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Abstract: The demographic growth that we have witnessed in recent years, which is expected to
increase in the years to come, raises emerging challenges worldwide regarding urban mobility, both
in transport and pedestrian movement. The sustainable development of cities is also intrinsically
linked to urban planning and mobility strategies. The tasks of navigation and orientation in cities
are something that we resort to today with great frequency, especially in unknown cities and places.
Current navigation solutions refer to the precision aspect as a big challenge, especially between
buildings in city centers. In this paper, we focus on the segment of visually impaired people and
how they can obtain information about where they are when, for some reason, they have lost their
orientation. Of course, the challenges are different and much more challenging in this situation and
with this population segment. GPS, a technique widely used for navigation in outdoor environments,
does not have the precision we need or the most beneficial type of content because the information
that a visually impaired person needs when lost is not the name of the street or the coordinates but a
reference point. Therefore, this paper includes the proposal of a conceptual architecture for outdoor
positioning of visually impaired people using the Landmark Positioning approach.

Keywords: visually impaired people; urban mobility; image processing; urban positioning;
landmark techniques

1. Introduction

In recent decades, we have witnessed an exponential demographic growth of cities,
which substantially increases the difficulties of urban planning in terms of mobility, which
presents itself as an emerging challenge in all countries [1]. Whether in terms of transport
or pedestrian navigation, mobility has taken on a new dimension and represents a problem
to which many researchers respond, focusing on the sustainable development of cities.
Infrastructures and city design are constantly changing to respond to the daily displacement
needs of millions of people from the outskirts to city centers [2]. Sustainable development
will be difficult to achieve with a large number of private vehicles and the current public
transport network [3]. The mobility as a service (MaaS) paradigm emerges as an innovative
concept that intends to be a strong ally towards sustainability, which is user-centric and
combines different means of transport to minimize CO2 emissions and, at the same time,
maximize the use of sustainable transportation and/or means of active mobility.

Navigation within cities is a daily activity inherent to all citizens, performed several
times throughout the day for commuting to work, schools, shopping, and leisure purposes,
among others. For all those in a well-known city, the navigation turns out to be intuitive,
something simple that does not pose any significant difficulties. However, when we
are in an unknown city, the aspects of orientation and mobility become more relevant.
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The orientation task in a city involves several elements, such as positioning, navigation,
and direction. Urban spatial orientation is, in turn, intrinsically linked to the aspect of
mobility, which can be described as the ability of someone to move in an environment,
known or not, and which may contain several obstacles that are related to how citizens
are informed about their position or how to navigate to the desired location [4]. Suppose
several challenges arise for urban mobility in general terms, such as precision. In that case,
additional questions are brought up when we talk about visually impaired people (VIP) that
are immediately noticed by the different ways VIP use their senses to orient themselves [5].
The World Health Organization (WHO), in its report on “Visual Impairment 2010”, refers to
approximately 320 thousand people per million with some visual impairment worldwide,
and about 47 thousand people per million are considered blind [6]. In Portugal, the 2001
reports had values of 160 thousand visually impaired individuals [7], while the 2011
reports point to 900 thousand visually impaired individuals, 28 thousand of whom are
blind [8]. Although the mobility challenges for this segment are varied, we will focus,
throughout this paper, on the problem of positioning when a VIP loses track of where they
are, which represents one of the main challenges they feel and experience in their daily
routines. Receiving information that they are close to a particular store, near a given known
intersection, etc., can be decisive and make all the difference for a VIP’s orientation [9,10].

One of the techniques that could be used would be the GPS combined with the infor-
mation on Google Maps. Still, the information usually available does not have the necessary
refinement and detail because the points of interests (POIs) inserted are typically thought
of more globally and not with all the detail VIPs need. This paper proposes a conceptual
framework for an outdoor positioning system for VIP that uses Landmark Positioning,
an approach that fits inside the broad concept of Visual Positioning. The framework as-
sumes a VIP with a smartphone camera that captures the image of surroundings as the
VIP is walking and a backend server that can process those images and get information
about its positioning, which is informed to the VIP. The approach mainly uses images
with landmarks that represent locations in the cities and, for that reason, constitute helpful
information for a VIP [11].

The paper is organized as follows. Firstly, Section 1 describes the problem context and
its main implications for defining a proper solution. Section 2 presents a literature review
on smart mobility and its main challenges, trends, and inclusiveness. Section 3 offers the
related work regarding the VIP. Section 4 presents an architecture proposed for Outdoor
Positioning for Visually Impaired People using Landmarks (OPIL) framework and model.
Finally, in Section 5, the conclusions and future work are addressed.

2. Urban Mobility Challenges, Trends, and Inclusiveness

The advent of technologies, systems integration, and the era of Big Data and Artificial
Intelligence, among others, gave birth to the concept of intelligent “things”. Smart cities are
born from integrating all these concepts and the possibility of their application to different
areas of intervention and domains. According to [12], there are six main axes/domains of
interventions within a smart city: Government, Mobility, Environment, Economy, People,
and Living. The world population has been growing significantly in recent years. In 1974,
the world population numbered approximately 4 billion people, 6 billion in 1999, 7.8 billion
in 2020, and an increasing trend according to United Nations projections, presented in
Figure 1.
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and safety framework, translates into parking on public roads and sidewalks in ways 
that impair the pedestrian movement of people with disabilities, with considerable im-
pact on blind and partially sighted people who encounter unexpected obstacles [21]. 

It is acknowledged that challenges to providing mobility services while affecting 
different users are also often related to an area’s geography and economic characteristics 
and have additional prominence in other prioritized regions. Therefore, better commu-
nication with communities of need is necessary, particularly during planning processes. 
Taking a more inclusive, communicative approach to mobility planning will allow for 
better, more efficient mobility plans that more robustly serve the needs of the most vul-
nerable users [22]. 
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While often centered on ‘peak hour’ needs, shifting employment patterns, changing fam-
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This growth undoubtedly challenges cities at various levels in terms of urban mobility.
The congestion problems arising from the high population density can be partly solved
with efficient transport networks. Still, the current proposals do not stop there since the
concept of smart mobility goes further and calls for more innovative solutions [13]. These
include recommendations for sustainable mobility solutions, such as active transport that
use environmentally friendly fuels and citizens’ accountability [14,15]. Mobility must be
seen as a path that allows for increasing sustainable development. The impact of smart
mobility may, at first, seem to focus on solving what appears to be the most obvious
problem: traffic congestion. But the impacted dimensions are much higher and encompass
sustainability, economy, and living and, therefore, with a direct impact not only on citizens
but also on governmental entities [13]. The “smart” character of mobility can be seen in
various ways: public access to information and making it available in real-time to make
travel planning more efficient, save time and money, and reduce CO2 emissions [16,17].

Several challenges and barriers to providing inclusive and equitable mobility services
amongst vulnerable user groups, such as people with disabilities and impairments, arise.
These commonly include poverty [18] budget constraints, lack of accessibility, inadequate
service integration, lack of correspondence between user needs and service provision,
preliminary safety measures or unsafe infrastructure, and lack of access to or understanding
of technology [19,20]. Another common problem is improper parking in places reserved
for people with disabilities or even in public spaces in such a way that interfere with
the mobility of people with reduced mobility. An example comes from the growing use
of e-scooters in the urban context, which, in the absence of the proper legal and safety
framework, translates into parking on public roads and sidewalks in ways that impair the
pedestrian movement of people with disabilities, with considerable impact on blind and
partially sighted people who encounter unexpected obstacles [21].

It is acknowledged that challenges to providing mobility services while affecting
different users are also often related to an area’s geography and economic characteristics and
have additional prominence in other prioritized regions. Therefore, better communication
with communities of need is necessary, particularly during planning processes. Taking a
more inclusive, communicative approach to mobility planning will allow for better, more
efficient mobility plans that more robustly serve the needs of the most vulnerable users [22].

Spatial and temporal coverage of services needs to be considered for all users. While
often centered on ‘peak hour’ needs, shifting employment patterns, changing family
demographics, and more dispersed activity-based lifestyles require that better mobility
services coverage is needed in terms of both space and time to ensure that all users have
equal access to opportunities that may not fit into traditional working/leisure hours.
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Better service integration is needed [23] with more heavily dispersed populations, it
and is unlikely that a one-seat trip provided by one operator will adequately serve the needs
of all users. Integration, however, should be a multidimensional consideration, encompass-
ing integration of services (including nontransport services), payment, and information,
thus promoting the transition to a fully mobility as a service (MaaS) system [24–26].

A more effective information-sharing process should be developed to fully serve all
users’ needs. Information should be accurate and reliable, accessible from various platforms
(including digital and paper) and in different formats (including, for example, images, text,
and multiple languages), and secure to guarantee its consistency and confidence to all
users [27]. New service provisions should be explored, including considerations beyond
traditional mobility services or systems and incorporating walking, cycling, car-share,
carpool, taxis, and other services [28]. Some resistance is expected as innovation pushes
towards a shared transport model. A study presented in [29] shows that car-sharing service
providers have shown the greatest resistance to this adaptation, contrary to e-bike-sharing
services that are more open to this change.

Adequate financial and policy support is needed from the local and national govern-
ments. Namely, financial concerns are the primary concern regarding the cost of transport
for users and the cost of providing service to vulnerable populations and areas. The cost
was identified as a significant barrier to mobility services and transport use, indicating that
more considerations should be made for ways to offset its impact.

The transportation system must always be planned and designed to ensure maximum
inclusiveness for all members of society, especially those with disabilities, seniors, and
children/youth, without limiting or restricting their mobility options [30], with the final
purpose to make sure all means of transport are prepared to receive every citizen without
any limitation or exclusion, thus promoting a more inclusive society.

Therefore, developing solutions for all these cases should be highly prioritized, namely
for ensuring the embedding of new intelligent assistive technology conceived for easing
the navigation and routing experience of blind and visually impaired people throughout
their daily commuting safely and independently [31–33].

3. Related Work on VIP

Visual assistive technology can be divided into three main categories: vision enhance-
ment, vision substitution, and vision replacement [34,35]. Due to the fast presence of
sensors and their functions in almost every activity of society, these systems are becoming
increasingly available in terms of applications and devices, providing different services,
such as localization, detection, and avoidance. Sensors can help navigate and orient VIP
and give them a sense of their external environment. Sensors can identify any surrounding
object property and facilitate VIP’s mobility tasks [36]. Vision replacement is the most
complex category, as it is related to medical and technological issues. In such systems,
sensor data will be sent to the brain or a specific nerve. Vision replacement and vision
enhancement are comparable yet different. In the vision enhancement category, the process
data that is sensed by a sensor will be displayed in a device. In the vision substitution cate-
gory, the result of any data sensed by any sensor will not be displayed, and the output result
will be acoustic, tactile, vibrating, or a combination. This makes the vision substitution
systems very similar to intelligent transportation systems and mobile robotics.

This research work is focused on the visual substitution category, which can be further
subdivided into three other categories: electronic travel aids (ETAs), electronic orientation
aids (EOAs), and position locator devices (PLDs). Table 1 briefly presents each visual
substitution category subcategory and its services.
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Table 1. Visual substitution subcategories.

Subcategory Name Description Services

Electronic Travel Aid (ETAs).
Collected and sensed data about

surrounding areas are sent to the user or a
remote server via sensors, laser, or sonar.

Surrounding obstacles are identified.
Texture and gaps on the surface can be provided.
The distance between the user and an obstacle
is determined.
Great locations are identified.
Self-orientation throughout an area is improved
with obstacle avoidance information.

Electronic Orientation Aid (EOAs) Guidelines and instructions about a path
are given to the user through a device.

The best path for a particular user is determined.
Clear direction and path signs are given by
calculating the user’s position and tracking
the path.

Position Locator Devices (PLDs)
The user’s location is identified, for

example, using the global positioning
system (GPS)

Guidance from one point to another point
is given.

3.1. Navigation of Visually Impaired People

A study involving VIP and control groups aims to assess the ability to travel and
learn routes and the consequent capacity for mobility in an urban environment [37]. The
results show that VIP can learn complex routes efficiently when assisted and guided. They
experience greater difficulties when they are expected to do so autonomously. In [38], a
system for navigation in outdoor environments for VIP is proposed using a geographic
information system (GIS) as a fundamental supporting system. Given the current position,
the GIS allows the system to find a route to the desired destination, thus supporting the
VIP in its movement along the route. Information about the user’s positioning is obtained
through a GPS receiver, a magnetic compass, and a gyrocompass. System communication
with the VIP uses a keyboard and voice messages. In [39], the authors present an app
developed to help VIP move autonomously, identifying obstacles that may exist along the
route through the smartphone’s camera. The Walking Stick app fulfills three objectives:
(1) to identify obstacles, (2) to allow the app to run without having to open it explicitly
(it is accessible through shaking movement), and (3) safety requirements by detecting
falls from the smartphone and emitting a sound so it can be found. The application
considers development requirements to avoid rapid battery consumption. In [40], the
X-EYE app is presented to promote VIP independent mobility, using a wearable camera
which reduces the cost of the solution. The application allows the detection of obstacles,
people recognition, tracking and sharing of location, SMS reader, and a translation system.
The authors indicate some limitations of the solution, such as the partial appearance of
images and rapid changes in the background or lighting conditions. In [41], the authors
introduce a navigation system for VIP with the main objective of addressing obstacle
detection, which is useful for navigation in outdoor and indoor environments. The system
uses ultrasonic sensors that, together with a buzzer and a vibrator, can be placed on a
jacket or other garment to be easily included in the daily life of the VIP and, therefore,
more easily be accepted as an accessory that is easily transported. In [42], a system for
indoor navigation using the computer vision approach is presented. The user must use a
camera in their hand while navigating the environment prepared with fiducial markers
augmented with audio information. The system has two modes of operation. In the first
mode—free mode—the user freely navigates through the pre-prepared environment and is
informed of the environment around them through audio and the detected markers. In the
second mode—guided mode—the user navigates from the current location to the desired
destination using the shortest path (using the Dijkstra algorithm). In [43], a support system
for indoor navigation is presented, consisting of a navigation system and a map information
system installed on a cane. The system works on the assumption that there is a colored
navigation line on the pavement. The cane has a color sensor that, when leaning against
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the line on the floor, manages to inform the user through a vibration system that they are
moving over the line. A one-chip microprocessor controls the color recognition system.
The map information system uses RFID tags along the line on the floor and RFID receivers
placed on the cane, allowing a navigation system from a given source to a given destination
to be made available. In [44], the authors present a navigation system that detects obstacles
and guides VIPs through the most appropriate paths. Obstacles are detected using an
infrared system, and feedback is sent to the user through vibration or sound to inform
them of their position. Aware of the limitation of canes regarding protection at the head
level, the system has incorporated a sensor in a cap (and, therefore, at the level of the
user’s head area) that allows information about obstacles and navigation. In [45], the
authors present a navigation system that aims to fill the gaps in the GPS (only valid in
outdoor environments). Its main focus is to provide the VIP with accurate information
about its spatial positioning. The proposed system can be used in an indoor or outdoor
environment and uses the camera carried by the user and computer vision techniques.
As the user follows a previously memorized path, the camera’s image is recognized to
calculate its direction and positioning precisely. In [46], the authors propose a system that
intends to complement the use of the cane when traveling in indoor environments. The
system consists of a geographic information system related to a building that contains
information about visual markers that allow the system to create a mental map of the
environment and later allow navigation in space. In [47], a system is proposed to help VIPs
move around outdoors with the possibility of detecting obstacles. The system, which aims
to combat the limitations of other solutions in terms of cost, dependency, and usability,
makes use of a mobile-based camera vision system to allow great usability in the use of
the system in places with which the VIP is not familiar, such as parks, streets, among
other places. Deep learning algorithms are used to recognize objects and interact with a
mobile application which is also part of the system. In [48], a system is proposed based
on a mobile application that stores important information for the VIP during the route,
making their journey easier and safer simultaneously. This concept goes against generalized
navigation, favoring a personalized recommendation based on the information each person
prefers to receive, based on the most favorable input for them to feel located and safe. The
system uses voice feedback consisting of multi-sensory clues combined with microlocation
technology. In [49], the authors propose an android app to assist in indoor navigation based
on transmitting information to the user via audio messages and the existence of QR codes.
The system takes predesigned paths for VIPs along which QR codes are placed to infer
the position and recommend the quickest and shortest route to an intended destination.
The system allows detecting deviations in the route from what is expected and informs
the user of the deviation that has occurred. In [50], the authors propose a navigation
system based on simultaneous location and mapping (SLAM) to help VIPs navigate indoor
environments. This system integrates sensors and feedback devices, including an RGB-D
sensor and an inertial measurement unit (IMU) on the waist, a camera on the user’s head,
and a microphone together with a headset. The authors developed a visual odometry
algorithm based on RGB-D data to estimate the user’s position and orientation, refining
the orientation using the IMU. The head-mounted camera recognizes port numbers, and
the RGB-D sensor detects important landmarks, such as corners and corridors. In [51], the
authors describe an integrated navigation system with RFID and GPS, entitled Smart-Robot.
The system uses location based on RFID and GPS operating, therefore, both in indoor and
outdoor environments, respectively. The system uses a portable device composed of an
RFID reader, GPS, and an analog compass to obtain location and orientation information.
During navigation, the system avoids obstacles using ultrasonic and infrared sensors. User
feedback is made through vibration in a glove and loudspeakers. In [52], the authors
propose a VIP system that can operate indoors and outdoors. The system uses an ultrasonic
sensor for navigation and voice outputs to prevent obstacles. Table 2 summarizes the
challenges and approaches.
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Table 2. Summary of challenges and approaches of navigation systems for visually impaired people.

Reference Challenge Approach

[38]

Outdoor navigation

SIG, GPS receiver, magnetic compass, and gyrocompass

[39] Smartphone camera, accelerometer

[47] Deep learning, camera vision-based system

[48] Voice feedback, multi-sensory clues, microlocation technology

[44] Obstacle detection and navigation The infrared sensor in a cap for head protection

[40]
Obstacle detection

Wearable camera connected to the smartphone

[41] Ultrasonic sensors, vibrato rand buzzer

[42]

Indoor navigation

Webcam, Dijkstra Algorithm, Computer Vision

[50] SLAM, inertial sensors, feedback devices

[43] Walking stick, color sensor, colored floor, RFID tags

[49] QR codes

[46] GIS, visual markers

[45]

Indoor and outdoor navigation

Camera, computer vision

[51] RFID, GPS, ultrasonic and infrared sensors

[52] Ultrasonic sensor

3.2. Outdoor Positioning Using Landmarks

In [53], the authors present an indoor and outdoor navigation system based on land-
marks and artificial intelligence. Template matching techniques are used to find patterns
to estimate the distance to the landmark. Several techniques are used, such as high boost
filtering and histogram equalization, to improve the images for the processing process.
The dynamic exclusion heuristic converts the estimated distance into the actual space [54]
and presents a system that uses QR codes displayed in registered landmarks. The system
thus allows the user, based on QR codes, to identify their position and, on the other hand,
to have access to the navigation functionality based on landmarks. The system includes
images of each landmark, allowing users to navigate freely using these images without
needing guided navigation. In [55], the authors present a system for localization in outdoor
environments using landmarks based on deep learning. The proposed location method
is based on the faster regional convolutional neural network (Faster R-CNN), which is
implemented for the detection of landmarks in images, and the feed-forward neural net-
work (FFNN), which is used to retrieve the location coordinates and compass directions
for the device implemented in the real world based on landmarks detected from R-CNN.
In [56], the authors report on how to drive a mobile robot using natural landmarks such
as trees and plants on Japan’s University’s outdoor campus. An essential component of
the system is the acquisition of natural landmarks being proposed for the landmark agent
(LmA). This component has three states: SLEEP, WAKE UP, and TRACK. The SLEEP status
means that there is no candidate for a landmark. WAKE UP means that a candidate for a
reference point has been detected, and the agent begins to locate it, and finally, the TRACK
state means that the object is repeatedly detected two or more times. When you make the
transition order SLEEP-WAKE UP-TRACK, the reference point is detected and recorded
on the LmA map. Another component of the system is autonomous navigation using the
acquired natural landmarks. The navigation strategy uses the perceived route map (PRM)
generated by automatically acquiring natural landmarks through the teaching of routes.
In [57], the authors propose an approach to improve the information provided by most
navigation systems that are based on information based on street names and step-by-step
instructions. The authors suggest improving this information based on landmarks collected
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and inserted in the recommendation system to provide information that the user can more
easily identify.

3.3. The Role of Machine Learning in Image Recognition

In this section, we highlight some of the research being carried out regarding the use
of machine learning algorithms and techniques in the field of image recognition, which
has been a field of research for the past two decades. These algorithms can recognize
landmarks and help VIP gain positional awareness within an urban environment. Those
landmark images can be acquired in real-time from a smartphone camera or other mobile
devices. The identification can be read out loud with the help of accessibility tools such as
Google TalkBack.

To solve this problem, Yeh et al. propose an image search approach in web search
engines [58]. In this approach, location recognition is performed not only through images
but also through text. The process includes three phases: image search on Google to
identify similar images, collection of keywords from pages where similar images are found,
and a new search on google with the keywords obtained to obtain similar images. The
technique used is a hybrid search for images and keywords. Li and Kosecká present
a method of probabilistic location recognition for visual navigation systems [59]. The
proposed system has two phases: in the first phase, the environment is divided into several
locations categorized by key points; in the second phase, the key points are used to estimate
the most likely location. This process demonstrates a high localization rate using only
10% of the characteristics of an image. To perform location recognition in large datasets,
Schindler et al. present a method that uses a generalized version of the vocabulary tree
search algorithm [60]. This method allows using datasets with ten times the number of
images. The algorithm recognized 20 km of the urban landscape, storing 100 million
characteristics in a vocabulary tree. Gallagher et al. use a K-nearest-neighbor algorithm
in a dataset with more than 1 million georeferenced photographs. This method proves
to be more effective in determining the location of an image than using only the visual
information of an image [61]. One of the biggest challenges for visual localization is the
search for images similar to the original in a database with georeferenced images. For the
visual location to be carried out, the objects must be identified in different poses, sizes, and
background environments. Faced with this challenge, Schroth et al. use a “bag of words”
quantization and indexing method based on a tree search [62]. Cao and Snavely propose
a method of representing images from a database in a graph [63]. The method selects a
group of subgraphs and creates a function that calculates the distance between each group.
Each image is classified according to this distance function. A probabilistic method to
increase the diversity of these classified images is also presented. The paper states that this
method improves the performance of location recognition in image datasets compared to
“bag of words” models. Wan et al. present research about using neural networks to find
similar images based on the content. This work investigates a convolutional neural network
with several changes in its definitions. Convolutional neural networks are very effective
in recognizing images [64]. Liu et al. use a semi-supervised machine learning model
using a convolutional neural network. The image dataset was created with images from
surveillance cameras and smartphones and took into account the changes that variations in
the weather can cause in the panorama of an image [65]. Zhou et al. present research on the
methods used to obtain images based on the content. In this study [66], searches for images
are grouped according to the method used: by keyword, by example image, by sketch, by
color layout, and by concept layout. Zhou et al. highlight two pioneering studies carried
out around the 2000s. The first is the introduction of local visual invariant characteristics
capable of capturing the invariance to the rotation and resizing of images. The second
work highlighted was the introduction of the “bag of words” model capable of creating a
compact representation of images based on the number of local characteristics present. It
has been revealed that recently the convolutional neural networks have shown an above-
average performance compared to the other methods. In this work, the authors explain that
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convolutional neural networks are a variant of deep neural networks and are usually used
in recognition and image acquisition. In [67], Tzelepi and Tefas propose a convolutional
neural network model to obtain image characteristics representation. Subsequently, the
neuronal network is again trained to create more effective image descriptors. In this method,
three different approaches are proposed: in the case that no information is provided, in the
case the classification of the images is provided, and in the case, user feedback is provided.
The proposed method outperforms all other unsupervised methods used in the comparison.
To reduce the time spent obtaining images based on the content, Saritha et al. present a
deep learning method [68] capable of extracting the properties of an image and classifying
them according to those properties. In this work, properties such as color histogram, image
edges, and texture are taken into account. The extracted properties are saved in a small
file for each image, where files with similar properties must belong to similar images. The
images’ properties are extracted using a convolutional neural network.

3.4. Convolutional Neural Networks for Image Recognition

With recent advances in machine learning, the most used solution for image recog-
nition is neural networks, specifically convolutional neural networks. We next explain
how artificial neural networks work and their more specific subgroup of convolutional
neural networks.

One of the types of machine learning algorithms, neural networks, demonstrates a
remarkable ability to learn complex relationships between objects belonging to a large
amount of data. Neural networks are also valuable for the analysis of unstructured data.
Examples of unstructured data are text, audio files, and images [69]. However, neural
networks can be difficult to program, train, and evaluate. There are several frameworks
capable of facilitating this work for a programmer. Examples of these tools in Python are
TensorFlow to deal with neural networks in a more particular way or Keras, which works
on top of TensorFlow, offering a higher level of abstraction. Neural networks are composed
of an input layer that receives the input data, an output layer that classifies the data, and
one intermediate layer that processes the information. A simple neural network has only
one middle layer, whereas a deep neural network has two or more layers. The unity of
neural networks is called a neuron, and the connection between each neuron is called a
synapse (Figure 2) [70].
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Convolutional neural networks are the most used neural networks in image process-
ing. Like neural networks, they are also composed of “neurons” that receive input and
process them using activation functions. However, unlike the layers of neural networks,
convolutional neural networks use images as input, not data vectors [69]. Convolutional
neural networks have several applications: they can identify pictures, group them by their
similarity or recognize objects and places portrayed in the image. The components of a
convolutional neural network are as follows [69]:

• Data input
• Convolutional layer;
• Pooling layer;
• Flattening.

Image input is the first component of a convolutional neural network. In this compo-
nent, the image is converted into a matrix (Figure 3), where each value represents the color
of each pixel in the image [69].
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The convolutional layer is where image processing begins and consists of two parts:

• Filter;
• Characteristics map.

The filter is a matrix or pattern combined with the original image’s matrix to obtain
the feature map. The feature map is the reduced image produced by the seizure between
the original image and the filter (Figure 4). In a real convolutional neural network, several
filters are used to create multiple feature maps for each image [69].
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The pooling layer helps the network to “ignore” the least important data in an image,
further reducing the image and preserving the most critical features (Figure 5). This compo-
nent consists of functions such as “max pooling”, “min pooling”, and “average pooling”.

Flattening is the component where the image is arranged to serve as an input to a
shared neural network. In this part of the process, the matrix is “flattened” and converted
into a single column (Figure 6).
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4. Proposed OPIL Framework
4.1. Overview and Architecture

The architecture proposed for Outdoor Positioning for Visually Impaired People using
Landmarks (OPIL), presented in Figure 7, aims to allow a VIP to obtain information on the
location where they are positioned, one of the scenarios that represent a challenge for this
segment of people when they move autonomously in a city. The architecture comprises
two main components: a mobile application that the VIP must use and a backend server
that does the image recognition processing and obtains the information about a helpful
description that can be transmitted to the VIP so they can orient themselves.
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In the architecture proposed for OPIL, it is assumed that each VIP has a mobile phone
and uses an app that is one of the components of the system. This app allows the capture
of the image through the mobile phone’s camera, which helps collect information about
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where the user is. This app must consider the battery consumption and the processing
power it takes from the mobile phone. The user must keep the mobile phone fixed for some
time, and only when they get the result sent by the backend as a result of processing its
positioning (in some cases, the location may not be identified) can they move the mobile
phone to another location. Whenever the backend receives an image, a comparison is made
with all the images in a prepopulated and georeferenced image database. If the image is
successfully identified, a description is returned by the algorithm in such a way that it is
helpful for the VIP.

4.2. Components
4.2.1. Mobile Application

The mobile application represents the process’s starting and ending point, as seen in
Figure 8. The VIP triggers the process when the user opens the app and points the camera
to the place it is facing, allowing the image collection. The image capture module (ICM) is
responsible for presenting the UI that captures the image, collecting it, and sending it to the
backend server communication module (BSCM), which is responsible for communicating
over the Internet with the backend server that will process the image (this process will
be described in more detail in the next section). As soon as there is a response from the
backend server, the callback method module (CMM) is triggered automatically to be able
to process the response and send it to the notification module (NM), which is responsible
for the interaction with the VIP to inform the user of the result about their positioning.
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4.2.2. Backend Server and Proposed Algorithm

The proposed algorithm for image recognition is divided into three phases (Figure 9).
In the initial phase, datasets are obtained where all points of interest necessary for the
project (from different angles, light levels, weather conditions, etc.) are photographed and
identified. The second phase trains the model using a convolutional neural network. In
this phase, the identification attributes are the images of the photographed objects, and
the target attribute is the identification of these objects. The final phase corresponds to the
trained model’s use in identifying new images of the objects.
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The first phase corresponds to data collection, where images are gathered. Later,
the identification model is trained using those same pictures. The collection of images
must have an equal number of images with points of interest and those without points
of interest so that the model’s training is not biased. Images without points of interest
should be similar to images with points of interest. All images must be changed to have
the exact dimensions. The image distribution should be about 80% training and 20%
test images. Changing image properties such as opacity, converting them to black and
white, or reducing the definition may be necessary to reduce model training time at
the expense of accuracy. An image marking tool may be required to identify and select
points of interest in the photos manually. Some examples of these tools are LabelImg
(https://github.com/tzutalin/labelImg (accessed on 1 July 2022)) and OpenLabeling (https:
//github.com/Cartucho/OpenLabeling (accessed on 1 July 2022)).

The second phase corresponds to the training of the convolutional neural network. In
this phase, the model is trained to differentiate the landmarks based on their geometric-
functional typologies, such as punctual elements (e.g., monuments, stores, schools, city
hall), linear elements (e.g., rivers, roads, sidewalks), or areal elements (e.g., squares, green
parks). When creating the model, there are some general guidelines to follow. The use
of convolution and pooling should be alternated, with convolution initially being used
and pooling at the end before connecting to the neural network (e.g., convolution-polling-
convolution-pooling-neural network-output). During convolution, there is little need to
use a filter more significant than a three-by-three matrix. It is advisable to use max pooling
along the neural network and average pooling at the end before connecting to the neural
network layer. Generally, the more layers a neural network has, the greater its accuracy and
execution time. Preprocessing of the images should be done only if necessary to increase
the accuracy or speed of the model. Creating new pictures with existing images (data

https://github.com/tzutalin/labelImg
https://github.com/Cartucho/OpenLabeling
https://github.com/Cartucho/OpenLabeling
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augmentation) almost always helps improve a model’s accuracy. The number of nodes in
the first intermediate layer of the neural network should be half of the nodes in the input
layer, and in the second layer, half of those in the first layer. The number of nodes in the
neural network’s output layer must equal the number of classes identified by the network.
The number of nodes in the middle layers of a neural network must follow a geometric
progression (2, 4, 8, 16, 32, . . . ).

The third phase corresponds to the use of the model. A smartphone application must
be created to obtain images from the camera and send the data to an external API. If access
to the Internet via mobile data is impossible, then the pretrained model must be integrated
into the application. To be able to use the android model, the pretrained model must be in
the “.pb” format (TensorFlow) and must be converted to this format if it is in the “.h5” format
(keras). Suppose the solution is used in more than one geographical area. In that case, it is
advisable to add the GPS coordinates to the characteristics matrix of the images that serve as
input data to the convolutional neural network. Suppose the solution is used in more than
one geographical area. In that case, the smartphone application must also obtain the GPS
position when taking images, which must be used to forecast the point of interest.

The model’s usefulness will depend on the imageability of the urban environment.
This is because, and according to Lynch, an imageable city has, in principle, a better degree
of legibility [71]. Lynch also states, in his 1960 article [71], that imageability is the “quality
in a physical object which gives it a high probability of evoking a strong image in any given
observer. It is that shape, color, or arrangement which facilitates the making of vividly
identified, powerfully structured, highly useful mental images of the environment”.

4.3. Framework Security Aspects

The preferred framework is supported by mobile devices and other digital technolo-
gies for its operation, i.e., cloud computing. The technological development and the
sophistication of such devices usually reveal unexpected and underestimated security vul-
nerabilities. As there is an increased reliance on technology, it is also necessary to increase
efforts to protect the technological resources and infrastructure, ensuring that they operate
safely and uninterruptedly.

As the amount of data collected increases, new systems and applications are integrated,
the number of users increases, and many that lack computer skills, the potential occurrence
of information security incidents, breaches, and threats also increases. Thus, it is almost
mighty to have adequate security services and systems, as well as good practices, to manage
all the interactions within the framework; being fundamental to have mechanisms that
ensure the confidentiality, integrity, and availability (CIA) properties of the framework
operation and information [72].

As a smartphone supports the proposed framework for capturing landmarks and
surroundings, on the Internet for bidirectional communication, and in cloud computing
for the backend server operation and image comparison, the CIA properties must also be
guaranteed. To guarantee the CIA properties in the proposed framework, a cybersecurity
layer in the form of a mobile threat defense (MTD) system must be considered. MTD can be
viewed as sophisticated, dynamic protection against cyber threats targeted against mobile
devices, and the safety is applied to devices, networks, and applications [73]. This will
maintain the security information of the data generated and received by the smartphone
(or another mobile device), protecting against malicious applications, network attacks, and
device vulnerabilities [74].

For the backend server, a cloud service system can be used. As the information and
data, the server manages, and stores are compassionate. If the CIA properties are not met,
this can cause a high-level impact on the users and organizations that use the proposed
framework, possibly causing a severe or catastrophic adverse effect on organizational
operations, organizational assets, and individual users. It is suggested to use the security
as a service (SecaaS) provided by the cloud provider. This is a package of security services
offered by a service provider that offloads much of the security responsibility from an en-



Sustainability 2022, 14, 11567 15 of 19

terprise to the security service provider. The services typically provided are authentication,
antivirus, antimalware/spyware, intrusion detection, and security event management [75].
SecaaS is considered part of any cloud provider’s software as a service (SaaS). A segment
of the SaaS offering of a CP. In a significantly more straightforward manner, the Cloud
Security Alliance defines SecaaS as the provision of security applications and services via
the cloud either to cloud-based infrastructure and software or from the cloud to the cus-
tomers’ on-premises systems [76]. The Cloud Security Alliance has identified the following
SecaaS categories of service: Identity and access management; and data loss prevention.
The combination of the previously referred systems and services will improve the level of
usage confidence of the framework and can be viewed as an adequate strategy to secure
both the end user, that relies on the utilization of mobile devices, and server-side data and
information (at rest and being used).

Cybersecurity is critical nowadays because safety, security, and trust are inseparable.
The relative insecurity of almost every connected thing is top of mind due to the heightened
awareness of the impact of cyberattacks and breaches, highlighted in the media and
popular culture depictions of nefarious hacking exploits. This makes achieving security
from the outset extremely critical to avoid becoming any computing service and application
highlighted by this media attention [77].

5. Conclusions and Future Work

Urban mobility is currently in a massive evolving period due to the digitalization
of society, the effects of the COVID-19 pandemic, the global economic dynamics, and the
ongoing pattern of people concentrated in the urban area. The mobility challenges are one
of the most visible and notable elements that profoundly affect urban metabolism and its
decurrent effects. The solutions being developed towards ensuring more inclusive and
universal access to the mobility system are essential to guarantee that visually impaired
people could benefit from this reality and substantially improve their daily commuting
activities and overall life in the urban ecosystem.

The presented solution addresses a specific problem related to the difficulty of orien-
tation by a blind or visually impaired person when they lose their direction in an urban
environment. Making use of the massive use of mobile phones, the solution assumes the
existence of one of these devices to capture an image of the environment that surrounds
the user to be able, through image recognition techniques, to obtain the user’s location, by
comparison to a georeferenced image data and a trained model.

Some factors need to be addressed such as reducing the time to acquire data and the
performance of the increased number of users that could use such a solution simultaneously
in a city. These factors are decisive for the success of the solution.

This solution aims to contribute to more inclusive mobility in urban environments.
The main limitations of the solution are mainly in terms of the scalability for large areas,
although the potential for historic centers or smaller cities is promising. In future terms,
we intend to create a functional prototype that allows the execution of tests in a controlled
environment. The evolution to an approach that contemplates the cooperation of citizens,
through crowdsourcing, is a possible way to overcome the scalability problems that the
solution may have now.
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