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RESUMEN 
Los péptidos derivados de proteínas específicas de tumores pueden activar el sistema inmune contra 
las células tumorales. Para promover la respuesta inmune, los péptidos deben primero unirse a las 
moléculas del complejo principal de histocompatibilidad. Aunque algunas posiciones de la secuencia del 
péptido inmunogénico necesitan aminoácidos "ancla" específicos, el resto de los residuos también 
influye en la afinidad de la unión. Modelamos el efecto de la sustitución de aminoácidos, en la afinidad 
de unión de los péptidos utilizando una red neural artificial. La red predice correctamente la especificidad 
de las posiciones de anclaje, pero también sugiere que los aminoácidos con propiedades similares 
pueden ser incluidos en la secuencia de los péptidos con alta probabilidad de tener alta afinidad de 
unión. 
Palabras clave: redes neuronales artificiales, HLA-A. 
 
ABSTRACT 

Peptides derived from tumor-specific proteins can activate the immune system against tumor cells. To 
promote the immune response, peptides must first bind to the major histocompatibility complex 
molecules. Although some positions of the immunogenic peptide sequence need specific “anchor” amino 
acids, the rest of the residues also influence the binding affinity. We modeled the effect of amino acids 
substitution on the binding affinity of peptides using an artificial neural network. The network correctly 
predicts the specificity of the anchor positions but also suggests that amino acids with similar properties 
can be included in the sequence of the peptides with high probability of having high binding affinity. 

Key words: artificial neural networks, HLA-A. 
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INTRODUCTION 

Cancer is a major health problem worldwide. One of the most promising approaches to cancer treatment 
is the arousal of the patients’ immune response (van der Bruggen et al., 1994; Marchand et al., 1995). 
With this strategy, it is possible to specifically eliminate cancer cells that already exist, and prevent the 
formation of new ones. To be able to attack cancer cells the immune system must be activated against 
tumor-specific antigens. The activation depends on a group of molecules known as the Major 
Histocompatibility Complex (MHC). The function of this set of molecules is to bind peptides derived from 
degraded proteins and to “present” them to the different kinds of cells that constitute the immune system. 
The interaction with the MHC-peptide complexes activates the immune cells. Experimentally, it has been 
found that the best binders are peptides 9 or 10 residues long (Parker et al., 1992; Kast et al., 1994) that 
have some positions where only specific amino acids are allowed, these are the so called “anchor” 
residues. However, the presence of these amino acids is not always enough to guarantee binding or high 
affinity; this is an important problem because higher affinity means higher probability of inducing the 
immune response. Several researchers have developed different strategies, including artificial neural 
networks, to predict binding with varying degrees of success (Hagmann, 2000). All these methods 
depend on the detection of anchor residues in the sequence of a target protein, but not all the methods 
can predict the binding affinity. 

As explained before, the presence of anchor residues is a necessary, but not sufficient condition to 
achieve high affinity (Kast et al., 1994a), and sometimes not even binding. This means that the other 
residues can modify the binding affinity and this is an aspect that has not been explored. We have trained 
an Artificial Neural Network to perform a quantitative sequence activity model of the effect of changes in 
the amino acid sequence, on the binding affinity of the immunogenic peptides. 

 

METHODS 

Sequence and Biological Activity of Peptides 

We used a sample of 82 peptides sequences (Table 1) 9 amino acids long, found in the literature 
(Salazar-Onfray et al., 1997; Sette et al., 1994; Kawakami et al., 1995; Rivoltini et al., 1995). 

The analyzed activity (Table 1) is the binding affinity to the Human Lymphocytes Antigens A2.1 (HLA-
A2.1), one of the MHC class-I molecules most frequently expressed, measured as molar concentration 
of a test peptide, needed to inhibit 50% of the binding of a standard peptide (IC50%), transformed to: 

pIC50 = -log IC50% (i) 

Description of Peptide Sequence 

The quantitative description of amino acids is crucial in any quantitative structure activity relationships 
analysis, due to the information content of the description. In our study we used the principal component 
scales, or Z scales, extracted by Wold (Hellberg et al., 1987) from a matrix of 29 physicochemical 
properties of the 20 coded amino acids. These calculated descriptors are interpreted as related to 
hydrophilicity (Z1), size and shape (Z2) and electronic properties (Z3). Each peptide was described by a 
vector of 9 elements, corresponding to the Z value of the residue in each position starting at the amino 
end. The complete set of Z values is presented in Table 2. 

Network Training 

We used a program that simulates a fully connected, feed forward neural network, trained with the back 
propagation algorithm (Rumelhart y McClelland, 1986). The network was trained with the descriptor 
vectors of one of the Z scales as input, and the transformed activity as target. The three scales were 
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used individually, one at a time, and the number of hidden units was varied, to find the combination, that 
best predicted the affinity. 

Table 1. Sequence and Activity of Peptides 

Sequence pIC50 Sequence pIC50 Sequence pIC50 Sequence pIC50 

LLAQFTSAI 9.284 GLSRYVARL 7.377 GLKGAVTLT 6.623 MLARACQHA 5.851 
YLVSFGVWI 8.721 ILSPFMPLL 7.347 IISCTCPTV 6.58 SLHVGTQCA 5.842 
GILTVILGV 8.347 VLLDYQGML 7.328 WILRGTSFV 6.556 GLAANQTGA 5.785 
GLLGWSPQA 8.237 YMLDLQPET 7.31 LLLEAGALV 6.544 AMFQDPQER 5.74 
WLSLLVPFV 8.161 ITDQVPFSV 7.076 KLPQLCTEL 6.484 NLQSLTNLL 5.699 
FLLTRILTI 8.149 YLEPGPVTA 7.022 MLLAVLYCL 6.478 VLETAVGLL 5.681 
LLMGTLGIV 8.097 ILCLIFLLV 6.996 RLLGSLNST 6.447 TILLGIFFL 5.623 
FLLSLGIHL 8.0 QLFHLCLII 6.886 ILTVILGVL 6.419 LTVILGVLL 5.58 
KTWGQYWQV 7.959 FAFRDLCIV 6.886 NLSWLSLDV 6.415 HLLVGSSGL 5.556 
MMWYWGPSL 7.921 AAGIGILTV 6.886 SLCFLGAIA 6.368 RLHKRQRPV 5.532 
SLYADSPSV 7.854 ILLLCLIFL 6.845 ALVARAAVL 6.342 LQTTIHDII 5.501 
KLHLYSHPI 7.77 TLIDVCPI 6.815 MLDLQPETT 6.335 TTAEEAAGI 5.38 
ALMDKSLHV 7.77 PLLPIFFCL 6.796 SLNSTPTAI 6.274 ALIICNAII 5.322 
LLVSGSNVL 7.62 VILGVLLLI 6.785 GLVSLVENA 6.272 CLALSDLLV 5.301 
LLLCLIFLL 7.585 ILLLEAGAL 6.777 ILLGIFFLC 6.199 LLCLVVFFL 5.255 
FLCKQYLNL 7.538 TLHEYMLDL 6.726 LVLMAVLYV 6.17 FLHLTLIVL 5.0 
GLYSSTVPV 7.481 GTLIDVCPI 6.714 TVILGVLLL 6.072 FLALIICNA 4.954 
AIIDPLIYA 7.432 SLVENALVV 6.686 FLCWGPFFL 6.049 TLPRARRRV 4.602 
HLYSHPIIL 7.42 LLWFHISCL 6.682 GIGILTVIL 6.0 GLFLSLGLV 4.301 
FLSLGLVSL 7.409 VLQAGFFLL 6.623 LLSSNLSWL 5.964   
YMNGTMSQV 7.398 FLGGTPVCL 6.623 FLAMLVLMA 5.917   

Activity Modeling 

After the training, we selected the system that made the best prediction and presented it with a set of 
model peptides, made by substituting each coded amino acid for one of peptides’ residues. With 9 
residues and 19 possible substitutions at each position, there are 171 peptides. 

Table 2. Principal Component Scales 

Amino acids Symbols Z1 Z2 Z3 

Alanine Ala, (A) 0.07 -1.73 0.09 
Arginine Arg, (R) 2.88 2.52 -3.44 
Asparagine Asn, (N) 3.22 1.45 0.84 
Aspartate Asp, (D) 3.64 1.13 2.36 
Cysteine Cys, (C) 0.71 -0.97 4.13 
Phenylalanine Phe, (F) -4.92 1.30 0.45 
Glycine Gly, (G) 2.23 -5.36 0.30 
Glutamate Glu, (E) 3.08 0.39 -0.07 
Glutamine Gln, (Q) 2.18 0.53 -1.14 
Histidine His, (H) 2.41 1.74 1.11 
Isoleucine Ile, (I) -4.44 -1.68 -1.03 
Leucine Leu, (L) -4.19 -1.03 -0.98 
Lysine Lys, (K) 2.84 1.41 -3.14 
Methionine Met, (M) -2.49 -0.27 -0.41 
Proline Pro, (P) -1.22 0.88 2.23 
Serine Ser, (S) 1.96 -1.63 0.57 
Tyrosine Tyr, (Y) -1.39 2.32 0.01 
Threonine Thr (T) 0.92 -2.09 -1.40 
Tryptophan Trp, (W) -4.75 3.65 0.85 
Valine Val, (V) -2.69 -2.53 -1.29 
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To explore as much of the sample space as possible, we randomly selected four peptides, one from the 
best binders, a moderately high binder, a moderately low and one of the low binders. 

The contribution of each amino acid was calculated subtracting the activity of the sample peptide from 
the calculated activities of its derivatives. The final contribution is the average of the four calculated 
values. 

 

RESULTS 

Network Training 

The optimum network has 9 neurons in the input layer, 5 in the hidden layer and 1 in the output layer. 
We did not use a bigger network because it has been shown (Andrea & Kalayeh, 1991) that better 
predictions are obtained when the number of patterns is from 1.8 to 2.2 times bigger than the number of 
bonds in the network, and with this configuration our network is within these limits. 

The best results were obtained with the Z1 scale, for which the average difference between the observed 
and calculated activities was 4%. For 57 of the peptides the activity was calculated with less than 5% 
difference, and only 10 had a difference bigger than 10%. Because of this, we decided to use Z1 to model 
the activity. A summary of results for the three scales are shown in Table 3. 

Table 3. Training Results with the Z scales 

Z scale Average 
Difference % 

Difference 
< 5% 

Difference 
> 10 % 

Z1 4 56 11 

Z2 4.8 54 15 

Z3 5.2 51 13 

 

The average contribution for coded amino acids in each position is presented in Table 4 

Table 4. Average contribution of amino acids at each position, 
the highest contribution at each position is underlined 

Aa 1 2 3 4 5 6 7 8 9 

F 1.519 0.763 1.291 0.472 0.589 0.129 0.514 0.240 0.845 

W 1.482 0.749 1.288 0.488 0.605 0.138 0.518 0.312 0.817 

I 1.415 0.750 1.269 0.518 0.648 0.151 0.530 0.484 0.752 

L 1.362 0.760 1.244 0.545 0.683 0.162 0.542 0.630 0.689 

V 1.056 0.593 1.042 0.718 0.675 0.242 0.628 0.870 0.410 

M 1.012 0.549 1.009 0.740 0.655 0.261 0.627 0.853 0.391 

Y 0.650 0.335 0.844 0.843 0.524 0.411 0.503 0.746 0.246 

P 0.565 0.312 0.829 0.856 0.503 0.435 0.490 0.730 0.213 

A -0.045 0.218 0.747 0.949 0.368 0.693 0.614 0.607 0.028 

C -0.332 0.202 0.708 0.992 0.319 0.869 0.734 0.549 -0.001 

T -0.450 0.199 0.696 1.006 0.306 0.921 0.776 0.531 -0.008 
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S -1.141 0.190 0.631 1.075 0.258 1.090 0.996 0.447 -0.077 

Q -1.278 0.189 0.617 1.089 0.251 1.113 1.043 0.431 -0.110 

G -1.308 0.189 0.614 1.092 0.250 1.118 1.054 0.427 -0.118 

H -1.411 0.189 0.603 1.104 0.245 1.136 1.093 0.414 -0.152 

K -1.616 0.188 0.576 1.132 0.236 1.18 1.185 0.387 -0.254 

R -1.631 0.188 0.573 1.134 0.235 1.185 1.194 0.384 -0.264 

E -1.699 0.187 0.560 1.147 0.232 1.209 1.236 0.372 -0.314 

N -1.737 0.187 0.551 1.156 0.230 1.229 1.266 0.364 -0.348 

D -1.816 0.187 0.525 1.183 0.226 1.297 1.351 0.341 -0.429 

 

These values are not absolute, they represent a relative change when the one amino acid is substituted 
for another. 

All the positions are predicted to have some kind of selectivity. With the exception of positions 5 and 8, 
the highest contributions are predicted to be on the extremes of the scale. At positions 1, 2, 3, 5, 8 and 9 
the network predicts a better contribution from hydrophobic residues; while at 4, 6 and 7 the hydrophilic 
amino acids have better contributions. Four amino acids are predicted to have high contributions at 
position 2: Leucine, Isoleucine, Phenylalanine and Tryptophan. L and I are known to be anchor residues, 
F and W are not found in the sample, but have Z1 values similar to L and I. Methionine and Threonine 
are also present at position 2 of some peptides, M is predicted to have medium contribution, but T has a 
very low one. Valine is predicted to have a medium contribution but is not present in the sample. 
Predictions for position 9 are very similar. Contributions at positions 2 and 9 are presented in Figures 1 
and 2. 

At positions 5 and 8 the network predicts better contributions for a small group of amino acids I, L, V and 
M at 5, and V, M, Y and P at 8, these amino acids are all hydrophobic. 

 

CONCLUSIONS 

Although all the scales have a good performance, the best results in the training were obtained with the 
first principal component scale, that is related to hydrophilicity, this in coherent with composition of the 
peptides in the training sample. All of them are designed from experimental data which shows a better 
binding and affinity for peptides with hydrophobic residues at anchor positions. This design limits the 
available information to the net, and maybe one of the reasons of some mistaken predictions. On the 
other hand, the best description of the amino acids would be by using the three component scales at the 
same time; in this way, all the properties of the molecules are properly described. We had to work them 
out individually because of the small size of our sample. It would take a sample three times as big as the 
one we have to use the complete set of values. 

Others have used different methods to predict the binding and affinity of peptides, with average success 
between 75% and 100% (Hagmann, 2000), but their sample sizes are much bigger than ours. Gulukota 
et al. (Gulukota et al., 1997) trained a network using over 400 peptides and a frequency description, and 
successfully predicted binding in over 80% of the cases. Sette (Sette, 2000), used a sequence frequency 
analysis and a database of over 50 000 peptides to predict binding to the MHC with almost 100% of 
success. Parker (Parker et al., 1992) also uses a sequence analysis methodology, based on several 
hundreds of peptides, to predict the half-life of binding to the MHC molecules with an accuracy of over 
80%. Our results have not yet reached this refinement, but our data base is very small and with more 



 

 
Revista Tendencias en Docencia e Investigación en Química  
Año 2015                            

 

Congreso 
Internacional de 
Docencia e 
Investigación en  
Química 

 

 
   1296 
 

data the results can be improved. In spite of the small size, the results are almost as good as the 
published referred data. We got almost 70% of correct predictions during the training. We believe that 
the information content of the principal component scales is big enough to partially compensate the small 
number of peptides. The simultaneous use of the three scales to describe the peptides should increase 
the accuracy. 

Recent advances have produced bioinformatics systems to predict de binding of peptides to several 
classes of MHC molecules, some of them available on line, but their predictions are not significantly better 
than those previously mentioned (Reche, P.A. & Reinherz, E.L. 2005; Rammensee et al., 1995) 

As for the predicted contributions, L is the main anchor residue at position 2, and I, M and T are tolerated 
(Parker et al., 1992; Kubo et al.,1994). The network predicts the contribution of L in this position as the 
second biggest, followed very closely by I. M is predicted to have only a medium contribution. Both, I and 
M, are in peptides with a wide range of affinity, but M has a more positive value of Z1, and probably that 
is why its calculated contribution is smaller. Probably the very small contribution of T can be explained in 
the same way. Valine as M, has an intermediate calculated contribution and is found in the sample in 
peptides of intermediate affinity; therefore, the prediction is essentially correct. 

 

Figure 1. Effect of substitution at position 2. For the meaning of the symbols see Table 2. 

The predicted contributions for F and W are high, probably because they have Z1 values more negative 
than L. Since neither F nor W are present at position 2 in the training sample, this prediction cannot be 
contrasted with experimental data. Describing the peptides with the three Z scales, should change this 
situation. 
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Figure 2. Effect of substitution at position 9. Filled bars, positive contributions; empty bars, negative contribution. 
For the meaning of the symbols see Table 2. 

At position 9 the effect seems to be the same, the amino acids with positive contribution are mainly 
hydrophobic, probably because almost all the peptides in the sample have hydrophobic residues in this 
position. As in position 2, L, I and V, the anchor residues (Parker et al., 1992; Kubo et al.,1994) are 
predicted to have positive contribution; this is probably the best prediction of the network since they are 
present in 70 of the peptides, covering all the range of affinity. Again, F and W have a high predicted 
contribution although they are not present at this position in the sample, the situation can be explained 
as in position 2. Other amino acids not present in the sample, but with positive calculated contribution, 
are M, Y and P. They do not have a contribution as high as F and W but their Z1 values are also less 
negative. T, which is tolerated at this position, is predicted to have a very small negative contribution, 
paralleled by the change in Z1. 

The situation at other positions is not clear, but it is known that they are not as restrictive of binding as 2 
and 9 (Kubo et al.,1994). It has been mentioned that secondary anchor residues may affect binding and 
affinity, but the information about them is scarce (Parker et al., 1992). In this situation the predictions of 
the network are more valuable. At positions 1, 3, 5 and 8, the network predicts better contribution for 
hydrophobic amino acids, while at positions 4, 6 and 7 the hydrophilic ones have better contributions. 
Since these positions are not restricted in the sample, the amino acid variation is large. In fact, there are 
19 or 20 different amino acids at these positions, but number 8, and, therefore the network, has more 
information available. With this variability, the predictions are to be considered of value, but again the use 
of only one aspect of the information on amino acids, limits its application. 

Up to this moment, the work has interesting results. We have shown that the principal component scales 
have enough information to describe the peptide sequence, and calculate the binding affinity, even when 
used individually. With enough peptides in our sample, to use the complete description, our results will 
probably improve. 
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The network predictions are affected by the partial description of the peptides, and the residue variability 
at each position. These factors limit the applicability of the results, but the calculated relationship is a 
demonstration that with this approach it is possible to propose solutions to the problem. 
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