
Universidade do Minho

Escola de Engenharia

Departamento de Informática

Pedro Faria Durães da Silva

Towards a Quantitative Alloy

March 2021

Universidade do Minho

Escola de Engenharia

Departamento de Informática

Pedro Faria Durães da Silva

Towards a Quantitative Alloy

Master dissertation

Integrated Master’s in Informatics Engineering

Dissertation supervised by

José N. Oliveira (University of Minho)

Nuno Macedo (University of Porto)

March 2021

CO P Y R I G H T AND T E RMS O F U S E F O R TH I R D P A R T Y WORK

This dissertation reports on academic work that can be used by third parties as long as the internationally

accepted standards and good practices are respected concerning copyright and related rights.

This work can thereafter be used under the terms established in the license below.

Readers needing authorization conditions not provided for in the indicated licensing should contact the

author through the RepositóriUM of the University of Minho.

LICENSE GRANTED TO USERS OF THIS WORK:

CC BY
https://creativecommons.org/licenses/by/4.0/

i

https://creativecommons.org/licenses/by/4.0/

A C KNOWL EDG EMEN T S

First of all, I would like to thank Professor José Nuno for giving me the opportunity to do my MSc dissertation

in such an interesting project. Further, thank you, not only for all the patience and the enormous help from

early on, given my many questions at the time, making the start-off of this project as smooth as possible,

but also for all the guidance throughout the project as a whole.

I also wish to thank Dr. Nuno Macedo for his crucial help in establishing a research plan that effectively

allowed me to deliver the objectives of this dissertation; and for all the feedback provided, clearing up many

doubts and pointing out improvements that would push this project further.

Once again, especially in this harsh circumstances faced by everyone this year, I am very thankful for

all the help my supervisors were able to provide me, regarding the execution of the project itself, greatly

improving the quality of my writing, and so on; without which such a degree of accomplishment would not

have been possible.

I am forever indebted to my family, which were my pillars not only for all of my existence but also during

this key phase of my life. Father Júlio, thank you for being there every step of the way, for being an endless

source of positivity and encouragement, for all the time you have spared to assist me. Arminda, my mother,

thank you for always knowing how to put a smile on my face no matter how I may feel, for always caring,

for helping me keep my feet on the ground when I needed it the most. Dear sister Diana, my inspiration

and role model, I strive to reach your level of excellence – thank you for always being ready to help and for

always believing in me. Thank you for everything that you have done for me, for all the love and support you

have always given me,

I hope to have made you proud.

ii

S T A T EMEN T O F I N T E G R I T Y

I hereby declare having conducted this academic work with integrity.

I confirm that I have not used plagiarism or any form of undue use of information or falsification of results

along the process leading to its elaboration.

I further declare that I have fully acknowledged the Code of Ethical Conduct of the University of Minho.

iii

A B S T R A C T

When one comes across a new problem that needs to be solved, by abstracting from its associated details

in a simple and concise way through the use of formal methods, one is able to better understand the matter

at hand. Alloy (Jackson, 2012), a declarative specification language based on relational logic, is an example

of an effective modelling tool, allowing high-level specification of potentially very complex systems. However,

along with the irrelevant information, measurable data of the system is often lost in the abstraction as well,

making it not as adequate for certain situations.

The Alloy Analyzer represents the relations under analysis by Boolean matrices. By extending this type of

structure to:

• numeric matrices, over N0, one is able to work with multirelations, i.e. relations whose arcs are

weighted; each tuple is thus associated with a natural number, which allows reasoning in a similar

fashion as in optimization problems and integer programming techniques;

• left-Stochastic matrices, one is able to model faulty behaviour and other forms of quantitative

information about software systems in a probabilistic way; in particular, this introduces the notion of

a probabilistic contract in software design.

Such an increase in Alloy’s capabilities strengthens its position in the area of formal methods for software

design, in particular towards becoming a quantitative formal method.

This dissertation explores the motivation and importance behind quantitative analysis by studying and

establishing theoretical foundations through categorial approaches to accomplish such reasoning in Alloy.

This starts by reviewing the required tools to support such groundwork and proceeds to the design and

implementation of such a quantitative Alloy extension.

This project aims to promote the evolution of quantitative formal methods by successfully achieving

quantitative abstractions in Alloy, extending its support to these concepts and implementing them in the

Alloy Analyzer.

KEYWORDS Alloy, Category Theory, Quantitative formal methods, Relational Algebra, Typed Linear Alge-

bra.

iv

R E S UMO

Quando se depara com um novo problema que precisa de ser resolvido, ao abstrair dos seus detalhes

associados de forma simples e concisa recorrendo a métodos formais, é possível compreender melhor

o assunto em questão. Alloy (Jackson, 2012), uma linguagem de especificação declarativa baseada em

lógica relacional, é um exemplo de uma ferramenta de modelação eficaz, possibilitando especificações

de alto-nível de sistemas potencialmente bastante complexos. Contudo, em conjunto com a informação

irrelevante, os dados mensuráveis são muitas vezes também perdidos na abstração, tornando-a não tão

adequada para certas situações.

O Alloy Analyzer representa as relações sujeitas a análise através de matrizes Booleanas. Ao estender

este tipo de estrutura para:

• matrizes numéricas, em N0, é possível lidar com multirelações, i.e., relações cujos arcos são

pesados; cada tuplo é consequentemente associado a um número natural, o que proporciona uma

linha de raciocínio semelhante à de técnicas de problemas de otimização e de programação inteira;

• matrizes estocásticas, permitindo a modelação de comportamento defeituoso e de outros tipos de

informação quantitativa de sistemas de software probabilisticamente; em particular, é introduzida a

noção de contrato probabilístico em design de software.

Tal aumento às capacidades do Alloy, fortalece a sua posição na área de métodos formais para design de

software, em particular, a caminho de se tornar um método formal quantitativo.

Esta dissertação explora a motivação e a importância subjacente à análise quantitativa, a partir do estudo

e consolidação dos fundamentos teóricos através de abordagens categóricas de forma a conseguir suportar

esse tipo de raciocínio em Alloy. Inicialmente, as ferramentas imprescindíveis para assegurar tal base são

analisadas, passando de seguida ao planeamento e posterior implementação de tal extensão quantitativa

do Alloy.

Este projecto pretende promover a evolução dos métodos formais quantitativos através da concretização de

abstracção quantitativa em Alloy, estendendo a sua base para suportar estes conceitos e assim implementá-

los no Alloy Analyzer.

PALAVRAS-CHAVE Álgebra relacional, Alloy, Métodos formais quantitativos, Teoria das categorias, Typed

Linear Algebra.

v

CON T EN T S

1 I N T R O D U C T I O N 1
1.1 Structure of the Dissertation 6

2 B A C K G R O U N D 8
2.1 First-order Relational Logic 8
2.2 Typed Linear Algebra 13
2.3 Boolean Satisfiability Problem 19
2.4 Satisfiability Modulo Theories 20
2.5 Probabilistic Model Checking 21
2.6 Alloy 23
2.7 Summary 28

3 S TAT E O F T H E A R T 29
3.1 Tools 29

3.1.1 Satisfiability Modulo Theory Problem Solvers 29
3.1.2 PRISM 33

3.2 Related Work 38
3.2.1 Encoding Multirelations in Alloy 38
3.2.2 Relational Algebra and SMT Solvers 44

3.3 Summary 46

4 T H E P R O B L E M A N D I T S C H A L L E N G E S 47
4.1 Case Studies 47

4.1.1 Bibliometrics 48
4.1.2 Football Championship 49
4.1.3 Sprinkler 54

4.2 Problem 59
4.3 Proposed Approach - Solution 60

4.3.1 System Architecture 60
4.4 Summary 61

5 Q U A N T I TAT I V E K O D K O D 62
5.1 Atoms and Relations 62
5.2 Booleans Go Quantitative 64
5.3 Numeric Structures 66

vi

contents vii

5.4 Scope 69
5.5 Numeric Circuit Assembly 71
5.6 Summary 83

6 Q U A N T I TAT I V E A L L OY 84
6.1 Kodkod 84
6.2 Alloy and the Alloy Analyzer 97
6.3 Project Structure 108
6.4 Workflow 110
6.5 Quantitative Alloy in Practice 112
6.6 Summary 118

7 C A S E S T U D I E S 120
7.1 Bibliometrics 120
7.2 Football Championship 125
7.3 Sprinkler 130
7.4 Bundling 138
7.5 Performance Results 141
7.6 Summary 147

8 C O N C L U S I O N 149
8.1 Conclusions 149
8.2 Prospect for Future Work 153

A L I S T I N G S 163
A.1 Bibliometrics 163

A.1.1 Alloy Model 163
A.1.2 Quantitative Alloy Model 163
A.1.3 Quantitative Instance 164

A.2 Football Championship 166
A.2.1 Alloy Model 166
A.2.2 SMT2-LIB Specification 167
A.2.3 Alloy Model using Quantitative Invariants 169
A.2.4 Quantitative Alloy Model with Quantitative Relations 171
A.2.5 Alloy Model with Multirelations 172

A.3 Sprinkler 173
A.3.1 Initial Scenario 173
A.3.2 Unknown Sprinkler 173
A.3.3 Alloy Model of a Bayesian Network 174

contents viii

A.3.4 Bayes’ Theorem in Alloy 175
A.3.5 Probabilistic Contract 177

A.4 Example of an Alloy Probabilistic Contract 179
A.5 Bundling 180

A.5.1 Alloy Specification using Multirelations 180
A.5.2 Quantitative Alloy Specification 181
A.5.3 Generalized Alloy Specification using Multirelations 182
A.5.4 Generalized Quantitative Alloy Specification 183

A.6 Benchmark 184

L I S T O F F I G U R E S

Figure 2.1 Example of a relation and its respective kernel and image. 10
Figure 3.1 SMT-LIB logic fragments (Barrett et al., 2016). 33
Figure 3.2 Example of a relation on the left, and its multirelation representation on the right. 40
Figure 3.3 𝑄 as the composition between 𝑆 and 𝑅 from Figure 3.2, portrayed as a span in the middle and as a

relation whose arcs are weighted in the right. 42
Figure 3.4 Example of an Alloy specification dealing with multiconcepts. 43
Figure 3.5 One valid instance for the Alloy model in Figure 3.4. 43
Figure 3.6 Signature Σ𝑅 of the theory 𝑇𝑅 (Meng et al., 2017). 45
Figure 4.1 Example of the relation 𝐻𝑖𝑠𝑡𝑜𝑟𝑦. 50
Figure 4.2 Bayesian network for the Rain, sprinkler and grass problem. 55
Figure 4.3 Calculating the probability of the grass being wet using PRISM. 57
Figure 4.4 Constants range definition. 58
Figure 4.5 Verifying 𝑃(𝑔 = 1) > 0.9 with experiments. 58
Figure 4.6 Current Alloy Architecture. 60
Figure 4.7 Proposed Quantitative Alloy Architecture. 61
Figure 5.1 Declaring 𝑅 ∶ 𝐴 → 𝐵 in Alloy. 63
Figure 5.2 Specification of the unary set 𝑆 ∶ 𝐴 in a quantitative setting. 63
Figure 5.3 An instance from the model displayed in Figure 5.2. 64
Figure 5.4 A non-compact Boolean circuit on the left and the corresponding CBC (𝑑 = 2) in the right (Torlak and

Jackson, 2007). 67
Figure 5.5 Extended Kodkod abstract syntax (adapted from (Torlak and Jackson, 2007)). 74
Figure 5.6 Application of the domain/range operator over a relation 𝑅 described by its Kodkod matrix representation,

within the universe 𝒜. 79
Figure 6.1 Generated PRISM model structure. 90
Figure 6.2 Txt representation of an Alloy instance. 106
Figure 6.3 Table representation of an Alloy instance. 107
Figure 6.4 Viz representation of an Alloy instance. 107
Figure 6.5 Quantitative Alloy Architecture. 110
Figure 6.6 Quantitative Alloy Workflow. 111
Figure 6.7 Quantitative Solving Options. 112

ix

l ist of figures x

Figure 6.8 Example of the execution of a satisfiable command under the Integer context solved using an SMT

Solver and an unsatisfiable result for a probabilistic model solved with PRISM. 113
Figure 6.9 Example of a command with and without imposing an integer scope. 114
Figure 6.10 Example of using the Alloy Evaluator to handle real valued numbers. 115
Figure 6.11 Instance determined for the constant 𝑓 and 𝛿 considered. 117
Figure 6.12 Using the Alloy Evaluator to measure the probability of different contracts with respect to the instance's 𝑓

and 𝛿. 117
Figure 6.13 A 𝛿 determined by Alloy as a counterexample when checking the contract delimited by 𝑝 = {𝑎1, 𝑎2} and

𝑞 = {𝑏2} over 𝑓 for a probability lower than 80%. 118
Figure 6.14 The contract specified with 𝑝 = {𝑎1, 𝑎2} and 𝑞 = {𝑏2} holds for the given 𝑓 with, at least, 30% chance

for every possible 𝛿. 118
Figure 7.1 A quantitative instance of the original bibliographic system Alloy model. 121
Figure 7.2 The same Alloy solution (structure wise) when interpreted under Boolean versus quantitative seman-

tics. 123
Figure 7.3 Example of a quantitative instance for the bibliographic system. 124
Figure 7.4 Number of citations each author received per area for the instance presented in Figure 7.3. 124
Figure 7.5 Potential instance of the bibliographic database under 𝑀𝑎𝑡R+

0
. 125

Figure 7.6 An instance produced after quantitative solving the Football Championship specification from Appendix

A.2.1. 126
Figure 7.7 Checking if the alternative invariants associated with the requirement a) behave the same for a given set

of participating teams and dates available. 128
Figure 7.8 A solution to the quantitative Alloy specification of the Football Championship. 129
Figure 7.9 Alloy instance representing a Bayesian Network for the given 𝑟𝑎𝑖𝑛, 𝑠𝑝𝑟𝑖𝑛𝑘𝑙𝑒𝑟 and 𝑔𝑟𝑎𝑠𝑠. 131
Figure 7.10 Example of a possible 𝑠𝑝𝑟𝑖𝑛𝑘𝑙𝑒𝑟 found by Alloy. 132
Figure 7.11 𝑃(𝑔 = 1) measured with respect to the presented network. 134
Figure 7.12 Finding a 𝑠𝑝𝑟𝑖𝑛𝑘𝑙𝑒𝑟 for which 𝑃(𝑔 = 1) is greater than 90%. 135
Figure 7.13 Calculating conditional probabilities through Bayes' theorem in Alloy. 136
Figure 7.14 Measuring 𝑃(𝑔 = 1 ∣ 𝑟 = 1) using probabilistic contracts in Alloy. 137
Figure 7.15 Check if there is a 𝛿 for which 𝑃(𝑔 = 1 ∣ 𝑟 = 1) ≠ 80.19%. 138
Figure 7.16 SAT solver solution to the Bundling problem using multirelations. 139
Figure 7.17 Example of an instance provided by Quantitative Alloy for the Bundling model. 140
Figure 7.18 multirelations instance to the generalized bundling model. 141
Figure 7.19 Solution to the general bundling specification provided by the quantitative extension. 141
Figure 7.20 An instance of the Football Championship case study using multirelations. 144

L I S T O F T A B L E S

Table 1.1 Category 𝑆𝑒𝑡. 3
Table 1.2 Summary of the constructs of the ordered category 𝑅𝑒𝑙. 3
Table 1.3 Category 𝑀𝑎𝑡. 5
Table 2.1 Binary relation characterization (Oliveira, 2019). 10
Table 2.2 Intersection and Union of different kinds of matrix. 18
Table 2.3 Set operators supported by Alloy. 24
Table 2.4 Logical operators supported by Alloy. 25
Table 2.5 Alloy quantifiers. 25
Table 2.6 Multiplicity keywords. 26
Table 3.1 Expressions operators and functions supported by PRISM. 35
Table 3.2 Temporal operators. 36
Table 4.1 Example of a football championship obtained using CVC4. 54
Table 4.2 Extract of the experiment results. 58
Table 4.3 Parametric model checking results. 59
Table 5.1 Boolean gates supported by Kodkod. 72
Table 5.2 Newly added gates in the quantitative extension. 82
Table 6.1 Correspondence between the Numeric Structures and their respective SMT specification. 85
Table 6.1 Correspondence between the Numeric Structures and their respective SMT specification (continued). 86
Table 6.2 Translation of Numeric Structures into a PRISM model. 88
Table 6.2 Translation of Numeric Structures into a PRISM model (continued). 89
Table 6.3 Evaluating #(b <:S.Q) = 10 with Q = { y, z }. 113
Table 7.1 Bibliometrics -- SAT versus SMT. 142
Table 7.2 Football Championship -- SAT versus SMT. 143
Table 7.3 Quantitative adaptation of the Football Championship constraints. 143
Table 7.4 Football Championship with the quantitative relation 𝐻𝑖𝑠𝑡𝑜𝑟𝑦. 144
Table 7.5 Bundling example performance. 145
Table 7.6 Stats of solving the generalized bundling example. 146
Table 7.7 Finding different 𝑠𝑝𝑟𝑖𝑛𝑘𝑙𝑒𝑟s. 146
Table 7.8 Testing Alloy when finding 𝛿s for the probabilistic contract considered. 146

xi

1

I N T R ODUC T I O N

With the evolution of technology, the ever-growing software capabilities reach more and more fields as

time goes on. Each area of applicability possesses potentially intricate and distinct properties that require

software-pieces tailored to them. Therefore, the variety and complexity of the software being built demands

formal methods (ter Beek et al., 2019) general and expressive enough to meet their needs.

In particular, there has been a shift in interest from the well-established Boolean-valued analysis to further

be able to measure and reason about quantities of multiple domains such as probabilities or time-based

values, that is, the development of quantitative formal methods (Andova et al., 2009). These techniques

work on a whole new range of systems whose intrinsic characteristics rely on such a quantification, where

the usual true or false judgement lacks usefulness.

QUANTITATIVE METHODS Advances have been made regarding probabilistic problems such as quan-

titative safety properties verification combining probabilistic model checking and proof-based verification

techniques (Ndukwu, 2009). More specifically, Andrews (2009) proposes stochastic extensions to the

Event-B formal specification language and Bernardo (2009) describes a framework which allows testing of

Markovian processes with internal exponential timed actions in polynomial time.

In the area of real-time systems, Wang and MacCaull (2009) extend a qualitative model checker to

support real-time specification and verification, while AlAttili et al. (2009) solve scheduling problems using

timed automatas with the Uppaal model checker. Moreover, li (2017) studies quantitative model checking

of linear-time properties; Nigro and Sciammarella (2018) introduce a way of statistic model checking of

distributed probabilistic timed actors using the Theatre modeling language. Quantitative reasoning emerges

also in quantum computing in a rather obvious way, as the semantics of such programs are expressed by

unitary matrices involving complex numbers, as can be seen in (Liu et al., 2019) and (Mateus and Sernadas,

2004). Even in the field of natural language processing, Baroni and Zamparelli (2010) take advantage

of linear algebra to handle natural language semantics.

Despite the progress of this kind of approaches throughout the past years, the quantitative realm is still

underdeveloped, due to the challenges involved in building new tools or enhance already existing ones to

incorporate the new kinds of property, since the underlying theoretical framework needs to be sophisticated

1

2

and powerful enough to accommodate them. Moreover, tools are built around solving techniques that need

to be refined, generalized or optimized, so that they can be used by practitioners. Last but not least, the

increased complexity of the data being analysed may result in equally complex procedures to develop in

order to manage them, which may hinder the tool’s engine processing power and cause particularly slow

response times, making it useless in the currently available machines.

Given the broad range of concepts that software deals with, one cannot help but wonder if there is a

common way of reasoning about them, i.e., a theory sufficiently generic to approach all of them, while also

still being specific enough so that their characteristics are perceptible and significant information can be

extracted from them.

GOING GENERIC It turns out that Category Theory (MacLane, 1971) provides such a generic language.

Through categories, one can reach multiple fields at once. A category C is defined by a collection of

objects which may or may not be involved in arrows – also called morphisms – coming in or out of them.

Any two morphisms 𝑓 ∶ 𝐴 → 𝐵, 𝑔 ∶ 𝐵 → 𝐶 can be composed to form another morphism 𝑔 ⋅ 𝑓 ∶ 𝐴 → 𝐶.
Then, C represents a well-formed category as long as the following conditions are met:

• Every object 𝐴 of C contains an identity morphism:

𝐴

1
��

such that 𝐴 ⋅ 1 = 𝐴 = 1 ⋅ 𝐴.

• Arrow composition is associative, meaning the following diagram commutes:

𝐴

𝑓

��

𝑔⋅𝑓

��
𝐵

𝑔
//

ℎ⋅𝑔
��

𝐶

ℎ

��
𝐷

Therefore, (ℎ ⋅ 𝑔) ⋅ 𝑓 = ℎ ⋅ (𝑔 ⋅ 𝑓) for every object 𝐴, 𝐵, 𝐶, 𝐷 and every arrow 𝑓 ∶ 𝐴 → 𝐵,
𝑔 ∶ 𝐵 → 𝐶, ℎ ∶ 𝐶 → 𝐷 in category C.

The number of properties that can be expressed through simple “points” and “arrows” is not to be

underestimated. For instance, a whole class of programs written in the so-called functional programming

3

paradigm can be represented and reasoned algebraically in the so-called category of sets 𝑆𝑒𝑡 (characterized
in Table 1.1), whose objects are sets and whose morphisms are total functions.

Categorial Functions

𝑥 ⋅ 𝑦 𝑓 ⋅ 𝑔 Composition

1 𝑖𝑑 Identity function

Table 1.1: Category 𝑆𝑒𝑡.

Now, while one is able to calculate functional programs in such a setting, what if one needs to reason

about the motivation behind them? That is, how could we specify their requirements and further determine

if, in fact, the associated behaviour matches their purpose. Unfortunately, the category of sets seems to

be lacking when trying to accomplish such a task, for instance, if one desires to constraint the program

to process only a subset of its domain, ignoring all the inputs outside of the latter, it no longer can be

modeled as a total function, but as a partial function instead, which do not belong in 𝑆𝑒𝑡. Such as this last
requirement, there are other kinds of properties which simply cannot be expressed by total functions and

thus, the question arises: is there another (‘better‘) category in which such a limitation could be overcome?

Since functions are a special cases of relations1 one can try to resort to the category of binary relations

𝑅𝑒𝑙, with sets as objects and binary relations as morphisms. As it turns out, this category proves sufficient:
after all, as functions form a subset of the whole relational universe, there is a big gain in expressiveness.

This might come of no surprise given the success of Relational Databases in storing data from a huge

variety of systems (solid IT, 2020). Besides, the morphisms in the 𝑅𝑒𝑙 category can be ordered by inclusion,
extending in a natural way the more traditional discipline of (homogeneous) Relational Algebra.

Categorial Binary Relations

𝑥 ⋅ 𝑦 𝑅 ⋅ 𝑆 Composition

𝑥 + 𝑦 𝑅 ∪ 𝑆 Union

𝑥 × 𝑦 𝑅 ∩ 𝑆 Intersection

0 ⊥ Empty relation

1 𝑖𝑑 Identity relation

⊤ ⊤ Top relation

𝑥∘ 𝑅∘ Converse relation

𝑥 ≤ 𝑦 𝑅 ⊆ 𝑆 Inclusion

Table 1.2: Summary of the constructs of the ordered category 𝑅𝑒𝑙.

It turns out that the abstract diagram notation provided by Category Theory allows for easy expression

and flexible thinking of general concepts. Simply by perceiving the same diagram through different ‘lenses‘

(categories) one can derive a whole set of fresh properties. Notably, the same construct which might be

hard to deal within a certain category, can end up being quite simple in the eyes of another. Therefore, by

1 Functions are exactly the so-called simple and entire binary relations (Oliveira, 2019).

4

cleverly picking the right categories we are able to increase expressiveness without any loss of previous

knowledge (quite the opposite).

MODEL FINDING Alloy, a lightweight declarative specification language for software systems, is a success-

ful case of a modeling tool based on first-order logic and relational algebra (Jackson, 2012). The simplicity

of the language, together with the flexibility provided by relational reasoning makes Alloy very accessible to

various types of users with various degrees of expertise. Basic understanding of discrete mathematics already

enables one to design simple models and attain value from them, whilst not limiting more experienced

users to build gradually more sophisticated models with increased familiarity of the language and its toolset.

Notably, this toolset provides the Alloy Analyzer, whose features include ready-to-go automatic analysis

of Alloy specifications, from instance finding to property checking by counterexamples that are displayed

graphically and can be examined by the user through an interactive interface.

TOWARDS A QUANTITATIVE ALLOY Due to the expressive power of Alloy’s underlying logic, its abstraction

capabilities are very impressive when put up against complex systems. Unfortunately, along with the

irrelevant information, the measurable data of the problem at hand also gets lost in the abstraction, meaning

that, in its current state, Alloy is only able to perform simple qualitative analyses. Therefore, it is not very

useful when dealing with problems with an inherent quantitative semantics, and this begs the question:

How could Alloy be augmented in order to support comprehensive quantitative analysis?

Put in other words: is there a category containing the same expressive power as 𝑅𝑒𝑙 while, at the same
time, being more and suitable for quantitative modelling and reasoning?

It can be easily observed that the cause of lost quantitative information in 𝑅𝑒𝑙 arises from the idempotency

of morphism addition, 𝑥 + 𝑥 = 𝑥, since relations are represented through sets and relational operators are
closed under sets. Idempotency here means that one does not reach multisets when joining two relations,

𝑅 ∪ 𝑅 = 𝑅. Therefore, to express quantitative information systems one should look for mathematical
systems where 𝑥 + 𝑥 > 𝑥, for instance 𝑥 + 𝑥 = 2𝑥.
Kodkod, a relational solver, is integrated beneath the Alloy Analyzer and is responsible for translating

relational models into suitable propositional formulæ to be solved afterwards by an off-the-shelf SAT solver

– a tool specially designed to determine the satisfiability of Boolean formulæ. Each relation in an Alloy

specification is described in Kodkod by a Boolean matrix, meaning that if fact 𝑏 𝑅 𝑎 holds at Alloy level,
then in the matrix cell identified by the 𝑎-column and 𝑏-row contains the value 1 at Kodkod level (and the

value 0 otherwise). While the relational operators can be defined from the matrix representation point-of-view

in a way that ensures closure under the universe of Boolean matrices, for instance specifying relational

union2 as 𝑀 ∪𝑁 = 𝑀 +𝑁 −𝑀 × 𝑁, we are aware that matrix addition by itself is not idempotent.

2 As long as 𝑀 and 𝑁 are both Boolean matrices, 𝑀 ∩ 𝑁 = 𝑀 × 𝑁 and hence, it is intuitive that by adding them and then performing pointwise subtraction

with their intersection, guarantees that their union is well-defined under Boolean values (Oliveira, 2012a).

5

Categorial Matrices

𝑥 ⋅ 𝑦 𝑀 ⋅ 𝑁 Matrix multiplication

𝑥 + 𝑦 𝑀 +𝑁 Matrix addition

𝑥 × 𝑦 𝑀 × 𝑁 Hadamard product

0 ⊥ Null matrix

1 𝑖𝑑 Identity matrix

⊤ ⊤ All-ones matrix

𝑥∘ 𝑀∘ Transpose matrix

𝑥 ≤ 𝑦 𝑀 ≤ 𝑁 Semi-negative 𝑀 −𝑁

Table 1.3: Category 𝑀𝑎𝑡.

CATEGORIES OF MATRICES Let us then consider the category 𝑀𝑎𝑡 whose morphisms are matrices and
whose dimensions are the objects. Similarly to what happened before when we shifted from the 𝑆𝑒𝑡 category
to 𝑅𝑒𝑙, now by going from 𝑅𝑒𝑙 to 𝑀𝑎𝑡 we are able to handle a whole new range of structures compared

to the previous category, as Boolean matrices represent only a small subset of the entire matrix universe.

Therefore, by releasing the “Boolean shackles” from the current relation representation, we might be able to

reason about quantitative concepts.

In particular, what if instead of the Boolean-valued matrices, one considered the following alternatives:

• Category of Numeric Matrices 𝑀𝑎𝑡N0

In place of {0, 1}-valued elements, by allowing any natural number, one can reason in a more

Integer programming approach. This change allows the characterization of relations whose arcs

are weighted, and so 𝑏 𝑅 𝑎 = 𝑛 specifies that 𝑎 is related to 𝑏 by 𝑅 exactly 𝑛 times. For example,

𝐵𝑜𝑜𝑘 𝑂𝑤𝑛 𝐽𝑜ℎ𝑛 = 4 can be interpreted as “John owns 4 books”, which could only be understood

as “John owns some books” before, in the relation setting.

As exemplified above, through this representation one is able to implicitly handle numeric quantities

in our specification. It should be noted that this characterization arose simply be perceiving the same

relation from a different light. There was no need to add new constraints, just to change the category

(Oliveira and Miraldo, 2016).

However, once one is dealing with numeric values, the usual SAT solvers lack expressiveness to

be able to solve quantitative constraints. Thus one must take advantage of SMT solvers, automatic

solvers which are able to check the satisfiability of a first-order logic formula with respect to a specific

background theory (Frade, 2019c).

• Category of Left-Stochastic Matrices 𝐿𝑆

By considering Left-stochastic matrices – matrices whose elements are probabilities, i.e., real numbers

in the interval [0, 1] and whose columns all add up to 1 – one is able to represent and analyse

1.1. Structure of the Dissertation 6

probabilistic structures like distributions and conditional probability tables, for instance. Moreover,

with 𝑓 describing a probabilistic function (whose behaviour is to yield a distribution of outputs rather

than a single output), one may introduce the notion of probabilistic contract 𝑞 𝑝
𝑓

oo with

𝑝 specifying the precondition and 𝑞 the postcondition, and then be able to model-check the contract
according to a potentially unknown distribution 𝛿, allowing us to quantify defective performance in
software.

Moreover, introducing probabilistic thinking changes the subject from “may it happen?” to “how often

will it happen?” and thus, we are now interested in performing Performance Risk Analysis of software

systems:

1. What can go wrong?

2. How likely is it?

3. What are the consequences?

preferably by taking advantage of tools capable of automatically find answers to all these questions.

Given the nature of the values that we are now dealing with, instead of SAT solvers one must take

advantage of a probabilistic or statistical model checkers in order to handle this type of constraints.

Initially, we went from functional behaviour (determinism) to relations (non-determinism), and now, by

lifting relations to matrices we are able to reason about quantities (probabilism). During this progress, the

expressiveness at each point increased progressively and without the need of explicitly introducing new

notions, and thus, we followed the scalable modeling lemma: “keep definition, change category” (Oliveira

and Miraldo, 2016). Indeed, through different categories we were able to reason about the same concepts

on completely different levels, each with its own advantages and disadvantages. With this dissertation we

hope to extend Alloy’s underlying theoretical framework through this line of thought, providing support to both

𝑀𝑎𝑡N0
and 𝐿𝑆 concepts in a typed linear algebra fashion. Furthermore, we wish to implement them in the

Alloy Analyzer, which implies designing (or finding) an adequate theory for 𝑀𝑎𝑡N0
so that the new type of

quantitative constraints can be handled by an off-the-shelf SMT solver; and integrate a suitable probabilistic

or statistical model checker to reason over 𝐿𝑆. In the end, we hope to strengthen Alloy’s capabilities as an
already outstanding modelling tool, broadening the range of problems it can tackle, promoting the progress

of quantitative formal methods.

1.1 STRUCTURE OF THE DISSERTATION

Chapter 2 of this dissertation starts by presenting the theoretical foundations considered for this work,

followed by the characterization of the main tools involved in the project and the study of existing research

relevant to the subject at hand in Chapter 3. Next, Chapter 4 will introduce the case studies for which we

1.1. Structure of the Dissertation 7

wish to apply the results of the project’s development and explore how we can currently solve them using

state-of-the-art tools; then, we propose an initial architecture design of the solution that will be produced.

Chapter 5 goes over the implementation decisions and Chapter 6 puts them into practice, detailing the

extension developed in-depth and presenting the finished tool architecture and workflow. Afterwards, Chapter

7 appraises the quantitative extension of Alloy when put up against the case studies presented in Chapter 4,

together with a benchmark to measure its performance. Finally, Chapter 8 examines all the work made

throughout this dissertation, evaluates the degree of accomplishment of the initial objectives and proposes

the next steps to improve this project.

2

B A C KG ROUND

As mentioned previously, Alloy’s fundamental logic is based on Relational Algebra, which includes a number

of relational operators highlighted for 𝑅𝑒𝑙 in Table 1.2, alongside other useful relational concepts. The

semantics of such operators and concepts can be expressed in the so-called Eindhoven quantifier notation,

where expressions of the form ⟨∀𝑥 ∶ 𝑃 ∶ 𝑄⟩ (resp. ⟨∃𝑥 ∶ 𝑃 ∶ 𝑄⟩) state that, for all (resp. some) 𝑥 in

the range 𝑃, 𝑄 holds (Oliveira, 2019). This chapter addresses such a background in a succinct way. It is

worth mentioning that the logic at hand does not strictly follow traditional Relational Algebra, for instance,

while in the following section the theoretical background will be presented under 𝑅𝑒𝑙 and so, the concepts
will be approached over binary relations, as usual in the context of relational algebra, Alloy also supports

relations of greater arity – which in turn conform to a generalized version of the theory to be presented –.

Further differences between the two can be pointed out, deliberately put into place to promote the language

flexibility/convenience (e.g. its type system allows the application of an operator between two sets whose

types do not match, within a certain degree of freedom, and so on).

Different kinds of decision problems and probabilistic model checking concepts will be hereafter focused

on, especially those associated with the theoretical component of Alloy and the other tools analysed in the

next chapter, namely the Boolean satisfiability problem, which is currently used in Alloy to verify the model’s

properties over Boolean matrices, and the introduction of the satisfiability modulo theory problem to handle

numeric matrices and the constraints that they will be subject to in the quantitative extension.

To conclude, this chapter goes over Alloy itself, detailing its models’ structure, language, features and all.

2.1 FIRST-ORDER RELATIONAL LOGIC

Let 𝐴 and 𝐵 be types. A binary relation 𝐴 𝑅 // 𝐵 describes an association between inhabitants

of 𝐴 to inhabitants of 𝐵 – i.e. 𝑅 is well-typed on 𝐴 → 𝐵 – so that (𝑎, 𝑏) is an element of 𝑅 iff

𝑎 ∈ 𝐴 is related to 𝑏 ∈ 𝐵 under 𝑅. For instance, if 𝐼𝑡𝑒𝑚 𝑃𝑒𝑟𝑠𝑜𝑛𝑂𝑤𝑛oo describes which kind

of items are owned by some person, with 𝑃𝑒𝑟𝑠𝑜𝑛 = {𝐽𝑜ℎ𝑛}, 𝐼𝑡𝑒𝑚 = {𝐵𝑜𝑜𝑘, 𝑃𝑒𝑛, 𝑃𝑒𝑛𝑐𝑖𝑙} and

𝑂𝑤𝑛 = {(𝐽𝑜ℎ𝑛, 𝐵𝑜𝑜𝑘), (𝐽𝑜ℎ𝑛, 𝑃𝑒𝑛)} then, 𝑂𝑤𝑛 specifies that John possesses book(s) and pen(s),

but no pencils.

8

2.1. First-order Relational Logic 9

Binary relations are the morphisms of a category usually termed 𝑅𝑒𝑙. Notations 𝐴 → 𝐵 or 𝐵 → 𝐴 are

interchangeable. The identity relation on a type 𝐴 is denoted by 𝐴 𝐴𝑖𝑑oo , cf.:

𝑖𝑑𝐴 = {(𝑎, 𝑎) ∣ 𝑎 ∈ 𝐴} (2.1)

𝑅 ⋅ 𝑖𝑑𝐴 = 𝑅 = 𝑖𝑑𝐵 ⋅ 𝑅 (2.2)

It should be pointed out that as long as it is not ambiguous, i.e., which set 𝐴 is associated to 𝑖𝑑𝐴 is implied

by the context, in general the subscript is dropped and simply the notation 𝑖𝑑 is adopted.

Moreover, any two relations with composable types can be combined to create a new relation:

𝑏(𝑅 ⋅ 𝑆)𝑐 = ⟨∃ 𝑎 ∶ 𝑏 𝑅 𝑎 ∶ 𝑎 𝑆 𝑐⟩ (2.3)

additionally, relational composition must be associative,

(𝑅 ⋅ 𝑆) ⋅ 𝑄 = 𝑅 ⋅ (𝑆 ⋅ 𝑄) (2.4)

for every 𝑅 ∶ 𝐴 → 𝐵, 𝑆 ∶ 𝐶 →∶ 𝐴,𝑄 ∶ 𝐷 → 𝐶.
Unlike functions, every relation 𝑅 gets a converse relation 𝑅∘,

𝑏 𝑅 𝑎 ⇔ 𝑎 𝑅∘ 𝑏 (2.5)

Relation inclusion 𝑅 ⊆ 𝑆 holds if and only if every element of 𝑅 is also in relation 𝑆,

𝑅 ⊆ 𝑆 ≡ ⟨∀ 𝑎, 𝑏 ∶∶ 𝑏 𝑅 𝑎 ⇒ 𝑏 𝑆 𝑎⟩ (2.6)

Given any relation 𝑅 ∶ 𝐴 → 𝐵, one can reason about its domain and codomain through its kernel and
image, respectively:

KERNEL ker𝑅 = 𝑅∘ ⋅ 𝑅

IMAGE img 𝑅 = 𝑅 ⋅ 𝑅∘

The kernel (resp. image) of 𝑅 is the relation which associates two sources (resp. targets) given that they

share at least one common target (resp. source), as illustrated in Figure 2.1. With the help of these concepts,

a number of properties can be derived about the relation at hand, in particular by comparison with the

identity relation, as shown in Table 2.1.

2.1. First-order Relational Logic 10

Figure 2.1: Example of a relation and its respective kernel and image.

𝑋 𝑖𝑑 ⊆ 𝑋 𝑋 ⊆ 𝑖𝑑
ker𝑅 total 𝑅 injective 𝑅
img 𝑅 surjective 𝑅 simple 𝑅

Table 2.1: Binary relation characterization (Oliveira, 2019).

Furthermore, by checking that img 𝑅 ⊆ 𝑖𝑑 and 𝑖𝑑 ⊆ ker𝑅, it is possible to conclude that 𝑅 is simple

and entire, and thus, 𝑅 describes a function. Functions are written lowercase, e.g. 𝑓, 𝑔, ... In case of
functions, notation 𝑏 𝑓 𝑎 means 𝑏 = 𝑓 𝑎.

Let 𝑅 be the relation presented in Figure 2.1. By observing its kernel and image as presented above, one

can see that only 𝑖𝑑 ⊆ img 𝑅 holds, meaning that this relation is surjective, but is neither total, injective or

simple (which can be further confirmed by looking at the 𝑅 pictured).

Two relations of the same type can be combined through:

MEET 𝑅 ∩ 𝑆 which defines the relation resulting from the intersection of 𝑅 and 𝑆.

𝑏 (𝑅 ∩ 𝑆) 𝑎 ≡ 𝑏 𝑅 𝑎 ∧ 𝑏 𝑆 𝑎 (2.7)

JOIN 𝑅 ∪ 𝑆 corresponds to the union of relations 𝑅 and 𝑆.

𝑏 (𝑅 ∪ 𝑆) 𝑎 ≡ 𝑏 𝑅 𝑎 ∨ 𝑏 𝑆 𝑎 (2.8)

By definition, one can show that the ∪-idempotency holds.

When dealing with relations with potentially different types, they can be connected by taking advantage of:

PRODUCT Every relation 𝑅 ∶ 𝐶 → 𝐴, 𝑆 ∶ 𝐶 → 𝐵 can be paired to form ⟨𝑅, 𝑆⟩ as follows,

𝐴 𝐴 × 𝐵
𝑓 𝑠𝑡

oo 𝑠𝑛𝑑 // 𝐵

𝐶

⟨𝑅,𝑆⟩

OO

𝑅

ee

𝑆

99

2.1. First-order Relational Logic 11

(𝑎, 𝑏) ⟨𝑅, 𝑆⟩ 𝑐 ⇔ 𝑎 𝑅 𝑐 ∧ 𝑏 𝑆 𝑐 (2.9)

where 𝑓 𝑠𝑡 ∶ 𝐴 × 𝐵 → 𝐴 and 𝑠𝑛𝑑 ∶ 𝐴 × 𝐵 → 𝐵 are projections which act as expected,

𝑓 𝑠𝑡(𝑎, 𝑏) = 𝑎 ∧ 𝑠𝑛𝑑(𝑎, 𝑏) = 𝑏 (2.10)

Then, in general, the product 𝑄 × 𝑃 ∶ 𝐴 × 𝐵 → 𝐶 × 𝐷 is defined as

𝑄 × 𝑃 = ⟨𝑄 ⋅ 𝑓 𝑠𝑡, 𝑃 ⋅ 𝑠𝑛𝑑⟩ (2.11)

By taking 𝑅 and 𝑆 as the product projections, the pairing diagram is now the following:

𝐴 𝐴 × 𝐵
𝑓 𝑠𝑡

oo 𝑠𝑛𝑑 // 𝐵

𝐴 × 𝐵

⟨𝑓 𝑠𝑡,𝑠𝑛𝑑⟩

FF

𝑖𝑑𝐴×𝐵

XX

𝑓 𝑠𝑡

YY

𝑠𝑛𝑑

EE

describing what is called the ×-reflection law:

⟨𝑓 𝑠𝑡, 𝑠𝑛𝑑⟩ = 𝑖𝑑𝐴×𝐵 (2.12)

Additionally, relational pairing has an useful property:

𝐷
𝑅

{{

𝑆

##𝐵 𝐵 × 𝐶
𝑓 𝑠𝑡

oo 𝑠𝑛𝑑 //

⟨𝑅,𝑆⟩∘

OO

𝐶

𝐴

⟨𝑋,𝑌⟩

OO

𝑋

cc

𝑌

;;𝑅∘⋅𝑋

44

𝑆∘⋅𝑌

jj

⟨𝑅, 𝑆⟩∘ ⋅ ⟨𝑋, 𝑌⟩ = (𝑅∘ ⋅ 𝑋) ∩ (𝑆∘ ⋅ 𝑌) (2.13)

from which one is able to relate some of the concepts introduced above, as follows:

ker⟨𝑅, 𝑆⟩

= { Definition of kernel }

⟨𝑅, 𝑆⟩∘ ⋅ ⟨𝑅, 𝑆⟩

= { (2.13) }

(𝑅∘ ⋅ 𝑅) ∩ (𝑆∘ ⋅ 𝑆)

2.1. First-order Relational Logic 12

= { Definition of kernel }

ker𝑅 ∩ ker𝑆

Thus,

ker⟨𝑅, 𝑆⟩ = ker𝑅 ∩ ker𝑆 (2.14)

an interesting property which will be made use of in a future chapter.

CO-PRODUCT The dual constructs are analogously characterized by “inverting arrows” and so, the either of

any relations 𝑅 ∶ 𝐶 ← 𝐴 and 𝑆 ∶ 𝐶 ← 𝐵 can be specified with [𝑅, 𝑆],

𝐴 𝑖1 //

𝑅
%%

𝐴+ 𝐵

[𝑅,𝑆]
��

𝐵𝑖2oo

𝑆
yy𝐶

[𝑅, 𝑆] = 𝑅 ⋅ 𝑖∘1 ∪ 𝑆 ⋅ 𝑖∘2 (2.15)

where 𝑖1 and 𝑖2 are the injections of the disjoint union defined as,

𝑖1 𝑎 = (𝑡1, 𝑎) ∧ 𝑖2 𝑏 = (𝑡2, 𝑏) (2.16)

Therefore, the coproduct 𝑄+ 𝑃 ∶ 𝐶 + 𝐷 ← 𝐴 + 𝐵 is given by

𝑄+ 𝑃 = [𝑖1 ⋅ 𝑄, 𝑖2 ⋅ 𝑃] (2.17)

EXPONENTIAL Given two sets 𝐴 and 𝐵, an exponential 𝐵𝐴 is the type of all functions from 𝐴 to 𝐵.

𝐵𝐴 = {𝑓 ∣ 𝑓 ∶ 𝐴 → 𝐵} (2.18)

The transitive closure �̂� of an endo-relation 𝑅 ∶ 𝐴 → 𝐴 is characterized as the smallest relation

satisfying the following

�̂� = 𝑅 ∪ 𝑅 ⋅ 𝑅 ∪ 𝑅 ⋅ 𝑅 ⋅ 𝑅 ∪ ... (2.19)

Each relational type 𝐴 → 𝐵 has the following special relations:

• Top relation ⊤ ∶ 𝐴 → 𝐵, which represents the Universal relation

𝑏 ⊤ 𝑎 ≡ 𝑡𝑟𝑢𝑒 (2.20)

2.2. Typed Linear Algebra 13

• Bottom relation ⊥ ∶ 𝐴 → 𝐵, also known as the Empty relation,

𝑏 ⊥ 𝑎 ≡ 𝑓 𝑎𝑙𝑠𝑒 (2.21)

The notation for each universal (resp. empty) relation is overloaded when the type of the top (resp. bottom)

at hand can be inferred, being represented by the same symbol presented above.

Alongside 𝑖𝑑𝐴, any object 𝐴 in the 𝑅𝑒𝑙 category is uniquely associated to the constant function !𝐴 ∶
𝐴 → 1, where 1 denotes the singleton object. This function is usually referred to as the Bang function. It

sends every element of 𝐴 to the unit value, i.e. the sole inhabitant of 1 which can be interpreted as the

null-pointer from the imperative paradigm point-of-view. Analogously to the 𝑖𝑑𝐴 notation, the subscript of

bang will also be omitted when its type is implicit from the context. Clearly, every function of type 1 → 𝐴
(for 𝐴 nonempty) is also a constant function, known as a point. As there are as many such points as 𝑎 ∈ 𝐴,
we write 𝑎 ∶ 1 → 𝐴 to indicate the particular choice of constant function.

One can define a functional contract 𝑞 𝑝
𝑓

oo for some function 𝑓 ∶ 𝐴 → 𝐵 over a precondition

𝑝 ∶ 𝐴 → B and a postcondition 𝑞 ∶ 𝐵 → B, constraining the inputs of 𝑓 to those that pass the precondition,
guaranteeing that, for those inputs, 𝑓 only produces outputs for which the postcondition holds,

𝑞 𝑝
𝑓

oo = ⟨∀ 𝑎 ∶ 𝑝 𝑎 ∶ 𝑞 (𝑓 𝑎))⟩ (2.22)

The notion of contract can be generalized to relations such that, a relational contract 𝑞 𝑝𝑅oo over

𝑅 ∶ 𝐴 → 𝐵 with respect to the conditions 𝑝 ∶ 𝐴 → B and 𝑞 ∶ 𝐵 → B specifies that, as long as the inputs

satisfy 𝑝, then it is known for sure that 𝑞 holds for the outputs that are related to the inputs under 𝑅, i.e.,

𝑞 𝑝𝑅oo = ⟨∀ 𝑎 ∶ 𝑝 𝑎 ∶ ⟨∀ 𝑏 ∶ 𝑏 𝑅 𝑎 ∶ 𝑞 𝑏⟩⟩ (2.23)

2.2 TYPED LINEAR ALGEBRA

Here is presented the shift from 𝑅𝑒𝑙 to 𝑀𝑎𝑡, which includes describing the concepts studied before from
the category of matrices point-of-view, i.e., the operators presented in Table 1.3 together with the newly

acquired capabilities, given the increase in expressiveness through Typed Linear Algebra.

2.2. Typed Linear Algebra 14

As stated previously, every relation can be represented through a Boolean Matrix – a matrix where

each element is {0, 1}-valued – as shown in the following example:

{𝑏1, 𝑏2, 𝑏3} {𝑎1, 𝑎2, 𝑎3}
𝑅oo =𝑅𝑒𝑙 {(𝑎1, 𝑏2), (𝑎1, 𝑏3), (𝑎2, 𝑏1), (𝑎2, 𝑏2)}

=𝑀𝑎𝑡

𝑎1 𝑎2 𝑎3

⎡
⎢⎢
⎣

⎤
⎥⎥
⎦

𝑏1 0 1 0
𝑏2 1 1 0
𝑏3 1 0 0

= 3 3𝑅oo

Furthermore, 𝑀 represents a Boolean matrix as long as 𝑀×𝑀 = 𝑀, where × corresponds to Hadamard

product, since 0 × 0 = 0 and 1 × 1 = 1 (𝑛 × 𝑛 ≠ 𝑛 for any other number).

Naturally, given that 𝑀𝑎𝑡 is a category, then there is an identity matrix for every dimension and arrow

composition corresponds to matrix multiplication, which is possible if and only if the number of columns

of the first matrix is equal to the number of rows of the second – the type of a matrix corresponds to its

dimensions –, both well-defined as follows:

𝑛 𝑛𝑖𝑑𝑛oo =

⎡
⎢⎢⎢⎢⎢
⎣

1 0 … 0
0 1 … 0
⋮ ⋮ ⋱ ⋮
0 0 … 1

⎤
⎥⎥⎥⎥⎥
⎦

(2.24)

𝑛 𝑚𝑀
oo 𝑘𝑁

oo
𝑀⋅𝑁

tt 𝑏(𝑀 ⋅ 𝑁)𝑐 = ⟨∑ 𝑎 ∶∶ 𝑏 𝑀 𝑎 × 𝑎 𝑁 𝑐⟩ (2.25)

Vectors can also be represented, as they are matrices where one of its dimensions is 1:

• On one hand, a row vector 1 𝑚𝑟oo has 𝑚 columns and one row;

• On the other hand, a column vector is of the form 𝑛 1𝑐oo having one column and 𝑛 rows;

• Every vector of type 1 → 1 is known as a scalar, usually denoted by the cell it contains.

The matrix representation of Bang !𝑚 ∶ 𝑚 → 1 is row vector where every cell has value 1.
In particular, a matrix 𝑓 corresponds to a function if it is a Boolean matrix such that ! ⋅ 𝑓 = !.
The converse of a matrix 𝑛 𝑚𝑀oo is defined as the transpose of that matrix, which swaps the

row and column position from its elements, 𝑚 𝑛𝑀∘
oo .

As stated previously in the introduction, +-idempotency is overcome by considering matrix addition.

Any two matrices can be added as long they have the same type, 𝑀 +𝑁 ∶ 𝑛 ← 𝑚 is the resulting matrix

2.2. Typed Linear Algebra 15

from performing pointwise addition of 𝑀,𝑁 ∶ 𝑛 ← 𝑚. Moreover, composition is bilinear with respect to

+ and thus,

𝑀 ⋅ (𝑁 + 𝑃) = 𝑀 ⋅ 𝑁 + 𝑀 ⋅ 𝑃 (2.26)

(𝑀 +𝑁) ⋅ 𝑃 = 𝑀 ⋅ 𝑃 + 𝑁 ⋅ 𝑃 (2.27)

Analogously to 𝑅𝑒𝑙, in 𝑀𝑎𝑡, for every matrix dimensions 𝑚 → 𝑛 there are matching top and bottom

matrices, defined as:

• ⊤ ∶ 𝑚 → 𝑛 is the matrix where every element is 1, and so, bang is a special case of top for row
vectors;

• ⊥ ∶ 𝑚 → 𝑛 corresponds to the null-matrix, i.e., a matrix filled with 0s.

𝑀𝑎𝑡 also provides product and coproduct constructs:

PRODUCT The pairing of two matrices 𝑀 ∶ 𝑝 → 𝑚, 𝑁 ∶ 𝑝 → 𝑛 can be achieved through Khatri-Rao

product 𝑀▽𝑁 ∶ 𝑝 → 𝑚 × 𝑛 such that,

𝑚 𝑚 × 𝑛
𝑓 𝑠𝑡

oo 𝑠𝑛𝑑 // 𝑛

𝑝

𝑀▽𝑁

OO

𝑀

ee

𝑁

99

(𝑏, 𝑐) (𝑀▽𝑁) 𝑎 = (𝑏 𝑀 𝑎) × (𝑐 𝑁 𝑎) (2.28)

𝑓 𝑠𝑡 ⋅ (𝑀▽𝑁) = 𝑀 ∧ 𝑠𝑛𝑑 ⋅ (𝑀▽𝑁) = 𝑁 (2.29)

where 𝑓 𝑠𝑡 ∶ 𝑚 × 𝑛 → 𝑚 and 𝑠𝑛𝑑 ∶ 𝑚 × 𝑛 → 𝑛 are the corresponding product projections.

COPRODUCT In this context, coproduct provides two polymorphic combinators over matrix block notation:

• [𝑀 ∣ 𝑁] ∶ 𝑛 + 𝑝 → 𝑚 – the junc combinator associates 𝑀 ∶ 𝑛 → 𝑚 and 𝑁 ∶ 𝑝 → 𝑚
horizontally;

• [𝑃
𝑄] ∶ 𝑛 + 𝑝 ← 𝑡 – split stacks 𝑃 ∶ 𝑡 → 𝑛 on top of 𝑄 ∶ 𝑡 → 𝑝.

defined by:

2.2. Typed Linear Algebra 16

𝑚

𝑛
𝑖1
//

𝑀
99

𝑛 + 𝑝
𝜋1oo 𝜋2 //

[𝑀∣𝑁]

OO

𝑝
𝑖2

oo

𝑁
ee

𝑡

[𝑃
𝑄]
OO

𝑃

dd

𝑄

::

[𝑀 ∣ 𝑁] = 𝑀 ⋅ 𝜋1 +𝑁 ⋅ 𝜋2 (2.30)

[𝑃
𝑄] = 𝑖1 ⋅ 𝑃 + 𝑖2 ⋅ 𝑄 (2.31)

where the projection 𝜋1, 𝜋2 and the injections 𝑖1, 𝑖2 for coproducts obey to the following:

[𝜋1
𝜋2

] = 𝑖𝑑 (2.32)

[𝑖1 ∣ 𝑖2] = 𝑖𝑑 (2.33)

𝑖1 = 𝜋∘
1 ∧ 𝑖2 = 𝜋∘

2 (2.34)

TYPED MATRICES Matrix types can be generalized to denumerable sets like 𝐴, 𝐵, similarly to relational
types. For instance, 𝐴 + 𝐵 (the disjoint union 𝐴 and 𝐵) will replace the addition of matrix dimensions
𝑛 + 𝑚. Therefore, a new definition to the matrix transformation J𝑅K can be provided: any relation

𝑅 ∶ 𝐴 → 𝐵 has a corresponding Boolean matrix representation 𝑀 ∶ 𝐴 → 𝐵 so that:

𝑀 = J𝑅K ≡ ⟨∀ 𝑎, 𝑏 ∶∶ 𝑏 𝑀 𝑎 = if (𝑏 𝑅 𝑎) then 1 else 0⟩ (2.35)

Stochastic matrices are a good illustration of the typed matrix concept. The category of Left-Stochastic

matrices 𝐿𝑆, i.e., matrices with type 𝐴 → 𝐵 whose cells are valued over the unit interval [0, 1] ⊆ R,1

enables algebraic reasoning about probabilistic notions. As indicated initially, the Alloy extension should

be able to reason about probabilistic contracts (Oliveira, 2017a) and thus, the following essential

probabilistic concepts are highlighted:

EVENT An event 𝑒 ∶ 𝐴 → 1 corresponds to a Boolean row vector which describes a deterministic instance

over 𝐴, meaning that for every 𝑎 ∈ 𝐴, if 𝑒 ⋅ 𝑎 = 1 then 𝑎 occurs, and it does not in case 𝑒 ⋅ 𝑎 = 0.

PROBABILISTIC FUNCTION The chance of a specific 𝑏 ∈ 𝐵 being associated with a given input is precised

described by a distribution 𝜇. In general, the family of distributions over 𝐵 is referred to as 𝒟𝐵,

𝒟𝐵 = {𝜇 ∈ [0, 1]𝐵 ∣ ∑
𝑏∈𝐵

𝜇 𝑏 = 1} (2.36)

1 Recall page 5.

2.2. Typed Linear Algebra 17

A probabilistic function 𝑓 from 𝐴 to 𝐵 relates every value of 𝐴 to each value of 𝐵 with respect to

some probability, i.e., (𝑓 𝑎)𝑏 = 𝑝 (or 𝑏 =𝑝 𝑓 𝑎) describes that the probability of 𝑓 returning 𝑏 ∈ 𝐵
for a given 𝑎 ∈ 𝐴 is equal to 𝑝 ∈ [0, 1].

Therefore, 𝑓 captures the chance of 𝑏 being related to a value 𝑎 and thus, the type of a probabilistic
function includes all distributions on 𝐵, so, 𝑓 ∶ 𝐴 → 𝒟𝐵.

MATRIX TRANSFORM The left-stochastic matrix 𝑀 ∶ 𝐴 → 𝐵 associated to some probabilistic function

𝑓 ∶ 𝐴 → 𝒟𝐵 is obtained by the matrix transformation J⋅K, analogously to the transformation

between relations and Boolean matrices,

𝑀 = J𝑓K ≡ ⟨∀ 𝑎, 𝑏 ∶∶ 𝑏 𝑀 𝑎 = (𝑓 𝑎)𝑏⟩ (2.37)

meaning that the element at the position (𝑎, 𝑏) of 𝑀 identifies the probability of 𝑓 outputting 𝑏 for
the input 𝑎.

DISTRIBUTION 𝛿 ∶ 1 → 𝐴 denotes a distribution vector over a probabilistic event set 𝐴, subject to:

⟨∑ 𝑎 ∶∶ 𝑎 𝛿 _⟩ = 1

CONDITIONAL PROBABILITY Given two events 𝑎 ∶ 𝐴 → 1 and 𝑏 ∶ 𝐵 → 1, the conditional probability

𝑃𝛿(𝑎 ∣ 𝑏) of 𝑎 happening assuming that 𝑏 occurs over some distribution 𝛿 is given by:

𝑃𝛿(𝑎 ∣ 𝑏) =
(𝑎 × 𝑏) ⋅ 𝛿

𝑏 ⋅ 𝛿 (2.38)

PROBABILISTIC CONTRACT For any probabilistic function 𝑓 ∶ 𝐴 → 𝒟𝐵 and predicates 𝑝 ∶ 𝐴 → 1,

𝑞 ∶ 𝐵 → 1, the associated probabilistic contract 𝑞 𝑝
𝑓

oo holds different probabilities for

different input distributions 𝛿 ∶ 1 → 𝐴. Hence, in order to check a probabilistic contract, one must
find which input values violate the contract over 𝛿.

After fixing some 𝛿, the distribution 𝛾 – which captures the probabilistic behaviour of 𝑓 according to
that input distribution – must be determined,

1

𝛾

��

𝛿

��
𝐵 × 𝐴 𝐴

𝑓 ▽ 𝑖𝑑
oo

𝛾 = (𝑓 ▽ 𝑖𝑑) ⋅ 𝛿 (2.39)

2.2. Typed Linear Algebra 18

In order to measure the probability of the contract holding for that distribution, the conditional

probability of the values produced by 𝑓 satisfy the postcondition 𝑞, given that its input are valid under
the precondition 𝑝, is evaluated with respect to the input distribution 𝛿:

J 𝑞 𝑝
𝑓

oo K𝛿 = 𝑃𝛾(𝑞 ⋅ 𝑓 𝑠𝑡 ∣ 𝑝 ⋅ 𝑠𝑛𝑑) (2.40)

which further simplifies into

J 𝑞 𝑝
𝑓

oo K𝛿 = (𝑞 ⋅ 𝑓 × 𝑝) ⋅
𝛿

𝑝 ⋅ 𝛿 (2.41)

Lastly, another useful probabilistic operator corresponds to probabilistic choice from the pCGL pro-

gramming language (Gretz et al., 2015) {𝑃}[𝑝]{𝑄} which executes the program 𝑃 with probability 𝑝 and

𝑄 with probability (1 − 𝑝). In this setting, probabilistic choice can be encoded as selecting one of two
probabilistic functions 𝑓, 𝑞 of the same type, following the same line of thought, denoted J𝑓 ⋄𝑝 𝑔K.

OPERATORS PER MATRIX KIND Unlike the constructs presented previously in general for any kind of matrix

under 𝑀𝑎𝑡, there are some concepts from 𝑅𝑒𝑙 which cannot be characterized in such generic terms for
every type of matrix. Thus, those operators will now be defined for each kind of matrix in focus throughout

this dissertation specifically, so that closure under their domain is guaranteed.

Any two matrices with the same type 𝑀,𝑁 can be combined through intersection and union as

defined in Table 2.2.

Intersection

𝑀 ∩𝑁
Union

𝑀 ∪𝑁

𝑀𝑎𝑡B 𝑀 ×𝑁 (2.42) 𝑀 +𝑁 −𝑀 ×𝑁 (2.43)

𝑀𝑎𝑡N0
𝑚𝑖𝑛(𝑀, 𝑁) (2.44) 𝑀 +𝑁 (2.45)

𝐿𝑆 𝑛𝑜𝑟𝑚(𝑚𝑖𝑛(𝑀, 𝑁)) (2.46) 𝑛𝑜𝑟𝑚(𝑀 +𝑁) (2.47)

Table 2.2: Intersection and Union of different kinds of matrix.

𝑛𝑜𝑟𝑚(𝐷) ensures that 𝐷 ∶ 𝐴 → 𝐵 is a proper left-stochastic matrix, that is: for each distribution 𝛿𝑖
associated with every column 𝑖 ∈ 𝐴 of 𝐷,

𝑛𝑜𝑟𝑚(𝛿𝑖) =
𝛿𝑖

∑
𝑗∈𝐵

𝑗 𝛿𝑖
(2.48)

2.3. Boolean Satisfiability Problem 19

Transitive closure can also be defined for any square Boolean matrix 𝑀 ∶ 𝑛 → 𝑛, similarly to the
transitive closure of an endo-relation,

�̂� = 𝑀 ∪𝑀 ⋅𝑀 ∪𝑀 ⋅ 𝑀 ⋅ 𝑀 ∪ ... (2.49)

2.3 BOOLEAN SATISFIABILITY PROBLEM

A decision problem is a question that can be answered with “yes” or “no” depending on the input provided

(Frade, 2019a). A decision problem is said to be decidable if there exists a procedure capable of always

terminating and producing an answer for any admissible input.

The Boolean Satisfiability Problem (also known as SAT) is an example of a decidable decision

problem for propositional logic formulas. A formula ℱ is satisfiable if there is at least one assignment 𝒜 –

a map from each logical variable of ℱ to either true or false – for which the formula is true, meaning that 𝒜
models ℱ, written as 𝒜 ⊨ ℱ. If ℱ is unsatisfiable, then there are no assignments that make ℱ hold

and thus, ℱ represents a contradiction, denoted as ⊭ ℱ.

Tools specifically built to solve this problem are called SAT solvers (Gu et al., 1997; Cook and Mitchell,

2000; Kilani et al., 2013), which return sat and an assignment in case the given formula is satisfiable or

unsat together with a proof otherwise. These solvers typically receive as input formulas in their respective

conjunctive normal form (also known as CNF), that is, a formula of the form:

⋀
𝑖
(⋁

𝑗
𝑙𝑖𝑗)

where 𝑙𝑖𝑗 is the 𝑗-th literal – a proposition of the form 𝑝 or ¬𝑝, where 𝑝 represents an atomic predicate –

in the 𝑖-th clause. Notably, every propositional formula has an equivalent CNF formula representation.
While the SAT problem is decidable, it is also NP-complete, hence effective procedures are needed to

handle formulas with a massive number of variables and clauses. However, state-of-the-art SAT solvers

implement sophisticated and efficient techniques, making them able to solve such formulas in an acceptable

amount of time. Most modern SAT solvers have implemented DPLL-based procedures, which include

backtrack search and traversing on a binary tree representing the input formula, as it is the conventional

current most effective approach.

MiniSAT (Eén and Sörensson, 2004) and SAT4J (Le Berre and Parrain, 2010) are some examples of SAT

solvers.

2.4. Satisfiability Modulo Theories 20

2.4 SATISFIABILITY MODULO THEORIES

Going from propositional logic into first-order logic results in the increase of expressiveness, as the language

provides not only the usual logical operators, but also quantifiers ∃ and ∀, variables, constants and all

(Frade, 2019b).

Similarly to propositional logic formulas, there are decision problems variations for first-order logic formulas.

In particular, given a FOL formula 𝜙, a 𝒱-structure ℳ and an assignment 𝛼:

VALIDITY 𝜙 is valid if and only if ℳ,𝛼 ⊨ 𝜙 holds for any structure ℳ and any assignments 𝛼, in which
case 𝜙 is a tautology, written as ⊨ 𝜙.

SATISFIABILITY 𝜙 is satisfiable if there exists at least one structureℳ and assignment 𝛼 whereℳ,𝛼 ⊨ 𝜙.

Yet, unlike SAT for propositional logic, the validity and satisfiability problems are both undecidable for

first-order logic, meaning that there is no procedure that is able to always terminate and give a legitimate

“yes” or “no” judgement to all of the admissible FOL formulas as input. In regards to the FOL supported by

Alloy, the decision problem associated is decidable, capable of being encoded and further solved through

SAT, due to the fact that the framework reasons over a finite universe, while for first-order logic generally

this is not the case, as an infinite domain is commonly considered, therefore motivating the need for this

class of decision problems.

Nevertheless, these decision problems are semi-decidable, meaning there exists a method for each of

them that, given any first-order logic formula, is able to:

• Terminate and produce the answer “yes” iff it is the correct answer;

• Halt and return “no” when “no” is the legitimate answer;

• Or it does not terminate if “no” corresponds to the correct result.

While, in general, first-order logic validity/satisfiability problem is undecidable, there are decidable fragments

of the logic.

A popular variant of FOL in software modeling corresponds toMany-sorted first-order logic, which

extends the first to the concept of sorts (or types of objects), providing access to all the FOL properties along-

side constraints on operations and predicates over different kinds of sorts, due to them being distinguishable

at the syntactical level.

When checking the validity/satisfiability of a given formula, one is usually interested in doing so relatively

to some specific context, for instance, consider the following formula over integers:

∀𝑥. 𝑥 × 𝑥 ≥ 0

2.5. Probabilistic Model Checking 21

it is not interesting to verify if such formula is valid/satisfiable for all interpretations of ×, but only those
where × represents the usual integer multiplication operator. Therefore, one should consider validation with

respect to a background theory.

A first-order theory 𝒯 over the logic language provides a set of axioms which outline the class of models

that will be considered during the judgement, such that, a formula 𝜙 ∈ 𝒯 is:

• 𝒯-valid if every 𝒯-structure validates 𝜙;

• 𝒯-satisfiable as long as there is at least one 𝒯-structure which validates 𝜙.

with 𝒯-structure representing a 𝒱-structure where every formula of 𝒯 is validated. Some instances of well-

established theories include the theory of Peano arithmetic 𝒯𝑃𝐴 and the theory of Linear integer arithmetic

𝒯Z.
In conclusion, the Satisfiability Modulo Theories problem (also called SMT) is the decision problem

over the satisfiability of a first-order logic formula with respect to a background theory 𝒯. The tools built to
handle such problem are known as SMT solvers (Monniaux, 2016), which typically reason over formulas

specified in many-sorted FOL, passing the sat, unsat or unknown (timeout, out of memory, ...) judgement

according to a given theory.

2.5 PROBABILISTIC MODEL CHECKING

The automatic verification technique known as model checking can be expanded to handle probabilistic

settings, giving origin to Probabilistic Model Checking (Parker, 2011). This type of formal method

arises from the need of modeling and verifying systems whose characteristics are intrinsically probabilistic,

displaying random behaviour in a probabilistic or non-deterministic manner and thus, requiring quantitative

analysis beyond the usual qualitative judgement.

PROBABILISTIC MODELS From the many existing types of probabilistic models supported in probabilistic

model checking tools, the following can be highlighted as the most common:

DISCRETE-TIME MARKOV CHAINS A DTMC describes probabilistic state-transition systems. Its states repre-

sent every possible configuration that the system might be in at some point; the change between

configurations occurs through transitions that happen in discrete-time steps; the shift between states

follows a discrete probability distribution.

CONTINUOUS-TIME MARKOV CHAINS Unlike DTMC, the state transitions of continuous-time Markov chain do

not occur in discrete-time units, as it corresponds to a dense model of time where a transition can

happen at any point in time. The time instants are modelled through exponential distributions.

This type of model is useful to study scenarios regarding failures, arrival times, and so on.

2.5. Probabilistic Model Checking 22

MARKOV DECISION PROCESSES A Markov decision process is a nondeterministic extension to the DTMC,

adequate to handle systems that features both probabilistic and nondeterministic characteristics.

In particular, the nondeterministic capabilities allow specification of concurrency and unknown

environments for instance.

Before handling probabilistic behaviour in a MDP, first the nondeterministic choices must be made.

For that, one resorts to Adversaries (also called Schedulers), which are responsible to make the

nondeterministic decisions. These adversaries can have different characteristics and be of different

kinds, their choice might be memoryless, random, fair or of some other type.

Every single one of these models possesses the Markov property, also known as memorylessness,

which specifies that if the current configuration is known, then the future states of the system are independent

of its previous configurations, meaning that current state of the model contains all the information that can

impact the future changes in the system configuration.

Furthermore, these probabilistic models may or may not have costs and rewards associated to its states

and transitions. Costs and rewards correspond to real-valued quantities that are formally indistinguishable,

their interpretation depends case by case. By taking advantage of them, one can quantify useful attributes

related to the system at hand, like elapsed time, size, expenses and others. They can also be used in

property specification as will be shown next.

PROBABILISTIC LOGIC In order to specify properties over a probabilistic model, one of multiple (probabilis-

tic) temporal logics can be used, like the probabilistic version of computation tree logic (PCTL), (probabilistic)

LTL, continuous stochastic logic (CSL) and others. Through these logics one can express various kinds of

properties depending on the type of model that is being considered:

• Steady-state behaviour analyses the state of the system in the long-run;

• Probabilistic (Repeated) Reachability reasons about the probability of reaching a certain state

(infinitely many times in the repeated reachability case);

• Probabilistic Invariance describes the probability of the system remaining in a subset of all

possible states;

• Persistent properties examine the probability of a system ending up in the same state endlessly

(terminal state/deadlock);

• Minimum and Maximum probabilities of reaching a target set of states within a MDP;

• ...

2.6. Alloy 23

The above-mentioned type of properties can be specified for both qualitative (being true or false for a specific

model) and quantitative reasoning (measuring the probability with respect to the model at hand).

If the model has rewards (or costs) associated, Reward-based properties can be specified:

• Instantaneous reason over the expected value of the reward in a specific state;

• Cumulative considers the expected cumulative value of the rewards, potentially up to a specific

time instance;

• Reachability analyses the possibility of the reward reaching an expected cumulative value before

the system goes into some state.

Likewise, these types of properties can also be subject to qualitative or quantitative verification.

2.6 ALLOY

The Alloy specification language, alongside the Alloy Analyzer, will be the main focus during the project.

Having its foundation in relational algebra, this simple, flexible and lightweight modeling language turns out

to be very effective against a multitude of complex problems due to its powerful abstraction capabilities.

A given Alloy model is represented by a structure organized in:

ATOMS They represent the basic elements of the model. Each atom is characterized as indivisible, immutable

and uninterpreted – it has no special properties on its own.

RELATIONS Each model’s set of relations specify how its atoms interact with one another. A relation is

defined by a set of tuples of atoms, where the order of atoms in a tuple matters – e.g. (𝑎, 𝑏) and
(𝑏, 𝑎) represent two different tuples –, while the order of tuples inside the relation does not. Moreover,
the properties associated with the model’s atoms arise from the relations that they are a part of,

meaning that various characteristics can be expressed, such as mutation, and other context specific

attributes through them.

For every model there are three constant relations: none, the empty set; univ, the set containing all

this model’s atoms and iden, the identity relation, whose tuples are of the form (𝑎, 𝑎) for every atom 𝑎 in
the model.

In order to reason about relations of the same arity, Alloy provides the set operators displayed in Table

2.3.

2.6. Alloy 24

Union A + B 𝐴∪ 𝐵 = {𝑥 ∣ 𝑥 ∈ 𝐴 ∨ 𝑥 ∈ 𝐵}
Intersection A & B 𝐴∩ 𝐵 = {𝑥 ∣ 𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵}
Difference A - B 𝐴− 𝐵 = {𝑥 ∣ 𝑥 ∈ 𝐴 ∧ 𝑥 ∉ 𝐵}
Subset A in B 𝐴 ⊆ 𝐵 ≡ ∀𝑥. 𝑥 ∈ 𝐴 ⇒ 𝑥 ∈ 𝐵
Equality A = B 𝐴 = 𝐵 ≡ ∀𝑥. 𝑥 ∈ 𝐴 ⇔ 𝑥 ∈ 𝐵

Table 2.3: Set operators supported by Alloy.

Furthermore, Alloy implements relational operators like:

ARROW PRODUCT A->B is the relation containing all possible combinations of every tuple of each relation. If

both relations are unary, their arrow product corresponds to set Cartesian product 𝐴×𝐵 = {(𝑎, 𝑏) ∣
𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵}.

COMPOSITION 𝑆 ⋅ 𝑅 can be achieved through two possible operators: Dot Join R.S or Box Join S[R].

While both operators are semantically equivalent, they vary in syntax and precedence (dot join has

higher priority than box join). The coexistence of the two provide flexibility to the user, promoting the

readability of the specification, allowing composition in a more navigational way with the first and in a

dereferencing manner using the other.

If 𝑆,𝑅 tuples are of the form (𝑠1, .., 𝑠𝑛) and (𝑟1, 𝑟2, .., 𝑟𝑚) respectively, then their composition is
defined as (𝑠1, .., 𝑟2, .., 𝑟𝑚) for every tuple combination where 𝑠𝑛 is equal to 𝑟1.

TRANSPOSE ~R represents the converse of a binary relation R.

TRANSITIVE CLOSURE ^R is defined as the smallest transitive relation containing the binary relation R, i.e.,

^R = R + R.R + R.R.R + ...

*R represents the Reflexive-Transitive Closure of R, similarly to ^R, while also being reflexive,

that is, *R = ^R + iden.

DOMAIN/RANGE RESTRICTIONS Given a relation R and a set S,

S <: R is the relation whose tuples are those of R, such that, their first atom is an element of S and

R :> S contains all the tuples of R that have their last atom belonging to S.

OVERRIDE Similar to union, R ++ S has every element of R and S, with the exception of tuples from R that

have the same initial atom as another tuple in S – they are “replaced” by that tuple of S.

For example, {(𝑎1, 𝑏1), (𝑎2, 𝑏2)} ++ {(𝑎1, 𝑏2), (𝑎3, 𝑏1)} = {(𝑎1, 𝑏2), (𝑎2, 𝑏2), (𝑎3, 𝑏1)}.

Constraints over relations must be specified using first-order logic formulas. In Table 2.4 are shown

the logical operators implemented in Alloy. The alternative operator must be used with implication

2.6. Alloy 25

and together they allow the specification of expressions of the kind if P then A else B written as

P implies A else B.

Alloy syntax

Negation ¬ not !

Conjunction ∧ and &&

Disjunction ∨ or ||

Implication ⇒ implies =>

Alternative else ,

Equivalence ⇔ iff <=>

Table 2.4: Logical operators supported by Alloy.

Quantified properties are of the form Q V | F, where Q is the quantifier over the variables V – defined

as a1, a2,.. : A, b1, b2,.. : B, .. – which appear on the formula F. Q can assume one of

the values presented in Table 2.5.

∀ all F is valid for every v in V

∃ some F is valid for at least one v in V

∃! one F is valid for exactly one v in V

lone F is valid at most for one v in V

no F does not hold for any v in V

Table 2.5: Alloy quantifiers.

Other than all, every other quantifier can be applied over an expression e as Q e, such that some e

holds if e is not empty; no e holds if e is empty; one e is valid if e has exactly one tuple and lone e if e

has, at most, one element.

Using the keyword disj in V, only instances where the variables are disjoint can be considered, e.g.

disj a, b : X only examines instances where a and b have different values.

A relation can be defined by comprehension with

{ x1 : S1, x2 : S2, .., xn : Sn | F }

meaning its elements are of the shape (x1, x2, .., xn) for the values where F holds.

The cardinality of a set is calculated using the operator #, which evaluates into an integer value. To

reason about integers the following standard operations are provided: +, -, =, <, >, <= (less than or equal)

and >= (greater than or equal).

At this point, we have seen how an Alloy model is structured, its components operations and how we can

define properties over them. Thus, let us take a look at how we can precisely construct a model, impose

desired constraints and so on, using the Alloy language.

2.6. Alloy 26

A signature defines a set of atoms, and is declared with the keyword sig, e.g. sig A{} specifies a

set A. Each signature can be further characterized through object-oriented alike concepts provided by the

language:

• sig B extends A{} presents the set 𝐵 as a subset of 𝐴 and is called an extension of 𝐴. Note
that two extensions of the same set are mutually disjoint. In case it is desired that the extensions

may share atoms, in can be used in place of extends, e.g. sig B,C in A{}.

• abstract sig A{} contains no elements of its own but the atoms of its extensions.

Furthermore, the number of atoms of a given signature can be restricted by taking advantage of multiplicity

keywords, presented in Table 2.6, which represent set multiplicity constraints. For instance, one sig A{}

set Any number of elements

some At least one

one Exactly one element

lone At most one

Table 2.6: Multiplicity keywords.

declares 𝐴 as a singleton set.

To specify relations over these sets, one must declare them as fields inside the signature which corresponds

to their domain, for example, sig A{ R : B -> C } defines the ternary relation 𝑅 ∶ 𝐴 → 𝐵 → 𝐶,
whose tuples are of the form (𝑎, 𝑏, 𝑐) with 𝑎 ∈ 𝐴, 𝑏 ∈ 𝐵, 𝑐 ∈ 𝐶. Also, the multiplicity keywords

introduced previously in Table 2.6 can be used inside the field declaration: sig A { R : m B } with

𝑚 being one of the possible multiplicities, specifies how many elements of 𝐵 can be associated with each

atom of 𝐴 or sig A { R : B m -> n C } constraints the number of occurrences of an element from

𝐶 together with an element of 𝐵 in a tuple of 𝑅 according to multiplicity 𝑛 and vice versa with multiplicity 𝑚.

Properties and requirements from the scenario that is being modeled can be encoded through the

following possible special blocks:

FACTS Every constraint inside a fact section is assumed to always hold. Signature specific facts can be

specified via signature facts, which implicitly quantifies over its atoms, by sig A{ fields }{ facts }.

ASSERTIONS The formulas inside the assert blocks express properties that are expected to arise from the

model’s facts. Afterwards they are to be verified by the Alloy Analyzer in order to check if that is the

case, detecting potential inconsistencies in the specification otherwise.

PREDICATES Defines a reusable parametric constraint which, unlike facts, is not expected to always be valid,

unless so specified.

2.6. Alloy 27

pred name[arg1 : S1, arg2 : S2, .., argN : SN] {

constraint(arg1, arg2, .., argN)

}

Using predicates, one can generalize formulas, improving the model readability and freely impose

them only when desired. They are also adequate to model operations and mutation.

FUNCTIONS Being declared analogously to predicates, functions encapsulates an expression whose resulting

relation must be specified, depending on zero or more arguments.

fun name[arg1 : S1, arg2 : S2, .., argN : SN] : R1->R2->..->RN {

expression(arg1, arg2, .., argN)

}

Alloy also provides a polymorphic module system, allowing the division of one model in many modules,

each corresponding to one .als – Alloy specification file extension – file. Each individual module can then be

used in multiple different models.

A module can be defined with module pathTo/moduleName[S1, S2, .., SN], meaning it is

parametric in zero or more signatures S1, S2, .., SN. When importing a parametric module, all the

signatures that it depends on must be specified, and thus, the same module can be instantiated more than

once, for example:

open pathTo/example[X] as EX

open pathTo/example[Y] as EY

instantiates the module example with two different signatures X and Y and associates with each instance

an alias EX and EY, respectively. Afterwards, their relations, predicates, functions and so on, are freely

accessible and may be reasoned over.

Having completed an initial specification, the next steps include model analysis and gradual refinement.

For that, some commands must be specified, which can be one of two types:

RUN Alloy Analyzer will attempt to find instances for which the predicate associated with the run command

is valid according to the background specification – relations, facts, and all – in which it is being

executed.

CHECK This command is applied to assertions, meaning the analyzer will try to identify a valid instance of

the model for which the assertion does not hold.

Associated with every command there is a scope that constraints the number of atoms contained in each

signature that will be considered in possible instances, i.e., it defines an upper limit to all the combinations

2.7. Summary 28

that can be examined for that model. Therefore, it turns out that the underlying logic is undecidable2,

meaning that if no instances are found for a run command, it does not necessarily mean that the model itself

is inconsistent, just that for that specific scope there is not a single instance that satisfies all its constraints.

Similarly, if no counterexamples are found for a check command, it does not mean that the assertion

always holds, but that it is valid up to the scope considered only. However, if an instance is found for a run

command, the user can be confident that the model is consistent and if the tool recognizes a counterexample

for a given check command, then it can be established that the property does not hold in general. While this

notion of scope may seem limiting at first, it allows Alloy to be a fully automated analyzer and reveals itself

as very effective against many problems due to the relevance of the small scope hypothesis – “Most bugs

have small counterexamples.” (Jackson, 2012).

Underneath the Alloy Analyzer there is a relational model finder, Kodkod. In order to execute a command,

the analyzer translates the given Alloy specification into a Kodkod problem, which in turn is optimized by

Kodkod and later represented in CNF so that it can be sent to one of the very efficient SAT Solvers. If an

instance/counterexample is found, the resulting Kodkod instance is then interpreted by the Alloy Analyzer

into a valid Alloy model.

Finally, given an Alloy model, it can be examined through the Alloy Analyzer GUI features:

VISUALIZER Portrays the instance in different representations – graph, text, table or tree. For the graphic

presentation the modeler is able to create themes that customize its appearance, making it possible

to come up with a more intuitive look for the model, easing the analysis.

EVALUATOR A terminal where the user can specify expressions in the Alloy language and evaluate their value

with respect to the current instance.

2.7 SUMMARY

Through this chapter, the theoretical concepts required to accomplish the ambitions of this dissertation were

established.

It started by highlighting essential Relational Algebra concepts, followed by their transition into the typed

matrices universe. Afterwards, presented the distinction between the Boolean satisfiability problem and

the satisfiability modulo theories problem and examined the corresponding SAT solving and SMT solving

methodologies. Lastly, glanced over probabilistic models, costs/rewards, associated logics and their model

checking techniques.

Finally, the Alloy language was introduced, alongside the Alloy Analyzer and its features.

2 Note that the undecidability of the logic does not emerge from the notion of scope, but from the undecidability of the underlying first-order logic.

3

S T A T E O F TH E A R T

To progress with this project and be able to meet its aims, there is the need to research tools expressive

enough to handle the theoretical background established in the previous chapter as well as relevant work

acting on this field.

Thus, the next section presents and reviews the tools that will be used in the technical component of this

dissertation, highlighting their capabilities and features.

Then, this chapter presents the study of previous work that addresses certain topics related to the focus

of this project: on one hand, in Section 3.2.1 an approach taken to introduce the ability to reason about

multiconcepts in Alloy is discussed; on the other hand, Section 3.2.2 inspects a way of using an SMT Solver

as the backend to the Alloy Analyzer, instead of the conventional SAT Solvers.

3.1 TOOLS

3.1.1 Satisfiability Modulo Theory Problem Solvers

SMT solvers are automated theorem provers which can determine the satisfiability of a first-order logic

formula according to a specific background theory. Such solvers have a large variety of applications, including

software verification, test case generation, (bounded) model checking, planning and scheduling problems

and others.

The specification which is fed into one of the various off-the-shelf solvers, for most of them, is written in a

language conforming to the SMT-LIB standard. This norm aims to connect researchers on this topic in order

to quicken its advancements, establishing a common ground between them by offering precise descriptions

of background theories, managing a library of benchmarks for existing SMT solvers and making it available

to everyone, while also providing a language to specify terms and formulas in SMT-LIB’s underlying logic

– many-sorted first-order logic with equality; define new background theories from already existing ones;

specify the logical fragments whose formulas satisfiability will be verified according to a certain background

theory and execute commands to reason about the specification, like assert or remove formulas, check their

satisfiability and obtain the resulting model or unsatisfiability proof accordingly.

29

3.1. Tools 30

The SMT-LIB language can be characterized as follows:

SORTS Associated with every term is a sort, meaning it is typed and thus, represents a well-sorted term. A

sort can be parametric, like List 𝐴 varying with sort 𝐴, or not, which is the case of sort Bool.

TERMS A term can be built through variables, function symbols, binders and so on. A binder can either be

a Parameter Binder (par (s1 ... sn) e) used to introduce sort parameters s1, ..., sn in

an expression e, or a Variable Binder, which introduces one or more variables locally:

• forall and exists binders specify the universal and existential quantifiers, respectively.

For example,

(exists ((x1 s1) (x2 s2)) e)

quantifies the expression e over the variables x1 of sort s1 and x2 of sort s2.

• let declares multiple local variables in parallel, e.g.

(let ((x1 t1) (x2 t2)) t)

describes t with all the free occurrences of x1 and x2 replaced by the terms t1 and t2

accordingly.

• Pattern matching of algebraic data types can be achieved with match, for example,

(match l (

(nil true)

(_ false)))

matches the list l to true if it is empty and to false otherwise.

THEORY DECLARATION Theory 𝑇 is described through a declaration of the form

(theory 𝑇 (a1 ... an)), where a1, ..., an represent its attributes, in particular:

• Inside :sorts are specified the sort symbols included in the theory;

• :funs contains the declarations of the function symbols considered.

LOGIC DECLARATION A fragment of the SMT-LIB main logic can be specified in the form (logic 𝐿 (a1

... an)), with a1, ..., an being the attributes of the logic 𝐿, for instance, :theories includes
the list of theory names from the standard to be considered in 𝐿.

SCRIPTS Sequences of commands. Their purpose is to define the interaction with the SMT solver such

that, it reads one command at a time, acts accordingly, produces a response and then repeats the

process on the following command until it hits one termination condition.

3.1. Tools 31

In general, solvers that abide to the standard use an Assertion Stack to manage the scripts. This

stack has levels for elements, which consist of sets of assertions. Each assertion can be a logical

formula – a term of sort Bool – or sort/function symbols specifications. context refers to the union

of all assertion levels in the stack alongside global declarations. New levels can be introduced with

the command push or removed using pop, meaning that the assertions introduced in those levels

are discarded and ignored through the remainder of the commands. reset restarts the state of the

solver to the moment before starting to read commands, emptying the assertion stack.

• (set-logic 𝐿) informs the solver that it should analyse the specification using logic 𝐿.

• (set-option o v) sets the option o to the value v, if supported by the solver. In particular,

if set to 𝑡𝑟𝑢𝑒:

– :produce-models enables the commands (get-value (t1 ... tn)) – which

returns the value of the specified terms t1, ..., tn in the current model – and (get-

model) – provides the respective interpretation for every user-defined function symbol in

the current model.

– :produce-proofs enables get-proof which returns a proof of unsatisfiability for all

the formulas considered in the current context.

– :produce-unsat-cores enables the command get-unsat-core that requests an

unsatisfiable core – a subset of all the formulas containing those that are unsatisfiable by

themselves – for the current context.

• Sorts can be introduced with the commands declare-sort or define-sort for parametric

sorts.

• (declare-fun f (s1 ... sn) s) is used to define a function symbol f of sort s, de-

pending on sorts s1, ..., sn.

(declare-const f s) is equivalent to (declare-fun f () s).

• (assert t) introduces the assertion t in the current stack level.

• (check-sat) causes the solver to attempt to find a model that satisfies all the assertions in

the current level, resulting in one of three possible responses:

– sat if a model was successfully found;

– unsat if such model does not exist;

– unknown if the search was inconclusive, which can be caused by reaching the timeout

value for example.

3.1. Tools 32

If the response sat or unknown was obtained, get-model or get-value can be used;

otherwise, after an unsat response, commands like get-unsat-core or get-proof may

be used for further analysis.

An SMT-LIB logic may consider one or more of the following theories:

ArraysEx – Functional arrays with extensionality, equipped with read and write operations store and

select, respectively.

FixedSizeBitVectors – Theory of arbitrary length BitVectors with:

• concat and extract for bitvector concatenation and extraction, respectively;

• Logical operators bv𝑜𝑝, where 𝑜𝑝 represents one of not, and, or or xor;

• Aritmetic operators bv𝑜𝑝 with 𝑜𝑝 being neg, add, sub, mul, div or rem;

• bvshl for left bit shifting and bvlshr for unsigned logical right shifting;

• ...

Core – Describes the basic Boolean operators not, =>, and, or and xor, along with = for Boolean

equality, distinct, which returns 𝑡𝑟𝑢𝑒 if and only if its arguments are not identical, and ite used

to represent an if..then..else - like expression.

FloatingPoint – A theory for floating point numbers.

Reals – The theory of real numbers which describes - (negation or subtraction depending on the number

of arguments) alongside the rest of arithmetic operators +, *, / and the comparison functions =, <,

>, <= and >=.

Ints – Integer Arithmetic theory which implements the integer version of the operations described before

for the theory of reals, with div for integer division instead of / together with the remainder of the

Euclidean division mod and the absolute value operation abs.

Reals_Ints – A theory that supports both integer and real numbers together, analogously as previously

described for their individual theories.

Figure 3.1 showcases the different sub-logics from the SMT-LIB base logic included in the standard. Each

fragment’s designation follows a naming convention, for instance, QF stands for quantifier-free formulas, IA

identifies the theory of integers and the rest defined likewise.

In order to solve an SMT problem, the solver usually implements one of two main approaches:

3.1. Tools 33

Figure 3.1: SMT-LIB logic fragments (Barrett et al., 2016).

‘‘EAGER” The “eager” approach involves translating the initial problem into an equisatisfiable propositional

formula, to be solved by a SAT solver afterwards. Thus, this methodology needs to use all the theory

information from the very beginning, requiring sophisticated encodings for each of them.

STP (Ganesh and Dill, 2007), Beaver (Jha et al., 2009) and Boolector (Niemetz et al., 2014) are

some examples of solvers that follow this approach.

‘‘LAZY” The “lazy” methodology takes advantage of Boolean abstraction in order to obtain an overapproxi-

mate SAT formula from the initial SMT formula, to be subsequently passed into a DPLL based SAT

solver. A theory decision procedure is used to continuously refine the abstraction and manage the

SAT solver.

Consequently, this approach only uses the theory information as needed through the process.

Due to the nature of the procedure – the theory and SAT solvers communicate with each other via a

simple API –, a new theory simply requires an adequate solver for that theory and any off-the-shelf

(DPLL-based) SAT solver can be easily integrated into a “lazy” SMT solver, resulting in a modular and

flexible approach.

SMT solvers that follow this methodology include CVC4 (Barrett et al., 2011), Z3 (de Moura and

Bjørner, 2008) and Yices (Dutertre, 2014).

3.1.2 PRISM

PRISM (Kwiatkowska et al., 2011) is an open-source probabilistic symbolic model checker, which allows

the development of probabilistic models of many kinds, supporting Discrete-Time and Continuous-Time

3.1. Tools 34

Markov Chains, Markov Decision Processes and Probabilistic (Timed) Automatas also. Moreover, qualitative

and quantitative properties can be specified over a given PRISM model, to be automatically analysed

afterwards. Its property specification language includes temporal logics like PCTL and LTL, while also

supporting quantitative specification and reasoning about costs and rewards. Therefore, this tool is ideal to

handle problems that are inherently probabilistic or non-deterministic.

In order to model a problem at hand, one takes advantage of the offered state-based language:

MODEL TYPE The PRISM specification must state type of the probabilistic model that is being considered.

One model can have one of the types mentioned previously, indicated using the keyword dtmc,

ctmc, mdp or pta.

MODULES Inside one model may exist multiple processes, each described by a module.

module P

...

endmodule

A module is described by its variables, which define its state, and commands, that specify how its

state evolves over time.

VARIABLES In general, a variable can be an integer or a Boolean, and can be declared as follows:

a : [1..5];

b : bool init true;

c : int init 10;

This example shows a as a bounded integer assuming values between 1 and 5, b is a Boolean

variable with value 𝑡𝑟𝑢𝑒 in the initial states and c represents an unbounded integer with initial value

10.

If declared inside a module, a variable is local to it. However, one can declare a global variable

outside module declarations with the keyword global, being accessible by any process in that case.

COMMANDS A command is of the form [a] g -> us; where a is an optional action label, g defines a

guard, i.e., a Boolean expression, and us specifies one or more updates.

A single update is of the form (x' = e), setting the value of the variable x to the expression e –

which must evaluate to the same type of x. There are various ways to specify the updates on a single

command, for example, multiple updates can be combined through &, different updates for the same

variable depending on probabilities can be modeled through probabilistic choice with +, along with

other operators.

3.1. Tools 35

[] a < 5 -> 0.30 : (a' = a) + 0.7 : (a' = a + 1);

[] b -> (b' = false)&(c' = 10 + a);

In this example, the first command states that if the current value of a is less than 5, a is incremented
by 1 with 70% probability or remains unchanged with probability 30%; the second transition sets

the value of b to 𝑓 𝑎𝑙𝑠𝑒 and the value of 𝑐 to the current value of a plus 10, in case b is 𝑡𝑟𝑢𝑒.

Local non-determinism, for the model types that support it (e.g. MDP), can be achieved through

multiple commands with the same guard, for instance:

[] a > 3 -> (b' = !b);

[] a > 3 -> (b' = b);

if a’s value is higher than 3, it may flip b’s value or leave it unchanged.

The use of an action label allows for process synchronization, meaning that state transitions with the

same label between modules must occur at the same time.

CONSTANTS Constants of type integer, double or Boolean can be used.

const int x;

const bool xIsPositive = x > 0;

const double y = xIsPositive ? 0.4 : 2.5;

In this case, x is an integer constant without a value assigned, xIsPositive is a Boolean constant

indicating if x is positive or negative and the double y has value 0.4 if x is positive and value 2.5
otherwise.

EXPRESSIONS As seen throughout the presented examples, expressions take part in multiple concepts of

the language. An expression can include combinations of concrete values, variables, constants,

operators, and so on.

PRISM provides the operators and functions highlighted in Table 3.1.

Numeric Logic Functions

Minus/Subtraction - Equality = Minimum value min(...)

Addition + Not equal != Maximum value max(...)

Multiplication * Negation ! Floor floor(v)

FP Division / Conjunction & Ceiling ceil(v)

Less than < Disjuction | Round round(v)

LT or Equal <= Equivalence <=> Power 𝑏𝑒 pow(b,e)

Greater than > Implication => Integer modulo mod(a,n)

GT or Equal >= Alternative ⋅ ? ⋅ : ⋅ Logarithm 𝑙𝑜𝑔𝑏𝑥 log(x,b)

Table 3.1: Expressions operators and functions supported by PRISM.

3.1. Tools 36

X Next

U Until

F Eventually

G Always

W Weak Until

R Release

Table 3.2: Temporal operators.

FORMULAS A formula associates a name to an expression, being useful to avoid duplicate code. Each

formula is declared as formula n = e;, where n is the name that will represent the expression e.

A formula can be used anywhere in model any number of times.

INITIAL STATES If one model can have multiple initial states, they can be defined inside a init ..

endinit block, instead of using init in variable declarations inside modules, like seen previ-

ously.

COSTS AND REWARDS States/Transitions of the model may or may not have costs/rewards associated

through rewards ... endrewards sections.

In order to assign rewards/costs to states, each reward item inside the block must be of the form

g : r;, where g is a guard over all the variables in the model and r is an expression describing the

reward for that particular state.

In case the user intends to associate rewards/costs to state transitions, the reward items have to be

of the form [a] g : r; where a is an action label, meaning that the reward r will be considered

for the transitions with that label that satisfy the guard g.

PRISM’s property specification language allows one to reason about different kinds of properties. A path

property is a Boolean-valued formula over a specific path of the model. Due to the nature of the logics

included in the language, in a path property can occur the temporal operators presented in Table 3.2.

The P operator is used on properties that deal with the probability of some occurrence, being of the

form P�p [path property], where � ∈ {>,<,≥,≤} and p represents a double value between 0 and

1, evaluating to 𝑡𝑟𝑢𝑒 or 𝑓 𝑎𝑙𝑠𝑒, or of the form P=? [path property], which measures the probability in

question. All the temporal operators presented before have a bounded version (with the exception of X),

for instance P<0.5 [F<=3 a=2] indicates “a is equal to 2 within 3 time units with less than 50%
probability”.

In order to reason about the behaviour of the model in the long-run one can use the S operator, specifying

properties in a similar manner to the P operator. However, unlike the previous, the S operator only

supports Boolean properties (instead of path properties). For example, S>=0.5 [x > 3] checks if the

probability of x being greater than 3 in the long-run is greater or equal to 50%. Alternatively, properties like

3.1. Tools 37

S=? [y + z < 10] measure the steady-state probability of the Boolean expression at hand, in this

case, the addition of y with z never reaching 10.
Reward-based properties are specified with the R operator, whose form is analogous to that of the P

operator, while also adding operators C and I to deal with cumulative and instantaneous rewards, respectively.

PRISM takes into account the expected value of the rewards/costs when dealing with this type of properties.

A reward property may be used to examine:

• Reachability reward: R�reward [F property];

• Cumulative reward: R=? [C<=reward];

• Total reward: R=? [C];

• Instantaneous reward: R�reward [I=instant];

• Steady-state reward: R�reward [S];

• ...

Moreover, non-probabilistic properties can also be verified with PRISM, if specified using CTL or LTL.

These properties are of the form Q [path property], where Q is one of the two path quantifiers – A and

E, the universal and existential quantifiers over paths, respectively.

After building a PRISM model, the tool yields access to a number of features to analyse it, in particular:

SIMULATOR By taking advantage of the simulator, PRISM generates a valid path of a certain length – in

terms of state transitions or time taken, depending on the type of the model considered – for the

current model. If the model has costs/rewards, the user can check the value for each state and the

accumulated value throughout the path.

MODEL CHECKING Property verification of the formulas specified can be performed through PRISM. If a

property is qualitative, the result comes as 𝑡𝑟𝑢𝑒 or 𝑓 𝑎𝑙𝑠𝑒; for quantitative properties the tool displays
the resulting numeric value instead.

STATISTICAL MODEL CHECKING For a subset of the kinds of properties supported by PRISM, one can generate

approximate results for them, according to one of the methods implemented by the tool to perform

statistical model checking:

• Confidence Interval;

• Asymptotic Confidence Interval;

• Approximate Probabilistic Model Checking;

• Sequential Probability Ratio Test.

3.2. Related Work 38

This type of model checking is most useful when dealing with large models, where the usual model

checking procedure is infeasible.

EXPERIMENTS When the model contains one or more undefined constants, PRISM requires the user to

specify their value before being able to verify a given property. experiments provide a way of defining

a range of values for each constant, and then will check the property for each possible combination.

After the experiment is complete, the results can be exported and/or analysed through the tool’s GUI,

which is able to plot the corresponding graph.

PARAMETRIC MODEL CHECKING Instead of experiments, for a specific subset of valid properties, one can

use parametric model checking, which is able to determine a rational function over the parametric

constants or mappings from a range of values for these parameters to rational functions or Boolean

values.

3.2 RELATED WORK

3.2.1 Encoding Multirelations in Alloy

Instead of assuming the types of relations as sets, they can be relaxed into bags (or multisets), which

allow multiple copies of the same element. Furthermore, by considering, for example, a binary relation

𝑅 ∶ 𝐴 → 𝐵 not as a set whose elements are pairs (𝑎, 𝑏) 𝑤𝑖𝑡ℎ 𝑎 ∈ 𝐴 𝑎𝑛𝑑 𝑏 ∈ 𝐵, but as a bag, then it
forms a multirelation, meaning that the same pair (𝑎, 𝑏) can occur multiple times in the relation 𝑅. As can
be seen, the notion of multirelation allows for quantitative property modelling, the theme at target in this

dissertation.

Sun et al. (2016) provide a way of introducing these concepts in Alloy using an approach which they call

index-based. This way of reasoning about multirelations has its basis in Category Theory, namely by relying

on the concepts of spans and pullbacks.

To achieve finer control when reasoning over relations in categorial fashion, closer to the way of handling

them pointwise while still maintaining a certain degree of generality, one can work in the narrowed down

context of tabular allegories (Bird and de Moor, 1997).

Additionally to the conditions that identify a proper category, an allegory A is enhanced with three

operators:

INCLUSION Any two morphisms 𝑅, 𝑆 ∶ 𝐴 → 𝐵 of A can be compared under a partial order ⊆, as 𝑅 ⊆ 𝑆
for instance, as long as the order ensures monotonicity of composition, that is:

(𝑅1 ⊆ 𝑅2) ∧ (𝑆1 ⊆ 𝑆2) ⇒ 𝑅1 ⋅ 𝑆1 ⊆ 𝑅2 ⋅ 𝑆2

3.2. Related Work 39

for every pair of comparable arrows 𝑅1, 𝑅2 and 𝑆1, 𝑆2, and every composable pair of morphisms

𝑅1, 𝑆1 and 𝑅2, 𝑆2 in A.

MEET Given arrows 𝑅, 𝑆 ∶ 𝐴 → 𝐵, there must be another arrow 𝑅∩𝑆 ∶ 𝐴 → 𝐵 present inA conforming

to the following universal property:

𝑋 ⊆ (𝑅 ∩ 𝑆) ≡ (𝑋 ⊆ 𝑅) ∧ (𝑋 ⊆ 𝑆)

for every 𝑋 ∶ 𝐴 → 𝐵.

CONVERSE Every arrow 𝑅 ∶ 𝐴 → 𝐵 can be “flipped” to obtain another arrow 𝑅∘ ∶ 𝐵 → 𝐴 meeting the

following properties:

• Involution (𝑅∘)∘ = 𝑅

• Order preservation 𝑅 ⊆ 𝑆 ≡ 𝑅∘ ⊆ 𝑆∘

• Contravariance (𝑅 ⋅ 𝑆)∘ = 𝑆∘ ⋅ 𝑅∘

A pair of functions ⟨𝑓 , 𝑔⟩, with 𝑓 ∶ 𝐶 → 𝐴 and 𝑔 ∶ 𝐶 → 𝐵, represents a tabulation of a given

morphism 𝑅 ∶ 𝐴 → 𝐵 if the following conditions are met:

(a) 𝑅 = 𝑔 ⋅ 𝑓 ∘

(b) The pair is jointly injective:

(𝑓 ∘ ⋅ 𝑓) ∩ (𝑔∘ ⋅ 𝑔) = 𝑖𝑑

⇕

ℎ = 𝑘 ≡ (𝑓 ⋅ ℎ = 𝑓 ⋅ 𝑘) ∧ (𝑔 ⋅ ℎ = 𝑔 ⋅ 𝑘)

for all functions ℎ, 𝑘.

When for each and every arrow contained in an allegory there exists, at least, one tabulation, the allegory

is said to be tabular. 𝑅𝑒𝑙 is an example of such tabular allegory: it is an allegory since it also supports
all three operators, already described in Section 2.1, abiding to the properties required above; given any

relation 𝑅 ∶ 𝐴 → 𝐵 from 𝑅𝑒𝑙, by choosing a suitable 𝐶 ⊆ 𝐴 × 𝐵, then the pair ⟨𝑓 𝑠𝑡, 𝑠𝑛𝑑⟩ composed by
the relational product projections corresponds to a tabulation for such 𝑅, in particular, 𝑅 = 𝑠𝑛𝑑 ⋅ 𝑓 𝑠𝑡∘, with
the injectivity property holding under these conditions, as follows:

(𝑓 𝑠𝑡∘ ⋅ 𝑓 𝑠𝑡) ∩ (𝑠𝑛𝑑∘ ⋅ 𝑠𝑛𝑑)

≡ { kernel of 𝑓 𝑠𝑡 and 𝑠𝑛𝑑 }

ker 𝑓 𝑠𝑡 ∩ ker 𝑠𝑛𝑑

3.2. Related Work 40

≡ { ker ⟨𝑅, 𝑆⟩ = ker𝑅 ∩ ker𝑆 (2.14) }

ker ⟨𝑓 𝑠𝑡, 𝑠𝑛𝑑⟩

≡ { ×-reflection (2.12) }

ker 𝑖𝑑

≡ { kernel of 𝑖𝑑; identity (2.2) }

𝑖𝑑

thus, 𝑅𝑒𝑙 is also tabular.
A span 𝑅 ∶ 𝐴 ↛ 𝐵 is represented by a triple (ℎ𝑅, 𝑠𝑅, 𝑡𝑅) where ℎ𝑅 is a set defining its head and

𝑠𝑅 ∶ 𝐴 ← ℎ𝑅, 𝑡𝑅 ∶ ℎ𝑅 → 𝐵 are functions which specify its legs. Then, relations can be perceived as

spans, as illustrated in Figure 3.2: on the left, 𝑅 ∶ 𝐴 → 𝐵 represents an ordinary relation, defined by

𝑅 = {(𝑎1, 𝑏1), (𝑎1, 𝑏3), (𝑎2, 𝑏4), (𝑎3, 𝑏2), (𝑎4, 𝑏4)}, while on the right it shows the corresponding span
(ℎ𝑅, 𝑠𝑅, 𝑡𝑅), where the head is indexing each original pair, and its legs are defined accordingly.

Having presented the definition of a tabulation previously, one can quickly check that the notion of span

arises by relaxing the first, precisely by taking 𝐶 = ℎ𝑅 and ⟨𝑠𝑅, 𝑡𝑅⟩ as the pair of functions, however without
expecting the pair to be jointly monic. The structure of a span, besides representing ordinary relations, is

also capable of describing multirelations, as illustrated in Figure 3.3, something that cannot be achieved

with tabulations, as revoking the need for the pair to be mutually injective is what makes such representation

possible, like will be exemplified soon.

Figure 3.2: Example of a relation on the left, and its multirelation representation on the right.

The pullback of two functions 𝑓 ∶ 𝐴 → 𝐶, 𝑔 ∶ 𝐵 → 𝐶 is a span (𝑃, 𝑓 𝑠𝑡, 𝑠𝑛𝑑), such that, its head is
defined by 𝑃 = {(𝑎, 𝑏) ∈ 𝐴 × 𝐵 ∣ 𝑓 𝑎 = 𝑔 𝑏}, that is, the following diagram commutes

3.2. Related Work 41

𝐴
𝑓

// 𝐶

𝑃

𝑓 𝑠𝑡

OO

𝑠𝑛𝑑
// 𝐵

𝑔

OO

i.e., 𝑓 ⋅ 𝑓 𝑠𝑡 = 𝑔 ⋅ 𝑠𝑛𝑑; and its legs coincide with the projections 𝑓 𝑠𝑡 and 𝑠𝑛𝑑, as expected by the relationship
between spans and tabulations as well as the tabulation highlighted for the relations of the allegory 𝑅𝑒𝑙.
Now that the necessary categorial concepts were introduced, the composition of two multirelations

can be properly specified by taking it as span composition, calling it multijoin: Given two composable

multirelations 𝑅 ∶ 𝐴 ↛ 𝐵 and 𝑆 ∶ 𝐵 ↛ 𝐶, 𝑆 ⋅ 𝑅 = 𝑄 ∶ 𝐴 ↛ 𝐶 serves as the produced multirelation,

which is obtained as follows:

𝐴

𝑅 𝑡1 //

𝑠1

OO

𝐵

𝑄

𝑓 𝑠𝑡

OO

𝑠𝑛𝑑
//

𝑠

AA

𝑡

<<𝑆

𝑠2

OO

𝑡2
// 𝐶

1. Compute the pullback between 𝑡1 and 𝑠2 to obtain the head of𝑄, i.e., to determine all the composable

links between 𝑅 and 𝑆;

2. Find the legs by composition 𝑠 = 𝑠1 ⋅ 𝑓 𝑠𝑡 and 𝑡 = 𝑡2 ⋅ 𝑠𝑛𝑑.

then, the resulting span (𝑄, 𝑠, 𝑡) corresponds to the expected multirelation. Figure 3.3 shows an example
of such composition. Note that the chosen multirelations which are being composed correspond to ordinary

relations, while the result of the composition is, in fact, a multirelation. Therefore, unlike Alloy, which

assumes and guarantees that relational composition is closed under ordinary relations, in general, that is

not the case, the composition of two ordinary relations can be a multirelation, which means that perceiving

the result of composition as a relation results in loss of information, as discussed already by the authors.

3.2. Related Work 42

Figure 3.3: 𝑄 as the composition between 𝑆 and 𝑅 from Figure 3.2, portrayed as a span in the middle and as a

relation whose arcs are weighted in the right.

Again, the representation of𝑄 in Figure 3.3 is only possible since the structure allows for pairs of functions
which are not injective, in particular by taking ℎ = ℎ1 and 𝑘 = ℎ2 with 𝑓 = 𝑠𝑄 and 𝑔 = 𝑡𝑄 in the previous

definition of mutual injectivity:

(𝑠𝑄 ⋅ ℎ1 = 𝑠𝑄 ⋅ ℎ2) ∧ (𝑡𝑄 ⋅ ℎ1 = 𝑡𝑄 ⋅ ℎ2)

≡ { going pointwise; composition; 𝑐 𝑎 = 𝑐 }

(𝑠𝑄(ℎ1) = 𝑠𝑄(ℎ2)) ∧ (𝑡𝑄(ℎ1) = 𝑡𝑄(ℎ2))

≡ { evaluate 𝑠𝑄 and 𝑡𝑄 with respect to Figure 3.3 }

𝑎1 = 𝑎1 ∧ 𝑐1 = 𝑐1

≡ { Mutual injectivity }

ℎ1 = ℎ2

≡ { Two constant functions are the same if their output constant coincides; ℎ1 ≠ ℎ2 }

⊥

one can establish that the legs of 𝑄 do not form a tabulation. However, the pair ⟨𝑠𝑅, 𝑡𝑅⟩ from the span 𝑅
depicted in Figure 3.2 does, as can be easily observed, both functions 𝑠𝑅 and 𝑡𝑅 are injective, meaning

that the span is also a tabulation for the relation 𝑅. Thus, one can conclude that if a pullback meets all
the conditions to also be considered a tabulation of a given relation 𝑅, then the multirelation is, in fact,
an ordinary relation, since the repetition of arcs supported by multirelations is exactly the cause for the

legs to not be injections. In the end, when working under 𝑅𝑒𝑙 one can take advantage of tabulations to
handle relations, while spans are adequate when handling multirelations from 𝑀𝑅𝑒𝑙 instead, with the latter
representing the category of binary multirelations with sets as objects and multirelations as arrows.

In order to go from relation to multirelation or vice versa, there are two operations which can be taken

advantage of: lift – constructs a multirelation with the same information contained in the relation specified

– and drop – given a multirelation, discards repeated arcs between the same two elements.

3.2. Related Work 43

The implementation of these concepts in the Alloy language was achieved with the utilization of the Alloy

(parametric) module system and thus, the library built is organized in the following modules:

multi – encapsulates useful operators on multiconcepts like pullback and drop;

mrel[s,t] – represents a multirelation 𝑅 ∶ 𝑠 → 𝑡 and provides the predicates composedFrom, which
is true if the multirelation considered is the result of the composition of the two spans specified, and

liftedFrom that allows the representation of this multirelation from an ordinary relation;

mset[g] – describes a multiset and implements operations over it.

Let us see a simple example of the usage of this library, the specification presented in Figure 3.4 and a

possible instance displayed in Figure 3.5.

Figure 3.4: Example of an Alloy specification dealing with multiconcepts.

Figure 3.5: One valid instance for the Alloy model in Figure 3.4.

After experimenting with the library on a few examples and, in particular, extending already existing models

to support multiconcepts, we come to the conclusion that the library is fairly easy to use and integrate, flexible

and convenient for most small cases. However, this implementation also comes with some inconveniences:

3.2. Related Work 44

• It is not scalable;

– The more the user increases the scope, the harder it is on the Alloy Analyzer (even more so

than usual);

– The number of uses of multiconcepts in a model heavily impact the number of constraints that

the solver has to deal with. Each multirelation declaration, composition, etc., accumulates to,

at a some point, an unbearable amount of constraints associated with the specification of each

multiconcept.

• The model can become very verbose and complex. Depending on the properties that are being

specified using multirelations, the modeler needs to instantiate a new multirelation for each inter-

mediate step which require multiconcepts – multijoin, disjoint union and others. For example, in

order to compose two, already existing, ordinary relations, first they have to be lifted into into the

multirelation realm, which means instantiating the module for each of them, and then the user still

needs to instantiate the mrel module for the resulting multirelation which will hold the result of the

composition. This process can easily get out of hand, and make the model very wordy and harder to

read, analyse, debug and so on;

• Explicit measuring of quantitative information requires dealing with set cardinality and, by consequence,

integer atoms, which should be avoided due to their implementation in Alloy and the limitations that

arise when attempting to reason about them;

• Different multirelations with the same type cannot be easily declared due to the nature of the Alloy

module system. However, this can be fixed by creating a preprocessor which makes copies of the

library modules, but with different names, according to the model at hand;

• It does not explicitly support relations with arity higher than two.

In the end, it still proved itself as a very good solution for a multitude of problems of this kind and it was a

great starting point in this investigation to find a more effective and practical way of dealing with quantitative

properties in Alloy.

3.2.2 Relational Algebra and SMT Solvers

Due to the nature of quantitative properties that the envisioned Alloy extension will be able to deal with, SAT

solvers lack the expressiveness required to effectively deal with them, which means that SMT solvers will be

taken advantage of instead and thus, giving origin to the challenge of how to reason relationally using an

SMT solver, in particular, how to connect Alloy to an SMT solver.

3.2. Related Work 45

Yet, Meng et al. (2017) presented an Alloy extension to support the SMT Solver CVC4, which is being

actively developed by the authors at the time of writing. The authors managed to construct a calculus which

allows the translation and reasoning between Alloy syntax and SMT-LIB syntax.

In order to deal with relations, they developed a theory 𝑇𝑅 (see Figure 3.6) as an extension of an

already existing theory 𝑇𝑆 for finite sets, where a sound, complete and terminating calculus exists, and is

implemented in CVC4. In terms of correctness, the calculus designed for the relational theory 𝑇𝑅 guarantees

model and refutation soundness overall and termination for a specific fragment of the constraints language.

Figure 3.6: Signature Σ𝑅 of the theory 𝑇𝑅 (Meng et al., 2017).

When verifying properties in Alloy, the analyzer can prove (find counterexamples) that a property does not

hold for a given model, but it can never prove that it always holds, even if no counterexample was found, only

that it is valid up to the specific scope which was considered by the user. The extension aims to overcome

this obstacle, making the tool more powerful so that, when possible, the modeler is able to check the validity

of properties of Alloy models, having confidence that they are valid in case no counterexamples are found.

Moreover, this extension also provides a more effective way of dealing with the Alloy integers, adding

support for constraints over unbounded integers, which means that they are no longer bounded by a given

bit width.

Beyond the subject of verification, due to the CVC4 model finding capacities, it is able to determine

minimal satisfying interpretations for consistent Alloy specifications or minimal counterexamples of specified

properties without the modeler having to provide a scope, while still supporting scope specification in case

the user so desires.

Although in some cases the solver might not be able to determine the satisfiability of certain formulas,

due to the undecidability of the theory considered, there are already multiple instances where the designed

calculus is able to terminate. The active development of this extension and research for decidable fragments

also promotes the evolution and increase in power of this tool, making it a potential valuable resource in this

project.

3.3. Summary 46

3.3 SUMMARY

At this point, the focused tools together with relevant state-of-the-art work on this subject were analysed.

This chapter began by identifying the key tools – SMT Solvers and PRISM – needed to accomplish the

desired Alloy extension and inspecting their capabilities.

In the end, presented the introduction, discussion and evaluation of existing approaches similar to the

goals of this dissertation, one way of encoding quantities in Alloy specifications through multirelations and

the integration of a specific SMT solver in the Alloy Analyzer to overcome the current limitations of the

implemented SAT solving approach.

4

T H E P ROB L EM AND I T S CH A L L E NG E S

As stated in the introduction, the main aim of this project is to design an extension to the Alloy tool able to

cope with quantitative models in problem specification. This chapter starts by proposing three case studies

that will be used to benchmark such an extension to Alloy. In the next sections, some case studies are

addressed using off-of-the-shelf tools, while others are modeled quantitatively by taking advantage of the

theoretical foundations introduced before. The idea is to compare the outcome of this project, presented in

Chapter 6, against the performance of such standard solutions. In the end, an initial design for the Alloy

quantitative extension is proposed, as well as the motivation behind such architecture.

4.1 CASE STUDIES

This section presents some of the case studies to which the developed solution will be applied, and compared

against using state-of-the-art tools.

Section 4.1.1 introduces a quantitative bibliographic system and tackles it using typed linear algebra in

𝑀𝑎𝑡N0
.

A football championship scheduler is modeled using Alloy in Section 4.1.2 and is further quantitatively

analysed by taking advantage of an SMT Solver.

Both the Bibliometrics and Football Championship case studies are expected to be handled by the

quantitative extension of Alloy through quantitative analysis under 𝑀𝑎𝑡N0
and, at this stage, they are being

modeled through two different means simply for illustration purposes, as a starting point. Going over them

the other way around, that is, using SMT Solvers to study the bibliographic database scenario and modeling

the football tournament through typed linear algebra would also be possible.

Finally, 4.1.3 presents a probabilistic model (Markov chain) of the behaviour of a grass sprinkler depending

on whether it is raining or not. Initially, the problem is modeled using typed linear algebra in 𝐿𝑆, and then
encoded and model checked using PRISM.

47

4.1. Case Studies 48

4.1.1 Bibliometrics

A standard relational model of a bibliographic system managing papers, authors and citations across different

scientific research fields could be as follows, taking advantage of the abstract diagram notation in 𝑅𝑒𝑙
(Oliveira, 2017b),

𝐾𝑒𝑦𝑤𝑜𝑟𝑑

𝑃𝑎𝑝𝑒𝑟

𝐾
88

𝐶 // 𝑃𝑎𝑝𝑒𝑟 𝐴 //

𝑚
��

𝐴𝑢𝑡ℎ𝑜𝑟

𝑀𝑒𝑑𝑖𝑢𝑚

where the relations depicted specify the following:

• 𝑞 𝐶 𝑝 means that paper 𝑝 cites paper 𝑞;

• 𝑎 𝐴 𝑝 specifies that 𝑎 is one of the authors of paper 𝑝;

• 𝑘 𝐾 𝑝 indicates that paper 𝑝 mentions the keyword 𝑘;

• 𝑢 = 𝑚 𝑝 indicates 𝑢 as the publication medium of paper 𝑝.

Since a paper cannot cite itself, the constraint 𝐶∩𝑖𝑑 ⊆ ⊥ is required. Such model can be encoded using

Alloy where, for instance, the previous constraint is denoted by the Alloy fact block fact{ no C & iden }.

The full specification of this (toy) bibliographic system can be found in Appendix A.1.1.

Augmenting the given model by introducing the relation 𝐾𝑒𝑦𝑤𝑜𝑟𝑑 𝑃𝑎𝑝𝑒𝑟𝑆oo = 𝐾 ∩ 𝐾 ⋅ 𝐶∘

allows for the characterization of papers that are cited in the same area:

𝑘 𝑆 𝑝 ⇔ 𝑘 𝐾 𝑝 ∧ ⟨∃ 𝑞 ∶ 𝑝 𝐶 𝑞 ∶ 𝑘 𝐾 𝑞⟩

In words:“paper 𝑝 is cited by at least another paper 𝑞 within the same field 𝑘.”

Furthermore, by defining 𝐾𝑒𝑦𝑤𝑜𝑟𝑑 𝐴𝑢𝑡ℎ𝑜𝑟𝑄oo = 𝑆 ⋅ 𝐴∘ its possible to identify on which areas a

given author has her/his papers cited,

𝑘 𝑄 𝑎 = ⟨∃ 𝑝 ∶ 𝑎 𝐴 𝑝 ∶ 𝑘 𝑆 𝑝⟩

In words: “There is a paper 𝑝, written by 𝑎, cited by some other paper in the area of 𝑘”.

4.1. Case Studies 49

However, these relations only allow the specification of reachability properties in the current Alloy

implementation, due to ∪-idempotency as mentioned previously. What if they were perceived from the 𝑀𝑎𝑡
point-of-view? Then 𝑆 becomes 𝐾 × 𝐾 ⋅ 𝐶∘, and thus:

𝑘 𝑆 𝑝 = if (𝑘 𝐾 𝑝) then ⟨∑ 𝑞 ∶ 𝑝 𝐶 𝑞 ∧ 𝑘 𝐾 𝑞 ∶ 1⟩ else 0

This means that 𝑆 is able to quantify how many papers cite paper 𝑝 in the same area 𝑘. In the new setting,

𝑄 becomes

𝑘 𝑄 𝑎 = ⟨∑ 𝑝 ∶ 𝑎 𝐴 𝑝 ∶ 𝑘 𝑆 𝑝⟩

= ⟨∑ 𝑝 ∶ 𝑎 𝐴 𝑝 ∧ 𝑘 𝐾 𝑝 ∶ ⟨∑ 𝑞 ∶ 𝑝 𝐶 𝑞 ∧ 𝑘 𝐾 𝑞 ∶ 1⟩⟩

= ⟨∑ 𝑝, 𝑞 ∶ 𝑎 𝐴 𝑝 ∧ 𝑘 𝐾 𝑝 ∧ 𝑝 𝐶 𝑞 ∧ 𝑘 𝐾 𝑞 ∶ 1⟩

which relates the author 𝑎 to the number of citations she/he received in the field 𝑘.
Simply by perceiving this model through 𝑀𝑎𝑡, bibliometrics become instantly extracted from it! In

possession of higher expressiveness, more sophisticated analyses can be performed via operators that one

did not have access to in the relational model. For instance, one can reason about the overall contribution

of an author in a particular area by defining, 𝐾𝑒𝑦𝑤𝑜𝑟𝑑 𝐴𝑢𝑡ℎ𝑜𝑟𝑍oo = 𝑄
𝑆⋅⊤

𝑘 𝑍 𝑎 =
⟨∑ 𝑝 ∶ 𝑎 𝐴 𝑝 ∶ 𝑘 𝑆 𝑝⟩

⟨∑ 𝑞 ∶∶ 𝑘 𝑆 𝑞⟩

which measures the percentile of author 𝑎 in the field 𝑘.
We just had a sneak peek at the advantages of lifting a relational model to the quantitative matrix realm,

in particular, by also considering matrices under ×, the Hadamard product.1 Several other operators can

potentially be included, leading to whole sets of unique properties that could not be expressed otherwise.

The main aim of this project is to hopefully improve the Alloy Analyzer so as to be capable of deriving

more information from existing models – as illustrated with relations 𝑆 and𝑄 above –, while also supporting

new kinds of operators, so that additional relations (now matrices) like 𝑍 can be seamlessly constructed on

old and new models alike.

4.1.2 Football Championship

Consider the prospect of devising a game scheduler for a football championship. Clearly, a valid tournament

schedule will have to meet the following requirements:

1 This corresponds to relation intersection at relation level, as seen in Section 2.2.

4.1. Case Studies 50

(a) The same team cannot play two games on the same day;

(b) Every team has to play with every other, but not with itself;

(c) For each home game there is another game away involving the same two teams.

This problem was originally introduced in Program Design by Calculation course and showcases the

capabilities of Alloy, with which one is able to determine multiple game agendas satisfying all the conditions

imposed. Appendix A.2.1 contains a proposed Alloy specification for this problem, based on the type diagram

that follows:

𝑇𝑒𝑎𝑚 𝐺𝑎𝑚𝑒
𝑎𝑤𝑎𝑦

//ℎ𝑜𝑚𝑒oo

𝑑𝑎𝑡𝑒

��

𝑇𝑒𝑎𝑚

𝐷𝑎𝑡𝑒

Furthermore suppose that it is also required for the model to be able to track the number of wins and

losses of each team. The initial problem could then be extended to consider a relation 𝐻𝑖𝑠𝑡𝑜𝑟𝑦 which

allows repeated arcs, like this dissertation aims to achieve in Alloy by the end of this project.

{𝑊𝑖𝑛, 𝐿𝑜𝑠𝑒} = 𝑅𝑒𝑠𝑢𝑙𝑡 𝑇𝑒𝑎𝑚
𝐻𝑖𝑠𝑡𝑜𝑟𝑦

oo

Figure 4.1 pictures an example of such a relation, where the number associated with each arc represents

the number of occurrences in the relation, for instance, (𝑡1, 𝐿𝑜𝑠𝑒) appears 6 times in the relation, meaning

that 𝑡1, in total, lost 6 games during the tournament.

Figure 4.1: Example of the relation 𝐻𝑖𝑠𝑡𝑜𝑟𝑦.

Since, at this point, 𝐻𝑖𝑠𝑡𝑜𝑟𝑦 cannot be precisely specified in Alloy, let us explore how this version of the

problem can be modeled from an SMT point-of-view, in order to bring this work one step closer to its goal.

4.1. Case Studies 51

The specification will then be written in the SMT-LIB language, with respect to the theory of integers,

using QF_UFLIA – unquantified linear integer arithmetic with uninterpreted sort and function symbols –

logic, and solved with resort to CVC4. Starting with the original problem, the following integer constants

shall be declared:

𝑔ℎ𝑎𝑑 – Number of games played on team ℎ’s home, against team 𝑎, on day 𝑑.

Now, to accomplish the initial requirements, the necessary constraints are specified:

• Non-negativity constraints

𝑔ℎ𝑎𝑑 ≥ 0

• No team can play two games on the same date

∀𝑥 ∈ 𝑇𝑒𝑎𝑚, 𝑑 ∈ 𝐷𝑎𝑡𝑒. ∑
𝑦∈𝑇𝑒𝑎𝑚

𝑔𝑥𝑦𝑑 + 𝑔𝑦𝑥𝑑 ≤ 1

• All teams play against each other but not against themselves

∀𝑥 ∈ 𝑇𝑒𝑎𝑚. ∑
𝑑∈𝐷𝑎𝑡𝑒

𝑔𝑥𝑥𝑑 = 0

∀𝑥, 𝑦 ∈ 𝑇𝑒𝑎𝑚. 𝑥 ≠ 𝑦 ⟹ ∑
𝑑∈𝐷𝑎𝑡𝑒

𝑔𝑥𝑦𝑑 ≥ 1

• For each home game there is another game away involving the same two teams

∀𝑥, 𝑦 ∈ 𝑇𝑒𝑎𝑚. ∑
𝑑∈𝐷𝑎𝑡𝑒

𝑔𝑥𝑦𝑑 = ∑
𝑑∈𝐷𝑎𝑡𝑒

𝑔𝑦𝑥𝑑

Next, in order to deal with the championship results, the required constants and constraints over them

will be specified:

𝑤𝑖 – Number of games won by team 𝑖.
𝑙𝑖 – Number of games that team 𝑖 lost.

𝑤𝑖𝑗 – Number of games that team 𝑖 won against team 𝑗.
𝑙𝑖𝑗 – Number of games that team 𝑖 lost against team 𝑗.

4.1. Case Studies 52

• Non-negativity constraints

𝑤𝑖𝑗 ≥ 0 ∧ 𝑙𝑖𝑗 ≥ 0

• The total number of games played by each team is equal to the sum of all their wins and losses

∀𝑖 ∈ 𝑇𝑒𝑎𝑚. 𝑤𝑖 + 𝑙𝑖 = ∑
𝑗∈𝑇𝑒𝑎𝑚

∑
𝑑∈𝐷𝑎𝑡𝑒

𝑔𝑖𝑗𝑑 + 𝑔𝑗𝑖𝑑

• The total number of games won (resp. lost) by each team is the same as the amount of games won

(resp. lost) against every team

∀𝑖 ∈ 𝑇𝑒𝑎𝑚. 𝑤𝑖 = ∑
𝑗∈𝑇𝑒𝑎𝑚

𝑤𝑖𝑗 ∧ 𝑙𝑖 = ∑
𝑗∈𝑇𝑒𝑎𝑚

𝑙𝑖𝑗

• The number of times that team 𝑖 won against team 𝑗 is the same as the number of times that team 𝑗
lost against team 𝑖

∀𝑖, 𝑗 ∈ 𝑇𝑒𝑎𝑚. 𝑤𝑖𝑗 = 𝑙𝑗𝑖

• Games between each team

∀𝑖, 𝑗 ∈ 𝑇𝑒𝑎𝑚. 𝑤𝑖𝑗 + 𝑙𝑖𝑗 = ∑
𝑑∈𝐷𝑎𝑡𝑒

𝑔𝑖𝑗𝑑 + 𝑔𝑗𝑖𝑑

An excerpt of the full specification for 𝑇𝑒𝑎𝑚 = [1..4] and 𝐷𝑎𝑡𝑒 = [1..6] can be found in the Appendix
A.2.2. After filling the assertion stack with these declarations and constraints, by adding the command

(check-sat), as explained in Section 3.1.1, to the stack, it requests CVC4 to solve the model with respect

to the state of the assertion stack at this point, providing the SAT/UNSAT/UNKNOWN judgement afterwards.

Given a SAT/UNKNOWN response, then the command (get-model) can be used to obtain the solution

associated with the previous (check-sat) command, containing the values assigned to each function

symbol within the specification. Then, if the SMT specification, together the commands to solve and extract

the results, is stored in a championship.smt2 file, CVC4 can be used to analyse the SMT problem as

follows:

$ cvc4 championship.smt2

for which the following solution was obtained:

4.1. Case Studies 53

sat ; result of check-sat

(model ; get-model displays the solution

(define-fun g111 () Int 0)

(define-fun g112 () Int 0)

(define-fun g113 () Int 0)

(define-fun g114 () Int 0)

(define-fun g115 () Int 0)

(define-fun g116 () Int 0)

(define-fun g121 () Int 0)

(define-fun g122 () Int 0)

(define-fun g123 () Int 1)

(define-fun g124 () Int 0)

(define-fun g125 () Int 0)

(define-fun g126 () Int 0)

...

(define-fun l21 () Int 0)

(define-fun l23 () Int 2)

(define-fun l24 () Int 2)

(define-fun l31 () Int 0)

(define-fun l32 () Int 0)

(define-fun l34 () Int 2)

(define-fun l41 () Int 0)

(define-fun l42 () Int 0)

(define-fun l43 () Int 0)

)

characterized as follows:

-- The constants g123 g136 g142 g215 g232 g246 g314 g321 g345 g411 g424 g433

were set at 1, while the remaining 𝑔ℎ𝑎𝑑 had their value at 0

-- w1=0 l1=6 w2=2 l2=4 w3=4 l3=2 w4=6 l4=0

corresponding to the calendar and win/loss history pictured in Table 4.1.

4.1. Case Studies 54

Dates home away

Date 1 Team 3 Team 2

Team 4 Team 1

Date 2 Team 1 Team 4

Team 2 Team 3

Date 3 Team 2 Team 1

Team 4 Team 3

Date 4 Team 3 Team 1

Team 4 Team 2

Date 5 Team 1 Team 2

Team 3 Team 4

Date 6 Team 1 Team 3

Team 2 Team 4

(a) Championship calendar.

Participants Wins Losses

Team 1 0 6

Team 2 2 4

Team 3 4 2

Team 4 6 0

(b) Performance of each team in this tournament.

Table 4.1: Example of a football championship obtained using CVC4.

As illustrated, it is possible to obtain one championship schedule satisfying all the prerequisites desired,

alongside a possible outcome for that tournament. In particular, the assignments highlighted in the Table

4.1b can be used to build precisely the relation 𝐻𝑖𝑠𝑡𝑜𝑟𝑦 previously exemplified in Figure 4.1. Furthermore,

this model is capable of finding all the possible valid game calendars as well as all the potential results for

the configuration considered (four teams participating and six possible dates) and can be easily modified to

accommodate to other 𝑇𝑒𝑎𝑚 and 𝐷𝑎𝑡𝑒 values.

4.1.3 Sprinkler

Entry Bayesian Network — Wikipedia gives as example of Bayesian network a probabilistic model of a

sprinkler wetting grass, whose activation also depends on it raining or not, pictured in Figure 4.2. A Bayesian

network corresponds to a directed acyclic graph with edges defining conditional dependencies and nodes

representing unique random variables.

By interpreting each conditional probabilistic table associated with each node as a left-stochastic matrix

one can reason algebraically using the concepts described before in Section 2.2.

4.1. Case Studies 55

Figure 4.2: Bayesian network for the Rain, sprinkler and grass problem.

𝑅 1𝑟𝑎𝑖𝑛oo = ⎡⎢
⎣

0.80
0.20

⎤⎥
⎦

𝑆 𝑅
𝑠𝑝𝑟𝑖𝑛𝑘𝑙𝑒𝑟
oo = ⎡⎢

⎣

0.60 0.99
0.40 0.01

⎤⎥
⎦

𝐺 𝑆 × 𝑅
𝑔𝑟𝑎𝑠𝑠

oo = ⎡⎢
⎣

1.00 0.20 0.10 0.01
0 0.80 0.90 0.99

⎤⎥
⎦

For instance, the probability of the grass being wet, 𝑃(𝑔 = 1), can be determined through:

1 𝐺𝑤𝑒𝑡oo 𝑆 × 𝑅
𝑔𝑟𝑎𝑠𝑠

oo 𝑅
𝑠𝑝𝑟𝑖𝑛𝑘𝑙𝑒𝑟 ▽ 𝑖𝑑
oo 1𝑟𝑎𝑖𝑛oo

𝑃(𝑔=1)

ii

where 1 𝐺𝑤𝑒𝑡oo = [0 1].
After solving the vector-matrix multiplications, it can be observed that there is a 44.838% chance of the

grass being wet for this network configuration.

[0 1] ⋅ ⎡⎢
⎣

1.00 0.20 0.10 0.01
0 0.80 0.90 0.99

⎤⎥
⎦
⋅

⎡
⎢⎢⎢⎢⎢
⎣

0.6 0
0 0.99
0.4 0
0 0.01

⎤
⎥⎥⎥⎥⎥
⎦

⋅ ⎡⎢
⎣

0.80
0.20

⎤⎥
⎦
= [0.44838]

Could PRISM be used to model this scenario and verify probabilistic properties over the network?

From all the different model types provided, Discrete-Time Markov Chain seems adequate to specify the

Bayesian network in question. Moreover, every node corresponds to a module, each with a variable that

identifies its state, having one of three possible values. For example, for 𝑟𝑎𝑖𝑛 the variable r is considered,

declared as follows:

4.1. Case Studies 56

module rain

r : [0..2] init 2;

...

such that, each value is characterized as:

• 2 represents the initial state;

• 0 indicates that it is not raining (off and dry for 𝑠𝑝𝑟𝑖𝑛𝑘𝑙𝑒𝑟 and 𝑔𝑟𝑎𝑠𝑠, respectively);

• 1 means that it is currently raining (respectively on and wet for the 𝑠𝑝𝑟𝑖𝑛𝑘𝑙𝑒𝑟 and 𝑔𝑟𝑎𝑠𝑠 modules);

• 0 or 1 are both terminal states.

Every stochastic matrix is then encoded with resort to commands, one for each column of the matrix, e.g.

“If the sprinkler is on and it is not raining, then the grass is wet with 90% probability or dry with 10% chance”

is represented by [] s=1 & r=0 & g=2 -> 0.9 :

(g' = 1) + 0.1 : (g' = 0).

In the end, 𝑟𝑎𝑖𝑛 is specified by the following process:

module rain

r : [0..2] init 2;

[] r=2 -> 0.8 : (r' = 0) + 0.2 : (r' = 1);

[] r=0 | r=1 -> (r'=r); //0 and 1 are terminal states

endmodule

The full PRISM specification of this network can be seen in the Appendix A.3.1.

At this point, one may specify PCTL properties about the model, such as:2

– “What is the probability of the grass being wet?”

P=? [F g=1]

– “What are the odds of the sprinkler being on, knowing that it is not raining?”

P=? [F s=1&r=0] / P=? [F r=0]

– “Probability of rain, assuming the grass is wet.”

P=? [F r=1&g=1] / P=? [F g=1]

4.1. Case Studies 57

Figure 4.3: Calculating the probability of the grass being wet using PRISM.

Figure 4.3 shows the result obtained for the first property, which specifies 𝑃(𝑔 = 1) and, as expected, it
coincides with the same value obtained previously.

In the end, a Bayes network was successfully modeled by taking advantage of PRISM. Continuing with

the study of the capabilities of this tool, consider the following situation: what if the 𝑠𝑝𝑟𝑖𝑛𝑘𝑙𝑒𝑟’s conditional
probabilistic table was unknown? That is,

𝑆 𝑅
𝑠𝑝𝑟𝑖𝑛𝑘𝑙𝑒𝑟
oo = ⎡⎢

⎣

1 − 𝑠10 𝑠01
𝑠10 1 − 𝑠01

⎤⎥
⎦

with 𝑠𝑦𝑥 representing the probability of the sprinkler being on/off(𝑠 = 𝑦) given that it is or it is not currently
raining(𝑟 = 𝑥).3

It would be interesting to be able to answer questions such as “Is there a 𝑠𝑝𝑟𝑖𝑛𝑘𝑙𝑒𝑟 for which the probability
of the grass being wet is higher than 90%?”, i.e., verify if exists a 𝑠𝑝𝑟𝑖𝑛𝑘𝑙𝑒𝑟 causing 𝑃(𝑔 = 1) > 0.9.
Therefore, one should start by adapting the previous PRISM specification to the current setup:

1. New probabilistic constants declaration;

const double s10;

const double s01;

2. 𝑠𝑝𝑟𝑖𝑛𝑘𝑙𝑒𝑟 module readjustment – writing the probabilities with respect to the constants.

[] r=0 & s=2 -> s10 : (s' = 1) + (1-s10) : (s' = 0);

[] r=1 & s=2 -> (1-s01) : (s' = 1) + s01 : (s' = 0);

Since the model now contains unknown constants, the user needs to assign a value for each of them

before PRISM is able to check the validity of the property, as shown previously in Figure 4.3. In particular,

by setting 𝑠10 = 0.4 and 𝑠01 = 0.99 the current model is reduced to the earlier version and thus, the

2 Conditional probability definition considered: 𝑃(𝐴|𝐵) = 𝑃(𝐴∩𝐵)
𝑃(𝐵) .

3 Note that 𝑠00 = 1 − 𝑠10 and 𝑠11 = 1 − 𝑠01 since the columns of a left-stochastic matrix must add up to 1.

4.1. Case Studies 58

same result is obtained for that property. However, by taking advantage of experiments, the tool is able to

verify multiple instances of the same model according to a range of values set by the user, in the same

manner presented in the Figure 4.4, which checks the property for all the combinations of possible values

of 𝑠10 and 𝑠01, each starting at 0 and going up to 1 with step 0.01.

Figure 4.4: Constants range definition.

Then, 𝑃(𝑔 = 1) > 0.9 is specified in PCTL as P>0.9 [F g=1] and an experiment is executed

with the constants varying according to that range of values, as illustrated in Figure 4.5.

Figure 4.5: Verifying 𝑃(𝑔 = 1) > 0.9 with experiments.

Table 4.2 presents a few results of the verification instances of this experiment.

s10 s01 Result

0.98 0.98 𝑓 𝑎𝑙𝑠𝑒
0.98 0.99 𝑓 𝑎𝑙𝑠𝑒
0.98 1.0 𝑓 𝑎𝑙𝑠𝑒
0.99 0.0 𝑡𝑟𝑢𝑒
0.99 0.01 𝑡𝑟𝑢𝑒
0.99 0.02 𝑡𝑟𝑢𝑒

Table 4.2: Extract of the experiment results.

As can be observed, 𝑆 𝑅
𝑠𝑝𝑟𝑖𝑛𝑘𝑙𝑒𝑟𝐹oo = [0.02 1

0.98 0] represents a 𝑠𝑝𝑟𝑖𝑛𝑘𝑙𝑒𝑟 for which the probability of the

grass being wet is not higher than 90%, while 𝑆 𝑅
𝑠𝑝𝑟𝑖𝑛𝑘𝑙𝑒𝑟𝑇oo = [0.01 0.02

0.99 0.98] showcases a 𝑠𝑝𝑟𝑖𝑛𝑘𝑙𝑒𝑟
where that is the case.

Alternatively, parametric model checking can also be used to determine such 𝑠𝑝𝑟𝑖𝑛𝑘𝑙𝑒𝑟s, for example, if
sprinkler.prism and sprinkler.props are the files containing the PRISM model and the property

P>0.9 [F g=1], respectively, then parametric model checking over them can be performed with 0.01
parameter precision by executing:

4.2. Problem 59

$ prism sprinkler.prism sprinkler.props

-param s10=0:1,s01=0:1 -paramprecision 0.01

which arrived at the results presented in Table 4.3, from which one is able to extract 𝑠𝑝𝑟𝑖𝑛𝑘𝑙𝑒𝑟s for which
𝑃(𝑔 = 1) > 0.9 by the various combinations arising from the interval where the result is 𝑡𝑟𝑢𝑒. In particular
the previous 𝑠𝑝𝑟𝑖𝑛𝑘𝑙𝑒𝑟𝐹 and 𝑠𝑝𝑟𝑖𝑛𝑘𝑙𝑒𝑟𝑇 considered from the experiment arrive at the same result using

parametric model checking. To be noted that the solutions obtained are with respect to a certain precision,

in this case 0.01, meaning that some of them could not be entirely accurate, and naturally, by executing

parametric model checking given a further precise value, the more exact the results obtained.

s10 s01 Result

[0.5, 0.96875] [0.0, 0.5] 𝑓 𝑎𝑙𝑠𝑒
[0.984375, 1.0] [0.0, 0.15625] 𝑡𝑟𝑢𝑒

[0.96875, 0.984375] [0.1875, 0.3125] 𝑓 𝑎𝑙𝑠𝑒
[0.96875, 0.984375] [0.34375, 0.4375] 𝑓 𝑎𝑙𝑠𝑒

[0.0, 0.5] [0.0, 1.0] 𝑓 𝑎𝑙𝑠𝑒
[0.5, 1.0] [0.5, 1.0] 𝑓 𝑎𝑙𝑠𝑒

Table 4.3: Parametric model checking results.

In conclusion, PRISM proved itself as powerful probabilistic model checker that is seamlessly compatible

with the Alloy extension theoretical framework, and whose stochastic and nondeterministic capabilities

seem adequate to the Alloy characteristics and needs, becoming a promising candidate for the probabilistic

component of this dissertation.

4.2 PROBLEM

In order to implement quantitative reasoning in the Alloy framework, one must establish connections between

the first and the necessary tools, capable of handling this type of constraints, as well as coordinating their

interactions accordingly.

Initially, it is necessary to extend the underlying Boolean matrix representation to support both 𝑀𝑎𝑡N0

and 𝐿𝑆 matrices, which implies implementing these concepts in Kodkod. Therefore, one will explore how to

represent a Kodkod problem containing:

• Numeric constraints, their matrix representation and further feed the resulting logical formula to

an SMT Solver. Moreover, an adequate theory needs to be determined and passed to the solver

alongside the specification at hand in order to make the solving feasible.

• Probabilistic properties, which requires encoding the corresponding matrices into suitable PRISM

modules and then take advantage of the probabilistic model checking features provided by PRISM to

4.3. Proposed Approach - Solution 60

determine valid distributions, check the satisfiability of properties in a qualitative manner, calculate

unknown probabilities, and so on, depending on the class of assertions being reasoned about.

After successfully being able to solve such kind of Kodkod problems, by consequence, Alloy will be very

close to supporting quantitative specifications. All there is left to do is adapt the syntax and semantics of the

Alloy language affected by the shift to the quantitative realm, potentially extending the language to further

include operators that could not be included before due to the lack of expressiveness, like multiplication

and division between numeric values over both N0 and [0, 1] domains. Furthermore, the Alloy Analyzer
needs to be modified to produce adequate Kodkod problems from quantitative Alloy specifications, as well

as being able to interpret the new type of resulting Kodkod instances. Finally, the features provided by the

analyzer, such as instance visualization and interactive evaluation, have to be adjusted to such models.

4.3 PROPOSED APPROACH - SOLUTION

Figure 4.6 presents the current version of Alloy’s underlying course of action when finding valid instances

for a given specification or check for counterexamples to some property.

Figure 4.6: Current Alloy Architecture.

4.3.1 System Architecture

To accomplish the quantitative extension to the Alloy framework as described previously, the implementation

of the workflow illustrated in Figure 4.7 is expected. In case the increased expressiveness is not required or

desired for a specific specification, the conventional SAT solvers will still be used, according to the existing

implementation. When interested in performing implicit quantitative analysis of existing Alloy models or

model checking Alloy specifications containing explicit numeric quantitative constraints, SMT solvers will

function instead. Otherwise, when before a probabilistic setting, the framework will take advantage of

PRISM’s capabilities.

4.4. Summary 61

Figure 4.7: Proposed Quantitative Alloy Architecture.

4.4 SUMMARY

This chapter presented various case studies which benefit from quantitative analysis, each with distinct

characteristics, from explicitly taking advantage of the increased expressiveness provided in the theoretical

base as was the case of the football championship case study, implicitly extract quantitative data from just

changing category like in the bibliographic system model, to the application of probabilistic model checking

techniques when encoding and reasoning about left-stochastic matrices in the bayesian network example.

Furthermore, the main tools which will take part in building the Alloy extension had their capabilities evaluated

by applying them to these case studies. At last, the workflow designed for such quantitative extension was

illustrated and characterized.

5

QU AN T I T A T I V E K ODKOD

Having laid the theoretical groundwork necessary to accomplish the quantitative extension of Alloy, this chapter

starts by exploring the challenges and implementation alternatives that arise when trying to accommodate

Alloy and, by consequence, Kodkod to the quantitative semantics of typed linear algebra.

The next step is to design the structures that better suit all the implementation decisions made, the

requirements to properly handle both quantitative scenarios (𝑀𝑎𝑡N0
and 𝐿𝑆), as well as take into account

the existing structures, used to execute qualitative analysis.

Afterwards, alongside the quantitative extension of Kodkod’s abstract syntax, the management routine of

the structures established to handle quantitative Kodkod problems described by first-order relational logic is

detailed, defining a correspondence between the two.

5.1 ATOMS AND RELATIONS

As stated previously, an Alloy model is represented through atoms and relations. Furthermore, its atoms

arise from the signatures specified (together with the scope considered for a given evaluation), i.e., they

are the elements within the sets – unary relations – present in the model, while relations with arity greater

or equal to 2 are declared through fields inside these signatures, over the model’s sets. At Kodkod level

they are indistinguishable, being represented by the same kind of structure, a Boolean matrix. In particular,

signatures correspond to vectors while fields are defined by matrices with more than one dimension.

Now, when extending Boolean matrices into the quantitative context, by allowing natural numbers or

probabilities as cell kinds, every tuple in a relation gets a meaningful weight associated to it, beyond the

two possible values in the Boolean setting – 1 when the tuple is present in the relation, and 0 otherwise.

Therefore, one has to make an explicit distinction between the previously highlighted concepts, due to the

impact of increased expressive power, for instance, when declaring a relation 𝑅 ∶ 𝐴 → 𝐵 using Alloy syntax

as illustrated in Figure 5.1.

62

5.1. Atoms and Relations 63

Figure 5.1: Declaring 𝑅 ∶ 𝐴 → 𝐵 in Alloy.

This model has two signatures 𝐴 and 𝐵, and 𝑅 as a field of 𝐴. Simply put, in the corresponding Kodkod
problem, 𝑅 is then specified through the constraint:1

𝑅 ⊆ 𝐴 × 𝐵

Since the vectors representing 𝐴 and 𝐵 are now numeric matrices, their atoms will also have an arbitrary

weight associated. If𝐴 = {(𝐴0, 3), (𝐴1, 4)} and𝐵 = {(𝐵0, 2)}, then𝐴×𝐵 = {(𝐴0 → 𝐵0, 6), (𝐴1 →
𝐵0, 8)} and thus, (𝐴0 → 𝐵0, 3) is a valid tuple of 𝑅 but (𝐴0 → 𝐵0, 7) is not.

Having signatures represented by numeric matrices adds an extra layer of complexity that is undesirable,

as the acceptable weight for each tuple of a given relation will always have an upper bound with respect to

the weight of each atom of the relation type sets – varying from instance to instance within a given scope –

as well as depend on the model’s constraints, making the model harder to handle and analyse. Moreover,

allowing each tuple to have their weight unbounded by default, while still respecting the relation type, seems

a far more desirable and expected approach.

Further to this, having atoms with an arbitrary weight associated by itself violates its definition, in

particular, they can no longer be considered as indivisible and thus, abstracting weights from atoms is

deemed necessary.

Taking all the points above into account, in the proposed implementation, signatures and their atoms will

still be represented through Boolean matrices, that is, no Kodkod unary relation will be able to have tuples

with weight outside of the values {0, 1}.
It should be noted that, in case the user needs to explicitly describe an unary relation whose tuples may

have non-Boolean valued weights associated, it is still possible to do so, for example, 𝑆 ∶ 𝐴 can be specified

as 𝑆 ∶ () → 𝐴, corresponding to the Alloy code specified in Figure 5.2.

Figure 5.2: Specification of the unary set 𝑆 ∶ 𝐴 in a quantitative setting.

Therefore, in case 𝑆 = {(() → 𝐴0, 3), (() → 𝐴1, 1), (() → 𝐴2, 10)}, through composition the desired
set can be accessed as 𝑆′ = 𝑆 ⋅ () = {(𝐴0, 3), (𝐴1, 1), (𝐴2, 10)}, like Figure 5.3 shows.

1 The proper Kodkod constraint generated in a quantitative context will be seen in greater detail in Section 6.2.

5.2. Booleans Go Quantitative 64

Figure 5.3: An instance from the model displayed in Figure 5.2.

5.2 BOOLEANS GO QUANTITATIVE

Given that the elements of a Boolean matrix are of type B, one can consider F as an extension to the

quantitative realm, where F = N0 + [0, 1] ⊆ R, i.e., the type of the cells of a numeric matrix depend on
the kind of setting at hand, representing either a matrix of 𝑀𝑎𝑡N0

or 𝐿𝑆.
Moreover, a correspondence between the two must be established. If 𝑏𝑖 is a Boolean value and 𝑥𝑖 is its

numeric counterpart (or vice versa), then their relation is precisely specified as:

𝑏𝑖 = 𝑥𝑖 > 0

Considering that in this context, 𝑥 will either be a natural number or a probability, then

𝑏𝑖 = 𝑓 𝑎𝑙𝑠𝑒 ≡ 𝑥𝑖 = 0.

In order to handle both representations, the operators 𝑙𝑖𝑓 𝑡 and 𝑑𝑟𝑜𝑝 can be defined, analogously to those

studied in the Section 3.2.1, as follows:

B

𝑙𝑖𝑓 𝑡

��
F

𝑑𝑟𝑜𝑝

YY (5.1)

𝑙𝑖𝑓 𝑡(𝑏𝑖) =
⎧{
⎨{⎩

𝑡𝑟𝑢𝑒𝑉𝑎𝑟𝑖𝑎𝑏𝑙𝑒(𝑖) if 𝑏𝑖

0 otherwise
𝑑𝑟𝑜𝑝(𝑥𝑖) =

⎧{
⎨{⎩

𝑡𝑟𝑢𝑒 if 𝑥𝑖 > 0

𝑓 𝑎𝑙𝑠𝑒 if 𝑥𝑖 = 0

with 𝑡𝑟𝑢𝑒𝑉𝑎𝑟𝑖𝑎𝑏𝑙𝑒(𝑖) = 𝑥𝑖 constrained by 𝑥𝑖 > 0. As can be seen, these operations are not isomorphic,
in particular, 𝑑𝑟𝑜𝑝 results in information loss. This is expected, since 𝑙𝑖𝑓 𝑡 increases expressiveness and
vice versa.

5.2. Booleans Go Quantitative 65

NUMERIC NEGATION Now, one can define the negation of a numeric value by taking advantage of these

operators.

¬F ∶ F → B

¬F = ¬ ⋅ 𝑑𝑟𝑜𝑝

¬F 𝑥 = 𝑥 ≤ 0

(5.2)

QUANTIFIED EXPRESSION A quantified expression Q e, that is, a constraint over the expression e with

respect to the quantifier or multiplicity keyword Q, highlighted previously in the Tables 2.5 and 2.6 respectively,

must be properly re-defined with respect to the new lifted values.

At Kodkod level, the expression, which will be represented by a matrix 𝑀, is submitted to an adequate

formula associated with the keyword considered from {some, one, lone, no} (keywords set and

all do not need to be explicitly handled at this stage, since set does not constraint e in any meaningful

way and all e has no meaning).

In regards to the some and no, their constraints are pretty straightforward, being similar to their qualitative

counterpart. Analogously to the numeric negation defined previously, quantitative some can be obtained

by transforming 𝑀 into a Boolean matrix using 𝑑𝑟𝑜𝑝 and applying the qualitative some. Quantitative no

could simply be defined as the negation of some or by checking if it corresponds to the null matrix (none),

however, by taking advantage of the newly acquired expressiveness, in this implementation it will be specified

in a more succinct way: the sum of every element of 𝑀 must be equal to 0.

some 𝑀 ≡ ⋁
𝑖
𝑀[𝑖] > 0 no 𝑀 ≡ ∑

𝑖
𝑀[𝑖] = 0

When defining lone and one in a quantitative context, there is more than a sole possible interpretation

due to the increase in expressiveness. For instance, by following the same line of thought as the previous

definitions of ¬F and some, simply taking 𝑀 as its Boolean matrix correspondence using 𝑑𝑟𝑜𝑝, and using
the current definition of one, then one e will hold if and only if there is exactly one tuple present in e with

positive weight, that is, a single element of 𝑀 must have a positive value. For example, one{(𝑡, 5)} would
evaluate to 𝑡𝑟𝑢𝑒. Thus, since lone = one || none, lone e would now mean that e would have no

tuples, or a single tuple with a positive value associated. However, one can also argue that one e should

only be satisfied if and only if e contains one tuple precisely with weight 1. Therefore, lone e would be

𝑡𝑟𝑢𝑒 when 𝑒 possesses no tuples or one tuple with value 1 associated, i.e., the sum of all cells of 𝑀 would

be less or equal to 1.
As the latter interpretation is the expected one at first glance, besides being more precise, it is also easier

to handle by users already experienced with Alloy, as this definition behaves fundamentally the same as the

qualitative version, e.g., a function 𝑓 ∶ 𝐴 → 𝐵 would be declared as sig A{ f : one B } in both the

original Alloy and this quantitative extension, therefore it will be the one put into effect during development.

5.3. Numeric Structures 66

one 𝑀 ≡ ∑
𝑖

𝑀[𝑖] = 1 lone 𝑀 ≡ ∑
𝑖

𝑀[𝑖] ≤ 1

To be also noted that the definition initially proposed can still be achieved in practice by taking advantage

of drop2, for instance, through encodings like lone (drop e).

LOCAL VARIABLES Specifying quantification formulas or building relations by comprehension involves

handling, respectively, atoms or tuples locally as variables. Shifting into a quantitative setting associates a

numeric value to those variables. Since quantification constraints handle atoms, these will always have weight

1, as imposed by their definition, i.e., for every signature A, all a : A | one a always holds. Now,

when specifying the tuple’s form by comprehension, there might be multiple possible weights associated

that hold for the formula considered, even with respect to a particular instance from an already solved

model. This extension will then convention that every tuple built by comprehension will be constrained to

have weight 1, meaning that {𝐷 ∣ 𝐹(𝐷)} will result in an empty set if there is no tuple of the form 𝐷 with

the value 1 associated that satisfies 𝐹, even if the same tuple with a weight strictly different than 1 would

satisfy the formula considered.

5.3 NUMERIC STRUCTURES

Taking a more in-depth look at the Boolean structures present in the underlying Kodkod implementation, it

can be noted that each Boolean matrix is represented through a sparse sequence, that is, a sequence

that may or may not have contiguous flat indices, storing only non-zero (false) values. In particular, a 𝑁-ary

relation 𝑅 with scope [𝐿,𝑈], delimited by the lower bound 𝐿 and the upper bound 𝑈, over the universe

𝒜 = {𝑎0, 𝑎1, .., 𝑎𝑘} is described by a Boolean sparse-matrix 𝑀 specified as follows (Torlak and Jackson,

2007):

𝑀[𝑖1, .., 𝑖𝑁] =

⎧{{{
⎨{{{⎩

𝑡𝑟𝑢𝑒 if (𝑎𝑖1, .., 𝑎𝑖𝑁) ∈ 𝐿

𝑓 𝑟𝑒𝑠ℎ𝑉𝑎𝑟() if (𝑎𝑖1, .., 𝑎𝑖𝑁) ∈ 𝑈 − 𝐿

𝑓 𝑎𝑙𝑠𝑒 otherwise

where 𝑖1, .., 𝑖𝑁 ∈ [0, 𝑘] and 𝑓 𝑟𝑒𝑠ℎ𝑉𝑎𝑟 declares a fresh Boolean variable. Furthermore, all relations are
encoded as matrices where every dimension has size |𝒜| – binary relations are represented by square

matrices, and so on – and therefore, an element of 𝑀 in the position [𝑖1, .., 𝑖𝑁] is mapped into the flat
index ∑𝑁

𝑗=1(𝑖𝑗 × |𝒜|𝑁−𝑗) of its respective sparse sequence (Torlak and Jackson, 2006).

𝑀 ∶ |𝒜| × |𝒜| × .. × |𝒜|⏟⏟⏟⏟⏟⏟⏟⏟⏟
𝑁

2 The addition of drop to the Alloy language is described in Section 6.2.

5.3. Numeric Structures 67

This way, any tuple over 𝒜 is precisely uniquely identified by its index.

In the process of transforming a Kodkod problem into CNF formulæ to be solved by a SAT Solver, the

original specification is described by Boolean structures such as the previous Boolean matrices, which are

handled by assembling Compact Boolean Circuits (CBCs), ideal to represent an equivalent Boolean

encoding, as they are able to detect common equivalent sub-formulas with respect to a certain degree,

reducing the size of the final problem and thus, decreasing solving times.

Such kind of circuit is characterized by a partially canonical, directed, acyclic graph (𝑉, 𝐸, 𝑑) whose
vertices 𝑉 are either logical gates 𝑉𝑜𝑝 = 𝑉∧ ∪𝑉∨ ∪𝑉¬ or leaves (e.g. elements of Boolean matrices)

𝑉𝑙𝑒𝑎𝑓 = 𝑉𝑏 ∪B, where 𝑉𝑏 contains a Boolean variable. 𝑑 corresponds to the circuit compaction depth

and together with an equivalence relation over 𝑉 they describe the circuit’s degree of canonicity. Figure 5.4

showcases an example of a non-compact Boolean circuit and its CBC equivalent for 𝑑 = 2.

Figure 5.4: A non-compact Boolean circuit on the left and the corresponding CBC (𝑑 = 2) in the right (Torlak and
Jackson, 2007).

In order to achieve quantitative analysis, first these structures must be extended to be able support

problem encoding of increased expressiveness. In particular, Boolean matrices will no longer be used, but

numeric matrices instead, whose elements belong to F and are related to Boolean values exactly as

described previously in Section 5.2, by also taking advantage of sparse sequences. Hence, a relation 𝑅 in

the same conditions imposed previously when characterizing Boolean matrices, in a quantitative setting

will be represented by a numeric sparse-matrix 𝑀 whose definition will depend on its arity, as discussed

formerly in Section 5.1, whether 𝑅 represents an Alloy signature or field:

• 𝑁 = 1 (Signature)

𝑀[𝑖] =

⎧{{{
⎨{{{⎩

1 if 𝑎𝑖 ∈ 𝐿

𝑓 𝑟𝑒𝑠ℎ𝑉𝑎𝑟({0, 1}) if 𝑎𝑖 ∈ 𝑈 − 𝐿

0 otherwise

where 𝑖 ∈ [0, 𝑘] and 𝑓 𝑟𝑒𝑠ℎ𝑉𝑎𝑟({𝑣1, 𝑣2, .., 𝑣𝑛}) declares a fresh numeric variable 𝑥 such that

𝑥 ∈ {𝑣1, 𝑣2, .., 𝑣𝑛} ⊆ F .

5.3. Numeric Structures 68

• 𝑁 > 1 (Field)

𝑀[𝑖1, .., 𝑖𝑁] =

⎧{{{
⎨{{{⎩

𝑡𝑟𝑢𝑒𝑉𝑎𝑟𝑖𝑎𝑏𝑙𝑒() if (𝑎𝑖1, .., 𝑎𝑖𝑁) ∈ 𝐿

𝑓 𝑟𝑒𝑠ℎ𝑉𝑎𝑟() if (𝑎𝑖1, .., 𝑎𝑖𝑁) ∈ 𝑈 − 𝐿

0 otherwise

The present definition is obtained by lifting the former Boolean matrix specification and consequently

𝑖1, .., 𝑖𝑁 ∈ [0, 𝑘], 𝑡𝑟𝑢𝑒𝑉𝑎𝑟𝑖𝑎𝑏𝑙𝑒 and 𝑓 𝑟𝑒𝑠ℎ𝑉𝑎𝑟 declare a new variable 𝑥 ∈ F with 𝑡𝑟𝑢𝑒𝑉𝑎𝑟𝑖𝑎𝑏𝑙𝑒
also imposing that 𝑥 > 0.

Likewise, |𝒜| is the size of all 𝑁 dimensions of 𝑀 and so, the same flat indexing mechanism is taken

into account when addressing 𝑅’s tuples: if the position of the sparse-matrix identified by the flat index
of [𝑖1, .., 𝑖𝑁] contains the numeric value 𝑤 then 𝑀[𝑖1, .., 𝑖𝑁] = 𝑤 meaning that the tuple (𝑎𝑖1 → .. →
𝑎𝑖𝑁, 𝑤) is present in 𝑅 as long as 𝑤 ≠ 0.

To manage this new kind of matrices, CBCs are no longer adequate, meaning that a new type of structure

must be established. Nonetheless, it is important to note that Boolean reasoning cannot be completely

discarded either, as a Kodkod problem will still be described by a first-order logic formula and thus, the

numeric structures considered must be flexible enough to naturally handle the numeric component while

also being able to deal with Boolean constraints when convenient. Therefore, in this implementation, a

similar approach to Boolean circuits will be taken, making sure that the already existing Boolean structures

can be taken advantage of, even in a quantitative setting, as in, if given a CBC as input, the extension should

be able to process it so that analysis can be performed from a quantitative point-of-view using tools like

SMT Solvers and so on. Then, the numeric structures that arise from the given Kodkod problem shall take

the form a circuit. For that, the current CBC definition must be further enriched to include numeric values

and expressive enough operators to support numeric matrices operations. Taking all the requirements

mentioned previously into account, to reason over numeric structures a Numeric Circuit (NC) will be

used, defined by a directed, acyclic graph (𝑉, 𝐸), with vertices 𝑉 corresponding either:

LEAVES 𝑉𝑙𝑒𝑎𝑓 = 𝑉𝑏 ∪B∪𝑉𝑥 ∪F a Boolean or numeric constant, a Boolean variable (𝑉𝑏) or a numeric

variable (𝑉𝑥).

GATES 𝑉𝑜𝑝 = 𝑉B ∪𝑉F ∪𝑉⊑

• Logical 𝑉B = 𝑉∧ ∪𝑉∨ ∪𝑉¬

• Arithmetic3

𝑉F =
⎧{
⎨{⎩

𝑉+ ∪𝑉− ∪𝑉× ∪𝑉/ ∪𝑉𝑚𝑜𝑑 if F = N0

𝑉+ ∪𝑉− ∪𝑉× ∪𝑉/ if F = [0, 1]
3 If F represents the natural numbers, then / corresponds to the Euclidean division.

5.4. Scope 69

• Inequality 𝑉⊑ = 𝑉= ∪𝑉< ∪𝑉> ∪𝑉≤ ∪𝑉≥

Numeric circuits encompass a mix of Boolean and arithmetic circuits/expression DAGs, augmented with

inequality operators. Through NCs, one is now able to encode formulas like 𝑦 > 𝑥∧(𝑥+𝑧 = 10∨𝑧 ≤ 2)
for F = N0 as follows:

∧

> ∨

= ≤

+ 10
𝑦

𝑥 𝑧
2

While this type of circuit is based on the concept of CBC – every CBC is a NC –, it should be highlighted

that NC is not a proper extension of CBC, as it does not guarantee partial canonicity, that is, while they are

structured in the same fashion, their assembly process will be different; a compaction depth is not part of a

NC specification, meaning that shared sub-components of a circuit will not necessarily be detected.

5.4 SCOPE

The way of delimiting the extent of instances being analysed for a given Alloy command will remain unchanged

in a quantitative setting, as well as the respective representation of the fixed scope in the derived Kodkod

problem. After specifying the scope in the Alloy model, the number of atoms contained in each top-level

signature will start at a given point (depending on the precision considered) and reach up to the ceiling

imposed, which in turn shapes the boundaries of each Kodkod relation describing the model’s signatures

and fields.

Every relation 𝑅 ∶ 𝑇1 → 𝑇2 → .. → 𝑇𝑁 has bounds [𝐿,𝑈] associated, where the lower bound 𝐿
contains the tuples which must occur in 𝑅 and the upper bound 𝑈 consists of the tuples which may or may

not appear in 𝑅 for the instance to be a valid Kodkod model, and naturally, 𝐿 ∩ 𝑈 = 𝐿.
Whether a tuple 𝑡 of the form (𝑡1, 𝑡2, .., 𝑡𝑁) with 𝑡1 ∈ 𝑇1, 𝑡2 ∈ 𝑇2, .., 𝑡𝑁 ∈ 𝑇𝑁 is present in 𝑅,

depends on the numeric sparse-matrix definition specified previously.

When 𝑁 = 1, 𝑡 is an atom, and therefore:

• if 𝑡 ∈ 𝐿 then 𝑡 = 1

• if 𝑡 ∉ 𝐿 ∧ 𝑡 ∈ 𝑈 then 𝑡 = 0 ∨ 𝑡 = 1

5.4. Scope 70

• if 𝑡 ∉ 𝐿 ∧ 𝑡 ∉ 𝑈 then 𝑡 = 0, and thus, 𝑡 can never be present in 𝑅 of a Kodkod instance for the

problem at hand with respect to this bounds

For 𝑁 > 1, the constraints considered for 𝑁 = 1 are relaxed:

• if 𝑡 ∈ 𝐿 then 𝑡 > 0 and thus, 𝑡 must occur with a strictly positive value associated within F

• if 𝑡 ∉ 𝐿∧ 𝑡 ∈ 𝑈 then 𝑡 ≥ 0, meaning that this tuple’s weight depends only on the problem domain

F and the constraints specified in the original Alloy model

• if 𝑡 ∉ 𝐿 ∧ 𝑡 ∉ 𝑈 then 𝑡 = 0, like before 𝑅 will not be allowed contain 𝑡

INTEGER SCOPE Due to the nature of the representation of integers originally implemented, in a qualitative

setting, these are also bounded. Integers are contained in the signature Int, having each integer represented

explicitly as an atom. Alloy’s integer arithmetic works in the same fashion as modular arithmetic, and

therefore the scope populates Int to achieve it.

Furthermore, the Kodkod engine handles integers and operations between them bitwise, representing

each integer in two’s complement, suitable to be processed by SAT solvers.

In the command run{ ... } for 𝑛 Int, 𝑛 expresses exactly the integer bitwidth to be considered

in the two’s complement representation, hence Int = {−2𝑛−1, .., 2𝑛−1 − 1} during the analysis of this
command.

When shifting into the quantitative realm, this concept of integer scope is no longer useful, as the tools

that will be used during solving possesses the capabilities to handle effectively “unbounded” integers that

the SAT solvers lack.

Instead of discarding integer bounds altogether when performing quantitative analysis, they will be

re-defined to provide the modeler another tool, acquiring finer control over the instances being studied.

When model checking a command like the previous in a quantitative setting over N0, now 𝑛 will dictate

the maximum integer value that each tuple of every field in the model can assume, causing the previous

scope definition to be extended, for 𝑁 > 1:

• if 𝑡 ∉ 𝐿 ∧ 𝑡 ∈ 𝑈 then 0 ≤ 𝑡 ≤ 𝑛

For example, 𝑅 = {(𝑡, 10), ..} will not be a valid interpretation when solving run{} for 5 Int, but it

may be for the command run{} for 20 Int.

If 𝑛 Int is not explicitly stated in a command, then the tuple’s weight will not be upper bounded by the

scope, meaning that the former definition will be used.

Finally, if 𝐹 = [0, 1] then the integer scope will not have any interpretation in this context, being ignored
during analysis, as the weight of each tuple now describes a probability.

5.5. Numeric Circuit Assembly 71

5.5 NUMERIC CIRCUIT ASSEMBLY

In order to perform quantitative analysis using Kodkod, the latter has to be enhanced with the necessary

notions discussed throughout this and former chapters, namely the numeric structures that support such

kind of Kodkod problems and eventual new syntax to allow the modeling of quantitative concepts.

Thus, this section will go over the representation of those structures, their properties, and how they can

be used in practice. Furthermore, a quantitative Kodkod problem will be characterized under a quantitative

domain F, including the extension of the Kodkod abstract syntax to allow for further kinds of quantitative

constraints, and how the numeric structures are taken advantage of to support these new kinds of Kodkod

problems.

NUMERIC STRUCTURES Each vertex of a Compact Boolean Circuit is represented through a Boolean

Value, which is the elementary data type that composes the Boolean structures. A BooleanValue

is either a BooleanConstant representing one of 𝑡𝑟𝑢𝑒 and 𝑓 𝑎𝑙𝑠𝑒, or a BooleanFormula to encode

non-constant Boolean values such as BooleanVariables and the logical gates, showcased in Table 5.1.

The elements of a sparse-sequence associated with a Boolean matrix also correspond to BooleanValues.

Both BooleanValue and BooleanMatrix are produced and managed by a BooleanFactory which,

together with CBCFactory – a factory responsible for the assembly of the variable components of a CBC

–, is used to build an adequate CBC associated with the Kodkod problem at hand accordingly.

Furthermore, the factory responsible for a particular solving instance attributes an integer label to every

BooleanValue present, so that each of them is uniquely identified under such factory. Only the TRUE

and FALSE constants have the same label, since they are shared with every factory. These labels possess

meaningful characteristics and, alongside the labelling method adopted by a BooleanFactory, are

associated to the BooleanValues so that further properties arise, meeting the conditions, together with

caching mechanisms, necessary to effectively produce proper CBCs.

Numeric structures are built upon these concepts and thus, BooleanValue NumericValue4

appears as the main kind of data being handled in a quantitative setting, relating to F the same way

as BooleanValue is related to B. As expected, a numeric matrix is composed by NumericValues.

Moreover, one NumericValue will either be a NumericConstant or NumericVariable over F, or a

gate emerging on NC which will eventually evaluate to a numeric value (e.g. 𝑉F). Likewise, new operator

vertices on B, like 𝑉⊑, will be encoded as BooleanFormulas whose inputs include, at least, one numeric

value, meaning that even though they are technically implemented as a kind of Boolean structures, these

cannot be used in a qualitative context (which is intended, as the need for such structures arises precisely

from working on a quantitative perspective).

4 Even though in practice every NumericValue will also be a BooleanValue by inheritance, for the remainder of this dissertation, unless explicitly stated,

"Boolean value" will always refer to an element of B or a BooleanValue depending on the context, but never a NumericValue.

5.5. Numeric Circuit Assembly 72

Class

Name
Gate Structure 𝑉

NotGate ¬ 𝑏 ¬ Negation
Specifies the negation of the input

BooleanValue 𝑏.

MultiGate �B

𝑏1

𝑏2

𝑏𝑛

…

�B ∈ {∧,∨}
Logical

𝐴𝑁𝐷
and 𝑂𝑅

Represents the result of the

conjunction/disjunction of at least

two Boolean inputs.

ITEGate 𝑖 ? 𝑡 ∶ 𝑒 𝑖

𝑡

𝑒

⋅ ? ⋅ ∶ ⋅ If 𝑖 turns out to be 𝑡𝑟𝑢𝑒 then selects
𝑡, else 𝑒 goes through.

Table 5.1: Boolean gates supported by Kodkod.

Unlike the CBC assembly process taken as reference, only a single factory will be used to build Numeric

Circuits. However, a NumericFactory can be one of two kinds, depending on the type of problem at hand:

a NaturalFactory (F = N0) or a StochasticFactory (F = [0, 1]). This factory is responsible for
producing and managing numeric values(and Boolean values when necessary) and numeric matrices, that is,

a NaturalFactory creates matrices from𝑀𝑎𝑡N0
and ensures that values like NumericConstant and

NumericVariable belong toN0, while StochasticFactory builds matrices from 𝐿𝑆 and guarantees

that the numeric values correspond to probabilities.

For convenience and further flexibility, in actuality a StochasticFactory will be able to handle values

over R, supporting constraints which take advantage of such range (e.g. 1.5𝑥 + 2𝑦 > 3.5). Nevertheless,
the numeric values defining the relations that compose the model at hand will, in fact, be constrained to

the [0, 1] value range, meaning that potential instances which include values from outside that range are

immediately discarded and, for example, if 𝑥 corresponds to one of those numeric values, constraints like

𝑥 > 6.75 immediately cause the specification to be deemed inconsistent.

As an extension of Boolean values, every NumericValue must have an integer label associated, which

will still be taken advantage of during the NC assembly process and to apply the caching mechanisms

already implemented for CBC (adapted to support this new kind of circuit) also. Despite the similar use

5.5. Numeric Circuit Assembly 73

of labels, it is important to mention that these will not necessarily abide to the same properties as when

constructing CBCs in the original Kodkod. Nevertheless, when building Numeric Circuits, the following

characteristics are expected:

• Unlike Boolean constants, not all NumericConstants are shared between factories, as that is

impossible due to the infinite domain of values being handled. Instead, only 0 and 1 are common,

as they correspond to the only constants frequently used throughout this implementation, for both

possible quantitative types of problems. Every other constant will be produced on demand by the

factory responsible for that specific problem.

• The label of any vertex of the NC is unique up to its domain, Boolean or numeric. For instance,

if two numeric values share the same label, they are the same numeric value, but if a numeric

value and a Boolean value possess the same label, they do not depict the same vertex. However,

given a label 𝑖, 𝑏𝑖 ∈ B and 𝑥𝑖 ∈ F are not the same but they must be related with one another

precisely as described previously in Section 5.2, i.e., 𝑏𝑖 corresponds to 𝑥𝑖 perceived from the Boolean

point-of-view and thus, 𝑏𝑖 = 𝑥𝑖 > 0 must always hold. For example, 𝑥1 = 3 and 𝑏1 = 𝑓 𝑎𝑙𝑠𝑒 is
trivially unsatisfiable for any Kodkod problem.

• Negative labels are only assigned to Boolean values which describe the negation of the nodes with

the symmetric label, meaning that 𝑏−𝑖 = ¬𝑏𝑖 and/or 𝑏−𝑖 = ¬F𝑥𝑖.

In regards to NumericVariables, besides 𝑙𝑎𝑏𝑒𝑙𝑠, they can also possess other kinds of characteristics
associated, in order to easily enforce constraints as need be to fulfill this implementation, depending on the

value’s domain, scope, and so on:

• A finite list of potential numeric values, encompassing all the possible assignments that the tool is

allowed to give this variable when finding an instance. If there is not at least one value from the list

that can be attributed to it without violating other constraints, it means the problem has no solution

in this circumstances.

• State explicitly that the variable must represent a 𝑡𝑟𝑢𝑒 or a 𝑓 𝑎𝑙𝑠𝑒 value from the Boolean prospective,

i.e., have a strictly positive value or be assigned 0.

• A NumericConstant indicating the maximum value that the variable will be able to assume.

All these properties are optional when specifying a variable, being simply required to belong to F in case

none of them are imposed.

5.5. Numeric Circuit Assembly 74

FROM FOL TO NUMERIC CIRCUITS The Kodkod abstract syntax provides constructs to specify a Kodkod

problem through first-order relational logic formulæ. Such problem is described by a universe declaration,

enumerating the relations to be considered as well as their arity and typing, establishing the bounds of the

problem, together with a first-order formula over the relations declared.

Thus the Kodkod abstract syntax was extended to make possible the description of quantitative constraints,

as can be seen in Figure 5.5.

Figure 5.5: Extended Kodkod abstract syntax (adapted from (Torlak and Jackson, 2007)).

The original syntax remains unchanged, but now includes:

• The unary operator drop over an Expression to specify the Boolean correspondence of the operand

expression;

• Domain/Range operators with respect to an Expression for a given Expression of arity 1. These
operators already exist in the Alloy language, as seen in Section 2.6, but were not explicitly defined at

Kodkod-level since within the Boolean context, they can be defined with the help of other elementary

operators. However, it was deemed necessary to also explicitly add them to the Kodkod syntax, as a

generalization of those operators for the quantitative context is not so easily achieved with the help of

current operators only.

• Both the Hadamard product and division over two Expressions of the same arity.

• The comparison between two Expressions of the same arity using inequality operators, taking

their weights into account.

It is important to note that, at the moment, IntExpressions and others of the same kind, i.e., the

syntax used to manage integer values, on both Kodkod and Alloy, will keep the same naming pattern – as in

Int –, however, their semantics will be generalized, so that the numeric values at hand:

5.5. Numeric Circuit Assembly 75

• During the default Boolean analysis, they represent integers in two’s complement;

• For quantitative analysis over natural numbers, they corresponds to integers within the [0,+∞[
range;

• Finally, if it is intended to model probabilistic behaviour, then specification-wise, they work over real

numbers (as mentioned previously, relations are required to be represented by a 𝐿𝑆 matrix and thus,

certain constraints that go over the probabilistic range [0, 1] will trigger trivially inconsistent models).

Having specified a Kodkod problem, the first step is to build the Numeric Circuit associated with the main

formula. For that, a LeafInterpreter is used, which, as implied by its name, will be responsible for

the leaves of the circuit, handling relations and constant expressions of the problem at hand, producing

matrices composed by numeric values adequately to the bounds specified, as well as the analysis context

F in question. Therefore, after being handed the necessary problem data, this interpreter instantiates the

suitable kind of numeric factory, which in turn is used produce the matrices taking the problem scope into

account precisely as described previously in Section 5.3.

With the NC’s leaves taken care of, the necessary gates and the edges between them and the leaf vertices

must be determined to properly model the Kodkod problem considered. These are built by taking advantage

of matrix operations, (re-)implemented to satisfy the requirements of matrices under F. Most relational

operators are implemented as the matrix operator deduced when studying the shift between the category

𝑅𝑒𝑙 to 𝑀𝑎𝑡, as presented in Table 1.3:5

• Binary operators

COMPOSITION 𝑅 ⋅ 𝑆 is represented by matrix-matrix multiplication. While in the original Kodkod

implementation, to ensure closure under Boolean matrices, ∧ is used instead of × and ∨
instead of +, between numeric matrices × and + are adopted once again.

RELATIONAL PRODUCT R -> S is implemented as matrix cross product 𝑅 × 𝑆.

UNION 𝑅 ∪ 𝑆 will depend on the kind of matrices being subject to the operation, as mentioned in

Section 2.2, in particular following the definitions established in Table 2.2. Between matrices

of𝑀𝑎𝑡N0
, union is defined as matrix addition 𝑅+𝑆 (2.45). Under a probabilistic setting, the

union of left-stochastic matrices corresponds to the normalization of matrix addition 𝑛𝑜𝑟𝑚(𝑅+
𝑆) (2.47), with 𝑛𝑜𝑟𝑚 being implemented precisely as defined in (2.48).

5 For simplicity, during the following descriptions𝑅[𝑖] will be used to refer to the selection of the element 𝑖 of the sparse-sequence storing the matrix representation
of the relation 𝑅, i.e., J𝑅K[𝑖], where 𝑖 is the flat-index of the matrix entry [𝑖1, 𝑖2, .., 𝑖𝑛], with 𝑛 representing the arity of 𝑅.

5.5. Numeric Circuit Assembly 76

INTERSECTION 𝑅 ∩ 𝑆 like union, depends on the type of matrices being dealt with and follows the

definitions displayed in Table 2.2. It corresponds to the matrix containing at each cell the

minimum value between the two elements in the same entry (2.44).

𝑅 = 𝑀 ∩𝑁 ≡ ∀𝑖.𝑅[𝑖] = 𝑚𝑖𝑛(𝑀[𝑖], 𝑁[𝑖])

Between left-stochastic matrices, additionally, the result is normalized (2.46) to ensure closure
under 𝐿𝑆.

DIFFERENCE 𝑅 − 𝑆 is encoded as matrix subtraction, with the nuance that resulting negative matrix

cells must be taken as 0-valued, to guarantee closure under numeric matrices over F.

HADAMARD PRODUCT 𝑅 × 𝑆 between two relations corresponds to the Hadamard product between

their respective matrices.

HADAMARD DIVISION 𝑅/𝑆, likewise, is implemented analogously to the Hadamard product with /
instead of ×. To be noted that attempting division by zero on potential solutions at either

translation level or during solving will be immediately deemed unsatisfiable. However, identifying

these undesirable instances is not as easy as it may seem at first glance, due to the numeric

matrix representation of each relation with respect to the problem’s bounds, described in

Section 5.3.

For instance, consider the relations 𝑄, 𝑅, 𝑆 ∶ 𝐴 → 𝐵 with 𝑄 = 𝑅/𝑆 subject to the bounds

𝐴 ⊆ {𝑎0, 𝑎1, 𝑎2} and 𝐵 ⊆ {𝑏0, 𝑏1}. Then, these relations will be represented by the

following matrices:6

𝑅 =

𝑎0 𝑎1 𝑎2

[]
𝑏0 𝑟0 𝑟2 𝑟4
𝑏1 𝑟1 𝑟3 𝑟5

𝑆 =

𝑎0 𝑎1 𝑎2

[]
𝑏0 𝑠0 𝑠2 𝑠4
𝑏1 𝑠1 𝑠3 𝑠5

𝑄 =

𝑎0 𝑎1 𝑎2

[]
𝑏0 𝑞0 𝑞2 𝑞4
𝑏1 𝑞1 𝑞3 𝑞5

𝑟𝑖, 𝑠𝑖 and 𝑞𝑖 are NumericValues which represent the weight of the tuple associated, occurring

within each relation respectively. Furthermore, since𝑄 = 𝑅/𝑆 then 𝑞𝑖 = 𝑟𝑖/𝑠𝑖 at circuit level.

Thus, to avoid division by zero, one could simply require 𝑠𝑖 > 0 for every 𝑖 ∈ [0, 5].

6 For clarity during this exemplification, only the relevant rows and columns are being considered. In practice, as mentioned before, at Kodkod level every

dimension of every matrix is composed by the whole universe.

5.5. Numeric Circuit Assembly 77

Now, by indiscriminately imposing such constraints, it will cause 𝑆 (the denominator) to always

meet the upper bound 𝐴 × 𝐵 and, consequently, 𝐴 = {𝑎0, 𝑎1, 𝑎2} and 𝐵 = {𝑏0, 𝑏1} also,
for every acceptable solution under these requirements. Yet, interpretations like:

𝐴 = {𝑎0, 𝑎2} 𝐵 = {𝑏1}

𝑅 = {(𝑎0 → 𝑏1, 4), (𝑎2 → 𝑏1, 2)}

𝑆 = {(𝑎0 → 𝑏1, 2), (𝑎2 → 𝑏1, 1)}

𝑄 = {(𝑎0 → 𝑏1, 2), (𝑎2 → 𝑏1, 2)}

should be an acceptable Alloy instance for the specification provided, as no division by zero

occurs for the 𝐴, 𝐵, 𝑅 and 𝑆 provided, at this level. But, at Kodkod level, such solution is

defined by the matrices:

𝑅 =

𝑎0 𝑎1 𝑎2

[]
𝑏0 0 0 0
𝑏1 4 0 2

𝑆 =

𝑎0 𝑎1 𝑎2

[]
𝑏0 0 0 0
𝑏1 2 0 1

𝑄 =

𝑎0 𝑎1 𝑎2

[]
𝑏0

0
0

0
0

0
0

𝑏1 2 0
0 2

𝑞𝑖 = 0
0 for 𝑖 ∈ [0, 6]\{1, 5}, meaning that division by zero occurs on four divisions, and

thus, this instance is discarded during solving. However, if the interpretation of a 0-weight tuple
means that it does not occur within the relation for the instance at hand, then if a given tuple 𝑖
does not occur either in the numerator nor the denominator (𝑟𝑖 = 𝑠𝑖 = 0) then the division
between the two should not be performed in the first place, and thus the tuple also does not

appear in 𝑄 (𝑞𝑖 = 0).

Therefore, one could think of modifying the division constraints to 𝑞𝑖 = 𝑟𝑖 > 0 ∧ 𝑠𝑖 >
0 ? 𝑟𝑖/𝑠𝑖 ∶ 0 without enforcing 𝑠𝑖 > 0. These constraints are still too strong, since if the
numerator is a constant, i.e., 𝑞𝑖 = 𝑐/𝑠𝑖 with 𝑐 ∈ F and 𝑐 > 0 then a variant of the scenario

initially considered occurs, 𝑠𝑖 > 0 would be implicitly required, but instead, solutions where the
tuple 𝑖 does not occur in 𝑆 (𝑠𝑖 = 0), it simply should also not occur in 𝑄 (𝑞𝑖 = 0). Changing
the constraint to 𝑞𝑖 = 𝑠𝑖 > 0 ? 𝑟𝑖/𝑠𝑖 ∶ 0 would also be too broad, as solutions where 𝑟𝑖 > 0
and 𝑠𝑖 = 0 that should be properly identified as unsatisfiable instances would be wrongfully

accepted. More, all these scenarios are being considered over a division between two relations,

but 𝑅 and 𝑆 can both be more complex relational expressions, making it all the more difficult

to point out where division by zero is “acceptable” or not.

After studying the division between two general relational expressions 𝑅 and 𝑆, the following
mechanism to properly identify division by zero was implemented:

5.5. Numeric Circuit Assembly 78

1. Every division is described by 𝑠𝑖 > 0 ? 𝑟𝑖/𝑠𝑖 ∶ 0.

2. With the Numeric Circuit associated with the given Kodkod problem assembled, a

DivisionDetector will then traverse that circuit, gathering information over every

division node that appears in it. In particular, for every division node 𝑛/𝑑, identifies the
set 𝒩 of all the primary variables that occur in the sub-nodes of 𝑛 and the set 𝒟 of the

primary variables composing the relational (sub-)expressions defined by the denominator

𝑑. That is, 𝒩 and 𝒟 specify the tuples that occur in the relational expression of the

numerator 𝑅 and the denominator 𝑆, respectively.

3. If division is used on this Kodkod problem, then another Numeric Circuit will be built,

responsible for detecting divisions by zero as intended, as a ∨-gate, in general, whose

inputs check if each division within the circuit attempts to divide by zero. That is, for every

division node 𝑛/𝑑, division by zero happens if either:

(a) 𝑑 = 0 if 𝒩 = 𝒟 = ∅

(b) 𝑑 = 0 ∧ ⋁𝒩 ∪ 𝒟
𝑝 𝑝 > 0 otherwise

4. Finally, the negation of the circuit that detects division by zero is combined with the initial

circuit, requiring instances that cause division by zero when the conditions are met to be

properly deemed as unsatisfiable.

DOMAIN CONSTRAINT 𝑉 <∶ 𝑅 contains the elements of 𝑅 whose first dimension belongs to the

vector 𝑉.

RANGE OPERATOR 𝑅 ∶> 𝑉, similarly, results in a matrix with the entries of 𝑅 whose last dimension

occurs in 𝑉.

From the example in Figure 5.6 for binary relations, it can be easily observed that <∶ filters
column-wise while ∶> filters by row. This implementation follows the line of thought pictured in

the examples, generalized for relations of any arity 𝑅 ∶ 𝑇1 → 𝑇2 → .. → 𝑇𝑛 with <∶ acting
on 𝑇1 and ∶> on 𝑇𝑛, following the sparse-sequence structure and its flat-index mechanism.

Also, to be noted that the weights of 𝑉 are meaningless under these operators, since there is

only the need to check if a given element is 0-valued or not, that is:

(drop 𝑉) <∶ 𝑅 ≡ 𝑉 <∶ 𝑅 (5.3)

𝑅 ∶> (drop 𝑉) ≡ 𝑅 ∶> 𝑉 (5.4)

• Unary operators

RELATIONAL CONVERSE 𝑅∘ corresponds to matrix transposition for both Boolean and numeric matri-

ces (implementation remains unchanged).

5.5. Numeric Circuit Assembly 79

Figure 5.6: Application of the domain/range operator over a relation 𝑅 described by its Kodkod matrix representation,

within the universe 𝒜.

DROP The new operator drop 𝑅 builds the Boolean matrix associated to the numeric matrix

representing 𝑅, obtained by applying 𝑑𝑟𝑜𝑝 (presented in Section 5.2) to every element of 𝑅.

∀𝑖. (drop 𝑅)[𝑖] = 𝑅[𝑖] > 0 ? 1 ∶ 0

• N-ary operators: N-ary relational union, intersection, and so on, are implemented as a generalization

to their binary counterpart.

• IfExpression between two relations𝑅1,𝑅2 and a condition 𝑃 results in another relation described

by a matrix where each element corresponds to the same element of 𝑅1 if the condition holds, and

the entry of 𝑅2 otherwise: 𝑅 = 𝑃 ? 𝑅1 ∶ 𝑅2.

• Logical operators and other Boolean operators between formulas are implemented analogously to

the original implementation.

• Comparison Formula

5.5. Numeric Circuit Assembly 80

SUBSET 𝑅 ⊆ 𝑆 is done by checking if the matrix 𝑅 − 𝑆 is semi-negative, that is:

⋀
𝑖
(𝑅 − 𝑆)[𝑖] ≤ 0

EQUALS 𝑅 = 𝑆 is achieved in the obvious fashion, two relations are the same if their matrix

representation coincides:

⋀
𝑖
𝑅[𝑖] = 𝑆[𝑖]

INEQUALITY The addition of the capability of comparing relations in Kodkod using inequality operators

𝑅 ⊑ 𝑆 is accomplished as follows:

⋀
𝑖
𝑅[𝑖] ⊑ 𝑆[𝑖], with ⊑∈ {<,>,≤,≥}

• The cardinality of a relation 𝑅 is obtained by the sum of its weights, i.e., the sum of its matrix

entries:

#𝑅 = ∑
𝑖

𝑅[𝑖]

• MultiplicityFormulas are implemented precisely as described in Section 5.2.

As mentioned in Section 5.4, when performing the usual Boolean analysis, integers are bounded, with

each integer within the scope being explicitly represented by an atom of the universe 𝒜, which allow for

integer expressions to be characterized by the Boolean matrix representation (e.g. the before seen Int

signature is the relation containing all the integers of the instance at hand). Under both quantitative settings,

such explicit enumeration is impossible due to the infinity of the domains at hand, non-negative integers

for F = N0 and real numbers if F = [0, 1], but being able to handle numeric values by representing
them through numeric matrices is still required. To accomplish that, this implementation takes advantage

of the weights associated with each tuple, fixing an atom to represent numeric values in general, with the

value itself being represented by the weight associated with it. For that, the usual integer representation is

taken into account, using an element of ints (integers at Kodkod level) as the integer atom to represent

the numeric values. Within this convention, the value of the integer atom fixed itself is meaningless, simply

choosing the minimum integer value 𝑥 within ints in practice, such that, {(𝑥, 𝑤)} will effectively represent
{𝑤}, with 𝑤 corresponding to the value of the numeric expression, evaluated under F. Like the Boolean

counterpart, if no integer scope is specified, ints = {} and thus, the matrix representation of any numeric

value or expression will result in the null matrix (and consequently, the empty relation). Therefore, like will be

seen later on, it must ensured at Alloy level that Int is non-empty to allow for easy manipulation of numeric

values. However, this approach is unfortunately not enough to fully accommodate to the original semantics

of integer’s matrix representation, namely when subject to relational operators, since a single atom is being

5.5. Numeric Circuit Assembly 81

used, currently only one integer may be referred at a time through this representation. For example, while

{ 2 } + { 3 } = { 2, 3 } originally, under quantitative scenarios { 2 } + { 3 } = { 5 }, as

every operation acts on the same atom. Thus, further work must be done in the future to fully be able to

handle the infinite domains at hand through matrix representation using current structures while at the

same time preserving the semantics of relational operations.

Now, if the Kodkod problem at hand is probabilistic, then the constraint that every relation must be

represented by a left-stochastic matrix must be added to the formula at hand. Thus it was implemented a

logical operator that returns 𝑡𝑟𝑢𝑒 if the numeric matrix is left-stochastic and 𝑓 𝑎𝑙𝑠𝑒 otherwise: in case the
relation is a set, it is determined if the vector associated represents a probabilistic distribution by simply

checking if the sum of its elements add up to 1; if not, the matrix will be left-stochastic if ! ⋅ J𝑅K = ! (Oliveira,
2012a).

Above was highlighted the Numeric Circuits’ assembly process from Kodkod for part of its abstract syntax.

All the definitions described here and in previous sections are directly translated to the gates presented in

Table 5.2 in a direct way: for operators like relational union, corresponding to matrix addition, it is simply

the AritGate with �F = +; while for other operators which are described by a more complex expression

like subset, its definition is achieved by combining the gates supported:

⋀
𝑖
(𝑅 − 𝑆)[𝑖] ≤ 0

∧

≤ ≤

− 0 − 0

𝑟1 𝑠1 𝑟2 𝑠2

...

where 𝑟𝑖 and 𝑠𝑖 represent 𝑅[𝑖] and 𝑆[𝑖], respectively.
Having assembled the Numeric Circuit associated with the problem at hand, if the first was reduced to a

Boolean constant, then it means the problem is trivially (un)satisfiable and thus the solving process is done

for this specific problem, otherwise the next step will be to generate the specification suitable to be fed into

a quantitative solver (an SMT Solver or PRISM).

5.5. Numeric Circuit Assembly 82

Class

Name
Gate Structure Operator(s)

AritGate �F

𝑥1

𝑥2

𝑥𝑛

…

Arithmetic

operators

�F ∈ {+,−,
∗, /,𝑚𝑜𝑑}

Contains the result of applying

the specified operator over all

numbers received as inputs (at

least two).

ChoiceGate

△

𝑥𝑙 𝑥𝑟

𝑝 ? 𝑥𝑙 ∶ 𝑥𝑟 𝑝

𝑥𝑙

𝑥𝑟

△ ∈ {𝑚𝑖𝑛,
𝑚𝑎𝑥}
or

⋅ ? ⋅ ∶ ⋅

A binary gate responsible for

choosing between two numeric

values with respect to some

criteria, assuming one of two

forms: either chooses the

minimum/maximum value

between the two inputs; or given

a predicate 𝑝, selects the first
operand 𝑥𝑙 if 𝑝 holds and 𝑥𝑟

otherwise.

UnaryGate ⋄ 𝑥
Unary operators

⋄ ∈ {−, 𝑎𝑏𝑠,
𝑠𝑔𝑛}

Applies the unary operator --

negation, absolute value or sign

-- to the input number.

NumNotGate ¬F 𝑥
¬ Numeric

Negation

Negation of a numeric value

from the Boolean point-of-view,

i.e., represents ¬(𝑥 > 0).

CmpGate
⊑

𝑥𝑙 𝑥𝑟

⊑∈ {=,<,>,
≤,≥}

A Boolean binary gate, whose

job is to specify the comparison

between two numeric values

under the (in)equality operator

considered.

Table 5.2: Newly added gates in the quantitative extension.

5.6. Summary 83

5.6 SUMMARY

Throughout this chapter, the impact of the increased expressiveness from working under quantitative

domains is studied, so that an approach between different alternatives arising from the new expressive

power can be decided at both Kodkod and Alloy level.

It begins by establishing the correspondence between Boolean concepts and their quantitative counterpart,

including relations, atoms and the operations offered by the tool originally. Then, the numeric structures

adequate to support the information associated with the quantitative setting were derived, taking into account

the existing Boolean ones and the requirements of this extension – numeric values of F, matrices of numeric

values, and Numeric Circuits, which emerge from the Compact Boolean Circuits.

Lastly, the assembly process between a Kodkod problem and the numeric structures considered is

described.

6

QU AN T I T A T I V E A L L O Y

In this chapter, the definitions and properties settled in previous chapters will be put into practice to achieve

the quantitative extension of both Kodkod and Alloy.

First, the quantitative extension of Kodkod is detailed, from being able to process quantitative problems

described by numeric structures, as established in Chapter 5, in order to produce models suitable to the

tools being taken advantage of to perform quantitative solving – SMT Solvers and PRISM – as well as their

integration and management in Kodkod, to the interpretation of the outcome provided by those solvers into

a quantitative Kodkod instance.

After achieving the quantitative extension of Kodkod, the bridge between the latter and Alloy will need to

be built, so that Alloy will be able perform quantitative analysis, supporting quantitative Alloy specifications,

their transformation into adequate Kodkod problems, the correspondence between a Kodkod instance and

an Alloy solution established, as well as how the Analyzer’s features conformed to the quantitative models

produced.

Finally the quantitative analysis process coordinated to accomplish the system developed will be reviewed

as a whole, subsequently presenting the resulting system architecture alongside with the tool’s workflow

when performing quantitative analysis.

The chapter ends with a brief overview on how to use the extension implemented and highlights some of

its new capabilities.

6.1 KODKOD

To perform quantitative solving over Kodkod problems specified as described in Section 5.5, Kodkod will

have its engine integrate and support the adequate solvers, in such a way that both the original qualitative

solving and the new extension can function independently by request of the user.

FROM NUMERIC CIRCUITS TO SMT If the quantitative Kodkod problem is to be analysed for F = N0
then an SMT Solver will be used and thus, an SMT-LIB specification must be constructed from the Numeric

84

6.1. Kodkod 85

Node
SMT2-LIB

Operator(s) Specification

BooleanVariable

𝑏𝑖

(declare-const bi Bool)

(= bi (> xi 0))

MultiGate

𝑔|�B

𝑏1

𝑏2

𝑏𝑛

…

op =
⎧{
⎨{⎩

and if �B = ∧
or otherwise

(= g (op b1 b2 .. bn))

ITEGate

𝑔 𝑖

𝑡

𝑒

(= g (ite i t e))

NotGate

𝑛𝑏 𝑏
¬ (= nb (not b))

Table 6.1: Correspondence between the Numeric Structures and their respective SMT specification.

Circuit built. A SMTGenerator will be responsible for that task, pushing the constraints derived from the

NC’s components to the assertion stack. The correspondence between the circuit’s leaves and gates, and

the SMT specification is established in Table 6.1.

After deciding on the translation between the Numeric Circuit’s components and SMT, it was possible to

come to the conclusion that the specification should be verified with respect to the theory of integers, by

taking the logic QF_NIA – Quantifier-free integer arithmetic – when solving, as it is the smallest fragment

able to cover the kind of function symbols and assertions in the specification generated.

Furthermore the resulting SMT problem will possess certain characteristics:

• The function symbols of the specification generated will be exclusively of sort integer and Boolean, as

they are used to represent the NC vertices, which can either be a numeric or Boolean value;

6.1. Kodkod 86

Node
SMT2-LIB

Operator(s) Specification

NumericVariable

𝑥𝑖
F =

⎧{
⎨{⎩

Int if F = N0
Real if F = [0, 1]

(declare-const xi F)

op = �F if �F ∈ {+, ∗} (= g (op x1 x2 .. xn))

AritGate

𝑔|�F

𝑥1

𝑥2

𝑥𝑛

…

�F = −

(= g (ite

(> (- x1 x2 .. xn) 0)

(- x1 x2 .. xn)

0))

op =
⎧{{
⎨{{⎩

div if �F = / ∧ F = N0
/ if �F = / ∧ F = [0, 1]
mod if �F = 𝑚𝑜𝑑 ∧ F = N0

(= g (op (... (op x1 x2) ...) xn))

ChoiceGate

𝑔|△

𝑥𝑙 𝑥𝑟

𝑝 ? 𝑥𝑙 ∶ 𝑥𝑟 𝑝

𝑥𝑙

𝑥𝑟

c =
⎧{{
⎨{{⎩

(< xl xr) if △ = 𝑚𝑖𝑛
(> xl xr) if △ = 𝑚𝑎𝑥
p otherwise

(= g (ite c xl xr))

(= u (- x))

UnaryGate

𝑢 𝑥⋄ (= u (abs x))

(= u (ite (> x 0) 1 (ite (< x 0) -1 0)))

NumNotGate

𝑛𝑥 𝑥
¬F (= nx (not (> x 0)))

CmpGate

⊑

𝑥𝑙 𝑥𝑟

cmp =⊑ (cmp xl xr)

Table 6.1: Correspondence between the Numeric Structures and their respective SMT specification (continued).

6.1. Kodkod 87

• Each function symbol has a unique identifier between function symbols of the same sort, which is

exactly their label on the circuit;

• All function symbols follow a naming convention over their respective identifier, so that a Boolean and

an integer function symbol with the same identifier must be related as specified in 5.2, as expected

from the properties of the Numeric Circuit taken into account.

• Integers may or may not be bounded. Function symbols that arise from numeric variables are, at

least, required to be non-negative. If an upper bound is imposed, then those function symbols will

range between 0 and that limit. Intermediate integer function symbols, i.e., function symbols derived

from numeric gates are always unbounded.

PROBABILISTIC SMT While the SMT Solver was initially intended to handle exclusively integer problems,

as studied above, after developing this solution and checking which parts were tied to the analysis

context itself, since it is also possible to work with SMT under the domain of real numbers, as seen in

Section 3.1.1, it sparked the interest to check how this kind of tools would cope with the probabilistic

setting and if it was, in fact, possible to handle such scenarios, how effective they would be.

As already illustrated in Table 6.1, only a few components of the Numeric Circuit depend on the F,

therefore SMTGenerator ProbabilisticSMT was implemented to generate the context-

dependent specification adequately to F = [0, 1]:

• Instead of integer function symbols, numeric values will give origin to real function symbols.

• The syntax for the division operator on AritGate must be adapted from Euclidean division to

real number division. Therefore, the operator mod is not supported on this kind of analysis, as

expected from the definition of Numeric Circuit.

During solving, the theory of integers is no longer suitable for this kind of specification, meaning that

the theory of reals will be used instead, by adapting the logic fragment QF_NRA – Quantifier-free

real arithmetic –.

Moreover, in the specification produced, real function symbols benefit from the same properties as

their integer counterpart detailed above, with the difference that they are always bounded between

[0, 1], except for those arising from non-leaf vertices, which are still unbounded.

In the end, an object SMTSpecification is produced containing the following data:

smt2 : String – the full SMT2-LIB specification generated.

numFunctionSymbols : [Integer, String] – the association between the numeric (Int or

Real) function symbol’s identifier and their denomination within the specification.

6.1. Kodkod 88

Node
PRISM

Operator(s) Specification

BooleanVariable

𝑏𝑖

bi : bool init false;

[] xi > 0 -> (bi' = true);

MultiGate

𝑔|�B

𝑏1

𝑏2

𝑏𝑛

…

op =
⎧{
⎨{⎩

& if �B = ∧
| otherwise

[] b1 op b2 op .. op bn -> (g' = true);

ITEGate

𝑔 𝑖

𝑡

𝑒

[] i -> (g' = t);

[] !i -> (g' = e);

NotGate

𝑛𝑏 𝑏
¬ [] b -> (nb' = false);

[] !b -> (nb' = true);

Table 6.2: Translation of Numeric Structures into a PRISM model.

numberOfVariables : int – the total number of function symbols (both Boolean and numeric).

numberOfAssertions : int – size of the assertion stack.

options : QuantitativeOptions – solving options imposed by the user.

FROM NUMERIC CIRCUITS TO PRISM In case F = [0, 1], Num2prismTranslator shall transform

the given circuit into a PRISM model.

The relation between the circuit’s components and PRISM syntax is defined in the Table 6.2.

After translating the NC to the PRISM language, the various elements will be organized within a Discrete-

Time Markov Chain, composed by a single module as pictured in Figure 6.1.

6.1. Kodkod 89

Node
PRISM

Operator(s) Specification

NumericVariable

𝑥𝑖
const double xi;

op = �F if �F ∈ {+, ∗, /} formula g = x1 op x2 op .. op xn;

AritGate

𝑔|�F

𝑥1

𝑥2

𝑥𝑛

…

�F = − formula g = x1 - x2 - .. - xn <= 0.0 ?

0.0 : x1 - x2 - .. - xn;

ChoiceGate

𝑔|△

𝑥𝑙 𝑥𝑟

m =
⎧{
⎨{⎩

min if △ = 𝑚𝑖𝑛
max if △ = 𝑚𝑎𝑥

formula g = m(xl, xr);

𝑝 ? 𝑥𝑙 ∶ 𝑥𝑟 𝑝

𝑥𝑙

𝑥𝑟

formula g = p ? xl : xr;

⋄ = − formula u = -x;

UnaryGate

𝑢 𝑥⋄ ⋄ = 𝑎𝑏𝑠 formula u = x >= 0 ? x : -x;

⋄ = 𝑠𝑔𝑛 formula u = x > 0 ? 1 (x < 0 ? -1 : 0);

NumNotGate

𝑛𝑥 𝑥
¬F nx : bool init true;

[] x > 0 -> (nx' = false);

CmpGate

⊑

𝑥𝑙 𝑥𝑟

cmp =⊑ b : bool init false;

[] (xl cmp xr) -> (b' = true);

Table 6.2: Translation of Numeric Structures into a PRISM model (continued).

6.1. Kodkod 90

Figure 6.1: Generated PRISM model structure.

PRISM CONSTANTS represent the primary variables of the problem (𝑉F), i.e., the numeric variables of the
circuit derived from the problems’ relations. These probabilities are represented in the model as

global double constants.

Each variable is identified by a PrismConstant which characterizes the first by:

label : int – the unique identifier of this constant, coinciding with the label of the vertex that

originated this constant.

name : String – its name in the model.

minimum/maximum : Double – the minimum/maximum value that this constant can assume

(optional).

range : Interval* – represents the ordered set of intervals which specify the values that this

constant can assume (optional).

This information will be essential during model checking using PRISM.

FORMULAS are the intermediate double expressions, arising from numeric gates.

VARIABLES correspond to Boolean PRISM variables within the module, identifying the Boolean values in the

given circuit. They are of the form b : bool init initialValue;

6.1. Kodkod 91

COMMANDS of the generated model describe the conditions where the problem’s (sub-)formulas and Boolean

variables initial state change (either going from 𝑓 𝑎𝑙𝑠𝑒 to 𝑡𝑟𝑢𝑒 or 𝑡𝑟𝑢𝑒 to 𝑓 𝑎𝑙𝑠𝑒):

Alongside the PRISM model, a PCTL formula is also produced in order to determine the satisfiability of

the problem by model checking. Such formula takes the form

P>=1 [F ⋀
𝑖
𝑓 (𝑖)]

where 𝑓 represents the top-level sub-formulas of the Kodkod problem in question. This is a qualitative

property, meaning that the 𝑡𝑟𝑢𝑒 response will be given for a valid solution of the problem, and 𝑓 𝑎𝑙𝑠𝑒 for an
unsatisfiable potential instance instead. P>=1 requires the solution to hold with probability 100%, otherwise

instances for which some of the core requirements of the model are not guaranteed to hold can be deemed

as a SAT response.

Finally, a PrismModel is generated, described as follows:

mode : SolvingMode – intended mode to model check this model.1

prism : String – the full PRISM model.

props : String – property to be model checked.

constants : PrismConstant* – primary variables of this model.

numberOfFormulas : int – number of formulas in this model.

numberOfCommands : int – number of commands within the module.

options : QuantitativeOptions – solving options.

QUANTITATIVE SOLVERS After deriving either an SMT specification or a PRISM model, the next step is to

pass it to the respective solver in order to reach a conclusion about the satisfiability of the Kodkod problem

at hand. For that, at least one SMT solver and PRISM must be integrated into Kodkod.

First, to better manage the life cycle of any kind of solver in the quantitative context, an interface

QuantitativeSolver was defined, containing all the necessary methods to interact with a quantitative

solver, independently of the context, that is, both common to an SMT Solver and PRISM, some of which can

be highlighted:

solve : boolean – Checks the satisfiability of the model at hand, returning 𝑡𝑟𝑢𝑒 iff it is satisfiable,
and 𝑓 𝑎𝑙𝑠𝑒 otherwise, meaning that it is unsatisfiable if PRISM was used, but either the response

UNKNOWN/UNSAT was obtained if it was solved with an SMT Solver;

1 SolvingMode will be seen in more detail later on this section.

6.1. Kodkod 92

getValue(label : int) : Number – Given a SAT response, returns either an integer or a double

(probability), depending on F, associated to the numeric variable with that label in the instance found

by the solver;

getBooleanValue(label : int) : boolean – Analogously to getValue, if the problem is sat-

isfiable, returns the Boolean value determined in the most recent instance for the variable with the

given label associated. This method abides to the relationship between Boolean and numeric values

established previously in Section 5.2, meaning that even if there was not explicitly any Boolean

variable/function symbol in the PRISM model/SMT specification with that identifier, as long as there

is a numeric value 𝑥 with such label, this method will return 𝑥 > 0 in this scenario. This is useful,

for example, to check if a certain tuple occurs in its relation for that particular instance.

elimSolution(labels : Integer*) – Forces the solver to ignore solutions where the primary

variables identified by the given labels are assigned the same values as the newest solution found.

SMT SOLVER While in this implementation CVC4 is the only SMT Solver integrated, in a first attempt by

taking advantage of its own JAVA API, to ease the integration of other SMT Solvers in the future, a

more flexible approach was taken, by managing an instance of the solver through its binary. So,

the more specific QuantitativeSolver SMTSolver interface was defined, with further

methods to manage SMT Solvers in general. In particular, the method getResult : SMTResult

is required, so that the precise judgement SAT/UNKNOWN/UNSAT can be extracted after the method

solve is called.

Furthermore, as long as the SMT Solver follows the SMT2-LIB standard, a very similar implementation

of the CVC4Solver is enough to integrate other solvers. For instance, the solve workflow can be

roughly depicted as follows:

6.1. Kodkod 93

1: function solve()
2: 𝑠𝑜𝑙𝑣𝑒𝑟.𝑤𝑟𝑖𝑡𝑒(𝑠𝑚𝑡2)
3: 𝑠𝑜𝑙𝑣𝑒𝑟.𝑤𝑟𝑖𝑡𝑒("(check-sat)")
4: 𝑟𝑒𝑠𝑢𝑙𝑡 ← 𝑝𝑎𝑟𝑠𝑒𝑅𝑒𝑠𝑢𝑙𝑡(𝑠𝑜𝑙𝑣𝑒𝑟.𝑟𝑒𝑎𝑑𝐿𝑖𝑛𝑒())
5: if 𝑟𝑒𝑠𝑢𝑙𝑡 == 𝑆𝐴𝑇 then
6: // parse instance

7: 𝑠𝑜𝑙𝑣𝑒𝑟.𝑤𝑟𝑖𝑡𝑒("(get-model)")
8: while (𝑙𝑖𝑛𝑒 ← 𝑠𝑜𝑙𝑣𝑒𝑟.𝑟𝑒𝑎𝑑𝐿𝑖𝑛𝑒()) ! = 𝑛𝑢𝑙𝑙 do
9: 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛.𝑎𝑑𝑑(𝑝𝑎𝑟𝑠𝑒𝑆𝑜𝑙𝑢𝑡𝑖𝑜𝑛(𝑙𝑖𝑛𝑒))

10: end while
11: end if
12: // else result == UNSAT || UNKNOWN

13: return 𝑟𝑒𝑠𝑢𝑙𝑡
14: end function

where solver is the instance of the SMT Solver; smt2 is the full specification; write sends com-

mands to the solver and readLine obtains the response; with parseResult and parseSolution

being the main solver dependent methods, which should be capable of consuming the response data

in the format output by the solver, meaning that the implementation must conform to the properties

of the specification produced by the SMTGenerator, and thus only SMT problems which abide to

those characteristics can be fed into the solver, otherwise the parsing methods and the storing of the

solution may behave in unexpected ways.

PRISM Similarly to CVC4, PRISM will be accessed through its binary, and the interaction with it is achieved

using its command-line interface. As mentioned previously when describing the generation of a

PrismModel, the latter will be verified according to a SolvingMode, one of the various ways

PRISM offers to analyse the model at hand. Currently, the following are implemented:

• SINGLE_QUALITATIVE model checks the PRISM model with respect to a qualitative prop-

erty by creating a single model checking instance at a time;

• SINGLE_QUANTITATIVE is similar to its qualitative version, with the only difference being

that a quantitative property will be taken into account instead;

• EXPERIMENT creates a model checking instance for every possible solution to this model, with

respect to a step, like was seen previously in Section 4.1.3, for a qualitative property;

• PMC performs parametric model checking over this model with respect to a qualitative property.

6.1. Kodkod 94

A PRISMResult is responsible for storing the solution obtained depending on the solving mode

considered. Before solving, the PRISM model and the property to be checked are written into

alloy.prism and alloy.props files, respectively. Afterwards, depending on the solving mode

and taking into account the properties of the model’s PrismConstants:

• SINGLE_QUALITATIVE / SINGLE_QUANTITATIVE

For every constant c1, c2, .., cn, randomly selects a potential solution (one which

abides to all the possible minimum/maximum/range constraints identified in the respective

PrismConstant instance) v1, v2, .., vn, which is then model checked through the

following command:

$ prism alloy.prism alloy.props -const c1=v1, c2=v2, .., cn=vn

--exportresults outputfile

If 𝑡𝑟𝑢𝑒 / probability higher than 0 is written to the output file, then the problem is satisfiable

for that solution, otherwise another random solution (never equal to already checked solutions)

will be tested, continuing the cycle until a satisfiable solution appears or once there are no

other possible solutions abiding to the constraints.

• EXPERIMENT

Creates a PRISM experiment ranging the constants over the interval [minimum, maximum]
(in case they are not specified in the respective PrismConstant instance, since they must

be valid probabilities, defaults minimum to 0 and maximum to 1) considering a certain step
as follows:

$ prism alloy.prism alloy.props

-const c1=min1:step:max1, c2=min2:step:max2,

.., cn=minn:step:maxn

--exportresults outputfile

Then, PRISMResult will associate to every solution checked the result (UN)SAT obtained.

• PMC

Executes parametric model checking taking the constants’ range into account and assuming

the given step as the precision.

$ prism alloy.prism alloy.props

-param c1=min1:max1, c2=min2:max2,

.., cn=minn:maxn

-paramprecision step --exportresults outputfile

6.1. Kodkod 95

The result obtained will then be described by a general rational function over the parameters,

with regions of the last mapped to truth values, or by intervals of values for each constant

together with the satisfiability result, similar to the example presented in Table 4.3.

It should be noted that the step ∈ [0, 1] is specified by the user. Furthermore, SolvingMode
would ideally also be chosen by the user, but given the current implementation, for reasons which

will be discussed in greater detail in the last chapter, SINGLE_QUALITATIVE is the mode currently

in use.

QUANTITATIVE INSTANCE Finally, after going from the original Kodkod problem into an adequate specifica-

tion for the selected solver, a QuantitativeTranslation (an extension of Translation for qualitative

analysis) is responsible for storing the problem details, the translation and the QuantitativeSolver

instantiated to handle the specification generated, being one of two types: a SmtTranslation contains the

SMT problem produced as well as the instance of the SMT Solver, while a PrismTranslation manages

the PRISM model.

Once the model is solved, if a SAT response is obtained, QuantitativeTranslation offers the

method interpret which is responsible for mapping the relations into sets of weighted tuples based on

the most recent model determined by the solver. In order to create such Instance, a TupleFactory is

needed to produce the tuples and tuple sets from the universe of the Kodkod problem in question.

However, since in a quantitative context each relation has a weight associated to each tuple, a regular

TupleSet is not enough to represent a quantitative instance. Therefore TupleSet QtTupleSet

was created, being able to store the weight for each of its tuples. Furthermore TupleFactory was

augmented with the creation methods for this new kind of tuple set.

With that, interpret takes advantage of the QuantitativeSolver interface to extract the weight

associated to each tuple with respect to the instance determined, producing QtTupleSets accordingly. An

example of a relation from a quantitative instance is as follows:

R = { (a -> b0, 1), (a -> b1, 3) }

To be noted that if a relation is represented by a Boolean matrix for a given instance, that is, every tuple

present has weight 1, then TupleSets are used instead.
Having produced a possible instance of the Kodkod problem, one can interact with it and further analyse

it through the use of an Evaluator, which offers the methods:

• evaluate(Formula) : boolean

• evaluate(Expression) : TupleSet

• evaluate(IntExpression) : Number (originally of type int instead, but due to the nature

of values being handled in the quantitative context, to prevent rounding, generalization was needed)

6.1. Kodkod 96

which are able to determine the value of a relational formula or expression or an IntExpression (once

again, Int for the qualitative context, butF under the quantitative setting) over a specific instance. Therefore

it was needed to implement a QTEvaluator to meet the same functions over a quantitative instance.

The evaluation process implemented is inspired by the existing qualitative version: the Formula/

Expression/IntExpression is transformed into a Numeric Circuit and, since a solved instance is

taken into account, the LeafInterpreter is able to assign constant values to the circuit’s leaves,

therefore during the assembly process every gate can be immediately simplified. In the end, the circuit will

be reduced into a single vertex when evaluating formulas and IntExpressions, a BooleanConstant

and NumericConstant respectively; evaluating a relational expression will result in a circuit with multiple

NumericConstant nodes but no edges, describing the elements of the resulting matrix to be interpreted

into a QtTupleSet (or a TupleSet if it is a Boolean matrix).

This implementation of the Kodkod evaluator, arriving at the response at translation-level is one of the

reasons why the tuples described through comprehension had to default to weight 1, as mentioned in

Section 5.2, since if other values were checked, then the resulting circuit wouldn’t be constant and there

would be the need to use the solver to find the response. Moreover, that also means that the same instance

would potentially possess multiple solutions for the same comprehension expression, thus, handling this

kind of expression thoroughly would require finding a general form describing all the possible solutions for a

given instance, which was deemed out of the scope for this tool and project.

Ultimately, quantitative analysis of Kodkod problems was accomplished. In order to take advantage

of the new capabilities first, the Kodkod problem must be defined: both the main Formula and the

universe Bounds are specified exactly the same as to perform qualitative analysis (with the difference

that within Formula may occur the use of the new additions to the Kodkod abstract syntax); solving

QuantitativeOptions must also be provided, which include:

analysisType : QuantitativeType – representsF, that is, the solver will work under the INTEGER

or PROBABILISTIC context.

solver : QuantitativeSolver – the solver to be used during analysis. Currently supported:

• CVC4API for INTEGER (the implementation using the CVC4 JAVA API);

• PRISM for PROBABILISTIC;

• CVC4 supports both INTEGER and PROBABILISTIC solving.

maximumWeight : Integer – used under N0, specifies the maximum weight that each tuple may

assume.

incremental : boolean – true iff this.solver will perform incremental solving.

6.2. Alloy and the Alloy Analyzer 97

step : double – relevant when using PRISM, as seen previously for experiments and parametric model

checking.

Afterwards, the problem can be solved using either of two methods added to the Solver (KodkodSolver

API):

• solve, which goes through the whole process described, passing the SAT/UNSAT (or UNKNOWN

if an SMT Solver is used) judgement, and determining a single quantitative instance in case the

problem is satisfiable;

• solveAll, which is similar to solve, but also offers an iterator over various solutions, allow-

ing the user to surf over multiple quantitative instances until the UNKNOWN/UNSAT response is

obtained. To achieve this, it was needed to develop a QTSolutionIterator, inspired by the

SolutionIterator for SAT Solvers, but for quantitative solvers instead.

After solving, these methods also register solving statistics like their qualitative counterpart. So SMT

Statistics and PrismStatistics were implemented as extensions of the existing Statistics to

be able to report their solver’s data properly. Lastly an object Solution will be produced, containing the

Outcome (SAT, UNSAT or UNKNOWN), quantitative Instance (null if Outcome≠ SAT) and the solving

Statistics.

6.2 ALLOY AND THE ALLOY ANALYZER

With the quantitative extension of Kodkod up and running, the final phase of development is to adjust the

Alloy components to be able to handle the new Kodkod and allow the user to perform quantitative analysis

on demand.

Initially the Alloy Core must be extended in order to take advantage of Kodkod, which includes extending

its own language to support the new quantitative operators, modify the correspondence between an Alloy

specification and the respective Kodkod problem to define the latter properly under a quantitative setting,

solve the problem derived using the quantitative methods provided by the Kodkod extension and then be

able to interpret the eventual quantitative instances produced and properly establish the quantitative Alloy

instance associated.

Afterwards, the Alloy Application – the Alloy Analyzer – should be able to support the new kinds of

analysis, allowing the user to freely specify the setting for which the Alloy specification must be subject

to during solving alongside which solver to use, being also able to report the results obtained accordingly.

Furthermore both the Alloy Visualizer and Evaluator will need to adapt to the quantitative Alloy instances

produced and faithfully present the outcome to the modeler.

6.2. Alloy and the Alloy Analyzer 98

LANGUAGE To fully accommodate to the new modeling capabilities of the extended Kodkod, allowing the

user to specify further quantitative constraints, the Alloy language had to be modified as follows:

• drop was added to the language keywords and the Alloy parser was adjusted to interpret 𝑑𝑟𝑜𝑝 as

an unary operator over relational expressions;

• the inequality operators between Alloy integers (<, >, <=, >=, !<, !>, !<=, !>=) can now

be also used between two relational expressions of the same arity;

• to encode both Hadamard product and division, the built-in Alloy functions fun/mul and fun/div

over two integer expressions, representing integer multiplication and division, are overloaded to

specify the Hadamard operators when applied between two relational expressions with coinciding

arity.

ALLOY TO KODKOD Defining the transition from a given quantitative Alloy specification into the adequate

Kodkod problem is somewhat smooth due to how similar it is compared to the qualitative implementation,

as the problem’s bounds are derived from the Alloy scope identically for every analysis context, plus the

correspondence between the Alloy constraints and the resulting Kodkod formula possesses only a few

differences between the two kinds of domains supported, which is expected, as this implementation has its

basis on the scalable modeling lemma, the same Kodkod problem can be tackled either with qualitative or

quantitative semantics.

However, since the tool was also enriched with capabilities which are only useful in the quantitative setting,

TranslateAlloyToKodkod TranslateQTAlloyToKodkod was developed to handle those

cases, as well as other variations, with the translation process coinciding with TranslateAlloyToKodkod

save for the following:

• the drop of an Alloy expression corresponds to the drop of the respective Kodkod expression. To be

noted that, since drop was added to the Alloy language as a whole, even specifications to be solved

under the Boolean domain can technically contain the use of drop, although in such environment

it has no effect, since it behaves as the identity function 𝑑𝑟𝑜𝑝 𝑅 = 𝑖𝑑 𝑅, meaning that an Alloy
specification where drop occurs and the same specification with every use of drop removed will

give origin to the exact same Kodkod problem when performing qualitative analysis.

• unlike the qualitative version, the Alloy domain and range operators will be encoded explicitly through

the new Kodkod domain and range operators.

• on a quantitative domain, the use of inequality operators now needs to be distinguished between the

comparison of two numeric values or the comparison between two relational expressions, remaining

the same as the qualitative version for the first case, and encoding the comparison of the Kodkod

expressions associated for the second, supported by the extended abstract syntax of Kodkod.

6.2. Alloy and the Alloy Analyzer 99

• the use of fun/mul and fun/div between two Alloy integers is represented by the multiplication

and division of Kodkod integers. The line of thought remains the same when applied over (generalized)

numeric values on a quantitative setting. In this scenario, there is also the need to check if the

operands are now relations, in which case the corresponding Kodkod expressions will be subject to

the Hadamard product and division. For example,

𝐴𝑙𝑙𝑜𝑦 → 𝐾𝑜𝑑𝑘𝑜𝑑

2 fun/mul 6 → 2 * 6

R fun/mul S → R × S

• It was hinted at, in Section 5.1, that the Kodkod constraints associated with the declaration of Alloy

signatures and fields would need to be carefully handled in the quantitative context. This is especially

true once the multiplicity keywords are added to the mix.

For signatures, declarations like (l)one sig S{...} must explicitly enforce the (l)one con-

straint to the Kodkod expression associated to S, unlike during qualitative analysis, in which case

the Kodkod problem can be optimized and not need to have such constraint defined explicitly, but

enforced through the problem’s bounds instead – which is not enough in a quantitative setting.

In regards to fields, within a quantitative context, for a 𝑛-ary relation 𝑅 ∶ 𝑇1 → 𝑇2 → .. → 𝑇𝑛,

generally specified as

m1 sig T1{ R : T2 m2 -> m3 T3 m4 -> m5 T4 m6 -> .. -> m(2(n-2)+1) Tn }

the following Kodkod constraints must be imposed:

RELATIONAL TYPE First and foremost, 𝑑𝑟𝑜𝑝 𝑅 ⊆ 𝑇1 ×𝑇2 × .. ×𝑇𝑛 is required, in contrast to simply

𝑅 ⊆ 𝑇1 × 𝑇2 × .. × 𝑇𝑛 in the qualitative version. This is necessary due to the fact that the

latter constraint will result in 𝑅 being declared as an ordinary relation represented by a Boolean

matrix, as 𝑇1, 𝑇2, .., 𝑇𝑛 are all composed by atoms and thus, their weights never exceed one,

meaning that the product between them also never will, upper bounding 𝑅’s weights at a
maximum value 1. By using 𝑑𝑟𝑜𝑝 on 𝑅, it is perceived as its Boolean representation, viewing
any non-zero weight as 1 and thus, modeling the proper bounding constraint, as intended. For

relations declared without using multiplicity keywords (omitted m1 = m2 = .. = set), the

definition presented would be enough, but since in practice that is not the case, the constraints

generated take a different form, however following the same train of thought.

MULTIPLICITY CONSTRAINTS To ensure that the relation is properly bounded with respect to its type,

while also abiding to the multiplicity declarations, the constraints are imposed column-to-column,

meaning that a similar change to the one proposed before has to be made to the corresponding

6.2. Alloy and the Alloy Analyzer 100

formula, applying 𝑑𝑟𝑜𝑝 carefully to make sure that only instances where the relation respects

the multiplicity adequately are considered.

The first column, the signature, already has its multiplicity constraints handled as mentioned

previously, being common to every field declared inside the first. Now, to make sure that the

first column of the relation itself is well-bounded, the constraint established above is written

with respect to the parent signature, i.e., 𝒜 ⋅ (..(𝒜 ⋅ (𝒜 ⋅ 𝑅))) ⊆ 𝑇1 during qualitative

analysis and now 𝑑𝑟𝑜𝑝(𝒜 ⋅ (..(𝒜 ⋅ (𝒜 ⋅ 𝑅)))) ⊆ 𝑇1 when performing quantitative analysis,

where 𝒜 is the signature relation containing all the atoms in the universe at hand.

Finally, the remaining columns are handled in a nested fashion, by universally quantifying the

column at hand consecutively, imposing the bound with respect to the signature associated

with the column similarly to what was shown for the first column, alongside the multiplicity

constraints for (l)one, if applicable (set does not require further constraints). Transitioning

from the qualitative constraints to a quantitative scenario by applying 𝑑𝑟𝑜𝑝 to every (sub-

)expression where 𝑅 occurs indiscriminately analogously to the constraint considered for the

first column is tricky, since it might change the meaning of the intended expression.

Using 𝑑𝑟𝑜𝑝 over the constraint bounding the column in focus not only preserves its intention,

but is also necessary to do so, as without 𝑑𝑟𝑜𝑝, this expression will cause the relation to behave
like its Boolean counterpart, since the right-hand side operand of the subset expression is a

signature, whose weights do not exceed the value 1, which is solved by applying 𝑑𝑟𝑜𝑝, as
already discussed previously for similar scenarios.

However, 𝑑𝑟𝑜𝑝 cannot be applied in the same manner on the sub-expressions that are delimiting
the relation’s columns to the adequate multiplicities, namely within the (l)one constraints,

otherwise imposing properties like “one M(drop R, c, c')” – where M(S, c, c') is

the expression that will be subject to the multiplicity constraint, which describes the column c

of the relation S with respect to the column c', representing either the previous or the next, i.e.,

given “.. b -> l c r -> d ..” then “l M(S, c, b)” and “r M(S, c, d)” will be

required to hold, if l, r ∈{ lone, one} – will incorrectly specify the multiplicity, since it will

hold as long as that column contains a single tuple with weight higher or equal to 1, due to
the constraint being specified over R from the Boolean point-of-view, which would violate the

definition of the (l)one constraints imposed previously in Section 5.2. Furthermore, the need

to take advantage of 𝑑𝑟𝑜𝑝 that arose from the multiplicity set is not there for these multiplicity

keywords.

Taking everything into account, the process of generating the Kodkod constraints associated with the

relation declaration is split into two steps:

6.2. Alloy and the Alloy Analyzer 101

1. Translating from Alloy in the same way as in the qualitative setting, while applying 𝑑𝑟𝑜𝑝 to

every occurrence of the relation at hand.

2. Traverse the resulting Kodkod formula, removing every use of 𝑑𝑟𝑜𝑝 which violates the constraint
purpose, that is, every occurrence of 𝑑𝑟𝑜𝑝 within a (l)one expression. This was achieved by

implementing a traversal over the Kodkod AST, responsible for detecting in which cases 𝑑𝑟𝑜𝑝
was being misused and properly adjusting the formula afterwards.

For example, a relation declaration sig A{ R : B lone -> one C } is described by the fol-

lowing Kodkod constraints, depending on the analysis context:

– Boolean analysis

∀𝑎 ∈ 𝐴. (((𝑅 ⋅ 𝑎 ⊆ 𝐵 × 𝐶) ∧ ∀𝑏 ∈ 𝐵. one((𝑅 ⋅ 𝑎) ⋅ 𝑏) ∧ (𝑅 ⋅ 𝑎) ⋅ 𝑏 ⊆ 𝐶)

∧

∀𝑐 ∈ 𝐶. lone(𝑐 ⋅ (𝑅 ⋅ 𝑎)) ∧ (𝑐 ⋅ (𝑅 ⋅ 𝑎)) ⊆ 𝐵)

∧

(𝒜 ⋅ (𝒜 ⋅ 𝑅)) ⊆ 𝐴

– Quantitative solving

∀𝑎 ∈ 𝐴. (((drop (𝑅 ⋅ 𝑎) ⊆ 𝐵 × 𝐶) ∧ ∀𝑏 ∈ 𝐵. one((𝑅 ⋅ 𝑎) ⋅ 𝑏) ∧ drop (𝑅 ⋅ 𝑎) ⋅ 𝑏 ⊆ 𝐶)

∧

∀𝑐 ∈ 𝐶. lone(𝑐 ⋅ (𝑅 ⋅ 𝑎)) ∧ (𝑐 ⋅ drop (𝑅 ⋅ 𝑎)) ⊆ 𝐵)

∧

drop (𝒜 ⋅ (𝒜 ⋅ 𝑅)) ⊆ 𝐴

When defining the Kodkod problem’s bounds from the Alloy scope, the only difference lies within the

integer representation. To fulfill the relational representation of a numeric expression, as imposed in Section

5.5, non-empty integer bounds are enforced. Furthermore, a single integer atom is enough to fully handle

numeric values from the whole domain, however one expression at a time. Therefore, no matter the

bitwidth provided, Int = { 1 } will be set in Alloy (and consequently, ints = { 1 } in Kodkod) during

quantitative analysis, as there is no reason to bound the numeric values’ domain by default nor it is useful

in the current approach to add further integer atoms to the universe, as they will not be used in practice

and will only increase the problem size. Given its usage within Kodkod, numeric values represented by a

numeric matrix, for example the value 0.75 will just be cast to {(1, 0.75)}. As stated previously, the value
of the integer atom itself, 1 in the current implementation, has no meaning, with the value of the numeric

6.2. Alloy and the Alloy Analyzer 102

expression on F being simply displayed as {0.75} to the user in practice. Like already mentioned at Kodkod
level, the representation implemented does not fully support the relational representation intended, as

no more than one numeric expression can be represented in the same matrix at a time. In practice, the

ScopeComputer responsible for handling the Alloy scope, other than defining Int accordingly depending

on the type of analysis, follows the same process for the remaining components of the model at hand

independently of the analysis context.

In the end, the quantitative Kodkod problem associated with a given Alloy specification was successfully

derived.

QUANTITATIVE ALLOY INSTANCE An instance of A4Solution is responsible for storing the solution to a

given problem, while also acting as the interface between Alloy and Kodkod. Thus, to accommodate to the

quantitative version of Kodkod, it was enhanced with the following capabilities:

SOLVER A solve method suitable for quantitative solving was introduced, whose workflow is adapted

from the qualitative version, but taking advantage of the Kodkod extension instead. After obtaining

the Kodkod problem at hand from TranslateQTAlloyToKodkod, its Formula and Bounds are

specified, and ready to be fed into Kodkod. The next step before solving is to handle the solving options

prefered by the user, that is, the QuantitativeOptions desired. Alloy’s solving configurations

are stored in a A4Options object and thus, the latter also had to be extended to include quantitative

specific details, namely the analysis context at hand – B or F –, and the quantitative solver selected,

if applicable. As mentioned previously in Section 5.4, during integer analysis, the integer scope

associated with the Alloy command at hand will be used to limit the weight that a given tuple is

allowed to assume. Therefore, taking all the options into account, the QuantitativeOptions

object is built, storing the information about the value of F considered, which solver will be used,

whether the tuple’s maximum weight is unlimited or upper bounded by a specific natural numbered

value, and so on.

With this, all the conditions to perform quantitative solving have been met, so, either the method

solve or solveAll of Kodkod (seen previously in Section 6.1), depending on the selected solver

being able to do incremental solving or not, will be called. Afterwards, A4Solution also stores the

outcome and, if the problem was satisfiable, the Instance produced, as well as an instance of the

Quantitative Evaluator over that model.

When using an incremental solver, by interacting with this solution, the next instance can be requested

and, by taking advantage of the solution enumerator, a new A4Solution is produced, coinciding

with the original one, except that it contains the following outcome produced by the iterator, and the

new instance in case it was found.

6.2. Alloy and the Alloy Analyzer 103

EVALUATOR If the A4Solution object has a satisfiable instance, then it is possible to interact with it by

evaluating Alloy expressions with respect to the first. For that, it was necessary to extend A4Solution

to provide evaluation methods suitable for quantitative instances, in which case the Alloy expression

specified is translated into its proper Kodkod correspondence by TranslateQTAlloyToKodkod,

which in turn is passed as argument to the quantitative Kodkod evaluator, already instantiated over

the solution obtained after solving, as mentioned previously.

Now, once a Kodkod instance or an output from the Evaluator is obtained, these results must be

transformed in the respective Alloy representation. Turns out that it is a rather smooth transition, as

they are characterized through identical structures in both Kodkod and Alloy, in particular, a Kodkod

Tuple corresponds to an Alloy A4Tuple and a Kodkod TupleSet is equivalent to A4TupleSet

in Alloy. In a quantitative Kodkod instance, a QtTupleSet is used, storing the weights associated

with the tuples also. Adjusting the Alloy representation to support weights can be done in a similar

fashion, by adding A4Tuple A4QtTuple, which contains the weight associated with the

given tuple. While in the quantitative extension of Kodkod, the weights were added at set-level, in

Alloy it is handled at tuple-level. It is worth noting that both representations are equivalent, and

this implementation decision was simply made due to convenience reasons during development,

managing weights within the set in Kodkod was practical, but manipulating them at tuple-level in

Alloy allowed for a cleaner implementation of the extension, compared to the set-level representation

if it was used instead.

An object A4Solution can be written into a XML file or built from one, and for that, Alloy provides

the helper classes A4SolutionWriter and A4SolutionReader. These are core components of the

workflow within the main Alloy application, as the Alloy Analyzer manages the models found for a given

specification through the A4Solution characterized by its XML representation using them. Therefore it is

necessary to include in the XML files produced, the data necessary to handle quantitative instances and

thus, these classes had to be extended as follows:

• A4SolutionWriter specifies within the instance node an attribute context whose value can

either be “Boolean”, “Integer” or “Probabilistic” specifying the kind of analysis that the

model at hand was subject to.

Moreover, it is also now responsible for encoding the weights associated to each tuple within the

quantitative instance being written. In particular, if the A4Tuple to be written into XML is an

A4QtTuple, then inside the tuple node is added the element weight containing the attribute

value.

• Since the XML file now contains new information, the reader also had to be adjusted to properly

extract it: the context is stored in the A4Options associated with this solution; when parsing the

6.2. Alloy and the Alloy Analyzer 104

Instance data, alongside the other tuple information, the weight is also stored, forming the

proper QtTupleSet associated with each relation.

ALLOY ANALYZER At this point, all there is left to do is to adjust the Alloy Analyzer and its features to take

advantage of the quantitative extension.

SimpleGUI is responsible for managing the graphical interface and the application’s functionalities,

therefore being the main focus where the needed modifications will be made.

First, A4Preferences, which contains the customizable options given to the user, will be extended to

present the following alternatives:

ANALYSIS CONTEXT The choice between “Boolean”, the default qualitative analysis, “Integer” or “Prob

abilistic” solving;

SMT SOLVER The SMT Solvers available for “Integer” analysis, which currently corresponds to CVC4

only (“CVC4” and “CVC4API” are given as options, being the two integrations mentioned in Section

6.1, where the first executes the CVC4 binary and the second uses the CVC4 JAVA API, effectively

performing the same);

PROBABILISTIC SOLVER Analogously, when “Probabilistic” analysis is intended, selects which solver

will be used, either being “Prism” or “CVC4”.

These are added to the Options menu in the graphical interface to be freely adjusted by the user between

solving attempts.

Once the user intends to start the automatic solving, by pressing Execute, the SimpleGUI will be

responsible to create the A4Options containing the solving options selected, including the newly added

quantitative analysis information; then if the context selected is “Boolean”, it will launch the SimpleTask1,

which is responsible for solving the given command(s) for the first time, proceeding exactly like the original

Alloy; otherwise, a QuantitativeTask is executed, responsible for handling the model at hand analogously

to SimpleTask1, but for either “Integer” or “Probabilistic” problems instead. Furthermore, if

the problem is satisfiable and the modeler desires to find further solutions, then a SimpleTask2 will be

created to handle the enumeration in the “Boolean” setting, while the QTEnumerationTask will be

responsible for the solution iteration within a quantitative context.

QUANTITATIVE TASK Both QuantitativeTask and QTEnumerationTask were implemented closely

based off their qualitative counterparts SimpleTask1 and SimpleTask2, respectively, preserving the

same action flow and style of reporting, but with data associated to the quantitative side instead.

In order to support the metrics of the new types of solvers and so on, an extension A4Reporter

A4QtReporter was established, which alongside the kinds of messages supported already in a qualitative

scenario, it is also equipped with the following:

6.2. Alloy and the Alloy Analyzer 105

• translate indicates that the SMT Problem/PRISM model associated with the Kodkod problem at

hand is about to be generated, as well as reports a few of the solving details, like the context of the

analysis being performed and which quantitative solver will be used;

• smt2 is used to report the SMTStatistics associated with the SMT specification derived, as well

as the time it took to determine the latter;

• prism has the same purpose as smt2 but for problems where the PRISM solver is used instead,

presenting PrismStatistics about the translation process;

• resultUNKNOWN is added to fully support the possible outcomes of an SMT Solver, used to report

the UNKNOWN judgment similarly to the existing resultSAT and resultUNSAT methods.

This kind of reporter is used within the solve method implemented in A4Solution for quantitative prob-

lems described previously. Moreover, the concrete implementation of the reporter is done in Quantitative

Task, taking advantage of the callbacks used to send messages to the GUI so that they can be perceived by

the user.

Now, once the QuantitativeTask is executed by the SimpleGUI, the model at hand is solved as

follows:

1. Parse the .als specification written by the modeler.

2. The Alloy model and the target command(s) are translated into the adequate Kodkod problem through

TranslateQTAlloyToKodkod, which alongside the A4Options provided by SimpleGUI and

an instance of A4QtReporter are passed to the solve method from A4Solution, determining

the satisfiability of the problem with respect to the solving options as well as an instance in case

SAT was the outcome. As already mentioned, during this process the reporter is used to provide

translation metrics.

3. The satisfiable command(s) have their A4Solution object preserved in XML format by the A4

SolutionWriter, to be later handled by the analysis features offered by the Alloy Analyzer.

4. Finally, the task ends by presenting the solving outcome and metrics for each command considered.

When attempting to find more instances of the problem at hand, QTEnumerationTak will request the

next solution to the A4Solution associated with the current model. After solving for further solutions, if

a SAT solution is obtained, then it is written into a XML file and the instance found can be studied by the

modeler with the help of the analyzer; in case an SMT solver is being used and the UNKNOWN response

is given, then the user is notified that there may or may not be further instances for this model; lastly, an

UNSAT response indicates that there are no more solutions to the problem.

6.2. Alloy and the Alloy Analyzer 106

VISUALIZER After successfully finding an instance of the Alloy model, it can be presented graphically to

the user via the VizGUI, which was also subject to a few modifications in order to be capable of properly

picturing a quantitative Alloy instance.

SimpleGUI is responsible for notifying the VizGUI of the analysis context being considered at a

given moment in time, in particular, when the user requests the visualizer over a quantitative model, the

A4Solution will be loaded from the XML format created by a quantitative task through the quantitative

extension of A4SolutionReader, while in a qualitative scenario, the XML does not contain measurable

data associated with the instance and thus the regular A4SolutionReader is used instead.

Furthermore, all the helper classes and structures used by the VizGUI to manage an Alloy instance

suffered minor adjustments to be able to take the quantitative information into account, in a obvious fashion.

From all the different visual representation types supported by the VizGUI, the following were successfully

extended to support quantitative instances:

• Text (Figure 6.2)

Figure 6.2: Txt representation of an Alloy instance.

• Table (Figure 6.3)

6.2. Alloy and the Alloy Analyzer 107

Figure 6.3: Table representation of an Alloy instance.

• Graph (Figure 6.4)

Figure 6.4: Viz representation of an Alloy instance.

The edges now display the weight associated to the tuple through a pair (R, w) for tuples within a

quantitative relation.

When working over the probabilistic setting, there may be w of various lengths, potentially cluttering

the visualizer and thus, to improve readability every probability will be pre-processed before being

added to the graph, trimming the value at 3 decimal places maximum or rounding the value to 0 if w

< 0.001. However the user is always able to view the full exact values through the Text representation

or in the Evaluator.

For every kind of representation, if the relation is represented by a Boolean matrix, then it is depicted exactly

the same as in qualitative instances, however, relations described by a numeric matrix have the weight of

each tuple explicitly represented accordingly, as exemplified before.

6.3. Project Structure 108

EVALUATOR Providing an evaluator over quantitative instances at this stage proceeded rather smoothly,

given all the groundwork made prior: a quantitative evaluator was implemented in the Kodkod extension as

mentioned previously, which in turn can be accessed by the methods considered in A4Solution.

Thus, SimpleGUI loads the A4Solution from its XML representation adequately using the quantitative

extension of A4SolutionReader when handling quantitative instances, parses the Alloy expression, which

is then passed to the A4Solution evaluation method, calculating the result using the quantitative evaluator,

to be properly represented through Alloy structures, which in turn is presented to the user in the same way

as its qualitative counterpart.

With that, a quantitative extension to Alloy and the Alloy Analyzer was successfully achieved.

6.3 PROJECT STRUCTURE

During the development of the quantitative extension for both Kodkod and Alloy, the original Alloy project

suffered changes, either by adding new components or modifying existing ones to accommodate to the

requirements defined during this dissertation. In the end, the resulting structure associated with the extension

is organized as follows:

KODKOD

AST The Kodkod abstract syntax was extended to support new operators

and the specification of quantitative constraints.

ENGINE The workflow during quantitative solving was defined at this point,

adding the capability of requesting quantitative solving over Kodkod

problems, producing quantitative instances, and further analyse

the solutions obtained.

CONFIG Introduce customizable solving options associated with the quan-

titative solvers supported.

NUM Creation and management of the life cycle of the numeric structures

used to represent Numeric Circuits – numeric values, matrices,

gates, ...

FOL2NUM Handles the translation between a Kodkod problem and its NC

representation, for either integer or probabilistic settings.

NUM2COMMON Helper methods and structures to handle quantitative

solvers and the translations produced at a more general level.

6.3. Project Structure 109

NUM2SMT Manages everything related to the SMT Solvers, including the correspondence from a NC and

the respective SMT problem, interaction with the SMT Solvers supported and the outcomes obtained.

NUM2PRISM Similarly to num2smt but focused on PRISM instead, handles the PRISM model associated

with the Kodkod problem at hand, executes model checking of the last and processes the satisfiability

results.

INSTANCE Added support to create and represent quantitative Kodkod instances.

ALLOY

• Core

AST To support the Kodkod syntax extension,

the Alloy AST itself was modified to also

support new operators and quantitative

relational expressions.

PARSER Adapted the parser to support the

language extension.

ALLOY4 Miscellaneous components of Alloy

were adjusted at this point, like the in-

troduction of a reporter for quantitative

solving, new solving preferences, and

so on.

TRANSLATOR Is the bridge between Alloy and

Kodkod, where the Kodkod problem

is properly generated, the solving pro-

cess is handled and an Alloy solution

is produced.

• Application

ALLOY4VIZ Adaptation of the visualizer to be able to display quantitative instances.

ALLOY4WHOLE Where the main application workflow is controlled to accommodate to both kinds

of analysis, launching the newly implemented quantitative task as well as the visualizer and

evaluator accordingly.

6.4. Workflow 110

6.4 WORKFLOW

In contrast to the architecture proposed initially in Section 4.3.1, the actual implementation ended up

functioning as pictured in Figure 6.5.

Figure 6.5: Quantitative Alloy Architecture.

As intended, the original Alloy capabilities are still in use, through the usual SAT Solvers. Furthermore,

PRISM is able to handle probabilistic systems as predicted. However, the capabilities of SMT Solvers

surpassed the initial expectations, making them responsible for not only numeric problems, but also being

available to the user alongside PRISM when modeling systems which display faulty behaviour, having chosen

the theory of integers (fragment QF_NIA) as the background theory to handle 𝑀𝑎𝑡N0
and the theory of

reals (logic QF_NRA) when dealing with 𝐿𝑆.
Finally, the process happening under Alloy when performing quantitative solving, through the extension

detailed during this chapter, is further illustrated in Figure 6.6.

6.4. Workflow 111

Figure 6.6: Quantitative Alloy Workflow.

6.5. Quantitative Alloy in Practice 112

6.5 QUANTITATIVE ALLOY IN PRACTICE

It is now possible to perform quantitative analysis using Alloy, thus, this section will focus on expanding

on how to take advantage of the new features offered, present some of the different kinds of quantitative

constraints supported, the way of managing domain specific information (when F represents either the

natural numbers or the probabilistic setting), how to execute quantitative analysis, as well as study some of

the extension capabilities.

ALLOY GUI To freely switch between the quantitative tools to be used during solving, as well as the

domain of the latter, the supported alternatives were added to the GUI of the application. Figure 6.7

for instance, shows that the model will be analysed for F = N0 using CVC4 Solver, as preferred un-

der “SMT Solver”; while if the “Analysis Context” is swapped to “Probabilistic”, then the

“Probabilistic Solver” will be used instead, which corresponds to PRISM in this example. Further-

more, once the “Boolean” context is selected, then the solving options correspond to those specified under

the SAT solving configurations, the same way as in the original Alloy.

Figure 6.7: Quantitative Solving Options.

Having specified a .als specification as well as a command, by pressing Execute the solving process

begins. Figure 6.8 shows the way that the solving details and outcome are presented to the user when

taking advantage of an SMT solver at the top, and PRISM at the bottom.

Given a satisfiable model, it can be further studied using the Alloy Visualizer and/or Evaluator, as shown

previously in Figures 5.3, 6.2, 6.3 and 6.4 for example.

QUANTITATIVE CONSTRAINTS By taking advantage of the additions to the Alloy language, new kinds of

constraints can now be specified.

Tuple weights are handled through the cardinality operator #, which measures the sum of every weight of

its operand. Thus, if the weight associated with a tuple is already known beforehand, it can be imposed

within the Alloy specification similarly to the following example:

6.5. Quantitative Alloy in Practice 113

Figure 6.8: Example of the execution of a satisfiable command under the Integer context solved using an SMT

Solver and an unsatisfiable result for a probabilistic model solved with PRISM.

sig B{}

sig A{ R : set B }

lone sig X extends A{} // X is a known potential "atom" of A

lone sig Y extends B{} // Y is a known potential "atom" of B

// Tuple (X, Y) must occur in R with weight 3

fact{ #(X.R :> Y) = 3 }

Other constraints over the weight of a certain tuple can be encoded analogously, accessing the weight of the

target focus in such way.

Naturally, these kinds of constraints over relation weights can be more broad, by taking X and/or Y as sets

for instance. Table 6.3 describes step-by-step the evaluation of such kind of formula over the tuple’s weights.

Alternatively, if both X and Y are relations of arity 1, then the weight of the tuple formed by them on a certain

relation can also be accessed by expressions like #(X <: R :> Y). Do note that for expressions of the

previous form, #(X <: R.Y) and #(X.R :> Y), require X and Y to be unary relations, respectively,

given the definition of the domain/range operators.

S { (a->x, 2), (a->z, 3),(b->y, 4), (b->w, 1), (b->z, 1) }

S.Q { (a, 3), (b, 5) }

b <: S.Q { (b, 5) }

#(b <: S.Q) 5

#(b <: S.Q) = 10 false

Table 6.3: Evaluating #(b <:S.Q) = 10 with Q = { y, z }.

The addition of drop to the language allows the modeler to deal with relations over 𝑀𝑎𝑡B, which can be
used to reason over reachability properties like during qualitative analysis, but under a quantitative setting

6.5. Quantitative Alloy in Practice 114

instead. For example, under F = N0, #R < 4 requires the sum of the weights associated with the tuples

of R to add up to 3 and thus, R = { a0->b1, a1->b0 }, R = { (a0->b0, 3) } and so on, are

possible interpretations of R that abide to that constraint. Now, if #(drop R) < 4 is imposed instead,

then R may contain, at maximum, 3 different tuples. Since drop effectively “discards” weights, they are not

bound like in the previous version, meaning that R = { (a0->b1, 15), (a1->b1, 2) } would obey

this constraint, even though it would violate the one discussed above, as #R = 17. Therefore, by combining

the line of though considered before to handle tuples, together with the use of drop in this manner, one can

encode reachability properties precisely. Taking R as a more complex relational expression in this fashion,

for instance, representing a particular selection, category, group and the like, then #(drop R) < 4 would

accept a maximum of 3 tuples belonging to that group, similarly to the constraint considered within the

model to be presented in Section 7.4.

Despite the capability of handling weighted relations being the main focus of this extension, in some

situations it may be useful or even necessary to use ordinary relations in the model at hand. To represent

such kind of relation in a quantitative setting drop can be used, by specifying the requirement R = drop R,

that is, demand that the relation R coincides with its representation from the Boolean perspective.

Unary relations with meaningful weights can be successfully specified exactly as shown previously in

Figures 5.2, 5.3. Like mentioned in Section 5.2, drop can also be composed with multiplicity keywords to

describe interesting properties.

INTEGER SCOPE Putting the integer scope into practice, as shown in Section 5.4, it can be used to reduce

significantly the number of potential instances for a given model. Since the tool is now working over an

infinite domain, some Alloy specifications may present an infinite number of satisfiable solutions and thus,

by imposing an upper bound to the acceptable weights, that number can be reduced to a more manageable

finite amount. Figure 6.9 shows two commands, one with and the other without using integer scope. Without

Figure 6.9: Example of a command with and without imposing an integer scope.

the help of an integer scope, during the enumeration of solutions, if at least one tuple within a given relation

can freely vary its weight without compromising the satisfiability of solutions, the tool may end up producing

solutions containing the exact same tuples, only changing the weight of that tuple indefinitely, which may or

may not be interesting. Thus, by imposing such limit, the Alloy Analyzer will be forced to find solutions with

further differences from the previous.

6.5. Quantitative Alloy in Practice 115

PROBABILITY Neither the original Alloy language nor the current version of the extension supports the

specification of non-integer numbers explicitly.

However, in order to model probabilistic problems, it is necessary to be able to represent other kinds of

numbers. Turns out that it was immediately possible to do so after implementing the quantitative extension,

through the help of existing operators, once again, due to the “keep definition, change category” (Oliveira

and Miraldo, 2016) approach taken. As mentioned previously, the integers supported in the original Alloy,

within a quantitative setting, represent natural numbers if F = N0 and real numbers for F = [0, 1],
having operations between integers also shifted to the other domains. Therefore, by using fun/mul and

fun/div2 which, besides representing the Hadamard product and division in the extension, correspond to

integer multiplication and division, one is able to describe real numbered values, in particular, probabilities,

for example, 31.7% can be specified as 317 fun/div 1000 within an .als model, and also on the

evaluator like Figure 6.10 shows.

Figure 6.10: Example of using the Alloy Evaluator to handle real valued numbers.

PROBABILISTIC CONTRACTS With the newly acquired expressiveness from extending Alloy to the quantita-

tive realm, it is now possible to measure probabilistic contracts using the Alloy Analyzer.

Recall the definition of a probabilistic contract: Given any probabilistic function 𝑓 ∶ 𝐴 → 𝒟𝐵,
sig A{ f : one B }

sig B{}

the chance of the probabilistic contract 𝑞 𝑝
𝑓

oo associated with the precondition 𝑝 and postcondition

𝑞 holding, depends on the input distribution 𝛿 ∶ 1 → 𝐴,
one sig Unit{ delta : one A }

Knowing 𝛿, the probabilistic contract can be measured as follows (2.41):

J 𝑞 𝑝
𝑓

oo K𝛿 = (𝑞 ⋅ 𝑓 × 𝑝) ⋅
𝛿

𝑝 ⋅ 𝛿

which can now be encoded in Alloy as:

2 Other utility functions like mul and div can also be used, as they are defined using fun/mul and fun/div, but unlike them, which return the integer value,

they return a subset of the signature Int, e.g., 2 fun/mul 3 = 6 and mul[2,3] = { 6 }, which may be useful depending on the situation.

6.5. Quantitative Alloy in Practice 116

fun measureContract[p' : A, q' : B] : Int {

let p = drop p', q = drop q' | #delta.(f.q fun/mul p) fun/div #delta.p

}

Note that both 𝑝 and 𝑞 given are subject to 𝑑𝑟𝑜𝑝, to ensure that they represent valid Boolean vectors.
Let us consider the probabilistic function studied by Oliveira (2017a) as an example:

𝑓 𝑎1 𝑎2 𝑎3

𝑏1 0.7 0.01 1
𝑏2 0.3 0.99 0

which in turn is specified as

fact PF{

#(a1.f :> b1) = div[7, 10]

#(a2.f :> b1) = div[1, 100]

one a3.f :> b1

}

By fixing an input distribution,

𝛿
𝑎1 0.1
𝑎2 0.2
𝑎3 0.7

in Alloy,

run knownDelta{

#(delta :> a1) = div[1, 10]

#(delta :> a2) = div[2, 10]

// #(delta :> a3) = div[7, 10] // Does not need to be explicitly

// required since it is a distribution

// (its probabilities must add up to 1)

}

then there is a single solution to the model pictured in Figure 6.11.

Moreover, one is fully able to measure the probability of the contract holding with respect to that 𝛿 through
the quantitative extension of Alloy, as can be seen in Figure 6.12. These contracts were the same as those

6.5. Quantitative Alloy in Practice 117

Figure 6.11: Instance determined for the constant 𝑓 and 𝛿 considered.

Figure 6.12: Using the Alloy Evaluator to measure the probability of different contracts with respect to the instance's 𝑓
and 𝛿.

studied by Oliveira (2017a), whose values evaluate to:

{𝑏2} {𝑎1, 𝑎2}
𝑓

oo = 76%

{𝑏2} {𝑎3}
𝑓

oo = 0%

{𝑏2} 𝑡𝑟𝑢𝑒
𝑓

oo = 22.8%

𝑡𝑟𝑢𝑒 {𝑎1, 𝑎2}
𝑓

oo = 100%

precisely the same output given by the Analyzer, as intended.

Now, the power of this tool shines once 𝛿 is unknown. It would be useful to study the validity of a contract
in general, and take advantage of Alloy’s model finding nature to determine if, for instance, the contract

{𝑏2} {𝑎1, 𝑎2}
𝑓

oo holds with, at least, 80% probability, no matter the input distribution.

Turns out that the extension is capable of doing exactly that, similarly to the proposed check command:

assert contract{

6.6. Summary 118

measureContract[a1 + a2, b2] >= 8 fun/div 10

}

check contract

After checking, Alloy was able to find examples of 𝛿 for which the contract holds with less than 80% chance,

for example, given the 𝛿 presented in Figure 6.13, the contract holds with 71.6% chance.

Figure 6.13: A 𝛿 determined by Alloy as a counterexample when checking the contract delimited by 𝑝 = {𝑎1, 𝑎2} and
𝑞 = {𝑏2} over 𝑓 for a probability lower than 80%.

Furthermore, it is possible to estimate the minimum probability for which the contract can hold given any

𝛿, adjusting the probability in the check being performed, until Alloy is no longer able to find a single 𝛿 for
which the probability is lower. For this particular example, that probability is around 30%, like pictured in

Figure 6.14.

Figure 6.14: The contract specified with 𝑝 = {𝑎1, 𝑎2} and 𝑞 = {𝑏2} holds for the given 𝑓 with, at least, 30% chance

for every possible 𝛿.

Further capabilities of this extension will be closely studied when attempting to tackle the case studies

considered for this project in the next chapter.

6.6 SUMMARY

Enhancing Alloy and Kodkod to be able to handle measurable data was the main focus on this chapter.

6.6. Summary 119

It begins by addressing the development of a quantitative Kodkod extension: given a Numeric Circuit built

from a quantitative Kodkod problem as established in the previous chapter, the next step is to generate an

adequate specification to be fed into a quantitative solver and thus, the integration of CVC4 and PRISM was

detailed, including the need to setup a correspondence between the numeric structures and an SMT problem

(.smt2) or a PRISM model (.prism together with .props), also studied thoroughly. Finally, the quantitative

extension of Kodkod is accomplished by establishing the production of a Kodkod instance from a quantitative

outcome.

This chapter then goes over the adjustments made to Alloy and its Analyzer, so that its quantitative

extension could be achieved by conforming to quantitative Kodkod. First, the Alloy language had to be

extended to support further quantitative constraints; then, the differences of the correspondence between

the Alloy specification at hand and the respective Kodkod problem under a qualitative or a quantitative

context were detailed; a quantitative Alloy solution is then derived from a quantitative Kodkod instance. The

implementation of quantitative Alloy is then concluded after the adaptation of the features provided by the

Alloy Analyzer – the Visualizer and the Evaluator.

With the extension successfully developed, the final system architecture and its workflow are highlighted.

In the end, the chapter details how to take advantage of the quantitative features, at both specification

level and application level.

7

C A S E S T UD I E S

With the quantitative extension of Alloy complete, the next step is to assess its power by handling the case

studies previously introduced in Section 4.1.

Each case study will be subject to quantitative analysis on different levels:

• Implicit Quantification over the bibliometrics case study, that is, extracting measurable data from

existing alloy models with minimal to no modifications to the specification, simply by taking advantage

of the lack of idempotency of morphism addition.

• Perform Explicit Quantification – that is, through the use of quantitative invariants or by

imposing constraints that work at weight-level explicitly on the specification or by taking advantage of

the quantitative extension of the Alloy language – in the football championship setting to model the

quantitative relation 𝐻𝑖𝑠𝑡𝑜𝑟𝑦;

• Model the Bayesian Network using Alloy syntax and execute probabilistic analysis over it, as well

as introduce probabilistic contract concepts explicitly in Alloy.

Then, this chapter makes a throwback to the existing work which addresses the same area as this

dissertation, namely by attempting to use the Alloy extension to model those examples.

Finally, it presents a benchmark to evaluate the usability of the tool, as well as to check how it behaves

comparatively to some existing alternatives.

7.1 BIBLIOMETRICS

Initially, Section 4.1.1 presents a relational model of a simple bibliographic database, from which one is

unable to handle measurable data. Later on, by studying it under 𝑀𝑎𝑡 lenses, bibliographic metrics were
immediately drawn out, provoking the thought: will the quantitative extension of Alloy be instantly able to

gather quantitative data from already existing models?

Figure 7.1 displays an instance when performing quantitative analysis of the specification present in

Appendix A.1.1. Alloy was, indeed, able to bring out quantitative information from the original specification

120

7.1. Bibliometrics 121

Figure 7.1: A quantitative instance of the original bibliographic system Alloy model.

– too much actually. Naturally, not only the relations 𝑆 and 𝑄 which were analysed under quantitative

semantics in Chapter 4, but every relation which is not properly constrained, will now be represented by a

numeric matrix, namely, relations 𝐶, 𝐾 and 𝐴, coincidentally, all of which should still be represented by a
Boolean matrix as:

• A relation 𝐴 which describes who the authors of a given paper are does not require quantitative

weights, an author either participated in the writing of a paper or did not, sufficiently modeled under

B.

• Analogously, the keywords 𝐾 of a given paper do not bring any useful information associated with

weights outside of the {0, 1} range.

• Arguably, 𝐶 could potentially make sense as a quantitative relation, counting the number of times

that a citation of a paper is referred to within the text of the paper at hand. Nonetheless, when

measuring bibliometrics typically a citation is always counted as 1, no matter how many times it is

cited on the paper, meaning that it is also properly modeled as an ordinary relation.

While during qualitative analysis, not being able to extract measurable data was the struggle, now the

problem is mirrored, as there are too many elements of the model being quantified. However, in contrast,

the quantitative setting has the upper hand of higher expressiveness when compared to the Boolean context,

having access to the tools needed to also reason over qualitative relations.

Having set the boundaries of which relations are to be represented by a Boolean matrix or a numeric

matrix, the original specification can be extended to impose constraints that “bring down” the relevant

relations to 𝑀𝑎𝑡B, like seen previously in Section 6.5:

fact ordinaryRelations{

7.1. Bibliometrics 122

K = drop K

A = drop A

C = drop C

}

Now that 𝐾 is a relation described by Boolean values, a new problem arises: 𝑆 will, by consequence, be

represented by a Boolean matrix, which is unavoidable when 𝑆 = 𝐾 ∩ 𝐾 ⋅ 𝐶∘. Taking into account the

implementation of ∩ in the quantitative extension of Alloy, described in Section 5.5, each tuple of 𝑆 is a

tuple which occurs on both 𝐾 and 𝐾 ⋅ 𝐶∘, assuming the minimum-valued weight between the two. Since

the weight of the tuples within 𝐾 will never be outside the {0, 1} value range, then the weights of 𝑆 will also

never exceed 1, meaning that the quantitative information arising from 𝐾 ⋅ 𝐶∘ will be lost.

To achieve the quantitative interpretation of 𝑆 desired, its weights have to abide to those associated with

𝐾 ⋅ 𝐶∘ while, at the same time, making sure that 𝑘 𝑆 𝑝 only counts the papers which cite paper 𝑝 in the

same area 𝑘, that is, reachability wise coincides with 𝐾 ∩ 𝐾 ⋅ 𝐶∘. Therefore, 𝑆 will now be specified by the

following requirements:

• The Boolean representation of 𝑆 must coincide with the initial definition, i.e., relating a given paper

with the keywords that identify the area on which it was cited.

𝑑𝑟𝑜𝑝 𝑆 = 𝐾 ∩ 𝐾 ⋅ 𝐶∘

• Counts how many papers cited the paper in focus, within the same area.

∀𝑖. J𝑆K[𝑖] ≠ 0 ⇒ J𝑆K[𝑖] = J𝐾 ⋅ 𝐶∘K[𝑖]

specified through the Alloy extension as:

drop S = K & ~C.K

all p : Paper, k : Keyword |

(p -> k) in S implies #(p <: S.k) = #(p <: (~C.K).k)

At this point, the Alloy specification properly models the bibliographic system under a quantitative context

equivalently to the original model within the qualitative setting. Figure 7.2 highlights exactly that: when an

instance found by a SAT solver is subject to a quantitative tool, measurable data is immediately derived,

• Every article belongs to the same area (Keyword);

• 𝐶 – Paper1 cites Paper0 and Paper2 cites Paper0 and Paper1;

• 𝑆 – Thus Paper0 is cited twice and Paper1 is cited once within the same area;

7.1. Bibliometrics 123

Figure 7.2: The same Alloy solution (structure wise) when interpreted under Boolean versus quantitative semantics.

• 𝐴 – Paper0 was written by Author0 and Author2 while Author0 and Author1 are the authors

of Paper1.

• 𝑄 – Therefore, since Author1 is one of the authors of Paper1 which was cited once, this author

received one citation; similarly, Author2 is the author of Paper2 being referred twice, meaning

that so did the author; due to Author0 being one of the authors of both Paper0 and Paper1 then,

in total, this author received three citations.

This information was already present in the original qualitative model of the bibliographic database, but

the data was nowhere to be seen. When subject to quantitative analysis, the same information arose

spontaneously, being able to be reasoned over explicitly. Thus, implicit quantification was achieved

using the Alloy extension.

By increasing the scope, further interesting instances can be found where the analytics extracted in that

scale are more evident. Figure 7.3 is an example of another solution found through quantitative solving (the

full solution in text representation is present in Appendix A.1.3). The measurable data can then be further

reasoned with, organized and so on as the user desires, for instance, by taking advantage of other tools:

Figure 7.4 shows a graphic with the bibliometrics extracted from the 𝑄 relation calculated for this instance.

Lastly, all there is left to do is to try to describe the quantitative relation 𝑍 = 𝑄
𝑆⋅⊤ , which through division

measures the impact of each author within every area in the big picture. With the extended language, Alloy

possesses enough expressiveness to encode such a relation, as follows:

Z = Q fun/div (Author -> Paper).S

Unfortunately, since the analysis is being performed under 𝑀𝑎𝑡N0
, 𝑍 is represented by a matrix of natural

numbers, with the division in question being the Euclidean division, and given the scale of the percentiles

7.1. Bibliometrics 124

Figure 7.3: Example of a quantitative instance for the bibliographic system.

Figure 7.4: Number of citations each author received per area for the instance presented in Figure 7.3.

being calculated, i.e., each weight of 𝑍 will belong to the [0, 1] range, then under this domain only instances
where 𝑍 is empty or contains tuple(s) with weight 1 (meaning that every author within 𝑍 took part in writing

7.2. Football Championship 125

all the papers that were cited within the same area) will be provided by Alloy, which are not very interesting

nor do they properly represent 𝑍 as intended.

However, this does pique the interest: what would it take to overcome such limitation and make Alloy

able to handle 𝑍 precisely. It immediately comes to mind considering a broader domain where the kind

of division desired could be applied and, at the same time, still be able to support this model as a whole.

Perhaps a new kind of analysis could be added to Alloy, involving another class of matrices also, matrices

of positive real numbers 𝑀𝑎𝑡R+
0
for instance, where division would now be real numbered division, which

is able to evaluate data over the [0, 1] interval explicitly. Figure 7.5 displays an instance produced within

Figure 7.5: Potential instance of the bibliographic database under 𝑀𝑎𝑡R+
0
.

a quick attempt at an adaptation of the current Alloy extension to real numbered matrices. Such solution

still presents the other relations 𝑆, 𝑄 and so on, as intended while also being able to produce much more

interesting 𝑍s, modeling that relation as envisioned. Thus, this motivates that, in the future, other kinds
of matrix, namely real numbered matrices, should be properly studied so that they can be implemented

and further strengthen Alloy, expanding even more the range of problems that can be dealt with effectively

through it.

7.2 FOOTBALL CHAMPIONSHIP

When performing quantitative analysis over the football tournament scheduler, its original properties preserve

their meaning, resulting in instances like the one displayed in Figure 7.6, which represents a valid agenda

for the number of teams and date slots specified, being also one of the solutions that can be found through

SAT solving, containing ordinary relations only.

7.2. Football Championship 126

Figure 7.6: An instance produced after quantitative solving the Football Championship specification from Appendix

A.2.1.

However, with the increased expressiveness of the tool, now there are also new alternative ways of

specifying properties, in particular, it is possible to define the so called quantitative invariants (Oliveira,

2017b).

For instance, recall the requirement a):

• The same team cannot play two games on the same day.

modeled as,

(𝑎𝑤𝑎𝑦 ∪ ℎ𝑜𝑚𝑒)∘ ⋅ (𝑎𝑤𝑎𝑦 ∪ ℎ𝑜𝑚𝑒) ∩ 𝑑𝑎𝑡𝑒∘ ⋅ 𝑑𝑎𝑡𝑒 ⊆ 𝑖𝑑

≡ { Inclusion (2.6) }

𝑔′((𝑎𝑤𝑎𝑦 ∪ ℎ𝑜𝑚𝑒)∘ ⋅ (𝑎𝑤𝑎𝑦 ∪ ℎ𝑜𝑚𝑒) ∩ 𝑑𝑎𝑡𝑒∘ ⋅ 𝑑𝑎𝑡𝑒)𝑔 ⇒ 𝑔′ = 𝑖𝑑 𝑔

≡ { Meet (2.7); Identity (2.2) }

𝑔′((𝑎𝑤𝑎𝑦 ∪ ℎ𝑜𝑚𝑒)∘ ⋅ (𝑎𝑤𝑎𝑦 ∪ ℎ𝑜𝑚𝑒))𝑔 ∧ 𝑔′(𝑑𝑎𝑡𝑒∘ ⋅ 𝑑𝑎𝑡𝑒)𝑔 ⇒ 𝑔′ = 𝑔

≡ { Composition (2.3) }

⟨∃ 𝑡 ∶ 𝑔′ (𝑎𝑤𝑎𝑦 ∪ ℎ𝑜𝑚𝑒)∘ 𝑡 ∶ 𝑡 (𝑎𝑤𝑎𝑦 ∪ ℎ𝑜𝑚𝑒) 𝑔⟩∧

⟨∃ 𝑑 ∶ 𝑔′ 𝑑𝑎𝑡𝑒∘ 𝑑 ∶ 𝑑 = 𝑑𝑎𝑡𝑒 𝑔⟩ ⇒ 𝑔′ = 𝑔

≡ { Converse (2.5); Join (2.8) }

⟨∃ 𝑡 ∶ 𝑡 = 𝑎𝑤𝑎𝑦 𝑔′ ∨ 𝑡 = ℎ𝑜𝑚𝑒 𝑔′ ∶ 𝑡 = 𝑎𝑤𝑎𝑦 𝑔 ∨ 𝑡 = ℎ𝑜𝑚𝑒 𝑔⟩ ∧

7.2. Football Championship 127

⟨∃ 𝑑 ∶ 𝑑 = 𝑑𝑎𝑡𝑒 𝑔′ ∶ 𝑑 = 𝑑𝑎𝑡𝑒 𝑔⟩ ⇒ 𝑔′ = 𝑔

≡ {Eindhoven One-point: ⟨𝑘 ∶ 𝑘 = 𝑒 ∶ 𝑇⟩ = 𝑇[𝑘 ∶= 𝑒] }

⟨∃ 𝑡 ∶ 𝑡 = 𝑎𝑤𝑎𝑦 𝑔′ ∨ 𝑡 = ℎ𝑜𝑚𝑒 𝑔′ ∶ 𝑡 = 𝑎𝑤𝑎𝑦 𝑔 ∨ 𝑡 = ℎ𝑜𝑚𝑒 𝑔⟩ ∧

𝑑𝑎𝑡𝑒 𝑔′ = 𝑑𝑎𝑡𝑒 𝑔 ⇒ 𝑔′ = 𝑔

i.e., if a given team participates in two games (either at home or away) and both games are scheduled for

the same date, then they represent the same match. Furthermore, it is encoded in Alloy as

(away + home).~(away + home) & date.~date in iden

like presented in the Appendix A.2.1.

Turns out that this same invariant can be imposed in a simpler way by defining it under 𝑀𝑎𝑡, as follows
(Oliveira, 2017b):

𝑑𝑎𝑡𝑒 ⋅ (𝑎𝑤𝑎𝑦 + ℎ𝑜𝑚𝑒)∘ ≤ ⊤

≡ { Going pointwise; Composition (2.25) }

⟨∑ 𝑔 ∶∶ 𝑑 = 𝑑𝑎𝑡𝑒 𝑔 × 𝑔(𝑎𝑤𝑎𝑦 + ℎ𝑜𝑚𝑒)∘𝑡⟩ ≤ 𝑑 ⊤ 𝑡

≡ { Transpose (2.5); Bilinearity of addition; By definition, 𝑏 ⊤ 𝑎 = 1 }

⟨∑ 𝑔 ∶∶ 𝑑 = 𝑑𝑎𝑡𝑒 𝑔 × 𝑡 𝑎𝑤𝑎𝑦 𝑔 + 𝑡 ℎ𝑜𝑚𝑒 𝑔⟩ ≤ 1

≡ { 𝑑𝑎𝑡𝑒 is a function, therefore it is represented by a Boolean matrix;

Eindhoven Trading: ⟨∑ 𝑘 ∶∶ 𝑀 × 𝑁⟩ = ⟨∑ 𝑘 ∶ 𝑀 ∶ 𝑁⟩ if 𝑀 is a Boolean matrix. }

⟨∑ 𝑔 ∶ 𝑑 = 𝑑𝑎𝑡𝑒 𝑔 ∶ 𝑡 𝑎𝑤𝑎𝑦 𝑔 + 𝑡 ℎ𝑜𝑚𝑒 𝑔⟩ ≤ 1

which counts for every date how many games are played by each team, and requires that it cannot exceed

1. Moreover, it can be specified using the extended Alloy language as:
~(away + home).date <= Team -> Date

By replacing the initial invariant with the quantitative one, as presented in the Appendix A.2.3, Alloy is able

to find instances which meet all the desired requirements, as expected. More, by specifying the quantitative

invariant, not only the model becomes tidier, but the reduced complexity also potentially decreases the load

on the solver, as the number of assertions generated on the respective SMT specification also goes down,

easing the tool’s job when enumerating different possible tournament schedules, for instance.

To make sure that both ways of encoding the same property are equivalent, one can assert the initial

version and then check the assertion with varying scopes, similarly to the pictured in Figure 7.7, therefore

being able to conclude with a certain degree of confidence that they act the same, as anticipated for this

case in particular, especially after studying their respective pointwise correspondence. Consequently, the

user has the freedom to decide between the two, generally picking the one which results in lower solving

times in practice. To be noted that, since at this point the model is providing the same instances as the

7.2. Football Championship 128

Figure 7.7: Checking if the alternative invariants associated with the requirement a) behave the same for a given set of

participating teams and dates available.

qualitative counterpart, given that SAT solvers, in general, perform better in response time terms (naturally,

since they work over a narrowed domain comparatively), Boolean analysis should be preferred, using the

original version of the Alloy specification. However, once measurable data is added to the model, and

qualitative analysis can no longer be performed, embracing this concept of quantitative invariants can help

in optimizing the model at hand in the long term, potentially improving clarity, efficiency and so on.

Thus, the Alloy extension into the quantitative realm opens up the door to the improvement of new and

existing Alloy models alike, by offering a new set of specification capabilities that arise from having its basis

on 𝑀𝑎𝑡.
The next step is to study the model adapted to be able to track the tournament’s results, through the

relation 𝑅𝑒𝑠𝑢𝑙𝑡 𝑇𝑒𝑎𝑚
𝐻𝑖𝑠𝑡𝑜𝑟𝑦
oo presented previously in Section 4.1.2, modeled using SMT in that case.

Now, this quantitative relation can be encoded with the Alloy extension:

abstract sig Result{}

one sig Win, Lose extends Result{}

sig Team{ History : set Result }

At this point, this specification could still be subject to qualitative analysis, however it would only be able

to reason over the reachability details associated with it, i.e., one would only be able to conclude if each

team has won and lost games or if it either exclusively wins or loses matches. Nevertheless, by performing

quantitative solving, the number of games that a team has won or lost can be precisely handled, but, without

anything else Alloy will provide instances where the number of victories and defeats of each team vary freely

within the N0 domain/integer scope limit, regardless of the tournament structure at hand, therefore further

quantitative invariants must be imposed to properly model this relation.

7.2. Football Championship 129

In the previous SMT specification used to model the extended scenario during tool research, integer

function symbols described the relation and constraints over them assured that the new requirements were

met. In the same vein, the following quantitative constraints were imposed through the quantitative Alloy

capabilities:

• There is a winner for every loser.

∑𝑊𝑖𝑛 ⋅ 𝐻𝑖𝑠𝑡𝑜𝑟𝑦 = ∑𝐿𝑜𝑠𝑒 ⋅ 𝐻𝑖𝑠𝑡𝑜𝑟𝑦

• Every team either wins or loses each game in which they take part.

⟨∀ 𝑡 ∶∶ ∑𝑡 ⋅ (ℎ𝑜𝑚𝑒 + 𝑎𝑤𝑎𝑦) = ∑𝐻𝑖𝑠𝑡𝑜𝑟𝑦 ⋅ 𝑡⟩

encoded as,

#History.Win = #History.Lose

all t : Team | #(home + away).t = #t.History

These invariants allow for explicit quantification, i.e., they are constraints which take advantage of the

quantitative semantics of the extended language, meaning that the usual qualitative analysis can no longer

be executed over this model.1 A possible Alloy instance for the quantitative specification is presented in

Figure 7.8, which coincides precisely with the solution determined through the SMT model, shown previously

Figure 7.8: A solution to the quantitative Alloy specification of the Football Championship.

in the Table 4.1. Then, the resulting Alloy model (the full specification is presented in Appendix A.2.4) is

able to properly determine agendas that abide to the tournament format as well as explicitly model the

championship’s results.

Finally, further additions to the model can be made following the same train of thought, allowing the

manipulation over the results and, for example, model the point system over the football championship,

being able to show the scoreboard, point out the winner team, the team in the last place, and others.

1 Technically only the quantitative invariant presented for the requirement a) uses syntax which is not supported in the original Alloy language (comparison between

relational expressions using inequality operators), so if the initial version of this requirement is used, SAT solvers can be used but, due to these invariants acting

on the relation's weights, they will not be be able to find any satisfiable instance with weights outside the {0, 1} values.

7.3. Sprinkler 130

Moreover, consider that a certain schedule determined by Alloy is being put into practice, then, the model

can be updated after each match to include the new results and continuously be able to predict how many

possible outcomes are left, which matches a given team has to win to reach first place, if a team is still able

to win the championship, and so on.

7.3 SPRINKLER

Consider a shift in the target domain, from F = N0 to F = [0, 1]. Then, let us now assess how the

extension behaves under a probabilistic setting, by attempting to model the Bayesian Network previously

presented (Figure 4.2) under relational terms.

The state of whether it is raining or not, the sprinkler is currently on or off and the grass is wet or dry,

can be modeled as 𝑅 = { 𝑅𝑎𝑖𝑛, 𝑁𝑜𝑅𝑎𝑖𝑛 }, 𝑆 = { 𝑂𝑛, 𝑂𝑓 𝑓 }, 𝐺 = { 𝑊𝑒𝑡, 𝐷𝑟𝑦 }, which in turn are
encoded as Alloy signatures:

abstract sig R, S, G{}

one sig Rain, NoRain extends R{}

one sig On, Off extends S{}

one sig Wet, Dry extends G{}

Furthermore, every node present in the network will give origin to a relation, as expected from having

previously reasoned over such structure algebraically in Chapter 4:

• 𝑅 1𝑟𝑎𝑖𝑛oo

one sig Unit{ rain : one R }

• 𝑆 𝑅
𝑠𝑝𝑟𝑖𝑛𝑘𝑙𝑒𝑟
oo

abstract sig R{ sprinkler : one S }

• 𝐺 𝑆oo 𝑅oo

𝑔𝑟𝑎𝑠𝑠

ww

abstract sig R{ grass : S set -> one G }

At last, the conditional probability table assigned to each node can be encoded through weight specification,

as follows:

fact{

// rain

#(Unit.rain :> Rain) = div[2, 10]

7.3. Sprinkler 131

// sprinkler

#(NoRain.sprinkler :> On) = div[4, 10]

#(Rain.sprinkler :> On) = div[1, 100]

// grass

one Off.(NoRain.grass) :> Dry

#(Off.(Rain.grass) :> Dry) = div[2, 10]

#(On.(NoRain.grass) :> Dry) = div[1, 10]

#(On.(Rain.grass) :> Dry) = div[1, 100]

}

Note that it is not necessary to enforce all the entries of the tables exhaustively, since each relation will be

represented by a left-stochastic matrix, by specifying 𝑟 − 1 (where 𝑟 is the number of rows in the table)
entries, the last will be derived automatically since the sum of each column must add up to 1. After providing
the specification (presented in Appendix A.3.3) to Alloy, the latter is able to determine an instance which

properly represents this network, as pictured in Figure 7.9.

Figure 7.9: Alloy instance representing a Bayesian Network for the given 𝑟𝑎𝑖𝑛, 𝑠𝑝𝑟𝑖𝑛𝑘𝑙𝑒𝑟 and 𝑔𝑟𝑎𝑠𝑠.

The previous solution is the only one for this specification, since all the relations within the model are

known and constant. Then, the next step is to consider that a probabilistic table is unknown for, at least, one

node of the network. When this network was previously modeled using PRISM, 𝑠𝑝𝑟𝑖𝑛𝑘𝑙𝑒𝑟 was the object of
study when checking if the latter was able to seek answers to questions like “Is there a 𝑠𝑝𝑟𝑖𝑛𝑘𝑙𝑒𝑟 for which
the probability of the grass being wet is higher than 90%?”, which was the case. Therefore, this section

will follow that trend, to appraise if the quantitative component of Alloy is able to meet the same results.

To specify an unknown 𝑠𝑝𝑟𝑖𝑛𝑘𝑙𝑒𝑟, the constraints previously imposed should simply be removed, so that

7.3. Sprinkler 132

its weights can be freely assigned under the [0, 1] domain; even partial conditional probability tables can
be specified, and Alloy will attempt to fill out the rest with respect to the model’s constraints. Figure 7.10

shows an instance provided after solving the model again without the 𝑠𝑝𝑟𝑖𝑛𝑘𝑙𝑒𝑟’s weight constraints. At its

Figure 7.10: Example of a possible 𝑠𝑝𝑟𝑖𝑛𝑘𝑙𝑒𝑟 found by Alloy.

current state, in contrast to the initial specification, there are infinite solutions to this model, in particular,

every possible combination of [0, 1] × [0, 1], as there are virtually no other constraints imposed over the
𝑠𝑝𝑟𝑖𝑛𝑘𝑙𝑒𝑟. Thus, to extract further information from the model and make Alloy find interesting 𝑠𝑝𝑟𝑖𝑛𝑘𝑙𝑒𝑟s
that abide to certain properties, the Alloy specification shall be extended so that a response to the previous

question “Is there a 𝑠𝑝𝑟𝑖𝑛𝑘𝑙𝑒𝑟 for which the probability of the grass being wet is higher than 90%?” can be

obtained, alongside being able to take advantage of the Bayes’ theorem.

As mentioned before, the probability of the grass being wet can be measured as 𝑃(𝑔 = 1) = 𝑤𝑒𝑡⋅𝑔𝑟𝑎𝑠𝑠⋅
(𝑠𝑝𝑟𝑖𝑛𝑘𝑙𝑒𝑟 ▽ 𝑖𝑑) ⋅ 𝑟𝑎𝑖𝑛. This expression cannot be immediately encoded in Alloy since Khatri-Rao product is
not an operator supported in neither the original Alloy language nor the extension. Even though an attempt was

made to define Khatri-Rao product in the quantitative Kodkod extension, the implementation accomplished

was not very manageable nor useful to specify these kinds of expressions, and thus, it was not added to Alloy,

since, from its definition𝑀▽𝑁 ∶ 𝑝 → 𝑚×𝑛 (2.28), Khatri-Rao is used to define the product under the𝑀𝑎𝑡
setting, which does not cope well with both Kodkod and Alloy, since they only support “curried”-like relational

types, despite 𝑝 → 𝑚×𝑛 ≅ 𝑝 → 𝑚 → 𝑛, there is no way of either “currying” or “uncurrying” the relations’
type so that the Alloy operators, in this particular case, composition could be applied between 𝑔𝑟𝑎𝑠𝑠 and
(𝑠𝑝𝑟𝑖𝑛𝑘𝑙𝑒𝑟 ▽ 𝑖𝑑), making it not as immediate to calculate 𝑃(𝑔 = 1) using Alloy. The implementation
of Khatri-Rao in Kodkod produces 𝑀▽𝑁 ∶ 𝑝 → 𝑚 → 𝑛 and thus, (𝑠𝑝𝑟𝑖𝑛𝑘𝑙𝑒𝑟 ▽ 𝑖𝑑) ∶ 𝑅 → 𝑆 → 𝑅.
However, as 𝑔𝑟𝑎𝑠𝑠 ∶ 𝑅 → 𝑆 → 𝐺, 𝑔𝑟𝑎𝑠𝑠 ⋅ (𝑠𝑝𝑟𝑖𝑛𝑘𝑙𝑒𝑟 ▽ 𝑖𝑑) ∶ 𝑅 → 𝑆 → 𝑆 → 𝐺, which was not useful
to model the intended expression.

Nonetheless, not being able to explicitly specify 𝐴× 𝐵 as a single type is to be expected, given the matrix

representation adopted in Kodkod, as well as the way atoms, tuples and the relations’ bounds are specified,

7.3. Sprinkler 133

otherwise it would require that 𝐴 × 𝐵 could be represented by a single column of the matrix (similar to the

matrix representation of 𝑔𝑟𝑎𝑠𝑠 in Section 4.1.3) and then every possible (𝑎, 𝑏) ∈ 𝐴 × 𝐵 would need to be

represented similarly to an atom, thus, taking into account all the signatures present in the model as well as

all possible combinations through the product, the size of the universe would explode, making it infeasible.

In fact, it would actually be impossible to use the current finite representation to handle the product in such

a way, since it would require to exhaustively enumerate all the infinite combinations, e.g., even a single

atom 𝐴 could be infinitely combined as 𝐴 × 𝐴 ×
In this scenario, the solution to overcome this limitation would therefore be to model the necessary

product as well as the application of Khatri-Rao product explicitly within the Alloy specification itself, that is,

𝑆 × 𝑅 must be represented by a single type and thus, encoded as a signature, and the model’s relations

then adapted to its inclusion:

• 𝑆 × 𝑅

abstract sig RS{ ... }

one sig RainOff, RainOn, NoRainOff, NoRainOn extends RS{}

• 𝑔𝑟𝑎𝑠𝑠 would then need to have its type adjusted from 𝑅 → 𝑆 → 𝐺 into 𝑆 × 𝑅 → 𝐺
abstract sig RS{ grass : one G }

• the constraints over 𝑔𝑟𝑎𝑠𝑠 must also be re-defined

one NoRainOff.grass :> Dry

#(RainOff.grass :> Dry) = div[2, 10]

#(NoRainOn.grass :> Dry) = div[1, 10]

#(RainOn.grass :> Dry) = div[1, 100]

At this point, this model behaves the same as the previous version. Now, to be able to model the use of

Khatri-Rao, the helper relation spID = 𝑠𝑝𝑟𝑖𝑛𝑘𝑙𝑒𝑟 ▽ 𝑖𝑑 was also introduced to represent the result of its

application:

abstract sig R{

sprinkler : one S,

spID : one RS

}

Lastly the Khatri-Rao product between 𝑠𝑝𝑟𝑖𝑛𝑘𝑙𝑒𝑟 and 𝑖𝑑 is modeled as:

#(Rain.spID :> RainOn) = #(Rain.sprinkler :> On)

#(Rain.spID :> RainOff) = #(Rain.sprinkler :> Off)

#(NoRain.spID :> NoRainOn) = #(NoRain.sprinkler :> On)

#(NoRain.spID :> NoRainOff) = #(NoRain.sprinkler :> Off)

7.3. Sprinkler 134

It is worth mentioning that tuples like (Rain, NoRainOn) will never occur in spID due to it being

represented by a left-stochastic matrix, as long as sprinkler is a proper probabilistic relation.

All the conditions needed to be able to encode 𝑃(𝑔 = 1) in Alloy and further calculate its value have
been met, and it can be done as follows:

fun grassWet : G { Unit.rain.spID.grass :> Wet }

Then, by considering the previous 𝑠𝑝𝑟𝑖𝑛𝑘𝑙𝑒𝑟, the solution pictured in Figure 7.11 is obtained. The quantitative

Figure 7.11: 𝑃(𝑔 = 1) measured with respect to the presented network.

Alloy extension was able to successfully calculate 𝑃(𝑔 = 1) = 44.838%, exactly the value obtained by

hand using typed linear algebra and through PRISM in Section 4.1.3.

To finally be able to respond to the question on whether there is a 𝑠𝑝𝑟𝑖𝑛𝑘𝑙𝑒𝑟 for which 𝑃(𝑔 = 1) > 90%,

one can assert that 𝑃(𝑔 = 1) ≤ 90% and check if Alloy is able to find a counterexample. Figure

7.12 shows that Alloy was, in fact, capable of finding such a 𝑠𝑝𝑟𝑖𝑛𝑘𝑙𝑒𝑟 = {(𝑁𝑜𝑅𝑎𝑖𝑛 → 𝑂𝑛, 1),
(𝑅𝑎𝑖𝑛 → 𝑂𝑛, 0.9913), (𝑅𝑎𝑖𝑛 → 𝑂𝑓 𝑓 , 0.0087)} for which the probability is higher than 90%,

𝑃(𝑔 = 1) = 91.77%. Thus, through the quantitative Alloy extension one is able to reason over Bayesian

networks, measure probabilities, check for conditional probability tables which make a specified event

happen with the desired chance, and so on.

For instance, conditional probabilities can also be specified and calculated, namely through Bayes’

theorem:

𝑃(𝐴 ∣ 𝐵) =
𝑃(𝐵 ∣ 𝐴)𝑃(𝐴)

𝑃(𝐵) (7.1)

7.3. Sprinkler 135

Figure 7.12: Finding a 𝑠𝑝𝑟𝑖𝑛𝑘𝑙𝑒𝑟 for which 𝑃(𝑔 = 1) is greater than 90%.

using Alloy like so:

FORWARDS REASONING 𝑃(𝑔 = 1 ∣ 𝑟 = 1) = 𝑤𝑒𝑡 ⋅ 𝑔𝑟𝑎𝑠𝑠 ⋅ (𝑠𝑝𝑟𝑖𝑛𝑘𝑙𝑒𝑟 ▽ 𝑖𝑑) ⋅ 𝑟𝑎𝑖𝑛𝑖𝑛𝑔, where

𝑅 1
𝑟𝑎𝑖𝑛𝑖𝑛𝑔
oo = [0 1]𝑇

fun gwIfRain : G { Rain.spID.grass :> Wet }

BACKWARDS REASONING

𝑃(𝑟 = 1 ∣ 𝑔 = 1) =
𝑃(𝑔 = 1 ∣ 𝑟 = 1)𝑃(𝑟 = 1)

𝑃(𝑔 = 1)
fun rainIfGW : Int {

#gwIfRain fun/mul div[#(Unit.rain :> Rain), #grassWet]

}

Figure 7.13 presents the value of 𝑃(𝑔 = 1 ∣ 𝑟 = 1) and 𝑃(𝑟 = 1 ∣ 𝑔 = 1) calculated for the 𝑟𝑎𝑖𝑛,
𝑠𝑝𝑟𝑖𝑛𝑘𝑙𝑒𝑟 and 𝑔𝑟𝑎𝑠𝑠 initially considered. So, 𝑃(𝑔 = 1 ∣ 𝑟 = 1) = 80.19% and 𝑃(𝑟 = 1 ∣ 𝑔 = 1) =
35.77%, as expected from (Oliveira, 2017a).

PROBABILISTIC CONTRACT Conditional probability 𝑃(𝑎 ∣ 𝑏) considers the probability of an event 𝑎
occurring taking into account the assumption that event 𝑏 happens. This line of thought points towards the
notion of probabilistic contract, with 𝑏 corresponding to the precondition and 𝑎 acting as the postcondition

for which the contract 𝑎 𝑏
𝑓

oo will be evaluated over a probabilistic function 𝑓 describing the system

7.3. Sprinkler 136

Figure 7.13: Calculating conditional probabilities through Bayes' theorem in Alloy.

being studied. Then, can the quantitative extension of Alloy also be used to handle this case study and

determine, for instance, 𝑃(𝑔 = 1 ∣ 𝑟 = 1) through probabilistic contract concepts?

As seen before, 1 𝐺𝑤𝑒𝑡oo = [0 1] and 𝑅 1
𝑟𝑎𝑖𝑛𝑖𝑛𝑔
oo = [0 1]𝑇 are both Boolean vectors

representing 𝑔 = 1 and 𝑟 = 1 respectively, meaning that they are suitable precondition and postcondition

for the contract 𝑤𝑒𝑡 𝑟𝑎𝑖𝑛𝑖𝑛𝑔
𝑓

oo which will specify 𝑃(𝑔 = 1 ∣ 𝑟 = 1) where 𝑓 ∶ 𝑅 → 𝑆 × 𝐺 is the

probabilistic function that models this Bayesian Network’s behaviour with respect to the probability of raining

(Oliveira, 2017a):

𝑓 = 𝑠𝑝𝑟𝑖𝑛𝑘𝑙𝑒𝑟 ▽ (𝑔𝑟𝑎𝑠𝑠 ⋅ (𝑠𝑝𝑟𝑖𝑛𝑘𝑙𝑒𝑟 ▽ 𝑖𝑑))

Once again, to be able to represent the Khatri-Rao product defining 𝑓, the product 𝑆 × 𝐺 must also be

explicitly specified:

abstract sig SG{}

one sig OffDry, OffWet, OnDry, OnWet extends SG{}

Afterwards, the Alloy model is extended to include the field f, declared as:

abstract sig R{ f : one SG }

Finally, the definition of 𝑓 is achieved by enforcing the necessary constraints to model the Khatri-Rao product:

let gis = spID.grass {

#(NoRain.f :> OffDry) = mul[#(NoRain.sprinkler:>Off),#(NoRain.gis:>Dry)]

#(NoRain.f :> OffWet) = mul[#(NoRain.sprinkler:>Off),#(NoRain.gis:>Wet)]

#(NoRain.f :> OnDry) = mul[#(NoRain.sprinkler :> On),#(NoRain.gis :> Dry)]

#(NoRain.f :> OnWet) = mul[#(NoRain.sprinkler :> On),#(NoRain.gis :> Wet)]

#(Rain.f :> OffDry) = mul[#(Rain.sprinkler :> Off),#(Rain.gis :> Dry)]

#(Rain.f :> OffWet) = mul[#(Rain.sprinkler :> Off),#(Rain.gis :> Wet)]

#(Rain.f :> OnDry) = mul[#(Rain.sprinkler :> On),#(Rain.gis :> Dry)]

#(Rain.f :> OnWet) = mul[#(Rain.sprinkler :> On),#(Rain.gis :> Wet)]

}

Now, to measure the contract J 𝑤𝑒𝑡 𝑟𝑎𝑖𝑛𝑖𝑛𝑔
𝑓

oo K𝛿, the input distribution 𝛿 ∶ 1 → 𝑅 is also

included in the specification:

7.3. Sprinkler 137

one sig Unit{ delta : one R }

and thus, the probability of the contract holding is calculated by (2.41):

J 𝑤𝑒𝑡 𝑟𝑎𝑖𝑛𝑖𝑛𝑔
𝑓

oo K𝛿 = (𝑤𝑒𝑡 ⋅ 𝑓 × 𝑟𝑎𝑖𝑛𝑖𝑛𝑔) ⋅
𝛿

𝑟𝑎𝑖𝑛𝑖𝑛𝑔 ⋅ 𝛿

which in turn is encoded using Alloy syntax:

fun grass_wet : SG{ OffWet + OnWet }

fun raining : R{ Rain }

fun measureContract : Unit{

delta.(f.grass_wet fun/mul raining) fun/div delta.raining

}

Solving the model (presented in Appendix A.3.5) for the constant 𝑟𝑎𝑖𝑛, 𝑠𝑝𝑟𝑖𝑛𝑘𝑙𝑒𝑟 and 𝑔𝑟𝑎𝑠𝑠 initially
considered, Alloy produces an instance like the one presented in Figure 7.14. For this solution 𝛿 = [0 1]𝑇

Figure 7.14: Measuring 𝑃(𝑔 = 1 ∣ 𝑟 = 1) using probabilistic contracts in Alloy.

and J 𝑤𝑒𝑡 𝑟𝑎𝑖𝑛𝑖𝑛𝑔
𝑓

oo K𝛿 = 80.19% = 𝑃(𝑔 = 1 ∣ 𝑟 = 1) , coinciding with the value arrived at

previously, as desired.

However, one may now wonder, what is the value of 𝑃(𝑔 = 1 ∣ 𝑟 = 1) for other possible interpretations
of 𝛿? Is it independent of any input distribution, that is, no matter the 𝛿 considered, does the probability
remain the same, as would be expected from the previous measurements? To ascertain if that is the case,

one can consider the check command displayed in Figure 7.15. Alloy was unable to find any 𝛿 where the

7.4. Bundling 138

Figure 7.15: Check if there is a 𝛿 for which 𝑃(𝑔 = 1 ∣ 𝑟 = 1) ≠ 80.19%.

probability is different, meaning that as long as the probability of raining is non-zero (since if 𝑃(𝑟 = 1) = 0
then the probability of the contract holding is undefined due to division by zero), for this specific 𝑔𝑟𝑎𝑠𝑠 and
𝑠𝑝𝑟𝑖𝑛𝑘𝑙𝑒𝑟, the chance of the grass being wet given that it is raining is always the same, as intended. Do
note that during this analysis the value of 𝑟𝑎𝑖𝑛 was irrelevant, as the assumption is that it will be raining. In

the calculations made before, 𝑟𝑎𝑖𝑛 = [0.80 0.20]𝑇 and since the probability of raining in this case is

different from zero (𝑃(𝑟 = 1) = 20%), Alloy arrived at the same conclusion.

In the end, it was possible to model a Bayesian Network in Alloy, and further study its behaviour with

respect to different circumstances, varying conditional probability tables, calculating probabilities through

known results and even by taking advantage of probabilistic contracts.

7.4 BUNDLING

The earlier Section 3.2.1 studied the index-based approach taken to implement multirelations in Alloy,

developed by Sun et al. (2016) as an Alloy library. In their paper, they address the bundling process for the

upcoming seasonal sales of a grocery store by taking advantage of multirelations.

Each bundle to be prepared for the sales must abide to the following requirements:

(a) It must contain at least two food items.

(b) At least two items within the bundle must be dairy products.

(c) Variety is expected, at least two products in the bundle have to belong to different categories.

Such scenario can then be modeled through abstract diagram notation:

𝐵𝑢𝑛𝑑𝑙𝑒 𝐶𝑜𝑛𝑡𝑎𝑖𝑛𝑠 //

𝑅𝑒𝑠𝑢𝑙𝑡

''

𝐵𝑒𝑙𝑜𝑛𝑔𝑠𝑇𝑜 ⋅ 𝐶𝑜𝑛𝑡𝑎𝑖𝑛𝑠

77
𝐼𝑡𝑒𝑚

𝐵𝑒𝑙𝑜𝑛𝑔𝑠𝑇𝑜
// 𝐶𝑎𝑡𝑒𝑔𝑜𝑟𝑦

7.4. Bundling 139

composed by the following relations:

• 𝑐 = 𝐵𝑒𝑙𝑜𝑛𝑔𝑠𝑇𝑜 𝑖 – Each food item 𝑖 belongs to a single category 𝑐.

• 𝑖 𝐶𝑜𝑛𝑡𝑎𝑖𝑛𝑠 𝑏 – Bundle 𝑏 contains the product 𝑖.

• 𝑐 𝑅𝑒𝑠𝑢𝑙𝑡 𝑏 = 𝑐 (𝐵𝑒𝑙𝑜𝑛𝑔𝑠𝑇𝑜 ⋅ 𝐶𝑜𝑛𝑡𝑎𝑖𝑛𝑠) 𝑏 – Bundle 𝑏 has food items of category 𝑐.

subject to the constraints:

• Every bundle must contain, at least, two dairy products – handling requirements a) and b).

all b : Bundle | #(b <: Result :> Dairy) >= 2

• Each bundle has products from more than one category – requirement c).2

all b : Bundle | #drop(b.Result) >= 2

The Alloy specification proposed by Sun et al. (2016) for a specific scenario of this problem is presented in

Appendix A.5.1. 𝐶𝑜𝑛𝑡𝑎𝑖𝑛𝑠 is modeled as a multirelation, meaning that 𝑖 𝐶𝑜𝑛𝑡𝑎𝑖𝑛𝑠 𝑏 = 𝑛 means that the

bundle 𝑏 includes exactly 𝑛 units of item 𝑖. Furthermore, 𝑅𝑒𝑠𝑢𝑙𝑡 is also represented by a multirelation, being
able to reason about howmany items from each category are within each bundle. Since𝑅𝑒𝑠𝑢𝑙𝑡 is described
by the multirelation composition between the multirelation 𝐶𝑜𝑛𝑡𝑎𝑖𝑛𝑠 and the ordinary relation 𝑏𝑒𝑙𝑜𝑛𝑔𝑠𝑇𝑜,
then the latter must first be lifted into the 𝑀𝑅𝑒𝑙 domain, that is, 𝐵𝑒𝑙𝑜𝑛𝑔𝑠𝑇𝑜 = 𝑙𝑖𝑓 𝑡 𝑏𝑒𝑙𝑜𝑛𝑔𝑠𝑇𝑜.
Considering 𝐵𝑢𝑛𝑑𝑙𝑒 = {𝐵1, 𝐵2}, 𝐼𝑡𝑒𝑚 = {𝐵𝑟𝑒𝑎𝑑, 𝑀𝑖𝑙𝑘, 𝐵𝑢𝑡𝑡𝑒𝑟} and 𝐶𝑎𝑡𝑒𝑔𝑜𝑟𝑦 = {𝐵𝑎𝑘𝑒𝑟𝑦,

𝐷𝑎𝑖𝑟𝑦}, the model shown in Appendix A.5.1, executed using SAT solvers, provides instances like the

one presented in Figure 7.16. In this example, 𝐵1 contains two units of 𝐵𝑢𝑡𝑡𝑒𝑟 (consequently, two dairy

Figure 7.16: SAT solver solution to the Bundling problem using multirelations.

products) and one 𝐵𝑟𝑒𝑎𝑑; 𝐵2 has one 𝐵𝑟𝑒𝑎𝑑 and two units of 𝑀𝑖𝑙𝑘, being a dairy food item; thus both
bundles obey to the initial rules.

2 For simplicity, drop refers to either the operator added to the Alloy extension or to the operation provided by the multirelations library depending on the context.

7.4. Bundling 140

This problem can also be adequately handled using the quantitative extension of Alloy developed, under

F = N0, by making a few changes to the specification:

• There is no longer the need to instantiate explicitly which relations must be lifted to multirelations,

as every relation will be represented by a matrix of 𝑀𝑎𝑡N0
. As already seen in previous examples,

through the use of 𝑑𝑟𝑜𝑝 or multiplicity constraints, then the relations that need to be represented by

Boolean matrices can be properly constrained to do so. In this case, only 𝐵𝑒𝑙𝑜𝑛𝑔𝑠𝑇𝑜 is an ordinary
relation, in particular, a function, and thus it can be properly defined by taking advantage of the one

declaration constraint:

abstract sig Item{ BelongsTo : one Category }

• 𝐶𝑜𝑛𝑡𝑎𝑖𝑛𝑠 and 𝑅𝑒𝑠𝑢𝑙𝑡 are both declared as a field of Bundle instead of through the multirelations

module.

abstract sig Bundle{

Contains : set Item,

Result : set Category

}

• 𝑅𝑒𝑠𝑢𝑙𝑡 is defined with the usual composition instead of using multijoin and, therefore, 𝐵𝑒𝑙𝑜𝑛𝑔𝑠𝑇𝑜
does not need to be lifted before composing:

Result = Contains . BelongsTo

The full Alloy specification is presented in Appendix A.5.2. Figure 7.17 displays an example of a solution

Figure 7.17: Example of an instance provided by Quantitative Alloy for the Bundling model.

provided for the adapted specification by the Alloy extension. Coincidentally, this instance is very similar

to the previous example, with 𝐵1 containing 𝑀𝑖𝑙𝑘 instead of 𝐵𝑢𝑡𝑡𝑒𝑟 and vice versa, meaning that it also
abides to the desired properties.

Both specifications analysed can be adjusted to provide instances for more general values of 𝐵𝑢𝑛𝑑𝑙𝑒,
𝐼𝑡𝑒𝑚 and 𝐶𝑎𝑡𝑒𝑔𝑜𝑟𝑦. In particular, the property that demands that each bundle must be composed by at

7.5. Performance Results 141

least two dairy products was also generalized for some category instead of dairy especially:

some c : Category | all b : Bundle | #(b <: Result :> c) >= 2

Figure 7.18 shows an instance of the adapted specification presented in Appendix A.5.3 using the multirela-

tions concepts. Quantitative Alloy finds solutions like the one displayed in Figure 7.19 for the Alloy model in

Figure 7.18: multirelations instance to the generalized bundling model.

Appendix A.5.4. This generalization of the specification will be taken advantage of in the next section.

Figure 7.19: Solution to the general bundling specification provided by the quantitative extension.

Thus, Quantitative Alloy is also able to deal with such kind of models, analogously to the multirelations

framework.

7.5 PERFORMANCE RESULTS

To appraise the performance of the extension developed in practice, this section goes over a simple

benchmark made over the case studies presented previously when tackled using the original Alloy or the

quantitative extension implemented.

7.5. Performance Results 142

SETUP The benchmark environment considered is characterized as follows: each test was executed

locally in a machine equipped with 8𝐺𝐵 of RAM and an octa-core Intel i7 CPU of 2.5𝐺𝐻𝑧 frequency and
x86_64 architecture; the Alloy Analyzer ran with 768 𝑀𝐵 of maximum memory and 8192𝑘 of maximum
stack size; specifications under the Boolean domain will be solved using the 𝑆𝐴𝑇4𝐽 SAT solver with skolem
depth = 1; the CVC4 SMT Solver will be used to handle the models under both integer and probabilistic
quantitative analysis contexts with default settings.

Appendix A.6 presents exhaustively the response times obtained for each scenario considered for this

benchmark, which will now be studied in greater detail.

BIBLIOMETRICS Starting off with the bibliometrics case study, the interest is to compare how SAT solvers

and SMT solvers differ when given the same Alloy model (Appendix A.1.1). Afterwards, the quantitative

adaptation (Appendix A.1.2) to the initial model, so that implicit quantification can be properly performed, is

also subject to quantitative solving.

Bibliometrics
Paper = 3 Author = 3

Medium = 1 Keyword = 1
Paper = 10 Author = 3

Medium = 2 Keyword = 3 Int = 6
Paper = 15 Author = 6

Medium = 3 Keyword = 5 Int = 6

SAT

variables 451 3246 9113
primary variables 48 279 720

clauses 784 7706 21460
solving time 9.5 𝑚𝑠 59 𝑚𝑠 254.33 𝑚𝑠

Paper = 3 Author = 3
Medium = 1 Keyword = 1

Paper = 10 Author = 3
Medium = 2 Keyword = 3

Paper = 15 Author = 6
Medium = 3 Keyword = 5

SMT

function symbols 311 1812 4805
primary variables 38 237 569

assertions 333 1834 4827
solving time 116.67 𝑚𝑠 5.9 𝑠 24.2 𝑠

SMT

quantitative

adaptation

function symbols 417 2730 7467
primary variables 41 246 599

assertions 446 2759 7496
solving time 114 𝑚𝑠 5.7 𝑠 55.62 𝑠

Table 7.1: Bibliometrics -- SAT versus SMT.

Naturally, using SAT solvers result in faster solving times, as shown in Table 7.1, which increases once

the measurable data is added to the instances. Although the two kinds of analysis are being performed over

the same model, these results are intended to highlight the contrast between them, not to act as a proper

comparison, as they are working towards instances from completely distinct universes.

While the difference between the response times obtained using SMT Solvers was minimal, the changes

made to the model using quantitative operators increased the problem size, making it more noticeable once

the scope increases significantly.

7.5. Performance Results 143

All in all, even though the response times of SMT solvers are higher, which is to be expected given the

wider domain in which the analysis is being performed, they are able to reach a solution in workable times.

FOOTBALL CHAMPIONSHIP Initially, the original setting for the scheduling of a football tournament is

considered (specification in Appendix A.2.1), solved with both SAT and SMT Solvers as presented in Table

7.2.

Football Championship
Team = 2 Game ≤ 2 Date ≤ 2 Team = 3 Game ≤ 6 Date ≤ 6 Team = 4 Game ≤ 12 Date ≤ 6

SAT

variables 213 1798 6380
primary variables 20 120 330

clauses 336 3246 12333
solving time 8.5 𝑚𝑠 19.33 𝑚𝑠 81 𝑚𝑠

SMT

function symbols 272 1883 7110
primary variables 22 123 334

assertions 288 1899 7126
solving time > 7 𝑚𝑖𝑛𝑢𝑡𝑒𝑠 → 𝑢𝑛𝑘𝑛𝑜𝑤𝑛 6 𝑠 2.17 𝑚𝑖𝑛𝑢𝑡𝑒𝑠

Table 7.2: Football Championship -- SAT versus SMT.

As expected, when handling the same kind of instances with both SAT and SMT solvers, the first are able

to reach an answer much faster. That is why, unless the increased expressiveness is required, performing

the usual Boolean analysis using SAT solvers should still be preferred whenever possible.

Afterwards, the previous conjecture that the re-definition of the model’s constraints using quantitative

invariants can help reduce the load on the solver, and consequently also help reaching a solution faster, is

put to test and the results of solving the adapted specification (see Appendix A.2.3) are displayed in Table

7.3.

Football Championship -- Quantitative Invariant
Team = 2 Game ≤ 2 Date ≤ 2 Team = 3 Game ≤ 6 Date ≤ 6 Team = 4 Game ≤ 12 Date ≤ 6

SMT

function symbols 248 1547 5478
primary variables 22 123 334

assertions 264 1563 5494
solving time 144.33 𝑚𝑠 3.9 𝑠 56.2 𝑠

Table 7.3: Quantitative adaptation of the Football Championship constraints.

And the hypothesis checks out! The number of function symbols and assertions in the assertion stack

were significantly reduced and the response times were almost cut in half; and, while with the initial version

the solver was struggling to find an instance for smaller scopes, now it was able to arrive at the desired

solution almost instantly.

7.5. Performance Results 144

Lastly, the benchmark evaluates the quantitative extension to the problem, enhanced with the 𝐻𝑖𝑠𝑡𝑜𝑟𝑦
relation. To establish a comparison, the same setting was modeled by taking advantage of the multirelations

library, encoding 𝐻𝑖𝑠𝑡𝑜𝑟𝑦 as a multirelation, presented in Appendix A.2.5. Using SAT solvers together with

the multirelations concepts, analogous instances as the ones obtained through Quantitative Alloy can be

determined, as exemplified in Figure 7.20.

Figure 7.20: An instance of the Football Championship case study using multirelations.

Table 7.4 then presents the statistics associated with solving the augmented scenario using Quantitative

Alloy (the model in Appendix A.2.4) and the previous specification taking advantage of SAT solvers.

Football Championship with History
Team = 2 Game ≤ 2 Date ≤ 2 Team = 3 Game ≤ 6 Date ≤ 6 Team = 4 Game ≤ 12 Date ≤ 6

SMT

function symbols 291 1620 5597
primary variables 28 131 344

assertions 312 1641 5618
solving time 260 𝑚𝑠 37 𝑠 55.88 𝑠

Team = 2 Game ≤ 2 Date ≤ 2
History/Head ≤ 4 Int = 4

Team = 3 Game ≤ 6 Date ≤ 6
History/Head ≤ 12 Int = 5

Team = 4 Game ≤ 12 Date ≤ 6
History/Head ≤ 24 Int = 6

SAT

multirelations

variables 550 3651 11147
primary variables 40 192 498

clauses 1318 9305 29033
solving time 13.5 𝑚𝑠 77 𝑚𝑠 650.5 𝑚𝑠

Table 7.4: Football Championship with the quantitative relation 𝐻𝑖𝑠𝑡𝑜𝑟𝑦.

Turns out that using the multirelations is advantageous for the scopes considered, which is not surprising,

as when this approach was studied previously, together with the power of SAT solvers, it was seen that it is

very effective to handle problems with a reduced number of quantitative relations and/or with low integer

values, that is, not requiring a very large integer scope to achieve the desired solutions, as it depends directly

on the maximum number of occurrences that the same tuple can occur within a given multirelation, in this

case, the scope of History/Head must be fixed, which is required to be at least high enough to represent

the maximum number of times that a team can either win or lose, as well as requiring an integer scope as

high or even higher, so that measuring the value of the number of edges of some tuples and operations

between them can be evaluated into accurate results, that is, avoiding integer overflow. Nevertheless, even

7.5. Performance Results 145

though the response times were slower using Quantitative Alloy, they are still admissible and usable in

practice. But given the choice, the user has the freedom to decide which approach should be preferred

taking the circumstances of the problem at hand into account.

BUNDLING The last example seen under the domain of integer values is the bundling model.

In a first phase, the original commands considered in (Sun et al., 2016) were studied, with fixed values

of 𝐵𝑢𝑛𝑑𝑙𝑒, 𝐼𝑡𝑒𝑚, 𝐶𝑎𝑡𝑒𝑔𝑜𝑟𝑦 and 𝐵𝑒𝑙𝑜𝑛𝑔𝑠𝑇𝑜. This scenario, specified in the Appendixes A.5.1 and A.5.2,
was solved using the SAT and SMT solvers respectively, whose results are presented in Table 7.5.

Bundling
Contains/Head = 6

BelongsTo/Head = 3 Result/Head = 20
check Contains/Head = 6

BelongsTo/Head = 3 Result/Head = 20

SAT

multirelations

variables 6583 6709
primary variables 340 342

clauses 15821 15966
solving time 116.33 𝑚𝑠 359.83 𝑚𝑠

for 10 check for 10 int

SMT

function symbols 150 159
primary variables 23 25

assertions 159 197
solving time 39.5 𝑚𝑠 37.5 𝑚𝑠

Table 7.5: Bundling example performance.

In this case, the quantitative Alloy extension performs better than using SAT solvers. Furthermore, in the

case of the check command, it has the advantage of reaching a conclusion about the whole N0 domain

associated with the weights, with respect to the scope of the universe only, while in the multirelations case,

the number of possible arcs is upper bounded by the number of ℎ𝑒𝑎𝑑𝑠 of the spans imposed in the scope,
in this case, for example, 6 Contains/Head means that only instances where the weight of each tuple

within the relation 𝐶𝑜𝑛𝑡𝑎𝑖𝑛𝑠 does not exceed 6 are considered.

Next, this example is further studied in more general terms, solving the Alloy specifications presented in

Appendixes A.5.3 and A.5.4 instead, having obtained the data displayed in Table 7.6.

One of the downsides of the multirelations library is that its performance is reliant on a low number of

ℎ𝑒𝑎𝑑 atoms in the universe, that is, a low value of tuple weights. Solving this model over greater scopes

requires a greater number of ℎ𝑒𝑎𝑑𝑠 to properly be able to reach valid instances as well as an integer scope
high enough to handle the number of arcs of each relation, exploding the problem size and thus, taking too

big of a tool on the SAT solver, making it unusable in practice.

On the other hand, the quantitative extension is not impacted nearly as heavily when given greater problem

sizes, by not requiring such big leaps on the scope, proving to be more scalable, with the added advantage

of also working over unbounded non-negative integers by default.

7.5. Performance Results 146

Bundling -- Generalized
Bundle = 3 Item = 5 Category = 3

Contains/Head = 10 BelongsTo/Head = 10
Result/Head = 10 Int = 6

Bundle = 5 Item = 10 Category = 3
Contains/Head = 30 BelongsTo/Head = 30

Result/Head = 30 Int = 6

Bundle = 10 Item = 20 Category = 5
Contains/Head = 40 BelongsTo/Head = 40

Result/Head = 50 Int = 8

SAT

multirelations

variables 14703 193751 591348
primary variables 468 3003 7185

clauses 39662 580468 1850412
solving time 5.5 𝑠 > 35 minutes without response --

Bundle = 3 Item = 5 Category = 3 Bundle = 5 Item = 10 Category = 3 Bundle = 10 Item = 20 Category = 5

SMT

function symbols 353 779 2978
primary variables 53 116 390

assertions 357 779 2968
solving time 139.17 𝑚𝑠 453.17 𝑚𝑠 6.1 𝑠

Table 7.6: Stats of solving the generalized bundling example.

SPRINKLER Moving on to the probabilistic context, this benchmark evaluates how well Alloy is able to

find unknown 𝑠𝑝𝑟𝑖𝑛𝑘𝑙𝑒𝑟s of the Bayesian Network considered with respect to some property, in this case,
depending on the probability of the grass being wet. Table 7.7 contains the details obtained after solving the

model presented in Appendix A.3.4 with respect to each property.

Bayesian Network -- Unknown sprinkler

any sprinkler 𝑃(𝑔 = 1) = 50% 𝑃(𝑔 = 1) ≥ 90% 𝑃(𝑔 = 1) < 20%
function symbols 185 204 204 204
primary variables 33 33 33 33

assertions 203 222 222 222
solving time 44.33 𝑚𝑠 42 𝑚𝑠 48.17 𝑚𝑠 49.83 𝑚𝑠

Table 7.7: Finding different 𝑠𝑝𝑟𝑖𝑛𝑘𝑙𝑒𝑟s.

Alloy is able to determine 𝑠𝑝𝑟𝑖𝑛𝑘𝑙𝑒𝑟s which obey to the constraints imposed rather quickly.
On a similar note, the previous example considered in Section 6.5 to showcase probabilistic contracts was

also analysed, to see how the tool responds when attempting to find an input distribution that either serves

as a counterexample for a check command or that makes the contract hold with a desired probability.

Then, after taking the specification in Appendix A.4, Alloy was able to find 𝛿s in the timeframe presented in
Table 7.8.

Measure contract {𝑏2} {𝑎1, 𝑎2}
𝑓

oo

check ≥ 90% run = 78.3% run > 78.3% run < 78.3%
function symbols 89 86 86 86
primary variables 15 15 15 15

assertions 95 93 93 93
solving time 23.33 𝑚𝑠 24.33 𝑚𝑠 25 𝑚𝑠 24.33 𝑚𝑠

Table 7.8: Testing Alloy when finding 𝛿s for the probabilistic contract considered.

7.6. Summary 147

Like when finding 𝑠𝑝𝑟𝑖𝑛𝑘𝑙𝑒𝑟s, the tool arrives at suitable 𝛿s in very low response times.

Both probabilistic objects of study result in small Alloy models structurally, as their main interest is

precisely about the properties that arise from the weights of the relations’ tuples. Thus, taking these

results and the ones from the previous case studies into account, one can come to the conclusion that the

performance of the quantitative extension depends more on the universe size, the scope, rather than the

intricate numeric values associated, being able to effectively calculate the values that meet the quantitative

properties imposed.

In the end, through this benchmark one is able to come to the conclusion that Quantitative Alloy pulls up

its own weight against the competition, being practical and performing the solving process in reasonable

amounts of time or even faster than the comparisons, for all the problems considered. Moreover, these

results suggest a rule of thumb when choosing between which kind of analysis to be executed:

1. If SAT solvers possesses enough expressiveness to solve the model, then the user should prefer

Boolean analysis.

2. Instead, if the model contains quantitative information and thus, SAT solvers cannot be used:

2.1. F = N0, does the model display a reduced amount of quantitative relations and a bounded

range of integers suffices to properly analyse it? Then, if the multirelations library can be used

to model the problem, applying it and solving the specification using SAT solvers should be

preferred.

2.2. For probabilistic settings or integer problems in general or of greater size, which include multiple

quantitative relations and/or require a greater integer range or even unbounded integers to

verify the desired properties, then the quantitative extension of Alloy will perform the best.

7.6 SUMMARY

Throughout this chapter we recall the case studies previously presented and attempt to solve them using

the quantitative extension of Alloy implemented:

• It extracts bibliometrics from the already existing model of a bibliographic system;

• Within the football tournament scenario, suitable agendas are found using quantitative solving; a

requirement is modeled in a cleaner way through the quantitative capabilities of the extension; the

quantitative relation 𝐻𝑖𝑠𝑡𝑜𝑟𝑦 is specified using Alloy and further instances of the championship

schedule, together with the number of victories and defeats of each team, are found;

• The Bayesian Network is successfully encoded as an Alloy model, which is further used to calculate

interesting probabilities both by algebraically means and through probabilistic results like the Bayes’

7.6. Summary 148

theorem; use the tool to find conditional probability tables for certain nodes that meet some desired

properties; model and measure a probabilistic contract over this network to calculate the probability

of a certain property.

Furthermore, the enhanced tool is used to also handle the seasonal sales example presented in (Sun

et al., 2016), modeled before by the authors using multirelations concepts.

Finally, the chapter ends with a benchmark evaluating the performance of the extension compared to the

original Alloy and against the related work studied in Section 3.2.1, as well as how it behaves on its own

when handling domains for which neither of the previous can be applied.

8

CONC LU S I O N

This final chapter looks back and evaluates the progress made over the initial aim to perform quantitative

solving using Alloy, the groundwork laid to accomplish this and the actual Quantitative Alloy extension

developed. Such conclusions are followed by a prospect of future work on what needs to be done to push

these ideas forward.

8.1 CONCLUSIONS

Enriched with the quantitative extension proposed and implemented in this dissertation, Alloy is not only

capable of providing answers to satisfiability problems within the usual Boolean setting, but also over

inherently quantitative scenarios, now offering capabilities to analyse measurable information. By being able

to perform quantitative solving of Alloy specifications on demand, the tool becomes applicable to problems

of the kind addressed in so-called quantitative formal method.

Taking Category Theory and Typed Linear Algebra to form the mathematical framework of this dissertation

proved to be a good choice, as both blend well with the Alloy characteristics, while at the same time

being capable of bringing out the quantitative side into the original design. By shifting from 𝑅𝑒𝑙 to 𝑀𝑎𝑡,
+-idempotency was effectively avoided, and thus the main obstacle of quantification using Alloy was removed.

As shown in Chapter 2, expressing relations and relational concepts through typed linear algebra allowed

for quantitative reasoning seamlessly, under both categories of matrices composed by natural numbers

𝑀𝑎𝑡N0
and left-stochastic matrices 𝐿𝑆 as well. Such a theory was successfully put into practice in Chapter

4, where it was applied to the Bibliometrics (with 𝑀𝑎𝑡N0
) and Sprinkler (using 𝐿𝑆) case studies.

The increase of expressiveness implicit in the planned quantitative Alloy extension led to several several

design choices concerning extending components of Kodkod and Alloy. Chapter 5 addresses the most

important ones. By studying different examples and case studies, confidence increased about such decisions.

In particular, model specification and further analysis was accomplished (as seen in Chapter 7) in a way

resembling that of standard Alloy, potentially easing the learning curve that Alloy users might experience

when attempting to perform quantitative analysis through the proposed Alloy extension.

149

8.1. Conclusions 150

In order to operate over the new kinds of values, Kodkod requires equally expressive structures to support

them. For that, alongside with numeric matrices, Numeric Circuits were established to reason over the

numeric values and operations/formulas over them. These circuits arose from the existing Compact Boolean

Circuits, and proved to be adequate. In particular, they are able to handle CBCs, that is, help the quantitative

solving of Kodkod problems that arise from existing Alloy models and, at the same time, include new kinds

of values and operators to represent quantitative expressions.

Unfortunately, after shifting into the quantitative realm, previously existing optimization techniques over

Boolean problems and CBCs are no longer fully applicable. In particular, translation-level optimizations like

caching mechanisms during the assembly process is achieved for NCs as well, but symmetry break and

skolemizing techniques, which act at the circuit level and, consequently, at the level of the specification that

will be generated to be solved by the suitable solver, are not.

The latter are used to optimize both the main formula and bounds of the Kodkod problem before being

translated into a CBC. Specifically, symmetry break first detects the problem’s symmetries and then includes

a predicate within the circuit to eliminate those symmetries to make the solver avoid finding isomorphic

solutions at a structural level. Simply put, given a solution, further solutions that can be transformed into the

previous by swapping the atoms/tuples around are ignored. Also, as mentioned when the Numeric Circuits

were introduced, currently their assembly process does not ensure partial canonicity, meaning that shared

components are not being actively detected and further optimized, like in the Kodkod Boolean analysis

procedure.

With the help of the numeric structures implemented, nearly every part of the Kodkod abstract syntax was

successfully characterized under quantitative semantics, save for the (reflexive) transitive closure operator,

which is currently implemented analogously to its qualitative counterpart, by the matrix addition of an

incremental number of compositions of the relation 𝑅 at hand �̂� = 𝑀 + 𝑀 ⋅ 𝑀 + 𝑀 ⋅ 𝑀 ⋅ 𝑀 + ...,
with 𝑀 = J𝑅K, through iterative squaring, which does not necessarily work on the quantitative domain.

Moreover, the Kodkod syntax was successfully augmented with the new operations to aid with the

quantitative specification process, taking advantage of the acquired expressiveness, like the addition of

𝑑𝑟𝑜𝑝, relational comparison using inequality operators, and so on.
Having built a Numeric Circuit from the given Kodkod problem, the next step is to construct an adequate

specification from it, to be later fed into the correspondent quantitative solver.

SMT SOLVER Generating an equivalent SMT2-LIB specification from the NC considered was achieved

seamlessly, which in turn is solved with respect to the theory of integers (logic QF_NIA), possessing

enough expressiveness to pass the judgement of the circuit encoded within the desired domain.

SMT Solvers perform exceptionally, being able to handle the 𝑀𝑎𝑡N0
and arrive at a response in

usable times (as seen in the benchmark presented in Section 7.5), synergizing with the Alloy nature,

with which one is able to find solutions on demand. It is capable of incremental solving, allowing for

efficient solution enumeration, as desired, since Alloy provides the user with the capability of iterating

8.1. Conclusions 151

over solutions freely. While CVC4 is the only SMT Solver currently integrated, it was implemented in

a flexible way so that more SMT Solvers can be easily supported in the future.

In the initial plans SMT solving was going to be used only when handling systems over natural

numbers. However, given how well it conformed to both the theoretical framework and the Numeric

Circuits, it exceeded the initial expectations and was able to deal with probabilistic scenarios as well,

simply by taking the theory of reals (fragment QF_NRA) as the background theory, and bounding the

primary variables to the [0, 1] interval.

In conclusion, SMT Solvers can be effectively used under both quantitative domains considered.

PRISM Sadly, PRISM does not hit the mark nearly as well as SMT solvers do.

Deriving a PRISM model from a NC goes well, as the language possesses enough expressiveness

to encode the kind of expressions considered. Problems arise once the model needs to be solved.

It turns out that PRISM does not cope well to the model finding nature of Alloy. In the translation

implemented, every primary variable gives origin to a PRISM constant representing a probability and

there lies the problem: while the interest is to calculate such probabilities, PRISM itself does not

model check models with unknown constants, even though it provides mechanisms to work around

it, and that is where the SolvingModes presented in Section 6.1 come into play:

• Experiments allow the user to define a range of possible values that each unknown constant can

assume with respect to a certain step, meaning that every possible combination of the values

that each primary variable can be assigned will be taken as a possible solution, which will be

subject to an instance of model checking. Therefore, if the problem is composed by 𝑉 primary

variables, each with the same number of possible values 𝑁, the experiment will create a total

of 𝑁𝑉 model checking instances! Growing exponentially on the number of primary variables is

unfeasible: even in the previous benchmark (Section 7.5), depending on the scope, the number

of primary variables ranged between 15 and 599. Even if one assumes a “big” step, e.g., 0.1,
and if every variable can range over [0, 1], in the smallest example 1115 instances of model

checking are created, which is an unbearable amount already, making it unusable in practice.

• Parametric Model Checking would be ideal but, unfortunately, at the time of writing this

technique only supports very specific kinds of PRISM models. Moreover, while the model

developed in Section 4.1.3 could be subject to PMC, the model generated automatically from

the NC does not meet the conditions to do so.

• The last option, and the one adopted, is to attempt a random solution from the 𝑁𝑉 solution

space at a time (instead of consecutively, like when using experiments), and hope that it is

lucky enough to find a satisfiable one. Given that experiments and PMC cannot be used and

8.1. Conclusions 152

the property to be model checked is qualitative, is the reason why SINGLE_QUALITATIVE

has to be the SolvingMode used by default.

Therefore, as this implementation does not really take advantage of the quantitative capabilities of

PRISM nor its features to the fullest, the numeric structures used and the translation considered also

do not mesh well with it, especially compared with SMT, currently there is no reason to use PRISM

over SMT solving for probabilistic scenarios, since SMT fits with the typed linear algebra approach

much better.

After finding a solution, Kodkod is capable of extracting the information from the quantitative solver,

including the satisfiability outcome – SAT, UNSAT or UNKNOWN (if a SMT Solver is used) – and, in case

the problem is deemed satisfiable, the data used to create an adequate Kodkod instance, also taking

into account the quantitative information. Furthermore, after finding an instance, the Kodkod Evaluator

was properly adapted to be able to calculate the value of a (quantitative) expression with respect to the

quantitative instance, through the assembly process of a constant Numeric Circuit.

Finally, the quantitative extension of Alloy and the Alloy Analyzer was accomplished by conforming to

Quantitative Kodkod:

• The Alloy language was also adapted to provide the user with ways to specify quantitative constraints,

including giving access to the extended abstract syntax of Kodkod.

• The correspondence between a quantitative Alloy specification and a suitable quantitative Kodkod

problem was fully established.

• Integer scope was adapted to, rather than representing the integer bit width (as this is no longer

needed) also provide the modeler with another tool, now specifying the maximum weight that any

tuple of any instance is allowed to assume when checking a specific command. This is useful to

reduce the size of the solution space, if needed.

• Alloy’s engine is able to interpret the solutions provided by Kodkod, store its outcomes and represent

the instances found using adequately adapted Alloy structures to include the quantitative information.

• During the solving process, the tool is able to report to the user the context-specific details and statistics

associated with the problem and the quantitative solvers, analogously to its Boolean counterpart.

• The Analyzer’s Evaluator is immediately adapted to the quantitative context, by integrating the

quantitative extension of the Kodkod Evaluator.

• As shown in Figures 6.2, 6.3 and 6.4, the Text, Table and Viz representations of Alloy instances

within the Alloy Visualizer were successfully adapted to portray the quantitative details. However, the

8.2. Prospect for Future Work 153

adaptation of the table representation is not foolproof in the current implementation, not being able

to properly display the information for some specific kinds of instance.

Having put the extension developed to the test by applying it to the case studies considered for this project

(see Chapter 7), one was able to come to the conclusion that the extension was successfully able to meet all

the objectives associated with each case, as the tool is now capable of extracting measurable data implicitly

from new and existing Alloy models alike, quantitative constraints can be explicitly imposed, probabilistic

analysis can be performed and even the use of probabilistic contract concepts can be taken advantage of.

Even though there is room for this implementation to grow, the current version is already able to perform

the solving in reasonable amounts of time, yet slower than SAT solvers when used over the same qualitative

problems (as expected). Nevertheless, it performs well in quantitative settings, e.g. when compared with the

alternative use of SAT solvers combined with the multirelations approach (studied in Section 3.2.1).

Altogether, this project has made a contribution to put the scalable modeling lemma “keep definition,

change category” (Oliveira and Miraldo, 2016) into practice by enabling shifting over 𝑀𝑎𝑡N0
and 𝐿𝑆,

performing quantitative analysis on both domains and ultimately ending up with a working Quantitative Alloy,

usable on various kinds of problems that could not be analysed before.

8.2 PROSPECT FOR FUTURE WORK

The work described in this dissertation raised a number of research issues that should be addressed in future

research polishing and improving the proposed quantitative extension and making it reach new heights.

In Section 7.1, the encoding of 𝑍 sparked interest over a kind of matrix different from those considered

throughout the dissertation: matrices of non-negative real numbers 𝑀𝑎𝑡R+
0
. Given the success of such a

setting to still encode the Bibliometrics case study properly, while also being able to represent 𝑍 as intended

under real numbered values, it motivates that 𝑀𝑎𝑡R+
0
should be studied more in-depth. Moreover, perhaps

R+
0 could be added as a new quantitative analysis domain for Alloy, whose models may reasonably be

handled by SMT Solvers using the theory of real numbers. Furthermore, it could be interesting to explore

which other kinds of matrix could potentially be used to strengthen Alloy’s power, as well as which solvers

might be able to deal with values of that nature.

As seen in Section 2.2, some 𝑅𝑒𝑙 operations could not be immediately shifted into 𝑀𝑎𝑡 in a definitive
way. Table 2.2 displays the definitions adopted for some of these operations. Further semantics for these

constructs should be explored. One is, for instance, the probabilistic interpretation of 𝑅 ∩ 𝑆 (“intersection

of two left-stochastic matrices”) or, on closer inspection, the meaning of “the intersection of two probabilities

for the same event”.1

1 As there are multiple ways of relating probabilities in order to make sure which one is more useful or better suited, this needs more research.

8.2. Prospect for Future Work 154

In a similar vein, Section 5.5 describes the semantics of the Hadamard division between numeric matrices

together with the way division by zero is handled taking into account the numeric matrix representation

according to the bounds provided. Currently, division by zero is undefined, causing a potential instance

to be considered UNSAT. Consequently, when checking for the validity of an assertion, solutions in which

division by zero occurs do not register as valid counterexamples either. Alternatively, instead of deeming

division by zero unsatisfiable,
𝑥
0 = ∞ could be regarded, in practice, as the maximum integer/real value.

The impact of this decision on instances and counterexamples needs to be evaluated.

As concluded above, the implementation decisions taken in Chapter 5 were deemed suitable to achieve

the quantitative extension, as the positive results obtained in several case studies show. Nevertheless, one

can only be certain of this once more case studies are carried out, possibly revealing shortcomings. Besides,

alternative ways of implementing the same component should be benchmarked, so as to choose the “best”

one in terms of problem size, response time, and so on.

Different interpretations for the same construct that arise from the shift into a more expressive domain

could also be integrated in parallel, in case they prove to be optimization points of the quantitative extension.

For example, the current implementation conventions that Alloy signatures keep being represented by Boolean

matrices, due to the impact of lifting them to numeric matrices instead, already thoroughly discussed in

Chapter 5.

Nonetheless, perhaps by adding a signature described by a numeric matrix as new kind of sig, alongside

the currently implemented (maybe through a new keyword), could improve this extension on different levels.

Vice versa, the same line of reasoning could be done with fields, instead of having to explicitly constraint

𝑅 = 𝑑𝑟𝑜𝑝 𝑅 to work with 𝑅 under 𝑀𝑎𝑡B (as exemplified in Section 6.5), giving the modeler the option to

declare an Alloy field as Boolean explicitly.

Note that such additions do not increase the expressive power of Alloy, as both unary relations with tuple

weights outside the Boolean range and relations characterized by Boolean matrices under a quantitative

setting can be represented. Although it would, at the very least, save the user from the extra steps needed

to specify such relations, promoting the framework’s usability, providing a seamless transition for the regular

Alloy user, and the clarity of quantitative specifications. Potentially, it would also allow for a more efficient

generation of the constraints associated to these constructs, reducing the load on the solver and improving

the performance of the tool overall.

While the current implementation is performing well enough to be used in practice (see Section 7.5), the

performance of SMT Solvers and PRISM still do not come nowhere near that of the SAT solvers. Moreover,

this straightforward implementation of the assembly of Numeric Circuits, unlike its Boolean counterpart, as

mentioned before, does not perform problem optimizations by symmetry breaking and skolemizing during

quantitative analysis. Therefore, it would be of great interest to research how these could be extended to the

quantitative realm. This is especially important since, in general, due to the wide range of values that are

8.2. Prospect for Future Work 155

now being considered for each primary variable during analysis, it is already harder to reach a conclusion,

in contrast to the binary possible value of each literal within a SAT solving setting.

On a similar note, the current concept of Numeric Circuit does not correspond to a full extension of

Compact Boolean Circuit. Thus, it would be useful to explore how to achieve compaction of the Numeric

Circuit, so that it is also able to detect common components of the circuit and further optimize the problem

at hand.

To fully complete the quantitative shift in the Kodkod syntax, a proper quantitative semantics for (reflexive)

transitive closure needs to be found. Moreover, the matrix representation of numeric expressions also

needs to be adjusted so that, besides being able to explicitly represent any value from the (infinite) domains

over which quantitative analysis is performed as is currently implemented, more than one value can be

represented at a time within the same numeric matrix.

Concerning SMT Solvers, one could attempt to design potential new theories and/or logical fragments

that better accommodate to the typed linear algebra reasoning, Numeric Circuits, or even to the Kodkod

abstract syntax itself, in order to reduce response times when handling problems under both 𝑀𝑎𝑡N0
and

𝐿𝑆. Moreover, the tool’s engine can be enriched by integrating further SMT Solvers that abide to the SMT-LIB
standard, through the SMTSolver interface (presented in Section 6.1).

When it comes to PRISM, there is a lot of room for improvement of the current implementation:

• Find ways to reduce the solution space significantly, to make features like experiments usable in

practice.

• Explore and fine-tune the solving options to optimize the model checking process taking into account

the structure of the model that is being generated automatically.

• Investigate new numeric structures that would better suit the kind of models that PRISM deals with

and further adapt the translation into an adequate PRISM model accordingly.

Above all, ensure that the resulting PRISM model abides to the requirements necessary to be subject

to useful quantitative solving features offered by PRISM (e.g. parametric model checking).

• Since PRISM struggles with the model finding component, maybe combining the usage of PRISM

together with an SMT Solver could bring great results.

By taking advantage of an SMT Solver to determine an instance or reduce the solution space (e.g.

outline the intervals of acceptable values that satisfy the model’s constraints), PRISM could then be

used to verify more complex probabilistic properties with respect to such instance, namely, properties

that could not otherwise be verified using SMT solving only.

• Electrum (Macedo et al., 2016) is an Alloy extension to support the verification of temporal properties

(LTL/CTL) over Alloy models. If the performance problems associated with PRISM can be resolved,

8.2. Prospect for Future Work 156

perhaps the latter could be used in a similar fashion to handle the probabilistic version of temporal

properties (PCTL*) in Alloy, whose logic is already innately supported within PRISM.

For clarity, instead of keeping the same nomenclature pattern Int (e.g. IntConstant, IntExpression,

...) for every numeric value/expression/... which is generalized in practice, being evaluated under either

integers, natural numbers or real numbers (probabilities) depending on the analysis context, there is the need

to clean up the abstract syntax to properly delimit the different kinds of numeric values at both Kodkod and

Alloy level. More, extend both the Alloy and Kodkod AST to explicitly be able to specify probabilities, instead

of having to be defined by the division between two whole real numbers as in the current implementation.

With the increased expressiveness provided by working over quantitative domains, besides the new

operators added to the Alloy language, further useful ones should be explored and implemented in Alloy

(and consequently, in Kodkod if necessary) to increase both the specification flexibility and the verification

power of the tool.

The Khatri-Rao product, as discussed in Section 7.3, could not be properly implemented as intended, due

to the kind of structures used within Kodkod. Managing this product in the desired manner is challenging.

In a similar vein, now that Alloy possesses enough expressiveness to handle probabilistic contracts, one

should add support to the measurement calculus of any probabilistic contract in general, rather than the

modeler having to explicitly define it at specification-level for every different contract.

Finally, to improve the analysis process and the interaction with the Alloy Analyzer, its GUI can be adjusted

and extended, adding quality of life features:

• Fully extend all the visualization types within the Alloy Visualizer to the quantitative context and explore

new and alternative ways of better presenting the quantitative information to the user.

• Provide the user more control over the SMT Solvers and PRISM, by adding other configurations

to the customizable solving preferences, for example, being able to choose between the different

computation methods and model checking algorithms provided by PRISM, managing the quantitative

solver’s memory usage and so on.

• Implement better ways of manipulating a relation’s weights or even adding syntactic sugar to the

specification of known integer/probabilistic values in the Alloy specification.

• Research into scenario exploration (Macedo et al., 2015) operations for quantitative environments.

For instance, during instance enumeration, add the option to skip those which only change in

weights, that is, force the solver to ignore solutions which coincide when perceived from the Boolean

point-of-view.

• After solving a model under 𝑀𝑎𝑡N0
with no integer scope specified, detect which tuples can have

their weight freely varying over an infinite subset of N0 in the upcoming instances, and inform the

8.2. Prospect for Future Work 157

user of those tuples. If desired, allow the modeler to also fix the value of the weights associated with

them, to prevent potential uninteresting instances, where only those primary variables are changing

indefinitely.

• When an UNKNOWN response is produced by the SMT Solver, give the user the option of taking a

shot in the dark by fixing the weight of some tuple(s), to help the solver arrive at a (UN)SAT response,

with respect to the fixed values.

Hopefully, after going over these objectives in the future, one will end up with Quantitative Alloy as a

rather sophisticated and powerful quantitative formal method.

B I B L I O G R A PH Y

Israa AlAttili, Fred Houben, Georgeta Igna, Steffen Michels, Feng Zhu, and Frits W. Vaandrager. Adaptive

scheduling of data paths using uppaal tiga. In Andova et al. (2009), pages 1–11. doi: 10.4204/EPTCS.

13.1. URL https://doi.org/10.4204/EPTCS.13.1.

Suzana Andova, Annabelle McIver, Pedro R. D’Argenio, Pieter J. L. Cuijpers, Jasen Markovski, Carroll Morgan,

and Manuel Núñez, editors. Proceedings First Workshop on Quantitative Formal Methods: Theory and

Applications, QFM 2009, Eindhoven, The Netherlands, 3rd November 2009, volume 13 of EPTCS, 2009.

doi: 10.4204/EPTCS.13. URL https://doi.org/10.4204/EPTCS.13.

Zoe Andrews. Towards a stochastic event-b for designing dependable systems. 07 2009.

Marco Baroni and Roberto Zamparelli. Nouns are vectors, adjectives are matrices: Representing adjective-

noun constructions in semantic space. In Proceedings of the 2010 Conference on Empirical Methods

in Natural Language Processing, pages 1183–1193, Cambridge, MA, October 2010. Association for

Computational Linguistics. URL https://www.aclweb.org/anthology/D10-1115.

Clark Barrett, Christopher L. Conway, Morgan Deters, Liana Hadarean, Dejan Jovanovi’c, Tim King, Andrew

Reynolds, and Cesare Tinelli. CVC4. In Ganesh Gopalakrishnan and Shaz Qadeer, editors, Proceedings

of the 23rd International Conference on Computer Aided Verification (CAV ’11), volume 6806 of Lecture

Notes in Computer Science, pages 171–177. Springer, July 2011. URL http://www.cs.stanford.

edu/~barrett/pubs/BCD+11.pdf. Snowbird, Utah.

Clark Barrett, Pascal Fontaine, and Cesare Tinelli. The Satisfiability Modulo Theories Library (SMT-LIB).

www.SMT-LIB.org, 2016.

Marco Bernardo. Markovian testing equivalence and exponentially timed internal actions. In Andova et al.

(2009), pages 13–25. doi: 10.4204/EPTCS.13.2. URL https://doi.org/10.4204/EPTCS.13.2.

Richard S. Bird and Oege de Moor. Algebra of programming. Prentice Hall International series in computer

science. Prentice Hall, 1997. ISBN 978-0-13-507245-5.

Stephen Cook and David Mitchell. Finding hard instances of the satisfiability problem: A survey. 35, 01

2000.

158

https://doi.org/10.4204/EPTCS.13.1
https://doi.org/10.4204/EPTCS.13
https://www.aclweb.org/anthology/D10-1115
http://www.cs.stanford.edu/~barrett/pubs/BCD+11.pdf
http://www.cs.stanford.edu/~barrett/pubs/BCD+11.pdf
https://doi.org/10.4204/EPTCS.13.2

bibliography 159

Leonardo de Moura, editor. Automated Deduction - CADE 26 - 26th International Conference on Automated

Deduction, Gothenburg, Sweden, August 6-11, 2017, Proceedings, volume 10395 of Lecture Notes in

Computer Science, 2017. Springer. ISBN 978-3-319-63045-8. doi: 10.1007/978-3-319-63046-5. URL

https://doi.org/10.1007/978-3-319-63046-5.

Leonardo de Moura and Nikolaj Bjørner. Z3: An efficient smt solver. In C. R. Ramakrishnan and Jakob

Rehof, editors, Tools and Algorithms for the Construction and Analysis of Systems, pages 337–340,

Berlin, Heidelberg, 2008. Springer Berlin Heidelberg. ISBN 978-3-540-78800-3.

Bruno Dutertre. Yices 2.2. In Armin Biere and Roderick Bloem, editors, Computer Aided Verification, pages

737–744, Cham, 2014. Springer International Publishing. ISBN 978-3-319-08867-9.

Niklas Eén and Niklas Sörensson. An extensible sat-solver. In Enrico Giunchiglia and Armando Tacchella,

editors, Theory and Applications of Satisfiability Testing, pages 502–518, Berlin, Heidelberg, 2004.

Springer Berlin Heidelberg. ISBN 978-3-540-24605-3.

M. J. Frade. Propositional logic & sat solvers, February 2019a. HASLab - INESC TEC, Departamento de

Informática, Universidade do Minho.

M. J. Frade. First-order logic & theories, February 2019b. HASLab - INESC TEC, Departamento de Informática,

Universidade do Minho.

M. J. Frade. Smt solvers, February 2019c. HASLab - INESC TEC, Departamento de Informática, Universidade

do Minho.

Vijay Ganesh and David L. Dill. A decision procedure for bit-vectors and arrays. In Werner Damm and

Holger Hermanns, editors, Computer Aided Verification, 19th International Conference, CAV 2007, Berlin,

Germany, July 3-7, 2007, Proceedings, volume 4590 of Lecture Notes in Computer Science, pages

519–531. Springer, 2007. doi: 10.1007/978-3-540-73368-3_52. URL https://doi.org/10.

1007/978-3-540-73368-3_52.

Friedrich Gretz, Nils Jansen, Benjamin Lucien Kaminski, Joost-Pieter Katoen, Annabelle McIver, and

Federico Olmedo. Conditioning in probabilistic programming. CoRR, abs/1504.00198, 2015. URL

http://arxiv.org/abs/1504.00198.

Jun Gu, Paul Purdom, John Franco, and Benjamin Wah. Algorithms for Satisfiability (SAT) problem: a survey,

volume 35, pages 19–152. 12 1997. doi: 10.1090/dimacs/035/02.

D. Jackson. Software Abstractions: Logic, Language, and Analysis. The MIT Press, Cambridge Mass., 2012.

Revised edition, ISBN 0-262-01715-2.

https://doi.org/10.1007/978-3-319-63046-5
https://doi.org/10.1007/978-3-540-73368-3_52
https://doi.org/10.1007/978-3-540-73368-3_52
http://arxiv.org/abs/1504.00198

bibliography 160

Susmit Jha, Rhishikesh Limaye, and Sanjit A. Seshia. Beaver: Engineering an efficient smt solver for

bit-vector arithmetic. In Ahmed Bouajjani and Oded Maler, editors, Computer Aided Verification, pages

668–674, Berlin, Heidelberg, 2009. Springer Berlin Heidelberg. ISBN 978-3-642-02658-4.

Yousef Kilani, Mohammad Bsoul, Ayoub Alsarhan, and Ahmad Al-Khasawneh. A survey of the satisfiability-

problems solving algorithms. International Journal of Advanced Intelligence Paradigms, 5:233–256, 09

2013. doi: 10.1504/IJAIP.2013.056447.

M. Kwiatkowska, G. Norman, and D. Parker. PRISM 4.0: Verification of probabilistic real-time systems.

In G. Gopalakrishnan and S. Qadeer, editors, Proc. 23rd International Conference on Computer Aided

Verification (CAV’11), volume 6806 of LNCS, pages 585–591. Springer, 2011.

Daniel Le Berre and Anne Parrain. The sat4j library, release 2.2. Journal on Satisfiability, Boolean

Modeling and Computation, 7:59–64, 2010. ISSN 1574-0617. doi: 10.3233/SAT190075. URL

https://doi.org/10.3233/SAT190075. 2-3.

Yongming li. Quantitative model checking of linear-time properties based on generalized possibility measures.

Fuzzy Sets and Systems, 320:17–39, 08 2017. doi: 10.1016/j.fss.2017.03.0120165.

Junyi Liu, Bohua Zhan, Shuling Wang, Shenggang Ying, Tao Liu, Yangjia Li, Mingsheng Ying, and Naijun

Zhan. Formal verification of quantum algorithms using quantum hoare logic. In Isil Dillig and Serdar

Tasiran, editors, Computer Aided Verification, pages 187–207, Cham, 2019. Springer International

Publishing. ISBN 978-3-030-25543-5.

Nuno Macedo, Alcino Cunha, and Tiago Guimarães. Exploring scenario exploration. In Proceedings of the

18th International Conference on Fundamental Approaches to Software Engineering. Springer, Springer,

2015.

Nuno Macedo, Julien Brunel, David Chemouil, Alcino Cunha, and Denis Kuperberg. Lightweight specification

and analysis of dynamic systems with rich configurations. In Proceedings of the 2016 24th ACM SIGSOFT

International Symposium on Foundations of Software Engineering, FSE 2016, page 373–383, New York,

NY, USA, 2016. Association for Computing Machinery. ISBN 9781450342186. doi: 10.1145/2950290.

2950318. URL https://doi.org/10.1145/2950290.2950318.

S. MacLane. Categories for the Working Mathematician. Springer-Verlag, 1971.

Paulo Mateus and Amilcar Sernadas. Reasoning about quantum systems. volume 3229, pages 239–251,

09 2004. doi: 10.1007/978-3-540-30227-8_22.

Baoluo Meng, Andrew Reynolds, Cesare Tinelli, and Clark W. Barrett. Relational constraint solving in SMT. In

de Moura (2017), pages 148–165. ISBN 978-3-319-63045-8. doi: 10.1007/978-3-319-63046-5_10.

URL https://doi.org/10.1007/978-3-319-63046-5_10.

https://doi.org/10.3233/SAT190075
https://doi.org/10.1145/2950290.2950318
https://doi.org/10.1007/978-3-319-63046-5_10

bibliography 161

Aleksandar Milicevic and Daniel Jackson. Preventing arithmetic overflows in alloy. In John Derrick, John

Fitzgerald, Stefania Gnesi, Sarfraz Khurshid, Michael Leuschel, Steve Reeves, and Elvinia Riccobene,

editors, Abstract State Machines, Alloy, B, VDM, and Z, pages 108–121, Berlin, Heidelberg, 2012.

Springer Berlin Heidelberg. ISBN 978-3-642-30885-7.

David Monniaux. A survey of satisfiability modulo theory. 06 2016.

Ukachukwu Ndukwu. Quantitative safety: Linking proof-based verification with model checking for probabilistic

systems. In Andova et al. (2009), pages 27–39. doi: 10.4204/EPTCS.13.3. URL https://doi.org/

10.4204/EPTCS.13.3.

Aina Niemetz, Mathias Preiner, and Armin Biere. Boolector 2.0. J. Satisf. Boolean Model. Comput., 9(1):

53–58, 2014. doi: 10.3233/sat190101. URL https://doi.org/10.3233/sat190101.

Libero Nigro and Paolo Sciammarella. Qualitative and quantitative model checking of distributed probabilistic

timed actors. Simulation Modelling Practice and Theory, 87, 07 2018. doi: 10.1016/j.simpat.2018.07.

011.

J.N. Oliveira. Towards a linear algebra of programming. FAoC, 24(4-6):433–458, 2012a.

J.N. Oliveira. Measuring probabilistic contracts, Feb 2017a. Presented at IFIP WG 2.1 #75 Meeting,

Montevideo, 20-24 Feb (slides available from the 2.1 website.).

J.N. Oliveira and H. Macedo. The data cube as a typed linear algebra operator. In Proc. of the 16th

Int. Symposium on Database Programming Languages, DBPL ’17, page 6:1–6:11, New York, NY,

USA, 2017. ACM, ACM. ISBN 978-1-4503-5354-0. doi: 10.1145/3122831.3122834. URL http:

//doi.acm.org/10.1145/3122831.3122834. n/a.

José N. Oliveira. Typed linear algebra for weigthed (probabilistic) automata. In Nelma Moreira and Rogério

Reis, editors, Implementation and Application of Automata, pages 52–65, Berlin, Heidelberg, 2012b.

Springer Berlin Heidelberg. ISBN 978-3-642-31606-7.

José Nuno Oliveira and Victor Cacciari Miraldo. ”keep definition, change category” - A practical approach

to state-based system calculi. J. Log. Algebr. Meth. Program., 85(4):449–474, 2016. doi: 10.1016/j.

jlamp.2015.11.007. URL https://doi.org/10.1016/j.jlamp.2015.11.007.

José N. Oliveira. Going quantitative in software modeling. TRUST 2nd Workshop, 2017b.

José N. Oliveira. Program Design by Calculation. 2019. Draft of textbook in preparation, current version:

Oct. 2019. Informatics Department, University of Minho.

Dave Parker. Probabilistic model checking, 2011. Department of Computer Science, University of Oxford.

https://doi.org/10.4204/EPTCS.13.3
https://doi.org/10.4204/EPTCS.13.3
https://doi.org/10.3233/sat190101
http://foswiki.cs.uu.nl/foswiki/IFIP21/Uruguay
http://doi.acm.org/10.1145/3122831.3122834
http://doi.acm.org/10.1145/3122831.3122834
https://doi.org/10.1016/j.jlamp.2015.11.007

bibliography 162

solid IT. Db-engines ranking, 2020. URL https://db-engines.com/en/ranking/. [Online; accessed

29-January-2020].

Peiyuan Sun, Zinovy Diskin, Michał Antkiewicz, and Krzysztof Czarnecki. Modeling and reasoning with multire-

lations, and their encoding in alloy. In 16th International Workshop in OCL and Textual Modeling, 10/2016

2016. URL http://oclworkshop.github.io/2016/papers/OCL16_paper_10.pdf.

Alfred Tarski and Steven Givant. A Formalization of Set Theory without Variables. American Mathematical

Society, December 1987. doi: 10.1090/coll/041. URL https://doi.org/10.1090/coll/041.

Maurice H. ter Beek, Annabelle McIver, and José N. Oliveira, editors. Formal Methods - The Next 30 Years

- Third World Congress, FM 2019, Porto, Portugal, October 7-11, 2019, Proceedings, volume 11800

of Lecture Notes in Computer Science, 2019. Springer. ISBN 978-3-030-30941-1. doi: 10.1007/

978-3-030-30942-8. URL https://doi.org/10.1007/978-3-030-30942-8.

Emina Torlak and Daniel Jackson. The design of a relational engine emina torlak and. 2006.

Emina Torlak and Daniel Jackson. Kodkod: A relational model finder. In Orna Grumberg and Michael Huth,

editors, Tools and Algorithms for the Construction and Analysis of Systems, pages 632–647, Berlin,

Heidelberg, 2007. Springer Berlin Heidelberg. ISBN 978-3-540-71209-1.

Hao Wang and Wendy MacCaull. Verifying real-time systems using explicit-time description methods. In

Andova et al. (2009), pages 67–78. doi: 10.4204/EPTCS.13.6. URL https://doi.org/10.4204/

EPTCS.13.6.

Wikipedia contributors. Bayesian network — Wikipedia, the free encyclopedia. https://en.wikipedia.

org/w/index.php?title=Bayesian_network&oldid=926429150, 2019. [Online; accessed

19-December-2019].

https://db-engines.com/en/ranking/
http://oclworkshop.github.io/2016/papers/OCL16_paper_10.pdf
https://doi.org/10.1090/coll/041
https://doi.org/10.1007/978-3-030-30942-8
https://doi.org/10.4204/EPTCS.13.6
https://doi.org/10.4204/EPTCS.13.6
https://en.wikipedia.org/w/index.php?title=Bayesian_network&oldid=926429150
https://en.wikipedia.org/w/index.php?title=Bayesian_network&oldid=926429150

A
L I S T I N G S

A.1 BIBLIOMETRICS

A.1.1 Alloy Model

sig Keyword, Medium{}

sig Author{ Q : set Keyword }

sig Paper{

C : set Paper,

K : set Keyword,

A : set Author,

m : one Medium,

S : set Keyword

}

fact{

no C & iden

S = K & ~C.K

Q = ~A.S

}

A.1.2 Quantitative Alloy Model

sig Keyword, Medium{}

163

A.1. Bibliometrics 164

sig Author{

Q : set Keyword,

Z : set Keyword

}

sig Paper{

C : set Paper,

K : set Keyword,

A : set Author,

m : one Medium,

S : set Keyword

}

fact{

no C & iden

drop S = K & ~C.K

all p : Paper, k : Keyword |

(p -> k) in S implies #(p <: S.k) = #(p <: (~C.K).k)

Q = ~A.S

Z = Q fun/div (Author -> Paper).S

drop K = K

drop A = A

drop C = C

}

A.1.3 Quantitative Instance

---INSTANCE---

integers={1}

univ={1, Author$0, Author$1, Author$2, Keyword$0, Keyword$1, Keyword$2,

Keyword$3, Keyword$4, Keyword$5, Medium$0, Medium$1, Paper$0, Paper$1,

A.1. Bibliometrics 165

Paper$2, Paper$3, Paper$4, Paper$5, Paper$6, Paper$7, Paper$8, Paper$9}

Int={1}

seq/Int={}

String={}

none={}

this/Keyword={Keyword$0, Keyword$1, Keyword$2, Keyword$3, Keyword$4,

Keyword$5}

this/Medium={Medium$0, Medium$1}

this/Author={Author$0, Author$1, Author$2}

this/Author<:Q={(Author$0->Keyword$0,3), (Author$0->Keyword$1,1),

(Author$0->Keyword$2,2), (Author$0->Keyword$4,1), (Author$1->Keyword$0,6),

(Author$1->Keyword$1,6), (Author$1->Keyword$2,4), (Author$1->Keyword$4,16),

(Author$1->Keyword$5,2), (Author$2->Keyword$0,6), (Author$2->Keyword$1,3),

(Author$2->Keyword$2,2), (Author$2->Keyword$4,1)}

this/Paper={Paper$0, Paper$1, Paper$2, Paper$3, Paper$4, Paper$5, Paper$6,

Paper$7, Paper$8, Paper$9}

this/Paper<:C={

Paper$0->Paper$3, Paper$0->Paper$5, Paper$0->Paper$8, Paper$1->Paper$0,

Paper$1->Paper$2, Paper$1->Paper$6, Paper$1->Paper$8, Paper$2->Paper$0,

Paper$2->Paper$8, Paper$3->Paper$0, Paper$3->Paper$7, Paper$4->Paper$2,

Paper$4->Paper$3, Paper$4->Paper$5, Paper$4->Paper$7, Paper$5->Paper$7,

Paper$6->Paper$0, Paper$6->Paper$1, Paper$6->Paper$2, Paper$6->Paper$3,

Paper$6->Paper$5, Paper$6->Paper$7, Paper$6->Paper$9, Paper$7->Paper$4,

Paper$7->Paper$5, Paper$7->Paper$8, Paper$8->Paper$0, Paper$8->Paper$2,

Paper$8->Paper$3, Paper$8->Paper$5, Paper$8->Paper$6, Paper$8->Paper$7,

Paper$9->Paper$2, Paper$9->Paper$7, Paper$9->Paper$8}

this/Paper<:K={Paper$0->Keyword$0, Paper$0->Keyword$1, Paper$0->Keyword$2,

Paper$0->Keyword$4, Paper$0->Keyword$5, Paper$1->Keyword$0,

Paper$1->Keyword$3, Paper$1->Keyword$4, Paper$2->Keyword$1,

Paper$2->Keyword$2, Paper$2->Keyword$4, Paper$3->Keyword$0,

Paper$3->Keyword$1, Paper$3->Keyword$2, Paper$4->Keyword$0,

Paper$4->Keyword$4, Paper$4->Keyword$5, Paper$5->Keyword$0,

Paper$5->Keyword$1, Paper$6->Keyword$2, Paper$6->Keyword$4,

Paper$7->Keyword$1, Paper$8->Keyword$0, Paper$8->Keyword$4,

Paper$8->Keyword$5, Paper$9->Keyword$0, Paper$9->Keyword$1,

Paper$9->Keyword$4}

A.2. Football Championship 166

this/Paper<:A={Paper$0->Author$1, Paper$1->Author$1, Paper$1->Author$2,

Paper$2->Author$1, Paper$3->Author$0, Paper$3->Author$2, Paper$4->Author$0,

Paper$4->Author$1, Paper$5->Author$2, Paper$6->Author$1, Paper$7->Author$1,

Paper$8->Author$1, Paper$9->Author$0}

this/Paper<:m={Paper$0->Medium$1, Paper$1->Medium$0, Paper$2->Medium$0,

Paper$3->Medium$1, Paper$4->Medium$1, Paper$5->Medium$0, Paper$6->Medium$0,

Paper$7->Medium$0, Paper$8->Medium$1, Paper$9->Medium$0}

this/Paper<:S={(Paper$0->Keyword$0,3), (Paper$0->Keyword$1,2),

(Paper$0->Keyword$2,3), (Paper$0->Keyword$4,4), (Paper$0->Keyword$5,1),

(Paper$1->Keyword$4,1), (Paper$2->Keyword$1,1), (Paper$2->Keyword$2,1),

(Paper$2->Keyword$4,5), (Paper$3->Keyword$0,3), (Paper$3->Keyword$1,1),

(Paper$3->Keyword$2,2), (Paper$5->Keyword$0,3), (Paper$5->Keyword$1,2),

(Paper$6->Keyword$4,2), (Paper$7->Keyword$1,3), (Paper$8->Keyword$0,3),

(Paper$8->Keyword$4,4), (Paper$8->Keyword$5,1), (Paper$9->Keyword$4,1)}

A.2 FOOTBALL CHAMPIONSHIP

A.2.1 Alloy Model

sig Team{}

sig Date{}

sig Game{

home : one Team,

away : one Team,

date : one Date,

s : one Game

}

fact{

--(a) No team can play two games on the same date;

(away + home) . ~(away + home) & date . ~date in iden

--(b) All teams play against each other but not against themselves

~home . away = (Team -> Team) - iden

A.2. Football Championship 167

--(c) For each home game there is another game away

-- involving the same two teams

away . ~away & home . ~home in iden

-- Game isomorphism

s = away . ~home & home . ~away

}

A.2.2 SMT2-LIB Specification

(set-logic QF_UFLIA)

...

(declare-const g111 Int)

(declare-const g112 Int)

...

; Non-negativity constraints

(assert (>= g111 0))

(assert (>= g112 0))

...

; No team can play two games on the same date

; Team 1, Date 1

(assert (<= (+ g111 g121 g131 g141 g211 g311 g411) 1))

...

; All teams play against each other but not against themselves

; Team 1

(assert (= (+ g111 g112 g113 g114 g115 g116) 0))

; Game: Team 1 (home) vs Team 2 (away)

(assert (>= (+ g121 g122 g123 g124 g125 g126) 1))

...

; For each home game there is another game away

; involving the same two teams

; Team 1 and Team 2

(assert

(=

A.2. Football Championship 168

(+ g121 g122 g123 g124 g125 g126)

(+ g211 g212 g213 g214 g215 g216)

)

)

...

(declare-const w1 Int)

(declare-const w2 Int)

...

(declare-const l1 Int)

(declare-const l2 Int)

...

(declare-const w12 Int)

(declare-const w13 Int)

...

(declare-const l12 Int)

(declare-const l13 Int)

...

; Non-negativity constraints

(assert (>= w12 0))

(assert (>= w13 0))

...

; Team 1

(assert

(=

(+ w1 l1)

(+

g111 g112 g113 g114 g115 g116

g121 g122 g123 g124 g125 g126

g131 g132 g133 g134 g135 g136

g141 g142 g143 g144 g145 g146

g211 g212 g213 g214 g215 g216

g311 g312 g313 g314 g315 g316

g411 g412 g413 g414 g415 g416

)

)

)

A.2. Football Championship 169

...

(assert (= w1 (+ w12 w13 w14)))

...

(assert (= l1 (+ l12 l13 l14)))

...

(assert (= w12 l21))

(assert (= w13 l31))

(assert (= w14 l41))

...

(assert

(=

(+ w12 l12)

(+

g121 g122 g123 g124 g125 g126

g211 g212 g213 g214 g215 g216

)

)

)

...

(check-sat)

(get-model)

...

A.2.3 Alloy Model using Quantitative Invariants

sig Team{}

sig Date{}

sig Game{

home : one Team,

away : one Team,

date : one Date,

s : one Game

}

A.2. Football Championship 170

fact{

--(a) No team can play two games on the same date;

~(away + home) . date <= Team -> Date

--(b) All teams play against each other but not against themselves

~home . away = (Team -> Team) - iden

--(c) For each home game there is another game away

-- involving the same two teams

away . ~away & home . ~home in iden

-- Game isomorphism

s = away . ~home & home . ~away

}

assert oneGameDate{ (away + home) . ~(away + home) & date . ~date in iden }

check oneGameDate

for exactly

2 Team,

2 Game,

2 Date

check oneGameDate

for exactly

3 Team,

6 Game,

6 Date

check oneGameDate

for exactly

4 Team,

12 Game,

6 Date

A.2. Football Championship 171

A.2.4 Quantitative Alloy Model with Quantitative Relations

sig Team{ History : set Result }

sig Date{}

sig Game{

home : one Team,

away : one Team,

date : one Date,

s : one Game

}

abstract sig Result{}

one sig Win, Lose extends Result{}

fact{

--(a) No team can play two games on the same date;

~(away + home) . date <= Team -> Date

--(b) All teams play against each other but not against themselves

~home . away = (Team -> Team) - iden

--(c) For each home game there is another game away

-- involving the same two teams

away . ~away & home . ~home in iden

-- Game isomorphism

s = away . ~home & home . ~away

-- There is a winner for every loser

#History.Win = #History.Lose

-- Every team either wins or loses each game in which they take part

all t : Team | #(home + away).t = #t.History

}

A.2. Football Championship 172

A.2.5 Alloy Model with Multirelations

open multi

open mrel[Team, Result] as History

one sig Unit{}

sig Team{}

sig Date{}

sig Game{

home : one Team,

away : one Team,

date : one Date,

s : one Game

}

abstract sig Result{}

one sig Win, Lose extends Result{}

fact{

(away + home) . ~(away + home) & date . ~date in iden

~home . away = (Team -> Team) - iden

away . ~away & home . ~home in iden

s = away . ~home & home . ~away

#History/get :> Win = #History/get :> Lose

all t : Team | #(home + away).t = #t.History/get

}

A.3. Sprinkler 173

A.3 SPRINKLER

A.3.1 Initial Scenario

dtmc

module rain

r : [0..2] init 2;

[] r=2 -> 0.8 : (r' = 0) + 0.2 : (r' = 1);

[] r=0 | r=1 -> (r'=r);

endmodule

module sprinkler

s : [0..2] init 2;

[] r=0 & s=2 -> 0.4 : (s' = 1) + 0.6 : (s' = 0);

[] r=1 & s=2 -> 0.01 : (s' = 1) + 0.99 : (s' = 0);

[] s=0 | s=1 -> (s'=s);

endmodule

module grass

g : [0..2] init 2;

[] s=0 & r=0 & g=2 -> (g'=0);

[] s=0 & r=1 & g=2 -> 0.8 : (g' = 1) + 0.2 : (g' = 0);

[] s=1 & r=0 & g=2 -> 0.9 : (g' = 1) + 0.1 : (g' = 0);

[] s=1 & r=1 & g=2 -> 0.99 : (g' = 1) + 0.01 : (g' = 0);

[] g=0 | g=1 -> (g'=g);

endmodule

A.3.2 Unknown Sprinkler

dtmc

A.3. Sprinkler 174

module rain

r : [0..2] init 2;

[] r=2 -> 0.8 : (r' = 0) + 0.2 : (r' = 1);

[] r=0 | r=1 -> (r'=r);

endmodule

const double s10;

const double s01;

module sprinkler

s : [0..2] init 2;

[] r=0 & s=2 -> s10 : (s' = 1) + (1-s10) : (s' = 0);

[] r=1 & s=2 -> (1-s01) : (s' = 1) + s01 : (s' = 0);

[] s=0 | s=1 -> (s'=s);

endmodule

module grass

g : [0..2] init 2;

[] s=0 & r=0 & g=2 -> (g'=0);

[] s=0 & r=1 & g=2 -> 0.8 : (g' = 1) + 0.2 : (g' = 0);

[] s=1 & r=0 & g=2 -> 0.9 : (g' = 1) + 0.1 : (g' = 0);

[] s=1 & r=1 & g=2 -> 0.99 : (g' = 1) + 0.01 : (g' = 0);

[] g=0 | g=1 -> (g'=g);

endmodule

A.3.3 Alloy Model of a Bayesian Network

one sig Unit{ rain : one R }

abstract sig R{

sprinkler : one S,

A.3. Sprinkler 175

grass : S set -> one G

}

one sig Rain, NoRain extends R{}

abstract sig S, G{}

one sig On, Off extends S{}

one sig Wet, Dry extends G{}

fact{

//rain

#(Unit.rain :> Rain) = div[2, 10]

//sprinkler

#(NoRain.sprinkler :> On) = div[4, 10]

#(Rain.sprinkler :> On) = div[1, 100]

//grass

one Off.(NoRain.grass) :> Dry

#(Off.(Rain.grass) :> Dry) = div[2, 10]

#(On.(NoRain.grass) :> Dry) = div[1, 10]

#(On.(Rain.grass) :> Dry) = div[1, 100]

}

A.3.4 Bayes’ Theorem in Alloy

one sig Unit{ rain : one R }

abstract sig R{

sprinkler : one S,

spID : one RS

}

one sig Rain, NoRain extends R{}

A.3. Sprinkler 176

abstract sig S, G{}

one sig On, Off extends S{}

one sig Wet, Dry extends G{}

// S x R

abstract sig RS{

grass : one G

}

one sig RainOff, RainOn, NoRainOff, NoRainOn extends RS{}

fact{

// rain

#(Unit.rain :> Rain) = div[2, 10]

// grass

one NoRainOff.grass :> Dry

#(RainOff.grass :> Dry) = div[2, 10]

#(NoRainOn.grass :> Dry) = div[1, 10]

#(RainOn.grass :> Dry) = div[1, 100]

// Khatri-Rao product

#(Rain.spID :> RainOn) = #(Rain.sprinkler :> On)

#(Rain.spID :> RainOff) = #(Rain.sprinkler :> Off)

#(NoRain.spID :> NoRainOn) = #(NoRain.sprinkler :> On)

#(NoRain.spID :> NoRainOff) = #(NoRain.sprinkler :> Off)

}

fun grassWet : G {

Unit.rain.spID.grass :> Wet

}

// Forwards reasoning: P(g = 1 | r = 1)

fun gwIfRain : G {

Rain.spID.grass :> Wet

}

A.3. Sprinkler 177

// Backwards reasoning through Bayes' theorem

// P(r = 1 | g = 1) = P(g = 1 | r = 1) * P(r = 1) / P(g = 1)

fun rainIfGW : Int {

mul[#gwIfRain, div[#(Unit.rain :> Rain), #grassWet]]

}

run{

// sprinkler

#(NoRain.sprinkler :> On) = div[4, 10]

#(Rain.sprinkler :> On) = div[1, 100]

}

A.3.5 Probabilistic Contract

one sig Unit{

rain : one R,

delta : one R

}

abstract sig R{

sprinkler : one S,

spID : one RS,

f : one SG

}

one sig Rain, NoRain extends R{}

abstract sig S, G{}

one sig On, Off extends S{}

one sig Wet, Dry extends G{}

abstract sig RS{

grass : one G

}

one sig RainOff, RainOn, NoRainOff, NoRainOn extends RS{}

A.3. Sprinkler 178

abstract sig SG{}

one sig OffDry, OffWet, OnDry, OnWet extends SG{}

fact{

#(NoRain.sprinkler :> On) = div[4, 10]

#(Rain.sprinkler :> On) = div[1, 100]

one NoRainOff.grass :> Dry

#(RainOff.grass :> Dry) = div[2, 10]

#(NoRainOn.grass :> Dry) = div[1, 10]

#(RainOn.grass :> Dry) = div[1, 100]

#(Rain.spID :> RainOn) = #(Rain.sprinkler :> On)

#(Rain.spID :> RainOff) = #(Rain.sprinkler :> Off)

#(NoRain.spID :> NoRainOn) = #(NoRain.sprinkler :> On)

#(NoRain.spID :> NoRainOff) = #(NoRain.sprinkler :> Off)

let gis = spID.grass {

#(NoRain.f :> OffDry)

= mul[#(NoRain.sprinkler :> Off), #(NoRain.gis :> Dry)]

#(NoRain.f :> OffWet)

= mul[#(NoRain.sprinkler :> Off), #(NoRain.gis :> Wet)]

#(NoRain.f :> OnDry)

= mul[#(NoRain.sprinkler :> On), #(NoRain.gis :> Dry)]

#(NoRain.f :> OnWet)

= mul[#(NoRain.sprinkler :> On), #(NoRain.gis :> Wet)]

#(Rain.f :> OffDry)

= mul[#(Rain.sprinkler :> Off), #(Rain.gis :> Dry)]

#(Rain.f :> OffWet)

= mul[#(Rain.sprinkler :> Off), #(Rain.gis :> Wet)]

#(Rain.f :> OnDry)

= mul[#(Rain.sprinkler :> On), #(Rain.gis :> Dry)]

#(Rain.f :> OnWet)

= mul[#(Rain.sprinkler :> On), #(Rain.gis :> Wet)]

}

A.4. Example of an Alloy Probabilistic Contract 179

}

fun grass_wet : SG{ OffWet + OnWet }

fun raining : R{ Rain }

fun measureContract : Unit{

delta.(f.grass_wet fun/mul raining) fun/div delta.raining

}

assert contract{

#measureContract = div[8019, 10000]

}

check contract

A.4 EXAMPLE OF AN ALLOY PROBABILISTIC CONTRACT

abstract sig A{ f : one B }

abstract sig B{}

one sig Unit{

delta : one A

}

one sig a1, a2, a3 extends A{}

one sig b1, b2 extends B{}

fact PF{

#(a1.f :> b1) = div[7, 10]

#(a2.f :> b1) = div[1, 100]

one a3.f :> b1

}

fun measureContract[p' : A, q' : B] : Int {

let p = drop p', q = drop q' | #delta.(f.q fun/mul p) fun/div #delta.p

A.5. Bundling 180

}

run knownDelta{

#(delta :> a1) = div[1, 10]

#(delta :> a2) = div[2, 10]

-- #(delta :> a3) = div[7, 10]

}

assert contract{

measureContract[a1 + a2, b2] >= 8 fun/div 10

}

check contract

A.5 BUNDLING

A.5.1 Alloy Specification using Multirelations

open multi

open mrel[Bundle, Item] as Contains

open mrel[Item, Category] as BelongsTo

open mrel[Bundle, Category] as Result

abstract sig Bundle {}

one sig B1, B2 extends Bundle {}

abstract sig Item {

belongsTo: set Category

}

one sig Bread, Butter, Milk extends Item {}

fact {

Bread.belongsTo = Bakery

Butter.belongsTo = Dairy

Milk.belongsTo = Dairy

}

abstract sig Category {}

A.5. Bundling 181

one sig Dairy, Bakery extends Category {}

fact {

BelongsTo/liftedFrom[belongsTo]

Result/composedFrom[Contains/get, BelongsTo/get]

all b : Bundle | #(b<:Result/get:>Dairy) >= 2

all b : Bundle | #(b.(drop[Result/get])) >= 2

}

assert AllHaveBread {

all b: Bundle | some drop[b<:Contains/get].Bread

}

run {} for 6 Contains/Head, 3 BelongsTo/Head, 20 Result/Head

check AllHaveBread for 6 Contains/Head, 3 BelongsTo/Head, 20 Result/Head

A.5.2 Quantitative Alloy Specification

abstract sig Bundle{

Contains : set Item,

Result : set Category

}

one sig B1, B2 extends Bundle {}

abstract sig Item{

BelongsTo : one Category

}

one sig Bread, Butter, Milk extends Item{}

abstract sig Category{}

one sig Dairy, Bakery extends Category {}

fact{

Result = Contains . BelongsTo

A.5. Bundling 182

Bread.BelongsTo = Bakery

Butter.BelongsTo = Dairy

Milk.BelongsTo = Dairy

all b : Bundle | #(b.Result :> Dairy) >= 2

all b : Bundle | #drop(b.Result) >= 2

}

assert AllHaveBread {

all b: Bundle | some drop(b <: Contains).Bread

}

check AllHaveBread for 10 Int

run{} for 10

A.5.3 Generalized Alloy Specification using Multirelations

open multi

open multirelations/mrel[Bundle, Item] as Contains

open multirelations/mrel[Item, Category] as BelongsTo

open multirelations/mrel[Bundle, Category] as Result

sig Bundle {}

sig Item { belongsTo: set Category }

sig Category {}

fact {

BelongsTo/liftedFrom[belongsTo]

Result/composedFrom[Contains/get, BelongsTo/get]

some c : Category | all b : Bundle | #(b<:Result/get:>c) >= 2

all b : Bundle | #(b.(drop[Result/get])) >= 2

}

A.5. Bundling 183

A.5.4 Generalized Quantitative Alloy Specification

sig Bundle{

Contains : set Item,

Result : set Category

}

sig Item{ BelongsTo : one Category }

sig Category{}

fact{

Result = Contains . BelongsTo

some c : Category | all b : Bundle | #(b <: Result :> c) >= 2

all b : Bundle | #drop(b.Result) >= 2

}

A.6. Benchmark 184

A.6 BENCHMARK

A.6. Benchmark 185

A.6. Benchmark 186

	1 Introduction
	1.1 Structure of the Dissertation

	2 Background
	2.1 First-order Relational Logic
	2.2 Typed Linear Algebra
	2.3 Boolean Satisfiability Problem
	2.4 Satisfiability Modulo Theories
	2.5 Probabilistic Model Checking
	2.6 Alloy
	2.7 Summary

	3 State of the Art
	3.1 Tools
	3.1.1 Satisfiability Modulo Theory Problem Solvers
	3.1.2 PRISM

	3.2 Related Work
	3.2.1 Encoding Multirelations in Alloy
	3.2.2 Relational Algebra and SMT Solvers

	3.3 Summary

	4 The Problem and its Challenges
	4.1 Case Studies
	4.1.1 Bibliometrics
	4.1.2 Football Championship
	4.1.3 Sprinkler

	4.2 Problem
	4.3 Proposed Approach - Solution
	4.3.1 System Architecture

	4.4 Summary

	5 Quantitative Kodkod
	5.1 Atoms and Relations
	5.2 Booleans Go Quantitative
	5.3 Numeric Structures
	5.4 Scope
	5.5 Numeric Circuit Assembly
	5.6 Summary

	6 Quantitative Alloy
	6.1 Kodkod
	6.2 Alloy and the Alloy Analyzer
	6.3 Project Structure
	6.4 Workflow
	6.5 Quantitative Alloy in Practice
	6.6 Summary

	7 Case Studies
	7.1 Bibliometrics
	7.2 Football Championship
	7.3 Sprinkler
	7.4 Bundling
	7.5 Performance Results
	7.6 Summary

	8 Conclusion
	8.1 Conclusions
	8.2 Prospect for Future Work

	A Listings
	A.1 Bibliometrics
	A.1.1 Alloy Model
	A.1.2 Quantitative Alloy Model
	A.1.3 Quantitative Instance

	A.2 Football Championship
	A.2.1 Alloy Model
	A.2.2 SMT2-LIB Specification
	A.2.3 Alloy Model using Quantitative Invariants
	A.2.4 Quantitative Alloy Model with Quantitative Relations
	A.2.5 Alloy Model with Multirelations

	A.3 Sprinkler
	A.3.1 Initial Scenario
	A.3.2 Unknown Sprinkler
	A.3.3 Alloy Model of a Bayesian Network
	A.3.4 Bayes' Theorem in Alloy
	A.3.5 Probabilistic Contract

	A.4 Example of an Alloy Probabilistic Contract
	A.5 Bundling
	A.5.1 Alloy Specification using Multirelations
	A.5.2 Quantitative Alloy Specification
	A.5.3 Generalized Alloy Specification using Multirelations
	A.5.4 Generalized Quantitative Alloy Specification

	A.6 Benchmark

