

the default anchor boxes. The best performing model was the YOLOv4 trained

with SetA and with default anchor boxes with an mAP of 90.96%. YOLOv4 with

SetA and custom anchor boxes was a very close second with an mAP of 90.95%.
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Table 5.1: mAP achieved when training YOLOv4 and YOLOv4-tiny to detect
asteroid tracklets with both SetA and SetB while applying both default and
custom anchor boxes
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Figure 5.9: Predictions made with the trained YOLOv4-tiny
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Some of the predictions made by the trained YOLOv4-tiny can be seen in Fig-

ure 5.9 and those by trained YOLOv4 can be seen in Figure 5.10. The confidence

threshold for the predictions was set to 10%. YOLOv4-tiny had an inference

speed of 15 milliseconds and YOLOv4 had an inference speed of 33 milliseconds.

In general, while YOLOv4-tiny was good at finding the tracklets that were clearly

defined, it had lower confidence with predictions and, in some case, could not dis-

cover the hard-to-find tracklets. Nevertheless, YOLOv4-tiny with the default

anchor boxes is a good option for training on low-end GPUs with a small amount

of labelled data. More predictions can be seen in Appendix D. The best option for

discovering asteroid tracklets with a high confidence, including for hard-to-find

tracklets, is YOLOv4 trained with SetA.

Figure 5.10: Predictions made with the trained YOLOv4
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5.6 Discussion

We have shown that with a relatively small amount of data, it is possible to train

a YOLOv4 model to localise asteroid tracklets in the GB5-R5 dataset. The best

performing model had an mAP of 90.96% and a high level of confidence when pre-

dicting tracklets. It will be used in conjunction with the classification ensemble

(4.4.1) to localize potential tracklets in predictions made with the larger, unex-

plored MOA-II dataset, further streamlining the detection process. Additionally,

we now have a labelled dataset that can be used for future research.

As the first work of its kind in the field, the opportunity for further develop-

ment abound, starting with training the backbone feature extractor, CSPDark-

net53, with the classification data first. Further, it will be interesting to investi-

gate if increasing the number of anchor boxes for both YOLOv4 and YOLOv4-tiny

could boost performance. Preliminary tests suggest that the process of choosing

anchor boxes is more complex than merely choosing the top k clusters. The cus-

tom anchor boxes have achieved mAP (90.95%), which is very closely matched to

the performance of the default anchor boxes. Additionally, establishing the per-

formance benchmarks by scaling the model uniformly by resolution, width, and

depth (EfficientDet(Tan and Le (2019)) or Scaled-YOLOv4(Wang et al. (2021)))

could also provide useful insight into the ideal model architecture for localizing

asteroid tracklets.

The biggest challenge going forward is acquiring labelled data with which to

train the object detector. Ensuring accurate bounding boxes around tracklets is a

labour-intensive process, requiring many hours to build even a small dataset like

the one used here. While this research will continue to use the manual approach to

create more bounding box data, the best option for a different survey would be to

harness crowd-sourcing via a platform like Zooniverse, which allows volunteers to

mark the start and end position of a tracklet as we saw in Kruk et al. (2022). This

approach has the added benefit of allowing for a predefined number of people to

label the same image, which would serve to improve the accuracy of the bounding

box. Since this task can also be combined with classifying whether or not an image

has a tracklet, it would result in two useful research datasets.
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The central tenet of the YOLO family of object detection models is that the

networks should be both fast and accurate, thus better at approximating innate

human ability. A human expert would take at least a second or two to identify a

hard-to-find asteroid tracklet in a stacked and subtracted difference image; this

model takes a fraction of a second to identify tracklets. Utilizing YOLOv4 for

screening archival and future astronomical data to discover asteroid tracklets is

both practicable and beneficial to furthering our knowledge about these denizens

of our solar system.
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Tracklet Classification with

CNN-LSTM

We have looked at both classification and object localization with static stacked

images with and without tracklets. Here, we harness the time dimension of the

observational data to see if it can provide the necessary boost to finding tracklets

in nightly observations. Rather than using a stack image as the input, we will

be using the sequence of images that go into making the stack. In doing so we

will also be doing away with the additive noise in the stacked images that could

be misclassified as a tracklet. Asteroids can clearly be seen moving through a

field from one exposure to the next in observational data - in our case difference

images. Our next architecture will attempt to learn this movement in a sequence

of observations and apply it to finding asteroids in the MOA-II data.

6.1 Background

A critical facet of learning is understanding the relationship between multiple

elements in a sequence and using this to augment our knowledge base. While

CNNs are excellent at predictions based on spatial relationships in fixed-length

data, they are not designed to deal with sequential input connected by a temporal

relationship. The group of networks that specialise in analysing such sequential

data are called recurrent neural networks or (RNNs). Though described in the
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seminal Rumelhart et al. (1986) paper, it was not until the confluence of process-

ing power with the availability of labelled data in the mid 2000s that they began

to raise in popularity and have since been very successfully applied to fields such

as natural language processing and action recognition.

In spartan terms, RNNs consist of feedback loops that enable the network

to remember previous inputs in a sequence and incorporate these at each step

of processing the sequence before presenting its prediction. This can be seen in

Figure 6.1. On the left, we see the input xt passed to an RNN module (N), which

gives us the output ŷt. The loop represents how the input is shared at each step

in the sequence, which can be seen in the unrolled network on the right. The

t in this case refers to the number of elements in the sequence, corresponding

to a single time step for the network. Each time step could be conceptualised

as a copy of the network, which receives an element in the sequence, the output

of the previous time step, and passes its output on to the next time step. The

composition of the repeating module in a standard RNN can be seen in Figure

6.2. The input is both the output of the previous module ŷt−1 as well as the

next time step xt. These two inputs are concatenated, passed through a tanh

activation, after which one copy forms the output of the module and another the

input to the next module. Note that tanh forces the values to lie between -1 and

1.

Figure 6.1: A simple uni-directional RNN
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Figure 6.2: Composition of a standard RNN module

Backpropagation is re-framed as Backpropagation Through Time (BPTT)

(Williams and Peng (1990)) where errors are calculated at each time step and

the collated value of these is used at the end of the sequence to update the

weights for all of the time steps. The more time steps in the sequences, the more

computationally expensive BPTT is. Much like with its cousin the stacked CNN,

the RNN is prone to the vanishing or exploding gradients as it gets deeper in the

network, which in turn means it cannot effectively learn long-term dependencies

(Bengio et al. (1994)). This is particularly problematic for this research because

the network could miss asteroids that only appear early in a long sequence.

The Long Short Term Memory network or LSTM (Hochreiter and Schmid-

huber (1997)) is a widely used and highly successful solution to the vanishing/-

exploding gradients problem in RNNs. In contrast to the original RNN, they

specialise in learning long-term dependencies. The key difference is in the com-

position of the repeating module. While the standard RNN is composed of a
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single activation function layer, LSTMs comprise of much more complex struc-

tures, which can be seen in Figure 6.3.

Figure 6.3: Composition of a LSTM module

The LSTM module has three inputs: a sequence value (xt), the output of the

previous module (ŷt−1), and the cell state (ct−1). The values of xt and ŷt−1 are

concatenated at the start and will be referred to as xŷ. The cell state acts as an

information highway through all of the time steps and the information there can

be modified by three gates in any given time step. These gates are represented by

the dark grey rectangular operations seen in Figure 6.3, which are on the feeder

pathways to the cell state from the other two input vectors. The first of these is

called the “forget gate”. It involves passing xŷ through a sigmoid layer, which

forces the values to be between 0 and 1. This is then pointwise multiplied with the
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cell state, in effect deciding which values to keep and which to throw away. The

next two gates determine the new information to be stored in the cell state. The

second gate is a sigmoid layer to determine what to save and the third gate is a

tanh layer that determines what new values to store in the cell state. The results

of these two gates are combined (pointwise multiplication) and added (pointwise

addition) to the cell state pathway. Finally, the output ŷt is a filtered version of

the cell state ct, with a sigmoid layer once again determining what must be kept.

We have discussed neural networks for handling sequential data and looked at

the LSTM structure for effectively learning long range connections. We will now

discuss how these are applied to the task of discovering asteroids in the MOA-II

data, starting with the dataset.

6.2 Data

Chapter 4 Section 4.1 describes the process of creating the dataset for image

classification and Figure 4.2 breaks down how many images are in the training,

validation, and test set. To summarise, we have 4072 128x 128 subtracted stack

images with tracklets and 19,682 images without tracklets. These are divided

into the training, validation, and test set with just over 80% going to the training

set. The tracklet images in the training and validation set are further augmented

with 8 image enhancements per image. These enhancements to the original im-

ages are, rotating by 180 degrees, flipping horizontally and vertically, blurring,

brightening, darkening, and lowering and increasing the contrast. Thus, we have

29,898 tracklet images in the training set and 3735 tracklet images in the valida-

tion set. The same augments are generated for the images without tracklets as

well but only a randomly chosen 35% of these are included in the training and

validation set. We have a total of 59,261 no tracklet images in the training set

and 7748 no tracklet images in the validation set. The data in the test set in

not augmented and there is no overlap between the 3 subsets. There are a total

103,025 images in the dataset.

The dataset for the CNN-LSTM model is built with this classification dataset

as its foundation. It is modified to suit the needs of the sequential architecture

by replacing each stack image with a directory of the same name, containing
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the sequence of observations that comprise the stack image. The augments are

also included in this decomposition, with the enhancement begin applied to each

observation image in the stack. Figure 6.4 illustrates the directory structure of

the modified dataset. Note that there can be between 10 to 150 observations on

any given night, which translates to a variable number of observation images in

stack directories from different nights. Figure 6.5 displays the decomposed stack

images together with the corresponding subtracted stack image. This dataset is

significantly larger than its progenitor with 3.1 million images requiring 25.5 GB

of storage.

Figure 6.4: Structure of the dataset for the CNN-LSTM
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Figure 6.5: All observations for a sub-region on one night (a to s) followed by the
corresponding subtracted stack image. The asteroid is visible from frames k to r.
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6.3 CNN-LSTM Model

To harness the capabilities of LSTMs for asteroid detection, we once again turn to

CNNs to first extract meaningful spatial information from the images before tem-

poral relationships can be established. The CNN-LSTM model (Donahue et al.

(2014)) was proposed to tackle image-based time series data, with applications in

image captioning and activity recognition. In our case, we want a network that

takes a sequence of observation from one night and determines whether a moving

object is present. Figure 6.6 offers an overview of the structure, highlighting how

each item in the sequence will essentially have its own copy of the network. The

ideal CNN feature extractor is one that has already been rigorously trained with

similar data. Here, we re-purpose the classification CNNs, MOA-12, Hybrid(a),

and Hybrid (b) from Chapter 4, with their pre-trained weights and with the final

sigmoid classification layer removed. While the data they are trained with is not

identical, they still offer a significant advantage because of the general structural

similarities. A simple CNN-LSTM was also constructed as a test case. Figure 6.7

shows the network structure with the pre-trained CNN as well as of the simpler

model.
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Figure 6.6: An overview of the CNN-LSTM architecture for asteroid detection
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Figure 6.7: Simple CNN-LSTM model (left) and CNN-LSTM model with a pre-
trained CNN (right)
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6.4 Training

All of the model architectures were trained on a Linux machine running Ubuntu

18.04 with a NVIDIA Quadro M4000 GPU (8 GB, 2.5 TFLOPS). The code

was written in Python 3.6 in the Jupyter Notebook environment. TensorFlow

GPU 2.4.1 (CUDA 11.0), along with the Keras deep learning API, were used for

creating the CNN-LSTM models tested.

The training/validation/test split for the dataset can be seen in Table 6.1.

A new Keras data generator object was created to load only one batch of data

at a time. GPU memory constraints along with the fact that several sequences

have over 50 time steps (some have over 100) meant that each batch could only

contain one sequence. The Keras TimeDistributed wrapper was used for applying

a convolutional layer, as well as the entire CNN model, to every temporal slice.

The learning rate in most cases was 0.0001, though learning was started at 0.001

in some cases before moving to 0.0001 after two epochs. In each case, the learning

rate was reduced by a factor of two every five epochs. The optimiser Adam was

used along with the binary cross-entropy loss. Each network was initially trained

for 50 epochs, the results of which indicated the number of epochs for further

training (25, 50, or 80).

After some initial tests, it was decided that the networks would first be trained

on the validation data and followed by fine-tuning with the training data. The

smaller dataset is faster to train, which made it easier to see the impact of various

hyper-parameters. LSTMs have a reputation of being notoriously hard to train

and that was certainly borne out here, as we will see next. The unfortunate

consequence of having to use a batch size of one is that the larger the network

the longer it has to run for learning to start. This has significantly impacted our

results. Time constraints did not allow for comprehensive experimentation and

testing, and our results only represent the first steps in eventually successfully

training a CNN-LSTM for asteroid discovery.
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6.5 Results

Unfortunately, our architectures with a pre-trained CNN failed to learn, never

moving past the accuracy of 68%, which is only 1% more than the baseline for

a no-skill network. The next step was to investigate whether training the CNN

along with the LSTM would yield better results. Our smallest CNN, MOA-12,

was chosen for this task and but once again failed at learning.

The simple network with five convolutional layers was then trained to gauge if

a CNN-LSTM model could learn to discover moving objects in the MOA images.

The network started learning at the 36th epoch and reached an accuracy of 96%

on the 98th epoch. Evaluating the model with the test set gave us an accuracy

of 76%. However, further evaluation (Figure 6.8) revealed that this was likely

because the dataset is imbalanced. The precision and recall remain very poor at

around 20% and as we can see from the ROC plot, the classifier is only marginally

better than a baseline no-skill model. The poor result, while discouraging, does

indicate that with the right model structure and time to train the model for longer

could lead to better results. The batch size is a significant stumbling block, which

will need to be addressed in future implementations.

Table 6.1: Train/ Validation/ Test set for the CNN-LSTM
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Figure 6.8: Confusion matrix (left) and ROC plot (right) for a simple CNN-LSTM
trained to identify asteroids

6.6 Discussion

The CNN-LSTMs perhaps come closest to how asteroids were traditionally dis-

covered - by serendipitously identifying movement from one image to the next.

But while evolution has ensured that humans are superlative at this task, that

intuitive leap is harder for an artificial neural network. We investigated the ap-

plication of the CNN-LSTM architecture for discovering an asteroid moving in

a night’s observations. Though our efforts at training proved unsuccessful, it

marks only the first attempts at learning. The existence of a suitable dataset

alone creates several opportunities for future work.

It might be prudent to attempt training without data augmentation to create

a set of baseline weights that can then be fine-tuned with the augments, or indeed

more labelled data. The time saved from training a large dataset could be used to

train a smaller one for longer, with an initial training run of at least 100 epochs.

This may also allow for any problem areas to be identified sooner. Training

initially with only the tracklet data could also be an option. It could then be

further fine-tuned with both tracklet and no-tracklet data.

The sequence of observations used as input are of variable length and can

be anywhere from 10 to 150 time steps long, adding to the complexity. While

it is tempting to convert these into fixed-length sequences by breaking up long

ones and padding shorter ones, care must be taken to ensure that the data is still

labelled correctly as one or more asteroids may appear and disappear at any point
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during an observation cycle. For example, if there are 108 observations on a night,

an asteroid may appear in steps 35 - 51 and another from 73 - 95. If we break

up the sequence into groups of 20, we will have asteroids visible from 20-40 and

40-60 as well as 60-80 and 80-100 but not in any of the other groups. This simple

scenario can largely be automated if we could assume that the seeing conditions

remain excellent all through the night. However, there are several cases where

the seeing deteriorates for part of the night, which leads to a gap in the observed

tracklet for the asteroid. Hence, the data will need to be relabelled to reflect this

as well as the scenario where only one or two observations are visible in a group.

Breaking up the sequences would allow the use of batches when training, which

could reduce the time taken for learning to start.

A possible reason for the inability of the network to learn could be that the

composition of the images does not convey enough useful motion information for

the LSTM to “remember”. The change we want the CNN-LSTM to recognize is a

pixel blob being in a slightly different location in a consecutive image. Given that

there can be a lot of variability in each successive observation in one night, this

movement might not register as significant. Further, the point source representing

a faint asteroid may be indistinguishable from the noise. We lose the low-level

features as we get deeper in the network, which likely impacts the final feature

maps. A solution could be to use a DenseNet (Huang et al. (2016)) as the feature

extractor, which will see the fine-grained features propagate through the network.

Equally, it will be interesting to experiment with model scaling by applying the

EfficientNet (Tan and Le (2019)) architecture to the feature extractor. It is

possible that a small feature extractor will prove better at distilling the salient

features of a single observation image.

The poor result obtained here by the CNN-LSTM represents a single step in

the path to the eventual successful application of this architecture for discovering

asteroids. The method requires the least amount of image pre-processing and is

therefore absent the noise seen in the stacked images. Finding moving objects in

survey data is a challenging problem and offers a rich avenue for further research.
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Conclusions

Asteroids are remnants from the creation of our solar system 4.6 billion years

ago. They are small, rocky worlds that number in the millions with a significant

population in the region called the main asteroid belt between Mars and Jupiter.

The composition of asteroids informs our knowledge about the building blocks of

planets as well as, potentially, life on Earth. They form part of the puzzle for

understanding the evolution of our solar system. While there are several surveys

dedicated to the detection of asteroids, particularly near-Earth ones, archival data

from other surveys can also be a useful tool for finding asteroids. The MOA-II

telescope at the Mt John Observatory has been part of the MOA project since

2004 with the aim of observing microlensing events in the Galactic Bulge. It

has amassed over 100TB of observational data, which has only been used for its

stated purpose. Thus, its full scientific potential has not yet been realised. As

permanent fixtures in our night skies, asteroids are present in all survey data,

including MOA’s. The aim of this research was to develop a dataset suitable

for supervised learning and to develop deep learning solutions for discovering

asteroids in the archival MOA data.

Modern astronomical surveys typically generate more data than can be ana-

lyzed without purpose-built software suites. The application of deep learning in

the field is still in the early stages, with the lack of available labelled data deemed

a significant challenge. Deep learning is even more sparsely applied for the pur-

poses of asteroid detection. Of the six published works, two involve comets,

126



CHAPTER 7. CONCLUSIONS

two involve space telescopes, and two involve near-Earth asteroids. The research

with space telescopes comes closest to the aim of this research, however data

from ground-based observatories pose a different set of challenges and the profile

of asteroids observed is significantly different. Therefore, this work is the first of

its kind for asteroid detection.

7.1 Dataset

The first step was to build a dataset from the archival MOA data. The 1.8m

MOA-II telescope consists of a wide-field mosaic CCD camera with 10 chips, each

of which are 2048 x 4096 pixels with a resolution of 0.01 arc minutes per pixel.

Each chip is considered separate from its neighbours. The telescope surveys 23

fields towards the Galactic Bulge, the densest star field in our galaxy. It operates

at a very high sampling rate with each exposure lasting 60 seconds. This means

that we can clearly see asteroid tracklets - part of the arc of an asteroid’s orbit

- in a series of observations from the same night. MOA researchers work with

difference images, which are the result of subtracting the observation image from

a reference image. The resultant image highlights the changes captured in the

observation image, including any asteroids that cross the telescope’s field of view.

They also contain any noise in the form of imperfect subtractions, satellite trails,

differences in seeing conditions, and other spurious artefacts. Stacking a night’s

observations sequentially reveals tracklets of asteroid moving through the field at

the time, with the faintest object observed being of limiting magnitude 20.5.

The first (GB5-R5) of two datasets was built from 49,901 difference images,

consisting of 14 years of observations from one chip (chip 5) in the CCD assembly

for the field GB5. The majority of this dataset was used for training neural

networks. The second dataset (GB-All (28-06-2013)) consisted of one night’s

observations from all fields (and all 10 chips) surveyed on the night of 28-06-

2013. This dataset was used exclusively for testing how the classification networks

performed with data they had never seen.

To convert the difference images into a suitable format for neural networks,

nightly observations from the same chip and field were first stacked by brightest

pixel. This brought the tracklets into sharp relief. A corresponding median pixel
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stack was also created, which was subtracted from the brightest stack, leaving

behind the subtracted stack image containing only the asteroid tracklets and

noise. A list of all minor planets that were expected to be in MOA’s field of view

at the time was then obtained from the MPC. Further careful visual inspection

of the data resulted in locating 1178 distinct asteroid tracklets. Next, each of

the 2048 x 4096 stack images was split into 512 128 x 128 pixel images. The

Cohen-Sutherland line clipping algorithm was used to determine which of these

128 x 128 images were expected to contain tracklets. Visual inspection was once

again undertaken, resulting in a total of 4547 (GB5-R5: 4153, GB-All: 394) 128

x 128 images with visible tracklets.

7.2 Classification CNN

With a suitable dataset in hand, the next step was investigating various CNN-

based architectures for binary classification. Given the brevity of the data, it was

hypothesised that architectures with fewer parameters that were shallower than

their famous counterparts would do better. Fifteen architectures were chosen,

some the result of prior computer vision research, some custom built. The ones

based on prior research were: AlexNet, VGG-16, VGG-19, ResNet50, and Incep-

tion. The custom built architectures were: modified AlexNet, shallower ResNet,

shallower Inception model, four VGG-like architectures with significantly fewer

parameters (MOA-12, MOA-13, MOA-14, MOA-15), and three architecture with

hybrid Inception-ResNet modules (Hybrid(a), Hybrid(b), and Hybrid(c)).

The GB5-R5 dataset was used for training and initial testing of the ar-

chitectures, with the tracklet images reduced to 4072 after further visual in-

spection. The images were divided into the training/validation/test sets with

3322/415/335, respectively. Each image in the training and validation data was

augmented by being horizontally flipped, vertically flipped, rotated by 180 de-

grees, darkened, blurred, brightened, and with the contrast both increased and

decreased. This resulted in 29,898 and 3735 images with tracklets in the training

and validation set. Since the classifiers also needed to learn how to differentiate

between images with and without tracklets, the dataset needed images without

tracklets. These were obtained from the 550K 128x 128 images without known
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tracklets. Around a third of the no-tracklet data in the training and validation

set consisted of augments. The no-tracklet data was also split into the training/-

validation/test sets with 59,262/7748/2048 images, respectively.

The main evaluation metric considered was recall or true positive rate, which

quantifies how many of the tracklet images were correctly classified. Favouring

this metric does mean accepting a larger number of false positives, but false

positives are an accepted part of analysing astronomical data. Six of the networks

had a recall of 89% or above with the GB5-R5 test set. The true test was to

see how the networks performed with the GB-All test data and here, seven of

the networks - the four MOA architecture and three hybrid architectures - out-

performed the other networks with a recall of 94% or above.

An ensemble of classifiers was constructed with MOA-12, MOA-14, MOA-

15, Hybrid(a), and Hybrid(b). It was expected that the probability distribution

learnt by each would serve to bolster the final predictions. In each case, the class

with the highest predicted class value was chosen, which lead to achieving a recall

of 97.67% with the GB-All test set.

The success of the custom CNN architectures with fewer training parameters

is perhaps down to two aspects. First, the networks might be at the optimal

depth for learning to identify the pattern of fuzzy blobs that represent a tracklet.

Second, the architectures are trained with a small dataset, which perhaps leads

to more over-fitting in the larger models. Further, rather than adding more

layers, the hybrid architectures lean into adding complexity with several 1x1

convolutions. It is possible this caused the networks to learn representations that

ultimately boosted the performance of the ensemble.

7.3 YOLO

The impetus behind seeking a tracklet localization solution was that some of the

tracklets are not obvious at a glance, either because the object is too faint, too

widely spaced, too obscured by noise, or some combination thereof. Addition-

ally, as a result of the line clipping algorithm, we had the starting coordinates
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for bounding boxes to enclose the tracklets. Further visual inspection and man-

ual adjustments to these baseline bounding boxes resulted in a dataset of 4153

tracklet images that could be used for object detection.

The aim of the original YOLO object detection architecture was to make

object detection both fast and accessible. As a single-shot architecture, it was

capable of making class and bounding box predictions with the feature maps pro-

duced by a single CNN network. The simplicity of the feature extraction CNN at

the heart of YOLO is in direct contrast to its complex loss function, which com-

putes the classification loss, localization loss, as well as the loss quantifying the

network’s confidence in the prediction. Later versions of the network introduced

default anchor boxes that would be adjusted to fit the model’s bounding box

predictions and a more complex feature extractor to make predictions on multi-

ple scales. This research applied YOLOv4, which is the latest evolution of the

architecture with a major overhaul to include several new techniques. Among the

changes are a new feature extractor based on DenseNet with CSP connections, a

new feature aggregator based on PANet, and an improved loss function that quan-

tifies the IoU loss in the place of the old localization loss. YOLOv4 also includes a

raft of updates like a new activation function (Mish), Mosaic augmentation, self-

adversarial training, spatial attention module, and multi-input weighted residual

connections. Altogether, these changes make YOLOv4 state-of-the-art while still

being very fast. Additionally, a smaller, scaled back version called YOLOv4-tiny

was also developed to make YOLO more accessible to everyone.

Both YOLOv4 and YOLOv4-tiny were trained to localize asteroid tracklets.

Along with using the default anchor boxes, custom anchor boxes were also trialled.

The networks were trained with just the tracklet data as well as a combination

of tracklet data, augmented (rotated, horizontally and vertically flipped) tracklet

data, and data with no tracklets. Surprisingly, the networks trained with only

the tracklet data performed far better by an appreciable percentage. While the

results with the custom anchor boxes were good, the default anchor boxes proved

to be robust enough to adapt to the task. The mAP (mean average precision) for

each network was calculated at the confidence threshold of 25%. The best mAP

with YOLOv4-tiny was 65% and the best mAP with YOLOv4 was 90.96%.
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7.4 CNN-LSTM

Having successfully used static images for both classification and object detection,

the next step was to determine whether the temporal aspect of observational data

could be harnessed for discovering moving objects. An advantage of this approach

is that we do not have to contend with the additive noise in the stack images.

LSTMs are part of a family of neural networks that were specially created to

analyze sequential data. Here, we use a CNN to extract meaningful features from

an image, which are then used by the LSTM to remember important features that

will take us to the desired output. The classification dataset was re-purposed for

the CNN-LSTM by breaking each stack down to its component images. Rather

than a stack image, the input for the CNN-LSTM was this sequence of images.

While the attempts at training the CNN-LSTM were unsuccessful, it does

not conclusively demonstrate that the architecture cannot be trained for this

task. Rather, what does not work has been eliminated and a dataset exists with

which to continue the research. It is likely that the CNN feature extractors used

were not suitable for distilling the right information from the observation images.

Each successive observation on a given night can have a high degree of variability

and in some cases the asteroid may be indistinguishable from the noise. Further

research to find the best CNN architecture to accurately represent this will be

crucial to the success of the network. Ultimately, the CNN-LSTM architecture

comes closest to modelling the intuitive human process of recognising movement

and should be further investigated.

7.5 Future Work

As each of the networks and the datasets created here are the first of their kind

in the field, there are plenty of opportunities to extend the research. The biggest

challenge for other surveys looking to adapt the methodologies developed here

is gathering the required labelled data. This could be mitigated by harnessing

the power of crowd-sourcing via the Zooinverse platform. Itself born from a

successful crowd-sourcing exercise for labelling galaxy data, the platform could

be used for both sifting through and identifying images with tracklets. It could
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also be extended to prompting the citizen scientists to mark the start and end

points of these tracklets, which could be used to refine the results from the line

clipping. An immediate advantage of crowd-sourcing is that multiple people will

look at and classify an image, thus reducing errors. It also offers an outreach

opportunity and would increase the profile of the research.

Investigating effective denoising techniques for the stacked images or the dif-

ference images would lead to an immediate performance boost for both the clas-

sification and object detection networks. The classification network may benefit

from having two inputs - the subtracted stack image along with, perhaps, the

median stack image. This would provide the model with additional informa-

tion it could use to distinguish between images with or without tracklets. The

object detection network would benefit from training with tracklet images from

other MOA fields and chips. Additionally, training the YOLO backbone fea-

ture extractor with the classification data first might also lead to better results.

The CNN-LSTM is primed for further research into whether the architecture can

learn to detect small fuzzy blobs moving appreciably from one image to the next.

Converting the large variable length sequences to multiple fixed length sequences

will allow for batch processing and perhaps aid the network in remembering the

movement. Furthermore, since much of the salient information is contained in

the first layer, a small CNN based on DenseNet could be a more effective feature

extractor.

The next steps for this research will be to use the classification and object

detection networks developed to look for asteroid tracklets first in the 550k images

from GB5-R5 without known asteroids, and then in the larger, as-yet-untapped,

MOA-II archival data. Making predictions with the 550K images first will help

with establishing some benchmark expectations and also highlight any potential

problem areas. It will also provide an indication of how many undiscovered

asteroids could potentially be in the data.

Discovering tracklets in the remaining archival data will start with first assem-

bling the dataset in the required format. The list of known asteroids traversing

these observations has already been obtained. Given the sheer amount of data, it

would be prudent to break it up into more manageable groups with two years of

data from all of the fields and chips in each. The full GB-All dataset mentioned
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in this work has data from all the fields from 2013 - 2015 and is a good starting

point for exploring the possibilities with the archival data. To recap, this dataset

contains 905,302 difference images, amounting to 11TB of data. One night (28-

06-2013) of observational data from this set was used to test the classification

models. YOLOv4 will also be retrained with the known tracklets from this night.

Subtracted image stacks will be created from the remaining observations, follow-

ing which they will each be split into 128 x 128 image tiles. The line clipping

algorithm will then be applied to find all the images tiles expected to have known

asteroid tracklets. These potentials will then be given to the ensemble to filters

out the images with visible tracklets. Previously, this task had to be done by vi-

sually scanning all the potential tracklet images, which could take over a month.

With the trained networks, this task can be performed in a matter of hours.

However, at this stage, it is anticipated that some visual inspection will also be

crucial to gauge the effectiveness of the networks. The most beneficial next step

will be to use all of the tracklets of known asteroids discovered in the GB-All set

to fine-tune the classifier ensemble and object detector. Once retrained, all of the

remaining 128 x 128 images from the GB-All set will be given to the networks to

classify, with special note made of any unknown/newly discovered tracklets.

It would be judicious to repeat the same course undertaken with the initial

GB-All set with the next two groups of archival data (four more years). After

the networks have been fine-tuned, they will be used to make predictions on

the remaining data, perhaps one field worth at a time. Since we have the list

of expected known asteroids in the data, we can check if a tracklet detected is

from a known object. Unknown tracklets can be further verified by checking the

original difference images to ascertain if it does indeed match the profile of an

object moving in our solar system. Code has already been written to convert a

stack image into a “movie” composed of the individual observations that form

the basis of the stack with the file names included. The inclusion of the file name

makes it easier to isolate the observations in which an object appears.

Given the sheer amount of data gathered by MOA-II, along with the ideal

observation interval for capturing moving solar system objects, there is optimism

about discovering new asteroids in the archival data. Moreover, the ephemeris

data that can be gathered from the observed tracklets will be useful to the MPC

for refining the available orbital information. A light curve could be generated
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as well, providing further information about the composition and rotation period

of the asteroid. Looking beyond objects in our solar system, there is also the

potential of finding interstellar objects that may have traversed our solar system

undetected in years past.

7.6 Conclusion

The appeal of deep learning is in its ability to learn complex representations

directly from the data and provide inference in real-time. The classification net-

works achieve a recall of 97.67% with a test data from fields not seen by the

network. The YOLOv4 object detector achieves an mAP of 90.96% and is very

good at locating tracklets in the GB5-R5 data. The networks can be easily

fine-tuned as more labelled data is available. With larger datasets, we can also

work towards refining the current networks with newer techniques and train more

complex architectures. Eventually, this could lead to large labelled datasets for

astronomy research and end the dependence on using pre-trained weights from

datasets like ImageNet that share little similarity with astronomical data.

The datasets and deep learning architectures applied here are the first doc-

umented instances of the application of deep learning for discovering asteroids

tracklets in ground-based survey data and they offer a foundation for continuing

research in the area. Our methodology and networks can be applied to discover as-

teroids in other archival survey data as well as to strengthen the analysis pipeline

for current and future surveys. Perhaps they could even aid in the discovery of

trans-Neptunian and interstellar objects. With deep learning in our toolkit and

next generation surveys like LSST on the horizon, we look set to leap ahead on

our civilization-spanning quest to understand the universe and our place in it.
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Neural Networks Primer

In its simplest form, a multi-layer neural network consists of a one dimensional

input vector, which is transformed into the desired output by a series of hidden

layers (Figure A.1). Each hidden layer consists of independent neurons, each of

which are fully connected to every node in the previous layer. The connections

between each node or neuron are meant to mimic synapses and each have a

weight vector associated with them. The objective of a network is to learn the

best combination of weights and biases - known as parameters - to take us from the

input to the output. The final layer is the output. If we were classifying objects,

the output would be the class scores. We evaluate how well a network models

the data by using a loss function to calculate the error between the expected and

computed output.
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Figure A.1: A fully connected artificial neural network with two hidden layers
and two output nodes.

Figure A.2: A fully connected artificial neural network with two hidden layers
and two output nodes.
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Figure A.2 shows the basic structure of a neuron in a hidden layer. xi repre-

sents input features to the neuron and wi represents the weights attached to the

input. A neuron sums up the dot product of each input with it corresponding

weights and adds a bias element. If we look at it in terms of linear algebra, the

weights change the slope of the line and the bias changes where the line intersects

the y-axis. An activation function, f, is applied to this linear computation to add

complexity. The activation function is a non-linearity such as sigmoid, softmax,

or a rectified linear unit. The result of the activation is the input to the next

layer, which is again relayed along with a bias term and weights vector. The

process continues until we get to the output layer. This is the forward pass or

propagation of a neural network.

The next important component is the loss function. The purpose of the loss

function is to evaluate the error or how far the algorithm’s computed output is

from the desired output. The goal of a neural network is to minimize this loss.

The commonly used loss function for binary classification problems is binary

cross-entropy or log loss. The equation for the jth sample is as follows:

L(yj, ŷj) = −(yjlogŷj + (1 − yj)log(1− ŷj))

where y is the expected output and ŷ is the computed output. The expected

values of ŷ are between 0 and 1.

Neural networks next employ an algorithm called backpropagation (Rumel-

hart et al. (1986)) to compute the weights and bias until we reach a combination

that can best map the input to the desired output. This is done by propagating

the error calculated after forward propagation back through the network, that is

from output to the first hidden layer. At each layer, for each neuron we calculate

the gradient of the error with respect to the weights (w) and bias (b). In essence,

we are attempting to compute how the total error will change if we update the

parameters of the network by a small value. The weights and bias are updated

with an optimisation method; the most commonly used is gradient descent.

The equations for updating (w) and (b) in layer (l) are as follows:
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wl −→ w′l = wl − α
δL

δwl

bl −→ b′l = bl − α
δL

δbl

While the calculated gradients set the direction the training should move in,

we use an additional hypermeter, learning rate α, to specify the size of the step

we take with gradient descent. A network thus trained and optimised can be used

to make predictions. To summarize, the essential steps in setting up and training

a neural network are:

1. Define model architecture;

2. Initialize parameters;

3. Iterate a predefined number times to:

(a) Forward propagate;

(b) Calculate loss;

(c) Calculate gradients (backpropagation);

(d) Update parameters (gradient descent).

4. Use trained model to make predictions.

The network model described above is the simplest form of an artificial neural

network (ANN). While the essential steps for training neural networks remain

similar, the model architecture can get quite sophisticated. The idea of deep

learning is to build complex models with multiple layers and multiple nonlinear-

ities to better represent the complexity of the data (Bengio et al. (2006)). The

layers form a hierarchy, with each subsequent layer extracting a more abstract

representation of the input. In essence, this hierarchy serves as a self-contained

knowledge base for the algorithm: it learns a complex concept by breaking it down

to simpler concepts and learning from how these are linked together. The deeper

the hierarchy, we hypothesis, the better the knowledge base that the algorithm

learns from.

138



APPENDIX A. NEURAL NETWORKS PRIMER

Historically, deep networks have been difficult to train because gradient in-

formation would vanish as we backpropagated to the lower layers. Unsupervised

pre-training to initialize the parameters of a deep neural network was proposed

as a solution to the vanishing gradients and was a promising solution (Hinton

et al. (2006)). Later, the rectified linear unit (ReLU) was proposed as an

alternative to the logistic sigmoid activation function in deep networks (Glorot

et al. (2011); Nair and Hinton (2010)). This significantly reduced the possibil-

ity of vanishing gradients and made the unsupervised pre-training unnecessary.

Two other important additions to improving the performance of deep networks

are batch normalization (Ioffe and Szegedy (2015)) and dropout (Srivastava

et al. (2014)). Batch normalization involves pushing the inputs of each layer into

a gaussian distribution. While the input data is usually normalised at the start,

the computation at each layer means that the distribution of values changes at

each layer, which can slow down the training. Introducing batch normalization

improves the performance of the network. Dropout is a regularization technique

that prevents overfitting by randomly dropping the output values of a neuron

based on some probability p, which is a hyperparameter.

CNN: Convolutional Neural Networks

Convolutional neural networks (CNN) are a type of neural network that deal

with images. In Figure A.3 we see the architecture of a simple CNN. Instead

of multiple input notes (input vector), the input of a CNN is an image. If we

used the ANN structure to classify an image, we would have to unroll the image

into a single input vector. So, a small 100 x 100 RGB image would give us

30,000 input features. If we had 100 neuron in the hidden layer, we’d end up

with 300,000 parameters, which means that even a simple network could get very

large and be computationally expensive. Thus, the rationale behind a CNN is to

make deep networks a plausible avenue for analysing 3D data, such as images,

for classification or detection tasks. Accepting an image as the input also means

that features don’t have to be hand engineered by an expert as a CNN can learn

directly from the data. Moreover, parameters are shared across a single feature

map, thus reducing the total number of parameters in the network.
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Figure A.3: A simple CNN with one convolutional layer

In a CNN, each neuron in a hidden layer is connected to a subset of features

in the previous layer. This subset is called the convolutional filter and it acts

like a sliding window over the image. At each location, a matrix multiplication

is performed between the pixel value and the filter, which is then summed to-

gether, passed through a non-linearity, and added to a feature map. The filter

parameters represent the weights that best transform the input to the output.

A convolutional network is trained to learn the best combination of these filter-

s/weights for the task. Several of these filters could be applied to an input. If

we used 10 different filters we would have 10 feature maps. We’d then stack-

ing them along the depth dimension to get the output of the convolution layer.

CNNs also often contain pooling layers. The most common form of pooling is

a max pool, where the highest pixel value in say a 2x2 region is chosen. Their

purpose is to reduce the dimensions of the previous layer. Reducing the dimen-

sions reduces the number of parameters and makes the training faster. Different

architectures use different combinations of convolutional and pooling layers, with

modern convolutional networks having over 150 layers.
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Minor Planet Database Schema

Here we see the schema of the database created to store relevant data retrieved

from the minor planet center together with the observational metadata. This

format makes it each to retrieve grouped of data in particular, for example a list

of all days with more then 40 observations.
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Figure B.1: Database for storing metadata about minor planets in MOA fields
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More Metrics for the

Classification CNNs

Here we include the plots representing the trade-off between precision and recall

(PR Plot) as well as between true positive rate and false positive rate. In each

case, we look at how the two types of errors - false negative and false positive

effect the performance of the classifier. The benefit of these plots is that they

give us a snapshot of the performance at different thresholds and gives us a more

generalised picture of a model’s performance.

Precision is an evaluation metric that quantifies how many of the positive pre-

dictions are actually positive (how many of the images predicted to have tracklets

actually have tracklets) and is calculated as: Precision = True Positives / (True

Positives + False Positives)

Recall (also known the the true positive rate) is an evaluation metric that

quantifies how many of the positive predictions were correctly predicted. This

is, it tells us how many of the images with tracklets were miss-classified. It is

calculated as: Recall or True Positive Rate = True Positives / (True Positives +

False Negatives)

We can see that the precision value is influenced by the false positive and

the recall value by the false negatives. In our case, we want to minimise the

false negatives and thus favour a high recall value or true positive rate. A PR
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Plot plots the precision (y-axis) and the recall (x-axis) for different probability

thresholds and the plots for the various classifiers with the GB5-R5 dataset can

be seen in Figure C.1. The best plots are the ones that tend towards high recall

values.

The false positive rate is a measure of the number of the positive predictions

that are wrong. In other words, how many of the images without tracklets where

predicted to have a tracklet. It is calculated as: False Positive Rate = False

Positive / (True Negative + False Positive)

The ROC plot (C.2) then is essentially the proportion of the positive (tracklet)

predictions (y-axis) versus the proportion of incorrect predictions for the nega-

tive (no tracklet) class (x-axis) at different thresholds. Here, we favour the true

positive rate. The perfect plot would have values clustered around the top left

and one that is good for our classifiers would have most values at the top (that

is, a good true positive rate).

Additionally, the confusion matrices for the networks not included in Chapter

4 Section 4.4 are in Figures C.3, C.4, C.5, and C.6

Lastly, we see some of the evaluation metrics for the GB5-R5 and GB-All test

sets sorted by recall, F2 score, and PR AUC in Figure C.7.
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Figure C.1: PR plot for classification models with GB5-R5 test set
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Figure C.2: ROC plots for classification models with GB5-R5 test set

146



APPENDIX C. MORE METRICS FOR THE CLASSIFICATION CNNS

Figure C.3: Confusion matrix for some classification models with GB5-R5 test
set
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Figure C.4: Confusion matrix for some classification models with GB-All (28-06-
2013) test set
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Figure C.5: Confusion matrix for AlexNet and Custom AlexNet with GB5-R5
test set

Figure C.6: Confusion matrix for AlexNet and Custom AlexNet with GB-All
(28-06-2013) test set
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Figure C.7: Evaluation metrics sorted by PR AUC, F2 Score, and Recall, high-
lighting the top five architectures
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More Detections from YOLOv4

and YOLOv4-tiny

More detections by YOLOv4 are included in the figures in the next few pages.

Even though the mAP of YOLOv4 with default anchor boxes (Figure D.1)

was 0.01% better than YOLOv4 with custom anchor boxes (Figure D.2), the

latter found both faint tracklets in the leftmost image on the last row. Overall,

both versions of YOLOv4 make detections with high confidence with both clear

and hard-to-find tracklets. Consequently, both version of YOLOv4 will be used

for localizing tracklets in predictions.

YOLOv4-tiny, while very fast, made lower confidence predictions and failed

to find the tracklets in some images (Figures D.3 and D.4).
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Figure D.1: Detections from YOLOv4 with default anchor boxes
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Figure D.2: Detections from YOLOv4 with custom anchor boxes; only one to
find both faint tracklets in the leftmost image on the last row.
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Figure D.3: Detections from YOLOv4-tiny with default anchor boxes
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Figure D.4: Detections from YOLOv4-tiny with custom anchor boxes
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