
Trifecta: Faster High-Throughput
Three-Party Computation over WAN

Using Multi-Fan-In Logic Gates

by

Sina Faraji

A thesis
presented to the University of Waterloo

in fulfillment of the
thesis requirement for the degree of

Master of Mathematics
in

Computer Science

Waterloo, Ontario, Canada, 2022

© Sina Faraji 2022

Author’s Declaration

This thesis consists of material all of which I authored or co-authored: see Statement
of Contributions included in the thesis. This is a true copy of the thesis, including any
required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

ii

Statement of Contributions

Chapter 1-6 are co-authored with my supervisor and borrow content and figures from
the submission

”Faraji, Sina and Florian Kerschbaum. Trifecta: Faster High-Throughput Three-Party
Computation over WAN Using Multi-Fan-In Logic Gates”

currently under review for USENIX 2023.

iii

Abstract

Multi-party computation (MPC) has been a very active area of research and recent
industrial deployments exist. Practical MPC is currently limited to low-latency, high-
throughput network setups, i.e., local-area networks (LAN). However, many use cases
require the participation of different entities located in different data centers, i.e., com-
munication over wide-area networks (WAN). Although, constant-round MPC exists, it has
very high communication cost. In contrast, protocols based on secret-sharing are suitable
for efficient parallelization but their running time is limited by the network latency.

In this work, we investigate the reduction of the round complexity of secret-shared
based multi-party computation. We propose a new three-party computation protocol that
allows to compute multi-fan-in AND gates in one round of communication without any
preprocessing. Using this primitive, we describe depth-optimized constructions for major
building blocks in multi-party computation including addition, multiplication and compari-
son. We demonstrate the increased performance of our approach by evaluating several such
functionalities in a real WAN environment. For the common benchmark of AES, our pro-
tocol achieves subsecond running time for all key lengths of AES over WAN, outperforming
even constant-round protocols. We also improve upon state-of-the-art secret-shared based
protocols in terms of throughput. For example, we observe that our protocol has a higher
throughput by a factor of 2.2× compared to the best previous work. Our work shows
that it is possible to have fast high-throughput multi-party computation with practical
applications between parties in distant global regions.

iv

Acknowledgements

I would like to thank my supervisor, Professor Florian Kerschbaum without whom this
would have been impossible. I am immensely grateful to have his great scientific knowledge
and intuition, dedication to the success of this work and extreme patience and kindness
towards me throughout my studies at Waterloo.

I would also like to express my appreciation for all my anon virtual friends on CT,
many of whom I have yet to meet in person. But even so, they kept my spiritis high in
this journey especially during the hard times of COVID-19. WAO.

Finally, my most sincere gratitude to my parents that always supported me with all
their heart and capacity at every stage of my life. Thanks for believing in me at all times
and encouraging me to achieve great goals no matter what. I am forever in your debt and
blessed to have you by my side.

v

Dedication

To love, life, and freedom.

vi

Table of Contents

List of Figures ix

List of Tables x

1 Introduction 1

2 Preliminaries 5

2.1 Notation . 5

2.1.1 Correlated Randomness . 5

2.1.2 Message Masking . 6

2.2 Secret Sharing . 7

2.3 Related Work . 8

3 The New Protocol 11

3.1 Boolean Circuits . 11

3.1.1 XOR (addition) gates . 11

3.1.2 AND (multiplication) gates . 12

3.1.3 Multi-fan-in AND (multiplication) gates 13

3.2 Threat Model and Security . 18

3.2.1 Security for Semi-honest Adversaries 18

3.2.2 Privacy for Malicious Adversaries in the Client-Server Model 20

vii

4 Communication-Efficient Circuits 22

4.1 Adder . 22

4.2 Multiplier . 23

4.3 Comparator . 24

5 Experimental Implementation and Benchmarks 26

5.1 Results for AND Trees . 27

5.2 Results for Communication-Efficient Circuits 31

5.3 Results for AES with Optimized S-box . 35

6 Conclusion & Future Work 38

6.1 Conclusion . 38

6.2 Future Work . 38

References 39

viii

List of Figures

2.1 Correlated randomness functionality . 6

2.2 Message passing with correlated randomness 7

3.1 Computing (2,2)-sharing of the product x1x2x3 15

3.2 Computing (2,2)-sharing of the product x1...xℓ 17

5.1 Online latency of AND-tree computation for multiple input bit-width . . . 28

ix

List of Tables

2.1 Different shares and PRFs held by the parties 8

4.1 Comparison of adder cirucit depth and size for different constructions and
bit-widths . 23

4.2 Comparison of multiplier circuit depth and size for different constructions
and bit-widths . 24

4.3 Comparison of comparator circuit depth and size for different constructions
and bit-widths . 25

5.1 Comparison of communication cost of AND-tree computation per party for
multiple input bit-width . 30

5.2 Comparison of online running time (sec) of our protocol, Araki et al.’s pro-
tocol [1] for addition, multiplication and comparison circuits 31

5.3 Comparison of online running time (sec) of addition, multiplication and
comparison circuits for multiple fan-ins and input bit-width 33

5.4 Comparison of online running time (sec) of our protocol and Beaver et al.’s
protocol [5] for addition, multiplication and comparison circuits 33

5.5 Comparison of communication cost (KB) of our and Beaver et al.’s proto-
col [5] for addition, multiplication and comparison circuits 34

5.6 Comparison of communication cost of addition, multiplication and compar-
ison circuits for multiple fan-ins and input bit-width. The communication
cost of Araki et al.’s protocol [1] is the same as our protocol for only 2-fan-in
gates. 34

5.7 Comparison of online running time and communication cost of our protocol
and [5, 1] for AES. Results of our protocol and [41, 1] are reported for 100
parallel instances . 35

x

5.8 Comparison of online throughput of our protocol and [5, 1] for AES. 36

xi

Chapter 1

Introduction

Secure (multi-party) computations (MPC) gain traction in the privacy-preserving pro-
cessing of joint data. For example, Google and Mastercard have deployed a two-party
computation for ad conversions [48, 28] and Meta has released the CrypTen toolkit for ma-
chine learning in multi-party computations [32]. However, in many use cases it is needed
that participants communicate over a wide-area network (WAN) which imposes low limits
on the communication cost and round complexity.

In recent years, there has been increasing research on multi-party computation based
on secret-sharing. A common feature of these protocols is that computing arithmetic
additions and/or Boolean XOR gates is a free operation due to the additive property of
the secret-sharing. However, arithmetic multiplications and/or Boolean AND gates require
the parties to communicate and as such are the main performance bottleneck of secret-
shared based multi-party computation. Therefore, the focus in this area has been shifted
towards studying methods to efficiently compute these non-linear operations.

In the setting of 2-party computation, the protocol by Goldwasser, Micali and Wigder-
son (GMW) [24] showed how to use 1-out-of-4 Oblivious Transfer (OT) to obtain a secret-
sharing of a multiplication. The protocol was later generalized to the n-party case which
requires O(n2) instances of OTs between the parties. This approach relies on cryptographic
assumptions i.e. the Oblivious Transfer operations are only computationally secure. In the
following year, the work by Ben-Or, Goldwasser and Wigderson (BGW) [7] proposed a pro-
tocol that has information theoretic security. However, unlike the GMW protocol which is
secure against a dishonest majority (n − 1 faulty parties), the BGW protocol only toler-
ates upto t < n

2
semi-honest corruptions. This is due to the conditions of the polynomial

interpolation when computing multiplication gates.

1

In Beaver’s seminal work [3], it was shown that secret multiplication can be broken
down to two phases, an input-independent preprocessing phase in which a triple of num-
bers (a, b, c = ab) are randomly generated and secret-shared among the parties. Then an
online phase, where upon receiving actual inputs, the parties use this triple to compute
shares of the multiplication result. In this paradigm, the communication cost of the online
phase is very efficient with each party sending only 1 bit to all the other parties in one
communication round. However, the preprocessing phase involves heavy cryptographic
operations such as Oblivious Transfer (OT) [39] or Homomorphic Encryption (HE) [18] to
generate the multiplication triples. This pre-computation greatly limits the use of these
protocols in practice as the communication overhead quickly becomes infeasible for larger
circuits. In addition, it is not always possible for all the parties to be present prior to the
execution of the protocol such as in ad-hoc applications.

To address these challenges, follow-up work has introduced many improvements. For
example, the protocol by Araki et al. [1] requires no preprocessing and only 1 bit of com-
munication during the online phase per AND gate per party in an honest-majority 3-party
setting. The semi-honest version of the ASTRA [14] protocol, further improves through-
put with total 2 bits of communication per AND gate (less than 1 bit per party). Here, a
pre-computation phase is necessary to generate correlated randomness. However, instead
of OT/HE based methods, ASTRA [14] uses a shared key setup instantiated by a cheap
block cipher like AES.

In addition, the performance of the online phase of secret-shared based multi-party
protocols depends on the round complexity of the computation. As each multiplication
requires a round of communication, the running time of the protocol is directly proportional
to the multiplicative depth of the circuit representing the functionality to be computed.
Therefore, it is important to reduce the number of communication rounds, especially in
WAN environments where the running time is majorly dominated by the network latency.

One approach is to take advantage of a multi-fan-in multiplication primitive to construct
shallower circuits for common functionalities in multi-party computation. It turns out that
evaluating multi-fan-in gates is infeasible or very hard for protocols such as GMW [24] and
BGW [7]. To support a multi-fan-in multiplication, the GMW protocol needs an Oblivious
Transfer (OT) construction with one sender and multiple receivers which is impossible as
OTs are 2-party operations. Similarly, the BGW protocol fails to generalize as the security
threshold will depend on the maximum gate fan-in allowed in the circuit. For example, to
support the base case of 3-fan-in gates, the tolerated threshold for corrupt parties falls from
t < n

2
to t < n

3
. On the other hand, previous works [41, 40] modify the Beaver technique

[3] to introduce 2-party protocols that support computing multi-fan-in multiplications in
one round of communication and use them to enhance the running time of the protocol.

2

We remark that there are constant-round protocols like the Yao’s protocol [46] for 2-
party and Beaver et al’s protocol [5] for multi-party computation that are widely assumed
to perform better over WAN. However, the communication overhead of exchanging garbled
circuits in these protocols significantly impacts their throughput. In contrast, secret-shared
based protocols can be easily vectorized allowing for highly parallelized executions.

In this thesis, we investigate the reduction of the round complexity of secret-shared
based multi-party computation in the semi-honest model. The semi-honest model is suffi-
cient for many practical applications as it secures the data against inspection by the other
parties. It is also the model considered by state-of-the-art protocols of Araki et al. [1] and
ASTRA [14]. Although, other protocols exist [15, 33, 42, 17, 22] that extend these results
to the malicious setting, the semi-honest model is more efficient and hence deployed [48, 28]
in practice.

We propose a new multi-party computation protocol for three parties (3PC) with an
honest majority that a) has a communication cost of 1 bit per party per 2-fan-in AND
gates and b) allows to compute multi-fan-in AND gates in one round, all without any
precomputation. This is unlike the two-party protocols of [41, 40] that require expensive
precomputation which may even be function-dependent. For l-fan-in gates our protocol’s
communication cost is 2l − l − 1 (parties P1 and P2) or 2 (party P3) bits. However, any
l-fan-in gate can replace up to l − 1 2-fan-in AND gates.

In order to take advantage of the extended functionality of our multi-party computation
protocol, we design improved circuits that use multi-fan-in AND gates. In particular, we
design a new multi-fan-in adder based on Sklansky’s design [26] which reduces multiplica-
tive depth of adding two 64-bit numbers from 7 up to 3 (Chapter 4). We also design a
new multi-fan-in multiplier based on Wallace’s design [45] which reduces the multiplicative
depth of multiplying two 64-bit numbers from 18 up to 7. Using these circuits we are able
to construct practically efficient multi-party computations.

Our protocol remains efficient specially over WAN. For the common benchmark of
computing AES cipher blocks, our protocol is the first to achieve sub-second latency over
WAN for all key sizes. We implement our protocol in the MP-SPDZ framework [29] and
experimentally compare it to the protocol by Araki et al. [1], Beaver et al.’s technique [5]
using replicated secret sharing (as Araki et al. use) [31] and the online phase of ABY2 [41].
The online phase of the two-party protocol ABY2 requires no public-key cryptographic
primitives similar to 3PC. Although the ASTRA protocol [14] improves over the protocol
of Araki et al. [1], but there is no publicly available implementation to replicate their
results and compare to. Our protocol outperforms these protocols in simulated and real
WANs. We use different Amazon data centers connected over the Internet as the real

3

WAN. We improve the throughput of AES-128 by a factor of more than 2.2× compared
to the best competitor. Our protocol is particularly efficient in case of a real WAN, since
it has asymmetric communication allowing a high-latency connection for one party.

In summary, we contribute

• A new honest-majority three-party multi-party computation protocol secure in the
semi-honest model that allows to compute multi-fan-in AND gates in one round
without precomputation (Chapter 3)

• New designs of multi-fan-in circuits for addition, multiplication and comparison
(Chapter 4)

• An experimental evaluation of our protocol in the MP-SPDZ framework comparing
it to related work [1, 5, 41] (Chapter 5).

4

Chapter 2

Preliminaries

In this chapter, we describe our parameters, notation, secret sharing scheme, our correlated
randomness setup and the message passing technique of our framework.

2.1 Notation

In our protocol, we have three parties P = {P1, P2, P3} which are connected by standard
bidirectional, secure and authenticated channels e.g. via TLS over TCP/IP. Let Pi±1 refer
to the next (+) or previous (-) party with wrap around, i.e., P3+1 is P1 and P1−1 is P3.

We work over the ring Z2n . We present protocols for n = 1, i.e., bits, but it is possible to
extend our protocols to n > 1. We use κ to refer to the computational security parameter.

2.1.1 Correlated Randomness

Our protocol relies on the fact that each pair of parties {Pi, Pi+1} can obtain a fresh random
element r on demand, without any interaction beyond a short initial setup.

To enable this, let F : {0, 1}κ×{0, 1}κ −→ {0, 1}n be a pseudo-random function (PRF),
mapping strings into the ring Z2n . The function F can be instantiated, for instance, using
AES in the counter mode.

Figure 2.1 shows how the parties interact in the preprocessing phase to share random
seeds for the PRFs. During the online phase, parties (Pi, Pj) call GenNextRandom to

5

Preprocessing:

1. Init: Each party Pi

• Samples Si,i−1, Si,i+1 ∈ {0, 1}κ

• Sends Si,i−1 to Pi−1 and Si,i+1 to Pi+1.

2. Setup: Each party Pi

• Sets Ri−1(x) = FSi+1,i
(x)⊕ FSi,i+1

(x)

• Sets Ri+1(x) = FSi−1,i
(x)⊕ FSi,i−1

(x)

Online:

3. GenNextRandom: Parties Pi and Pj

• Party Pi computes ri,j = Ri−1(idi,j)

• Party Pj computes ri,j = Rj+1(idi,j)

(without loss of generality j = i+ 1)

Figure 2.1: Correlated randomness functionality

obtain the random value ri,j = rj,i. It is important to note that party Pk is oblivious to
the value ri,j.

We remark that by using a pseudo-random function, we can only provide security
against computationally bounded adversaries and hence our overall protocol is computa-
tionally secure.

2.1.2 Message Masking

We use the correlated randomness from Section 2.1.1 to mask the messages passed between
the parties. Each party Pi runs the functionality Preprocessing twice to obtain two

6

Mask: To send a value v from Pi to Pj

1. Pi invokes Mi→j to get mi→j.

2. Pi computes c = v +mi→j and sends it to Pj.

Figure 2.2: Message passing with correlated randomness

distinct pairs of correlated PRFs (Ri−1, Ri+1) and (R′
i−1, R

′
i+1) which we use to define the

masking functions:

Mi→i+1 = Ri+1

Mi→i−1 = R′
i−1

Mi+1→i−1 = Ri−1

Mi−1→i+1 = R′
i+1

(2.1)

As shown in Figure 2.2, for each interaction between the pair of parties (Pi, Pj), the
sender Pi masks its message v with the value mi→j before sending it to Pj. We remark
that the other party Pk also knows the mask mi→j due to the properties of the correlated
randomness setup and hence the value v is now additively secret-shared between Pj and
Pk.

2.2 Secret Sharing

We define a 2-out-of-3 secret sharing scheme, denoted by π3
2-sharing as follows. In order to

share a secret x ∈ Z2n , the dealer samples two random elements α, β ∈ Z2n and distributes
the shares such that:

• P1’s share is the pair (x+ α, β).

• P2’s share is the pair (x+ β, α).

• P3’s share is the pair (α, β).

7

Party π3
2-sharing Rand Mask

P1 (x+ α, β) R3, R2 M1→2,M1→3,M2→3,M3→2

P2 (x+ β, α) R1, R3 M2→3,M2→1,M3→1,M1→3

P3 (α, β) R3, R1 M3→1,M3→2,M1→2,M2→1

Table 2.1: Different shares and PRFs held by the parties

Notice that any two shares suffice to recover x. Table 2.1 summarizes the individual
shares of the servers for a secret x and the necessary PRFs obtained during the prepro-
cessing phase.

We use the following Lemma in the security proof which is straight-forward to see.

Lemma 1 For any two values x1, x2 ∈ Z2n, and for any i ∈ {1, 2, 3} the distribution over
Pi’s share of x1 is identical to the distribution over Pi’s share of x2.

2.3 Related Work

Two-party computation [46, 47] and multi-party computation [24, 8] have been introduced
almost 40 years ago and since have been subject to intense investigation. In 2002 Maurer
presented a simple multi-party computation protocol in the information-theoretic setting
using replicated secret shares for educational purposes [37]. Araki et al. [1] improve this
protocol by using correlated randomness from pseudo-random functions and their resulting
protocol requires only one bit of communication per party for multiplication in the semi-
honest setting which is optimal in the information-theoretic setting without preprocessing.
Follow up work [22] extends this protocol to be secure against a malicious adversaries with
increased cost of 10 bits per multiplication and an additional offline phase. Following this
work, ABY3 [38] additionally designs efficient conversions between binary sharing, arith-
metic sharing and Yao sharing and customized building blocks with specific focus on in-
ference in Machine Learning (ML) models. Also tailored to ML inference, Chameleon [44]
makes use of Du and Atallah’s protocol [20] with the help a semi-trusted party in the
offline phase which removes the requirement for all the parties to be online during the
protocol execution but their communication cost per multiplication is 4 bits. Recently,
ASTRA [14] presented a new protocol following the secret sharing scheme by Gordon et

8

al. [25] that allows for a multiplication protocol with 2 bits of online communication. Sim-
ilar to Chameleon, only two parties have to participate during the online phase. This
allows for an improvement in the running time of the protocol where each round takes the
minimum latency among each pair of parties as opposed to the maximum in Araki et al.’s
protocol [1]. Our protocol shares the same property with ASTRA, however, no preprocess-
ing is needed in our protocol. Since there is no public implementation for ASTRA, we can
not replicate their results. We expect the running time of ASTRA be on the same order
of our protocol on circuits using only 2-fan-in gates since the communication structure of
both protocols is essentially the same.

Most multi-party protocols require a number of communication rounds linear in the
multiplicative depth of the circuit they compute. An exception are constant-round pro-
tocols based on Beaver et al.’s technique [5]. Beaver et al.’s original construction had a
communication complexity cubic in the number of parties. Recent improvement [35, 6, 36]
have communication complexity quadratic in the number of parties. However, these pro-
tocols are practically even less efficient for current circuit sizes due to their use of complex
cryptography. Hence, we compare our protocol to a modified version of Beaver et al.’s
original technique based on replicated secret sharing [31] and show that our protocol offers
better efficiency over simulated and real WANs despite higher round complexity.

Araki et al.’s protocol and ASTRA offer near-optimal efficiency. However, their security
may be criticized, because they operate in the semi-honest model. Chaudhari et al. present
a version secure against malicious adversaries in the same publication [14]; Araki et al. [22]
offer a separate version. There exist protocols with further efficiency improvements in
the malicious model; some are three-party protocols [42, 33] and some are four party
protocols [12, 17, 15]. Securing our protocol against malicious adversaries is future work.

To speed-up the online phase, Dessouky et al. [19] introduced two different 2-party
semi-honest protocols that use multi-input lookup tables (LUT) rather than 2-input gates
to reduce the number of communication rounds for binary circuits. The best proposed
constructions for AES S-box needs 795 bytes of communication in 3 rounds and 257 bytes
of communication in 1 round for both versions of their protocols, respectively. In compar-
ison, our protocol only requires 130 bits of communication in 3 rounds which is further
distributed among 3 parties. In another work, Rotaru et al. [30] extends the support for
lookup tables to the multi-party setting with malicious security. By operating over binary
finite fields, they improve the online communication cost of AES S-box to 48 bits in 1
round in the semi-honest 3-party case instantiated with the field F28 . However, unlike our
protocol, this requires a resource-intensive offline phase with a throughput of < 1 blocks
per second which hinders the applicability of the protocol in settings where preprocessing
is infeasible or unwanted such as ad-hoc computations.

9

In a similar direction to ours, both Ohata et al. [40] and ABY2 [41] introduced 2-party
protocols for multi-fan-in multiplication in the semi-honest model. Ohata et al. [40] modify
the precomputation of Beaver multiplication triples [4] to support multi-fan-in gates. The
online communication cost of this approach grows linearly with the fan-in of the multipli-
cation. Using a new sharing scheme, the ABY2 [41] protocol requires a constant communi-
cation of just 2 bits for arbitrary fan-in multiplications. On the downside, both protocols
suffer from function-dependent preprocessing with computation and communication costs
that scale exponentially with the multiplication fan-in.

10

Chapter 3

The New Protocol

In this chapter, we describe our protocol for three-party computation. Our protocol works
for arithmetic circuits over the ring Z2n with Boolean circuits being a special case (n = 1).
The main advantage of our protocol over related work [1, 14, 40, 41] is its ability to compute
multi-input multiplication gates (multi-fan-in AND gates in the Boolean case) for 3-party
computation in one round of communication without any precomputation.

3.1 Boolean Circuits

In order to simplify the illustration, we start by describing the protocol for the special
case of Boolean circuits with AND and XOR gates. We assume three parties {P1, P2, P3}
that have correlated randomness setup as described in Section 2.1.1 and use the message
passing technique as described in Section 2.1.2.

3.1.1 XOR (addition) gates

Let (x1 + α1, β1), (x1 + β1, α1), (α1, β1) be a secret sharing of x1, and (x2 + α2, β2),
(x2 + β2, α2), (α2, β2) be a secret sharing of x2. In order to compute a secret sharing
of x1 + x2, each party locally computes the addition of its corresponding shares (no com-
munication needed):

11

• P1 computes x1 + α1 + x2 + α2 and β1 + β2 and outputs(
(x1 + x2) + (α1 + α2), (β1 + β2)

)
• P2 computes x1 + β1 + x2 + β2 and α1 + α2 and outputs(

(x1 + x2) + (β1 + β2), (α1 + α2)
)

• P3 computes α1 + α2 and β1 + β2 and outputs(
(α1 + α2), (β1 + β2)

)
It is straight-forward to verify that the above is a valid π3

2-sharing of x1 + x2.

3.1.2 AND (multiplication) gates

We begin by describing the protocol for computing a 2-fan-in AND gate. This requires
each party to send a single bit, which seems to be the optimal achievable bandwidth in
the information-theoretic, three-party setting [1] without preprocessing. Let x1 and x2 be
secret-shared among the parties as before.

1. Step 1 - Compute (3,3)-sharing:

• P1 computes v1 = (x1 + α1)(x2 + α2).

• P2 computes v2 = (x1 + β1)α2 + (x2 + β2)α1.

• P3 computes v3 = α1β1 + α2β2 + α1α2.

We observe that (v1, v2, v3) constitute a (3, 3)−sharing of t = x1x2. However, to proceed
further in the protocols, we need to generate a π3

2-sharing of t.

2. Step 2 - Communication:

• P1 sends c1 = v1 +m1→2 to P2.

• P2 sends c2 = v2 +m2→1 to P1.

• P3 sends c3 = v3 +m3→1 to P1.

12

3. Step 3 - Compute π3
2-sharing:

• P1 computes (t+ αt, βt) = (v1 + c2 + c3, c3 +m1→2)

• P2 computes (t+ βt, αt) = (v2 + c1 +m3→1,m2→1 +m3→1)

• P3 computes (αt , βt) = (m2→1 +m3→1, c3 +m1→2)

In order to show that the result is a valid π3
2-sharing of x1x2, we need to show that

both (t+αt)+αt, and (t+βt)+βt are equal to x1x2. This can be demonstrated as follows:

(t+ αt) + αt = v1 + c2 + c3 + αt

= v1 + v2 + v3 +m2→1 +m3→1 + αt

= x1x2 + αt + αt

= x1x2

Where the first equality is by the definition of the shares, second equality stems from
the definitions of c2 and c3 and the third equality can be derived from the combination of
Step 1 and the definition of αt. It can be shown that the second equation x1x2 = (t+βt)+βt

holds similarly.

3.1.3 Multi-fan-in AND (multiplication) gates

3-Fan-in AND gate. Since the method described in Section 3.1.2 can not be trivially
generalized to compute ℓ-fan-in AND gates with ℓ ≥ 3, to simplify the exposition, we start
by showing how to compute a 3-fan-in AND gate. Let x1, x2, and x3 be the inputs to a
3-fan-in AND gate where each xi is π

3
2-shared among the set of parties {P1, P2, P3}.

To output a valid π3
2-sharing of the product t = x1x2x3, the protocol requires the parties

to compute a (2,2)-sharing (t + αt, αt) between P1 and {P2, P3} following the protocol
described in Figure 3.1.

In order to see the correctness, Observe that

v22β3 + v32β2 + v42β3 = x1x2β3 + x1x3β2 + x2x3β1 + β1β2β3 (2)

Thus,

13

c12 + c22β3 + c32β2 + c42β3 = v12 + v22β3 + v32β2 + v32β3

+m1
2→1 +m2

2→1β3 +m3
2→1β2 +m4

2→1β1

= x1x2x3 + x1β2β3 + β1x2β3 + β1β2x3

+m1
2→1 +m2

2→1β3 +m3
2→1β2 +m4

2→1β1

(3)

Where the first equality stems from the definitions of c12, ..., c
4
2 by P2 and the second

equality is derived by expanding the terms of (x1 + α1)(x2 + α2)(x3 + α3) and cancelling
the repeated values from Eq. (2). Therefore, P1 computes

t+ αt = x1x2x3 + x1β2β3 + β1x2β3 + β1β2x3

+m1
2→1 +m2

2→1β3 +m3
2→1β2 +m4

2→1β1

+ (x1 + α1)β2β3 + β1(x2 + α2)β3 + β1β2(x3 + α3)

+m1
3→2

= x1x2x3 +m1
2→1 +m2

2→1β3 +m3
2→1β2 +m4

2→1β1

+ α1β2β3 + β1α2β3 + β1β2α3 +m1
3→2

= x1x2x3 + c13

Where the first equality holds by substituting with the equivalence from Eq. (3), the
second equality is derived by cancelling the values x1β2β3, β1x2β4, β1β2x3, and the final
equality is derived by the definition of c13 by P3.

However, the multiplication protocol is not complete as the parties must have a π3
2-

sharing of t. To complete the protocol, the parties run a symmetric computation with the
roles of P1 and P2 exchanged. This will output a (2,2)-sharing (t+ βt, βt) between P2 and
{P1, P3}. Together, the two (2,2)-sharings constitute a valid π3

2-sharing of t.

14

• Compute (2,2)-sharing of x1x2x3

1. P2 computes

v2 =


v12 = (x1 + β1)(x2 + β2)(x3 + β3)

v22 = (x1 + β1)(x2 + β2)

v32 = (x1 + β1)(x3 + β3)

v42 = (x2 + β2)(x3 + β3)

2. P2 sends ci2 = vi2 +mi
2→1 to P1 for all vi2.

3. P1 computes

t+ αt = c12
+ c22β3 + c32β2 + c42β1

+ (x1 + α1)β2β3 + β1(x2 + α2)β3

+ β1β2(x3 + α3)

+m1
3→2

4. P3 computes

v13 = m1
2→1 +m2

2→1β3 +m3
2→1β2 +m4

2→1β1

+ α1β2β3 + β1α2β3 + β1β2α3

5. P3 sends c13 = v13 +m1
3→2 to P2 and sets αt = c13.

6. P2 sets αt = c13.

Figure 3.1: Computing (2,2)-sharing of the product x1x2x3

15

ℓ-Fan-in AND (multiplication) gates. In this subsection, we describe the protocol to
compute ℓ-fan-in AND gates for the general case ℓ ≥ 3. Similar to the 3-fan-in case, our
protocol constructs two (2,2)-sharings of the product t = x1...xℓ between the parties. In
the following, we only present the (2,2)-sharing where P1 holds t + αt and {P2, P3} both
hold (αt). Since the roles of P1 and P2 are symmetric, the full protocol follows naturally.

Let L = {1, ..., ℓ}, 2L = {0, ..., 2ℓ − 1}, and P(X) be the power set of the set of inputs
X = {x1, ..., xℓ}. Define ϕ : P(X) → 2L as ϕ(I) = Σxi∈I 2

i−1. Parties {P1, P2, P3} hold a
π3
2-sharing of each xi such that P1 holds (xi + αi, βi), P2 holds (xi + βi, αi) and P3 holds

(αi, βi). The protocol for computing a (2,2)-sharing of t = x1...xℓ is presented in Fig. 3.2.

To show correctness, we need the following lemma.

Lemma 2 Assume {x1, ..., xℓ} and {β1, ..., βℓ} are two sets of values over Z2. Then∑
I⊆X,|I|>1

∏
xi∈I

(xi + βi)
∏
xj /∈I

βj

=
∏
i∈ℓ

xi +
∑

xi∈X,I={xi}

xi

∏
xj /∈I

βj + b
∏
i∈ℓ

βi

where b = 1 if ℓ is even, b = 0 otherwise.

Let XI =
∏
xi∈I

xi

∏
xj /∈I

βj for every I where 1 < |I| < ℓ. It is straight-forward to see that

XI is a factor of the term

∑
I⊆A⊆P(X)

∏
xi∈A

(xi + βi)
∏

xj /∈A
(βj)

The number of sets A ∈ P(X) where I ⊆ A is 2ℓ−|I|. Since 1 < |I| < ℓ, it follows that
each XI is repeated an even number of times on the left side of the equation, hence, it gets
cancelled. Following the same argument, observe that terms of the form xi

∏
xj ̸=xi

βj occur

a total 2ℓ−1 − 1 times where the subtraction is due to {xi} being excluded from the sum.
Similarly, x1...xℓ only appears once and

∏
i∈L

βi occurs 2ℓ − ℓ − 1 times. Thus, completing

the proof. ■

16

• Compute (2,2)-sharing x1...xℓ

1. P2 computes

vϕ(I) =
∏
xi∈I

(xi + βi)

for I ⊆ P(X) and |I| > 1,

2. P2 sends c
ϕ(I)
2 = v

ϕ(I)
2 +m

ϕ(I)
2→1 to P1 for all v

ϕ(I)
2 .

3. P1 computes

t+ αt =
∑

I⊆X,|I|>1

c
ϕ(I)
2

∏
xj /∈I

βj

+
∑

xi∈X,I={xi}

(xi + αi)
∏
xj /∈I

βj

+ b
∏
i∈L

βi +m1
3→2

where b = 1 if n is even o.w. b = 0.

4. P3 computes

v13 =
∑

I⊆X,|I|>1

m
ϕ(I)
2→1

∏
xj /∈I

βj

+
∑

xi∈X,I={xi}

αi

∏
xj /∈I

βj

5. P3 sends c13 = v13 +m1
3→2 to P2 and sets αt = c13.

6. P2 sets αt = c13.

Figure 3.2: Computing (2,2)-sharing of the product x1...xℓ

17

Therefore, the correctness of the protocol follows from

t+ αt =
∑

I⊆X,|I|>1

∏
xi∈I

(xi + βi)
∏
xj /∈I

βj

+
∑

I⊆X,|I|>1

m
ϕ(I)
2→1

∏
xj /∈I

βj

+
∑

xi∈X,I={xi}

xi

∏
xj /∈I

βj +
∑

xi∈X,I={xi}

αi

∏
xj /∈I

βj

+ b
∏
i∈L

βi +m1
3→2

=
∏
i∈L

xi +
∑

I⊆X,|I|>1

m
ϕ(I)
2→1

∏
xj /∈I

βj

+
∑

xi∈X,I={xi}

αi

∏
xj /∈I

βj +m1
3→2

=
∏
xi∈L

xi + c13

(3.1)

where the first equality is derived by the definition of c
ϕ(I)
2 , the second equality is derived

by substituting Lemma 2, and the final equality is derived from the definition of c13.

3.2 Threat Model and Security

3.2.1 Security for Semi-honest Adversaries

In this section, we prove the security of our protocol in the presence of a static semi-honest
adversary controlling one of the three parties. Since our goal is to compute a Boolean
circuit, the functionality is deterministic and we can use the following security definition
by Goldreich [23]:

Definition 3 Let f : ({0, 1}∗)3 → ({0, 1}∗)3 be a deterministic 3-ary functionality and let
π be a protocol. We say that π securely computes f in the presence of one static semi-honest
adversary if for every x⃗ ∈ ({0, 1}∗)3 where |x1| = |x2| = |x3| the following holds:

1) Correctness: OUTPUT π(x⃗) = f(x⃗), and

18

2) Privacy: There exists probabilistic polynomial time algorithms Si such that for
every corrupted party i ∈ {1, 2, 3}:

Si(xi, fi(x⃗)) = {V IEW π
i (x⃗)}

Where V IEW π
i (x⃗) is the view of party i and consists of its input xi, its internal random

coins ri and the messages received by i during the protocol execution.

Proof. The correctness requirement of our protocol follows immediately as the par-
ties compute the circuit C which implements functionality f and we have already shown
correctness for the AND (multiplication) and XOR (addition) gates composing the circuit.

It remains to show privacy. If party P3 is corrupted, note that it receives nothing during
the execution of the protocol both for XOR gates and AND gates. The only messages
that P3 receives are the setup bits for the correlated randomness from P1 and P2 which
are just two independent random bits S1,2, S2,1 ∈ {0, 1}κ. Thus the simulator S3 simply
chooses two random bits S ′

1,2, S
′
2,1, sets up the pseudo-random functions with them. For

each output wire in which P3 receives output, given the shares computed thus far by the
simulator and the true output value, S3 can generate the exact shares it would receive
from the other parties. This is because of the secret sharing scheme’s property that given
one party’s shares and the exact value of the secret, the associated parties’ shares can be
fully determined. Thus, the simulator’s view is completely indistinguishable form a real
execution of π.

If party P1 is corrupted, unlike P3 it receives messages during the protocol execution
from both parties P2 and P3. The view of P1 during the protocol execution consists of the
random bits S2,3, S3,2 it receives from P2 and P3 respectively for the correlated randomness
setup and the messages it receives from them for 2-fan-in and ℓ-fan-in AND gates. The
simulator S1 simulates the correlated randomness setup bits as in the case of P3. For any
AND gate g in the circuit, P1 receives messages depending on the gate’s fan-in:

1. If g is a 2-fan-in AND gate, then P1 receives one single bit from P2 which is (x1 +
β1)α2 + (x2 + β2)α1 +m2→1 where x1 and x2 are the the actual inputs to gate l and
m2→1 is the randomness P2 uses for communication with P1 on that gate. Since the
bit is masked with the random bit m2→1 obtained from the shared pseudo-random
function between P2 and P3 that is oblivious to P1, the simulator S1 simply samples
a random bit and simulates the above message.

19

2. If g is a ℓ-fan-in AND gate, then P1 receives 2
ℓ − ℓ− 1 bits from P2 and one bit from

P3 as described in the Section 3.1.3. However, all these messages are masked using
random bits as in the 2-fan-in case unknown to P1. Therefore, S1 simulates such
gates by sampling 2ℓ − ℓ random bits.

Finally, for each output wire S1 does the same thing as S3.

If P2 is corrupted, we observe that the views of P1 and P2 on ℓ-fan-in AND gates and
the correlated randomness setup bit is symmetric. The only difference in the view of these
two parties occurs when computing a 2-fan-in AND gate where P2 receives an additional
bit from P3 that P1 does not. However, since this bit is also masked with a random bit
unknown to P2, the simulator for P2 can simply sample an additional random bit.

Thus, we can construct a simulator for all static adversaries, hence, from this and by
the security of the pseudo-random function, the simulator-generated views are identically
distributed to that of a real protocol execution. ■

3.2.2 Privacy for Malicious Adversaries in the Client-Server Model

In this section, we will show that our protocol is private in the client-server model even if
one of the parties is malicious. In the client-server model defined by Bogdanov et al. [9] and
also used in the work by Ohata et al. [40], the parties in the protocol are servers that receive
shares of inputs from multiple clients and compute a functionality on the shares and return
the output to the clients. In this model, the servers have no input nor output and just follow
the protocol description based on the shares they receive. This model has many practical
applications in outsourced computation. Privacy in the presence of malicious adversaries,
first formalized by Araki et al. [1] states that after protocol execution, the servers learn
nothing about the clients’ inputs and outputs. This certainly does not translate into
security as the correctness of the circuit’s outputs is not guaranteed, however, given semi-
honest correctness of the protocol, it is stronger than semi-honest security. We use the
same definition as Araki et al. [1].

Theorem 4 Let f : {0, 1}∗ → {0, 1}∗ be an N-party functionality and define the 3-party
functionality gf to be the function that receives 3 length-2N input vectors that constitute
sharings of the input vectors x⃗ to f and outputs 3 length-2N vectors that constitute sharings
of f(x⃗) according to our secret sharing scheme. If M is a pseudo-random function, then
the above protocol applied to function gf privately computes f in the client- server model
in the presence of at most one malicious adversary.

20

Proof. The semi-honest correctness follows from correctness as in Section 3.2.1. To
show privacy, we need to show that the view of a malicious adversary A controlling one
party when the input is x⃗ is indistinguishable from when the input is x⃗′.

If A controls party P3 then it only receives random keys S1,2 and S2,1 independent of
what P3 sends as its keys or messages during the protocol execution. Therefore Using
Lemma 2, the two views are computationally indistinguishable.

If A controls P1, then first consider the protocol in which P2 and P3 mask their messages
using information-theoretic randomness (This changes the protocol’s communication round
complexity as P2 and P3 need to communicate additional rounds to obtain the same random
bits but does not change the view of P1). Similar to above, P1 receives keys S2,3 and S3,2

from P2 and P3 respectively that is uniformly random. In addition, all the messages to P1

are masked using freshly chosen random bits. Thus regardless of what P1 sends in every
round, it only gets random elements, i.e., its view is independent of the values it sends.

Now we show that the view of P1 in this setting is indistinguishable from its view in
the real protocol. Observe that the random bits used to mask the messages in the real
protocol are obtained from M2→3 and M3→2, which is set by the interaction between the
honest parties and cannot be influenced by P1 (neither by its keys S1→2, S1→3 nor its mes-
sages). The indistinguishability then follows from a straightforward reduction where the
information-theoretic random bits are replaced by calls to the pseudo-random functions
M2→3 and M3→2. Hence, the view of P1 in the real protocol is identical to the case where
parties use information-theoretic randomness (except with computational indistinguisha-
bility). Combining this with lemma 2 completes the proof.

The same can also be shown for P2 as it is symmetric to P1 except for 2-fan-in AND
gates we mentioned before. However, because the additional bit received by P2 is masked
by a uniformly random bit (unknown to P2) the argument holds. ■

21

Chapter 4

Communication-Efficient Circuits

In this chapter, we describe how to use multi-fan-in AND gates to design binary circuits
with lower multiplicative depth. Specifically, we focus on adder, multiplier and comparator
circuits due to their extensive usage in multi-party computation protocols. In the following,
the depth of the circuit denotes the number of multiplicative stages and the size is the total
number of multiplications.

4.1 Adder

An n-bit adder takes two n-bit numbers a and b and outputs a n-bit number s plus a carry
out c. The simplest construction for an adder is the Ripple-Carry adder which has minimal
size but due to its sequential structure has a multiplicative depth of n. Therefore, it is not
well-suited for MPC purposes.

Parallel Prefix Adders (PPA) [26] use prefix tree networks with generate and propagate
signals to obtain lower depth circuits with a trade-off against circuit size. There are many
PPA designs with different characteristics. However, Sklansky PPA achieves the lowest
depth without excessively increasing circuit size. Using traditional Sklansky PPA with
2-fan-in gates results in a circuit depth of log2 n. Due to the associativity of propagate and
generate signals, taking advantage of higher-fan-in gates is straightforward. This yields a
higher parallelization and decreases the depth of the circuit by a factor of log2 ℓ.

As our protocol has communication complexity exponential in the AND gate fan-in, we
limit ourselves to Sklansky structures that are based on ℓ ≤ 8-fan-in AND gates. Table 4.1
compares the depth and size of the circuits for different bit-widths for the Ripple-Carry

22

adder, an unmodified Sklansky PPA adder and our two new constructions with multi-fan-in
AND gates up to ℓ ≤ 4 and ℓ ≤ 8, respectively.

Algorithm
depth size

16 32 64 128 16 32 64 128

Ripple-Carry 16 32 64 128 31 63 127 255

Sklansky 5 6 7 8 65 161 385 897

ℓ ≤4-fan-in 3 4 5 8 73 177 433 993

ℓ ≤8-fan-in 3 3 3 4 87 213 561 1249

Table 4.1: Comparison of adder cirucit depth and size for different constructions and bit-
widths

4.2 Multiplier

An n-bit multiplier takes two n-bit numbers a and b and outputs a 2n-bit number p as
their product. The common algorithm for multiplication is the same as the high-school
method where first n partial products of bit-length n are computed by multiplying each
bit of the multiplier by the multiplicand and left-shifting the result by the position of the
multiplier’s bit. The basic multiplier circuit then uses a 2n-bit adder to sum the partial
products one after one until the final product is reached.

Even with our depth-optimized adders, this approach has a n logℓ n depth when se-
quentially adding the partial products and using 2-fan-in AND gates in the adder design.
Summing up the partial products in a binary tree reduces the number of addition levels
from n to log n but it is still expensive in MPC protocols.

In logic synthesis, a Wallace tree [45] multiplier is used to gather all the partial products
in a tree structure. Then, each column of bits are divided in groups of 3 and reduced to
2 bits using Full Adders and Half Adders. This process is repeated until there are only 2
bits left at each position whereby a final 2n-bit adder is used to output the product. A
Wallace tree multiplier therefore has a depth of log1.5 n + logℓ 2n + 1 where the former is
the number of reduction stages and the latter is due to the final adder.

23

Algorithm
depth size

16 32 64 128 16 32 64 128

Standard 45 93 189 381 496 2016 8128 32640

Wallace 13 15 18 21 512 2058 8226 32836

ℓ ≤4-fan-in 7 9 9 11 1229 5304 21997 89416

ℓ ≤8-fan-in 6 6 8 11 1422 6612 24834 96679

Table 4.2: Comparison of multiplier circuit depth and size for different constructions and
bit-widths

There are many optimization techniques to further reduce the number of stages. Asif
and Kong [2] introduce the notion of Counter-Based Wallace (CBW) tree reduction where
4:3, 5:3, 6:3 and 7:3 counters are applied to each column to compress more bits at each
stage reducing the number of stages to log2.3 n. By a similar extension, using 15:4 counters
results in log3.75 n stages and larger counters N : M in logN/M n. However, the counter
circuit is not a depth-1 circuit anymore, and, hence, requires additional communication
rounds per stage.

We use multi-fan-in AND gates to design depth-1 counter circuits and take full ad-
vantage of the fewer reduction stages without incurring extra communication rounds per
stage. However, this comes with a trade-off against the size of the circuit and also needs
higher fan-in AND gates. Table 4.2 compares the depth and size of the circuits for different
bit-widths for the standard multiplier, the Wallace-tree multiplier and our two new con-
structions with 7:3 counters and ℓ ≤ 4-fan-in AND gates and 15:4 counters and ℓ ≤ 8-fan-in
AND gates.

log2n

logln

4.3 Comparator

A binary circuit to compare two n-bit numbers a, b in secure computation is presented by
Fischlin [21]. A number a is greater than another number b if, for some i, the i-th bit of a
is 1 and 0 for b and all the more significant bits > i are equal. Formally:

24

Algorithm
depth size

16 32 64 128 16 32 64 128

Standard 5 6 7 8 63 143 319 703

ℓ ≤4-fan-in 3 4 4 5 39 95 207 479

ℓ ≤8-fan-in 3 3 3 4 37 83 175 415

Table 4.3: Comparison of comparator circuit depth and size for different constructions and
bit-widths

a > b ⇐⇒
⊕n

i=1

(
ai ∧ ¬bi ∧

∧n
j=i+1(aj = bj)

)
where aj = bj can be rewritten as ¬(aj ⊕ bj). Using a tree structure of 2-fan-in AND

gates will result in a circuit of depth log2 n+1 to compute the product of terms in Fischlin’s
equation. Similar to the adder circuit, higher fan-in gates can be used to reduce the number
of communication rounds by minimizing the depth of the multiplicative tree. Table 4.3
compares the depth and size of the circuits for different bit-widths for the unmodified
comparator and our two new constructions with multi-fan-in AND gates up to ℓ ≤ 4 and
ℓ ≤ 8, respectively.

25

Chapter 5

Experimental Implementation and
Benchmarks

In this chapter, we provide empirical results of a prototypical implementation demonstrat-
ing the efficiency gains due to (our protocol design and) the use of multi-fan-in AND gates
compared to Araki et al.’s [1] and Beaver et al.’s protocol [5]. Recall that ASTRA [14],
which (slightly) improves over Araki et al.’s protocols, has no public implementation to
replicate their results. We begin by describing the setup environment and implementation
details.

We implement our protocol using the MP-SPDZ [29] framework in C++11. For our
servers, we use three AWS t2.large instances equipped with two Intel Xeon E5-2686 v4
2.3GHz CPUs and 8 GB RAM. We run the experiments in a simulated WAN and a real
WAN setting. To simulate the WAN, we run all three parties on a single instance imposing
a round-trip time (RTT) of 100ms and a channel bandwidth of 160Mbps by manipulating
the Kernel’s Traffic Control for the local interface. Over the WAN, the machines are
instantiated in Amazon Web Services data centers at US East (P1), US West (P2) and
North Europe (P3). In this setting, the network statistics for each pair P1-P2, P1-P3,
P2-P3 are measured separately, where the average RTTs are approximately 50ms, 100ms
and 150ms with channel bandwidth of approximately 235Mbps, 115Mbps and 75Mbps,
respectively. For our AES benchmark we also use a local-area network (LAN) with all
3 parties running on the same machine connected by the loopback interface which has
roughly 20 Gbps bandwidth and a RTT of 0.05 ms. We use TLS over TCP for secure
communication between each pair of parties.

26

We compare the performance of our protocol against the closest competitor [1] which
shares the same threat model, requires no precomputation as ours and has a publicly avail-
able implementation. We ensure fair comparison by running the MP-SPDZ implementation
of Araki et al.’s protocol [1] in our environment. As Araki et al.’s protocol [1] does not
support multi-fan-in AND gates, the results are only reported for circuits based on stan-
dard 2-fan-in AND gates. We then extend the measurements to multi-fan-in gates for our
protocol. We also compare to the implementation of Beaver et al.’s protocol [5] in the
MP-SPDZ framework [29] based on the techniques by Keller and Yanai [31]. For Beaver
et al.’s technique 2-fan-in gates are optimal, since they have the lowest communication
cost and the number of communication rounds cannot be further reduced by increasing
the fan-in. Hence, we use circuits with 2-fan-in gates for Beaver et al.’s technique. We use
the online running time and communication cost as the measured quantities to benchmark
the protocols. To generate both the standard 2-fan-in and the round-optimized circuits
using the multi-fan-in AND gates, we implemented a python module to compile the circuit
designs into Bristol Fashion format suitable as input to the MP-SPDZ framework.

We perform the comparison for three types of circuits. First, we begin by analyzing
the advantages of multi-fan-in gates in the theoretically optimal case of an AND-tree
(Section 5.1). Second, we compare our performance to related work [1, 5] for our depth-
optimized building block circuits for addition, multiplication and comparison (Section 5.2).
Third, we compare our performance to related work for a practical circuit, the AES block
cipher, which has been used in many related works as a benchmark (Section 5.3). For this
comparison, we also include the 2-party protocol ABY2 [41], since it also supports multi-
fan-in gates. However, we only compare to the online phase (ignoring its offline phase) of
ABY2, in order to avoid having to resort to public-key operations. Since, we operate in a
3-party setup our protocol can be and is implemented without public-key cryptography.

5.1 Results for AND Trees

To analyze the performance of 2-fan-in AND gates compared to the multi-fan-in AND gates,
we construct a prototype circuit that computes

∧n
i=1 ai for an n-bit number a. Similar to

the comparison circuits from Section 4, a tree structure of AND gates is used to aggregate
the input wires in multiple rounds until the final product is output. The depth and size of

this circuit are ⌈logℓ n⌉ and ℓ⌈logℓ n⌉−1
ℓ−1

, respectively allowing for ℓ-fan-in AND gates.

Figure 5.1 shows the running time of the AND-tree aggregator for designs based on
2,4,8-fan-in AND gates and Araki et al.’s protocol [1] using 2-fan-in gates. In the simulated
WAN setting, we observe in the case of 2-fan-in gates, that for both Araki et al.’s [1] and our

27

4 6 8 10 12

200

400

600

800

Input bit-width in powers of 2

O
n
li
n
e
ru
n
n
in
g
ti
m
e
in

(m
s)

Sim. WAN

[1] (2-fan-in)
2-fan-in
4-fan-in
8-fan-in

4 6 8 10 12

200

400

600

800

Input bit-width in powers of 2

O
n
li
n
e
ru
n
n
in
g
ti
m
e
in

(m
s)

WAN

[1] (2-fan-in)
2-fan-in
4-fan-in
8-fan-in

Figure 5.1: Online latency of AND-tree computation for multiple input bit-width

28

protocol, the running time increases linearly with the multiplicative depth of the circuit.
However, our protocol consistently takes one RTT time less to complete which is due to
the asymmetry of the roles of the parties. This behavior has been noticed before in other
protocols, notably ASTRA [14], where similarly, the majority of the communication and
computation is handled by only a pair of the parties, namely P1 -P2. In our protocol, P3
does not receive any bits from the other parties, i.e., it can execute the protocol without
waiting on any inbound communication. Consequently, by the time P1 and P2 reach the
final level of the circuit, they have already received the information required from P3 to
do the local computation. Hence, they can finalize the protocol with no latency saving an
extra RTT in the running time.

In the real WAN setting, this improvement becomes even more significant as our proto-
col provides the flexibility to setup the parties such that the communication link between
P1 -P2 has the lowest latency among all the pairs. This effectively reduces the delay for
each round from the maximum to the minimum RTT among each pair of the parties due
to the role of P3 as explained. In Figure 5.1, we observe that our protocol achieves better
performance by improving up to 1.7× upon Araki et al.’s protocol [1].

Next, we analyze the impact of multi-fan-in AND gates and demonstrate the full power
of our protocol. Even when using only a slightly higher fan-in ℓ ≤ 4-AND gates, we
achieve an improvement in the running time of 2× for the simulated WAN and 3.5× for
the real WAN compared to Araki et al.’s protocol [1]. This is mainly due to the reduced
depth of the circuits, though the asymmetry of our protocol contributes to the increased
performance over WAN as well.

The running time can be further reduced by using ℓ ≤ 8-fan-in AND gates. The
performance gain becomes more noticeable as the circuit sizes grow larger. However, for
some input lengths the running time is not improved upon the case of ℓ ≤ 4-fan-in. This is
because the circuit depth remains the same regardless of the design using either ≤ 4 or ≤ 8
fan-in AND gates. However, since our protocol has exponential communication cost in the
fan-in, the optimal constructions are the ones leveraging smaller fan-in, i.e., ℓ ≤ 4-fan-in
gates.

Table 5.1 shows the communication cost of our protocol for running 100 instances of
the AND-tree aggregator in parallel. We report the numbers for all the parties, however,
as P1 and P2 have symmetric behaviour, they incur the same amount of communication
and are thus grouped together. The results for Araki et al.’s protocol [1] are the same as
ours in the case of circuits with only 2-fan-in gates as they both send one bit per party per
2-fan-in AND gate. We see that for each input size, the communication cost increases for
P1, P2 as higher fan-in gates are used. This is an expected behaviour, since the multi-fan-

29

Party Fan-in
Comm. (KB)

Tree-24 Tree-26 Tree-28 Tree-210 Tree-212

P1, P2

2 0.013 0.018 0.042 0.138 0.522

4 0.017 0.039 0.127 0.479 1.887

8 0.072 0.288 1.123 4.518 18.072

P3

2 0.011 0.017 0.041 0.137 0.521

4 0.011 0.015 0.031 0.095 0.351

8 0.010 0.012 0.019 0.046 0.156

Table 5.1: Comparison of communication cost of AND-tree computation per party for
multiple input bit-width

in AND gates consume exponentially more bits on the link P1 -P2. This explains why it is
not always optimal to use higher fan-in gates, i.e., when they do not sufficiently reduce the
multiplicative depth. For example, the 210-tree aggregator circuit based on 8-fan-in AND
gates has 10× more communication cost than the one based on 4-fan-in AND gates, while
there is no improvement in running time.

However, we observe that P3 uses less communication with higher fan-ins. This is be-
cause P3 always sends 2 bits per multi-fan-in AND gates regardless of the fan-in. Therefore,
its communication cost gets lower as the circuit sizes shrink due to replacing lower fan-in
with higher fan-in gates.

Another observation here is that our protocol has the advantage of being resilient to a
lower bandwidth or even a change in bandwidth between one party and the others due to
its asymmetry. If one of the parties suffers from a limited bandwidth to the other parties,
we can dynamically assign it the role of P3, i.e., the party with the lowest communica-
tion overhead. As a consequence, our protocol may maintain its performance in case of
bandwidth fluctuations, particularly if high fan-in AND gates are used. This improves
over Araki et al.’s protocol [1] which would suffer a significant performance downgrade
under such circumstances. Chaudhari et al. have already noted this for ASTRA [14]. Yet,
ASTRA [14] does not support multi-fan-in AND gates and suffers for protocols with high
multiplicative depth.

30

5.2 Results for Communication-Efficient Circuits

We benchmark the latency and communication cost of our depth-optimized circuits for ad-
dition, multiplication and comparison from Section 4 in our protocol in comparison to their
plain 2-fan-in versions. We also compare the 2-fan-in versions against Araki et al.’s pro-
tocol [1] to separate improvements stemming from the protocol’s flow from improvements
stemming from the use of multi-fan-in gates and compare to Beaver et al.’s protocol [5] us-
ing replicated secret sharing in order to show improvements over constant-round protocols.
The results are reported in Tables 5.2-5.6.

Circuit Work
n = 16 n = 32 n = 64

Sim. WAN Sim. WAN Sim. WAN

RC Adder
[1] 0.906 0.903 1.709 1.678 3.322 3.316

This 0.865 0.507 1.671 0.927 3.281 1.708

Sklansky
[1] 0.352 0.302 0.405 0.401 0.452 0.448

This 0.312 0.196 0.361 0.255 0.412 0.257

Standard
Multiplier

[1] - - 6.494 6.492 9.607 9.608

This - - 6.452 3.243 9.571 4.789

Wallce
[1] 0.906 0.911 1.111 1.059 1.317 1.298

This 0.865 0.512 1.067 0.609 1.272 0.718

Comparator
[1] 0.352 0.351 0.403 0.404 0.453 0.455

This 0.312 0.203 0.362 0.251 0.413 0.248

Table 5.2: Comparison of online running time (sec) of our protocol, Araki et al.’s proto-
col [1] for addition, multiplication and comparison circuits

We start by analyzing the effect of our protocol when using only 2-fan-in AND gates.
Although, Büscher and Katzenbeisser [13] also build depth-optimized circuits, they only
theoretically analyze them and do not report any experimental results. Table 5.2 com-
pares the running time of our protocol against Araki et al.’s protocol [1] for both vanilla
and our optimized versions of adder, multiplier and comparator circuits. In the simulated
WAN setting, the running time is improved by 2.5-7.5× for addition and by 4-7.5× for
multiplication. Over the real WAN, we take advantage of the asymmetry in the commu-
nication structure of our protocol to further reduce the total latency as explained. This

31

increases the running time gains of our protocol to 6-13× for addition and to 7-14× for
multiplication.

In Table 5.3, we present the running time of our protocol for the depth-optimized
circuits based on multi-fan-in AND gates. The results show a pattern consistent with
our observations for the AND-tree aggregators from Section 5.1, e.g., the running time
improves as the multiplicative depth of the circuit decreases due to the use of higher fan-in
AND gates.

Next, we compare our protocol against constant-round, garbled circuit-based protocols.
We compare to the semi-honest 3-party version of the Beaver et al.’s protocol [5], which
has comparable security assumption to our protocol. The inputs are divided into repli-
cated secret-shares as in Araki et al.’s protocol [1]. Beaver et al.’s protocol [5] also has a
precomputation phase which we do not report. During the precomputation phase, each
party Pi garbles the circuit locally. Then, in the online phase, the parties jointly generate
a distributed garbled circuit which they subsequently evaluate to obtain their output.

Table 5.4 summarizes the running time of our protocol and the online phase of Beaver et
al.’s protocol [5] for addition, multiplication and comparison. We report only the running
times for the best possible circuits for each protocol. In the simulated WAN setting,
Beaver et al.’s protocol [5] has a lower running time for a single instance of all functions.
However, over the real WAN, our protocol outperforms it in all except the 32-bit addition
functionality where it, however, matches it. We observe that, since the best circuits for
our protocol are based on multi-fan-in AND gates, the reduced number of communication
rounds significantly affects its running time over WAN. Although Beaver et al.’s protocol [5]
has a constant number of rounds, the communication cost of distributing the garbled
circuit dominates the network latency. Table 5.5 shows these communication costs for
each function in both protocols. Our protocol has a lower communication cost of 30-420×
for 32-bit and 18-120× for 64-bit circuits. The difference in communication costs is further
underpinned by the running time of batches of 100 parallel instances of the same circuit. In
these cases, our protocol is faster in both simulated and real WAN settings and processes
a higher number of parallel circuits.

Finally, in Table 5.6, we show the communication cost of our protocol for running 1000
instances of each circuit in parallel alongside a breakdown of their numbers of AND gates by
fan-in. The circuits are mostly composed of 2-fan-in and ℓ ≤ 4-fan-in AND gates. Hence,
despite the exponential communication complexity of multi-fan-in gates in our protocol,
the majority of the computation is performed using AND gates of low fan-in which results
in an overall low increase in communication cost when using our protocol with multi-fan-in
gates.

32

Circuit Fan-in
Sim. WAN (s) WAN (s)

16 32 64 128 16 32 64 128

Sklansky

2 0.312 0.362 0.412 0.463 0.196 0.255 0.257 0.310

4 0.211 0.261 0.261 0.312 0.150 0.194 0.201 0.206

8 0.203 0.212 0.213 0.266 0.150 0.152 0.204 0.203

Wallace
2 0.865 1.067 1.272 1.388 0.512 0.609 0.718 0.865

4 0.665 0.767 0.925 1.064 0.411 0.461 0.628 0.641

Comparator

2 0.312 0.362 0.413 0.463 0.203 0.251 0.248 0.316

4 0.211 0.261 0.261 0.313 0.146 0.203 0.202 0.216

8 0.211 0.211 0.212 0.263 0.151 0.154 0.155 0.217

Table 5.3: Comparison of online running time (sec) of addition, multiplication and com-
parison circuits for multiple fan-ins and input bit-width

Function Work

Batch = 1 Batch = 100

Sim. WAN Sim. WAN

32 64 32 64 32 64 32 64

Addition
[5] 0.150 0.150 0.150 0.207 0.583 0.652 1.211 1.37

This 0.212 0.213 0.152 0.204 0.252 0.252 0.252 0.253

Mult.
[5] 0.586 0.639 1.179 1.316 7.493 11.375 20.35 24.64

This 0.767 0.925 0.461 0.628 0.960 1.422 0.727 1.174

Comp.
[5] 0.150 0.199 0.200 0.351 0.651 0.874 1.448 3.279

This 0.211 0.212 0.154 0.155 0.251 0.252 0.251 0.249

Table 5.4: Comparison of online running time (sec) of our protocol and Beaver et al.’s
protocol [5] for addition, multiplication and comparison circuits

33

Function Work n = 32 n = 64

Addition
[5] 38.9 78.3

This 1.325 4.378

Multiplication
[5] 3600 4940

This 8.533 37.173

Comparison
[5] 87.05 194.1

This 0.584 2.010

Table 5.5: Comparison of communication cost (KB) of our and Beaver et al.’s protocol [5]
for addition, multiplication and comparison circuits

Circuit

n = 16 n = 32 n = 64

AND
Comm.
(MB)

AND
Comm.
(MB)

AND
Comm.
(MB)

2 ≤4 ≤8 2 ≤4 ≤8 2 ≤4 ≤8

Sklansky

65 - - 0.056 161 - - 0.094 385 - - 0.182

43 30 - 0.104 107 70 - 0.208 235 198 - 0.504

39 24 24 0.595 87 74 52 1.325 183 190 188 4.378

Wallace
828 - - 0.342 3330 - - 1.282 13098 - - 4.949

718 - 1.783 2755 2549 - 8.533 10830 11167 - 37.173

Comparator

63 - - 0.056 143 - - 0.089 319 - - 0.161

8 31 - 0.088 32 63 - 0.154 48 159 - 0.342

10 19 8 0.291 12 55 16 0.584 16 95 64 2.010

Table 5.6: Comparison of communication cost of addition, multiplication and comparison
circuits for multiple fan-ins and input bit-width. The communication cost of Araki et al.’s
protocol [1] is the same as our protocol for only 2-fan-in gates.

34

5.3 Results for AES with Optimized S-box

Since the work by Pinkas et al. [43], the running time to evaluate an AES block cipher has
been the common benchmark to measure the performance of MPC protocols. In privacy-
preserving AES, one party holds the key k, another party holds a message m and the goal
is to learn AESk(m) without revealing any more information about k or m. This has many
interesting applications in practice including encrypted databases [11, 34] and secure user
authentication [1, 30].

The AES block cipher is implemented in multiple sequential rounds. Each round per-
forms four operations on the input bytes, namely, SubBytes (S-box), ShiftRows, MixCol-
umn and AddRoundKey [16]. Huang et al. show that only the S-boxes require non-linear
operations and hence are relevant to the running time of MPC protocols [27]. Boyar et
al. present an optimized circuit of depth 4 and size 34 with only standard 2-fan-in AND
gates [10]. Utilizing the power of 3-fan-in gates, Patra et al. reduce the depth of this circuit
to 3 while keeping the same size [41]. We additionally take advantage of 4-fan-in gates to
build a circuit of depth 2. This comes at the cost of increasing the size of the circuit to 66
of which 22 are 2-fan-in, 22 are 3-fan-in and 22 are 4-fan-in AND gates.

Param. Work
AES-128 AES-192 AES-256

Sim. WAN Sim. WAN Sim. WAN

Runtime
(sec)

[41] 2.006 2.052 2.408 2.455 2.810 2.856

[1] 1.964 2.071 2.417 2.520 2.720 2.885

[5] 0.651 1.147 0.673 1.120 0.677 1.124

This 1.056 0.655 1.258 0.747 1.458 0.858

Comm
(KB)

[41] 2.64 3.16 3.69

[1] 2.04 2.42 2.85

[5] 11680 13080 16110

This 165.7 198.2 230.8

Table 5.7: Comparison of online running time and communication cost of our protocol and
[5, 1] for AES. Results of our protocol and [41, 1] are reported for 100 parallel instances

Table 5.7 compares the latency and communication cost of our protocol for this AES
circuit to those of related work [41, 1, 5]. ABY2 [41] is a two-party protocol, but we only
compare to the online phase, which does not require public-key cryptographic operations
but only operations on secret shares as our protocol. We use our new depth-optimized

35

circuit for our protocol and ABY2 [41], since they both support multi-fan-in gates. We
use the circuit by Boyar et al. [10] (only 2-fan-in gates) for Araki et al.’s [1] and Beaver et
al.’s protocol [5]. Our protocol has a higher communication cost than related work [1, 41]
as it requires an exponential number of bits in the fan-in. However, in the simulated WAN
setting, we outperform the running time of both, ABY2 [41] and Araki et al.’s protocol [1]
by 1.9× for AES-128. Our running time advantage is even stronger over WAN where our
protocol improves by 1.8× even over Beaver et al.’s protocol [5] due to the effects of its
asymmetric communication. We achieve sub-second running time for all the 3 key sizes of
AES over the real WAN (Amazon data centers) which is a first for MPC protocols. This
is particularly important in case of streaming encryption, such as AES-CBC mode.

Circuit Work LAN WAN

AES-128

[5] 131.9 3.2

[41] 75 K 4.8 K

[1] 115.5 K 8.2 K

This 111.2 K 18.1 K

AES-192

[5] 119.3 2.4

[41] 62.5 K 4.2 K

[1] 95.5 K 6.8 K

This 91.6 K 14.8 K

AES-256

[5] 89.1 2

[41] 54.2 K 3.6 K

[1] 81.3 K 5.8 K

This 78.4 K 12.2 K

Table 5.8: Comparison of online throughput of our protocol and [5, 1] for AES.

The other common metric, with which to analyze MPC protocols running AES, is
throughput, i.e., the number of AES blocks per second a protocol can compute. Table 5.8
compares the amortized throughput of our protocol to related work [41, 1, 5] in both LAN
and WAN. We use circuits with depth-3 S-boxes built only with 3-fan-in gates (no 4 fan-in
gates) for our protocol and ABY2 [41]. Despite that our new depth-2 S-boxes are shal-
lower, their communication overhead uses too much bandwidth lowering total (amortized)
throughput.

Araki et al.’s protocol [1] has the highest throughput in LAN. Our protocol’s throughput
is slightly lower, but still competitive since we require extra branching instructions and PRF

36

invocations to compute multi-fan-in AND gates. Over WAN, this additional computation
becomes less relevant compared to the network latency such that our protocol improves
by 2.2× over Araki et al.’s protocol [1] and 3.8× over ABY2 [41]. Our protocol has the
highest throughput for all key sizes in WAN. Beaver et al.’s protocol [5] is not competitive
in this throughput benchmark due to its high communication cost. We, hence, conjecture
that it is also not competitive for large and wide circuits.

37

Chapter 6

Conclusion & Future Work

6.1 Conclusion

In this work, we present a new honest-majority 3-party computation protocol secure against
semi-honest adversaries. We show that our protocol maintains the near-optimal commu-
nication complexity to compute 2-fan-in AND gates while it is also capable of evaluating
multi-fan-in AND gates in a single round of communication. Yet, it does not require any
preprocessing. We build new depth-optimized circuits for basic operations such as addi-
tion, multiplication and comparison by taking advantage of multi-fan-in AND gates. We
demonstrate the performance gains of our protocol for these circuits by extensive experi-
ments. For a common benchmark, we use the AES circuit that we further optimize with
multi-fan-in AND gates. Our protocol achieves a 2-4× improvement for both latency and
throughput over state-of-the-art protocols in the WAN environment.

6.2 Future Work

We point out a few open problems to explore in future work. First, with the increasing
demand for privacy-preserving Machine Learning (PPML), it is interesting to analyze the
efficiency of our protocol in these applications. Second, our protocol is secure for an
honest-majority in the semi-honest model. Achieving security against other adversary
structures with malicious or covert participants is future work. The last but not the least
open problem is expanding our techniques to compute multi-fan-in AND gates in a single
communication round for the general n-party setting.

38

References

[1] Toshinori Araki, Jun Furukawa, Yehuda Lindell, Ariel Nof, and Kazuma Ohara. High-
throughput semi-honest secure three-party computation with an honest majority. In
Proceedings of The 23rd ACM Conference on Computer and Communications Security,
Vienna, Austria, October 24-28, 2016, 2016.

[2] Shahzad Asif and Yinan Kong. Design of an algorithmic wallace multiplier using high
speed counters. In Proceedings of the 10th International Conference of Computing for
Engineering and Sciences, Istanbul, ICCES 2015, Turkey. July, 29-31, 2015, 2015.

[3] Donald Beaver. Efficient multiparty protocols using circuit randomization. In Pro-
ceedings of the 11th Annual International Cryptology Conference, CRYPTO ’91, Santa
Barbara, California, USA, August 11-15, 1991, 1991.

[4] Donald Beaver. Efficient multiparty protocols using circuit randomization. In Pro-
ceedings of the 11th Annual International Cryptology Conference, Santa Barbara, Cal-
ifornia, USA, August 11-15, 1991, 1991.

[5] Donald Beaver, Silvio Micali, and Phillip Rogaway. The round complexity of secure
protocols (extended abstract). In Proceedings of the 22nd Annual ACM Symposium
on Theory of Computing, May 13-17, 1990, Baltimore, Maryland, USA, 1990.

[6] Aner Ben-Efraim, Yehuda Lindell, and Eran Omri. Efficient scalable constant-round
MPC via garbled circuits. In Advances in Cryptology - ASIACRYPT 2017 - 23rd In-
ternational Conference on the Theory and Applications of Cryptology and Information
Security, Hong Kong, China, December 3-7, 2017, Proceedings, Part II, 2017.

[7] Michael Ben-Or, Shafi Goldwasser, and Avi Wigderson. Completeness theorems for
non-cryptographic fault-tolerant distributed computation. In 20th Annual ACM Sym-
posium on Theory of Computing, STOC, Chicago, IL, USA, May 2-4, 1988, 1988.

39

[8] Michael Ben-Or, Shafi Goldwasser, and Avi Wigderson. Completeness theorems for
non-cryptographic fault-tolerant distributed computation (extended abstract). In Pro-
ceedings of the 20th Annual ACM Symposium on Theory of Computing, May 2-4, 1988,
Chicago, Illinois, USA, 1988.

[9] Dan Bogdanov, Sven Laur, and Jan Willemson. Sharemind: A framework for fast
privacy-preserving computations. In Proceedings of the 13th European Symposium on
Research in Computer Security, Málaga, Spain, October 6-8, 2008, 2008.

[10] Joan Boyar, Philip Matthews, and René Peralta. Logic minimization techniques with
applications to cryptology. J. Cryptol., 26(2):280–312, 2013.

[11] Lúıs T. A. N. Brandão, Nicolas Christin, George Danezis, and Anonymous. Toward
mending two nation-scale brokered identification systems. In Proceedings of The 15th
Privacy Enhancing Technologies Symposium, Philadelphia, PA, USA, June 30 – July
2, 2015, 2015.

[12] Megha Byali, Harsh Chaudhari, Arpita Patra, and Ajith Suresh. Flash: Fast and
robust framework for privacy-preserving machine learning. In Proceedings of the 20th
Annual Privacy Enhancing Technologies, volume 2, pages 459–480, 2020.

[13] Niklas Büscher and Stefan Katzenbeisser. Compilation for Secure Multi-party Com-
putation. Springer, 2017.

[14] Harsh Chaudhari, A. Choudhury, Ashish Patra, and Ajith Suresh. Astra: High
throughput 3pc over rings with application to secure prediction. In Proceedings
of the 2019 ACM SIGSAC Conference on Cloud Computing Security Workshop,
CCSW@CCS 2019, London, UK, November 11, 2019, 2019.

[15] Harsh Chaudhari, Rahul Rachuri, and Ajith Suresh. Trident: Efficient 4pc framework
for privacy preserving machine learning. In 27th Annual Network and Distributed
System Security Symposium, NDSS 2020, San Diego, California, USA, February 23-
26, 2020, 2020.

[16] J. Daemen and V. Rijmen. The Design of Rijndael: AES — The Advanced Encryption
Standard. Springer, 2002.

[17] Anders P. K. Dalskov, Daniel Escudero, and Marcel Keller. Fantastic four: Honest-
majority four-party secure computation with malicious security. In 30th USENIX
Security Symposium, USENIX Security 2021, August 11-13, 2021, 2021.

40

[18] Ivan Damg̊ard, Valerio Pastro, Nigel Smart, and Sarah Zakarias. Multiparty computa-
tion from somewhat homomorphic encryption. In Proceedings 32nd Annual Cryptology
Conference, Santa Barbara, CA, USA, August 19-23, 2012, 2012.

[19] Ghada Dessouky, Farinaz Koushanfar, Ahmad-Reza Sadeghi, Thomas Schneider,
Shaza Zeitouni, and Michael Zohner. Pushing the communication barrier in secure
computation using lookup tables. In The 24th Annual Network and Distributed System
Security Symposium, NDSS 2017, San Diego, California, USA, February 26 - March
1, 2017, 2017.

[20] Wenliang Du and Mikhail J. Atallah. Protocols for secure remote database access with
approximate matching. Springer, 2001.

[21] Marc Fischlin. A cost-effective pay-per-multiplication comparison method for million-
aires. In Topics in Cryptology - CT-RSA 2001, The Cryptographer’s Track at RSA
Conference 2001, San Francisco, CA, USA, April 8-12, 2001, Proceedings, 2001.

[22] Jun Furukawa, Yehuda Lindell, Ariel Nof, and Or Weinstein. High-throughput secure
three-party computation for malicious adversaries and an honest majority. In Pro-
ceedings of the 36th Annual International Conference on the Theory and Applications
of Cryptographic Techniques, EUROCRYPT 2017, Paris, France, April 30 - May 4,
2017, 2017.

[23] Oded Goldreich. Secure multi-party computation. https://www.wisdom.weizmann.
ac.il/~oded/PSX/prot.pdf, 2002.

[24] Oded Goldreich, Silvio Micali, and Avi Wigderson. How to play any mental game
or A completeness theorem for protocols with honest majority. In Proceedings of the
19th Annual ACM Symposium on Theory of Computing, 1987, New York, New York,
USA, 1987.

[25] S. Dov Gordon, Samuel Ranellucci, and Xiao Wang. Secure computation with low
communication from cross-checking. In Advances in Cryptology - ASIACRYPT 2018
- 24th International Conference on the Theory and Application of Cryptology and
Information Security, Brisbane, QLD, Australia, December 2-6, 2018, Proceedings,
Part III, 2018.

[26] David Harris. A taxonomy of parallel prefix networks. In Proceedings of The 37th
Asilomar Conference on Signals, Systems & Computers, Pacific Grove, USA, Novem-
ber 9-12, 2003, 2003.

41

https://www.wisdom.weizmann.ac.il/~oded/PSX/prot.pdf
https://www.wisdom.weizmann.ac.il/~oded/PSX/prot.pdf

[27] Yan Huang, David Evans, Jonathan Katz, and Lior Malka. Faster secure two-party
computation using garbled circuits. In 20th USENIX Security Symposium, USENIX
Security 2011, San Francisco, CA, USA, August 8-12, 2011, 2011.

[28] Mihaela Ion, Ben Kreuter, Ahmet Erhan Nergiz, Sarvar Patel, Shobhit Saxena, Karn
Seth, Mariana Raykova, David Shanahan, and Moti Yung. On deploying secure com-
puting: Private intersection-sum-with-cardinality. In IEEE European Symposium on
Security and Privacy, EuroS&P 2020, Genoa, Italy, September 7-11, 2020, 2020.

[29] Marcel Keller. MP-SPDZ: A versatile framework for multi-party computation. In
Proceedings of the 2020 ACM SIGSAC Conference on Computer and Communications
Security, Virtual Event, USA, November 9-13, 2020, 2020.

[30] Marcel Keller, Emmanuela Orsini, Dragos Rotaru, Peter Scholl, Eduardo Soria-
Vazquez, and Srinivas Vivek. Faster secure multi-party computation of aes and des
using lookup tables. In Proceedings of The 15th International Conference on Applied
Cryptography and Network Security, ACNS 2017, Kanazawa, Japan, July10-12, 2017,
2017.

[31] Marcell Keller and Avishay Yanai. Efficient maliciously secure multiparty computation
for ram. In Proceedings of the 37th Annual International Conference on the Theory
and Applications of Cryptographic Techniques, EUROCRYPT 2018, Tel Aviv, Israel,
April 29 - May 3, 2018, 2018.

[32] Brian Knott, Shobha Venkataraman, Awni Y. Hannun, Shubho Sengupta, Mark
Ibrahim, and Laurens van der Maaten. Crypten: Secure multi-party computation
meets machine learning. In Advances in Neural Information Processing Systems 34:
Annual Conference on Neural Information Processing Systems 2021, NeurIPS 2021,
December 6-14, 2021, virtual, 2021.

[33] Nishat Koti, Mahak Pancholi, Arpita Patra, and Ajith Suresh. SWIFT: super-fast and
robust privacy-preserving machine learning. In 30th USENIX Security Symposium,
USENIX Security 2021, August 11-13, 2021, 2021.

[34] Sven Laur, Rilvo Talviste, and Jan Willemson. Aes block cipher implementation and
secure database join on the sharemind secure multi-party computation framework.
In Proceedings of the 11th International Conference on Applied Cryptography and
Network Security, ACNS 2013, Banff, Canada, June 25-28, 2013, 2013.

42

[35] Yehuda Lindell, Benny Pinkas, Nigel P. Smart, and Avishay Yanai. Efficient constant-
round multi-party computation combining BMR and SPDZ. Journal of Cryptology,
32(3):1026–1069, 2019.

[36] Yehuda Lindell, Nigel P. Smart, and Eduardo Soria-Vazquez. More efficient constant-
round multi-party computation from BMR and SHE. In Theory of Cryptography -
14th International Conference, TCC 2016-B, Beijing, China, October 31 - November
3, 2016, Proceedings, Part I, 2016.

[37] Ueli M. Maurer. Secure multi-party computation made simple. In Security in Commu-
nication Networks, Third International Conference, SCN 2002, Amalfi, Italy, Septem-
ber 11-13, 2002. Revised Papers, 2020.

[38] Peyman Mohassel and Peter Rindal. Aby3: A mixed protocol framework for machine
learning. In Proceedings of the 25th Annual (ACM) Conference on Computer and
Communications Security, Toronto, Canada, October 15-19, 2018, 2021.

[39] Jesper Buus Nielsen, Peter Sebastian Nordholt, Claudio Orlandi, and Sai Sheshank
Burra. A new approach to practical active-secure two-party computation. In Proceed-
ings 32nd Annual Cryptology Conference, Santa Barbara, CA, USA, August 19-23,
2012, 2012.

[40] Satsuya Ohata and Koji Nuida. Communication-efficient (client-aided) secure two-
party protocols and its application. In 24th International Conference on Financial
Cryptography and Data Security, Kota Kinabalu, Malaysia, February 10–14, 2020,
2020.

[41] Arpita Patra, Thomas Schneider, Ajith Suresh, and Hossein Yalame. Aby2.0: Im-
proved mixed-protocol secure two-party computation. In 30th USENIX Security Sym-
posium, USENIX Security 2021, August 11-13, 2021, 2021.

[42] Arpita Patra and Ajith Suresh. BLAZE: blazing fast privacy-preserving machine
learning. In 27th Annual Network and Distributed System Security Symposium, NDSS
2020, San Diego, California, USA, February 23-26, 2020, 2020.

[43] Benny Pinkas, Thomas Schneider, Nigel P. Smart, and Stephen C. Williams. Secure
two-party computation is practical. In Advances in Cryptology - ASIACRYPT 2009
- 15th International Conference on the Theory and Application of Cryptology and
Information Security, Tokyo, Japan, December 6-10, 2009, 2009.

43

[44] M. Sadegh Riazi, Christian Weinert, Oleksandr Tkachenko, Ebrahim M. Songhori,
Thomas Schneider, and Farinaz Koushanfar. Chameleon: A hybrid secure com-
putation framework for machine learning applications. In Proceedings of the 13th
ACM Symposium on Information, Computer and Communications Security, ASI-
ACCS 2018, Incheon, Korea, June 4-8, 2018, 2018.

[45] C.S. Wallce. A suggestion for a fast multiplier. IEEE Transactions on Computers,
13:14–17, 1964.

[46] Andrew Chi-Chih Yao. Protocols for secure computations. In 23rd Annual Symposium
on Foundations of Computer Science, Chicago, Illinois, USA, November 3-5, 1982,
1982.

[47] Andrew Chi-Chih Yao. How to generate and exchange secrets. In 27th Annual Sym-
posium on Foundations of Computer Science, Toronto, Canada, October 27-29, 1986,
1986.

[48] Moti Yung. From mental poker to core business: Why and how to deploy secure
computation protocols? In Proceedings of the 22nd ACM SIGSAC Conference on
Computer and Communications Security, Denver, CO, USA, October 12-16, 2015,
2015.

44

	List of Figures
	List of Tables
	Introduction
	Preliminaries
	Notation
	Correlated Randomness
	Message Masking

	Secret Sharing
	Related Work

	The New Protocol
	Boolean Circuits
	XOR (addition) gates
	AND (multiplication) gates
	Multi-fan-in AND (multiplication) gates

	Threat Model and Security
	Security for Semi-honest Adversaries
	Privacy for Malicious Adversaries in the Client-Server Model

	Communication-Efficient Circuits
	Adder
	Multiplier
	Comparator

	Experimental Implementation and Benchmarks
	Results for AND Trees
	Results for Communication-Efficient Circuits
	Results for AES with Optimized S-box

	Conclusion & Future Work
	Conclusion
	Future Work

	References

