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A B S T R A C T

Process Mining is characterized by a group of techniques that aim to mine and analyze
event logs in an effort to extract patterns and useful insights regarding a business process,
allowing for a better and more efficient understanding of it.

This topic is sparking increasing interest in both academia and business contexts, which
results in fast advances in the algorithms being applied, as well as in the subjacent notations
used for process modeling. One of the most used notations for process modeling is Business
Processs Model and Notation (BPMN), being its expressiveness in representing processes
its strongest attribute. However, this notation reveals some flaws when dealing with some
specific contexts, struggling to model activity duration, quality control and activity effects
in context-specific resources. For this particular purpose, an extension named Business
Processs Model and Notation Extended Expressiveness (BPMN-E2) was developed to tackle
the limitations found on the original notation.

In this dissertation, a new conformance checking algorithm was developed focusing on
finding non-conformities between an event log and process models, taking into consideration
the new elements that BPMN-E2 has to offer. Fuelled by a few setbacks found during this
work, an event log clustering technique was also developed to downsize large event logs
without stripping its representativity.

Furthermore, the BPMN-E2 notation was used to model a real-life process and the
developed conformance checking algorithm was applied to illustrate its analytical potential.

Keywords: Process Mining, Conformance checking, Data-aware conformance checking,
event log, Process modelling, BPMN, BPMN-E2, Trace clustering, Cluster Analysis, Data
Mining
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R E S U M O

Process Mining caracteriza um conjunto de técnicas que permitem a mineração e análise de
event logs com o principal objetivo de extrair destes padrões e informações relevantes que
permitam uma melhor percepção e eficiência dos processos realizados num determinado
contexto.

Esta área tem verificado um interesse crescente, tanto em meio académico como em
meio empresarial, sendo notados avanços quer nos algoritmos de mineração utilizados,
quer nas notações subjacentes utilizadas para modelar processos. Uma das notações mais
utilizadas por profissionais e académicos é o Business Processs Model and Notation (BPMN)
devido à sua expressividade na representação de processos. No entanto, esta mesma
notação apresenta alguns inconvenientes quando é usada em determinados contextos, sendo
difícil representar, por exemplo, durações de atividades, controlo de qualidade e efeitos da
atividade nas características de um produto. Num esforço para resolver estes problemas,
foi desenvolvida uma extensão chamada Business Processs Model and Notation Extended
Expressiveness (BPMN-E2).

Neste projeto foi desenvolvido um novo algoritmo de conformance checking, tendo em
consideração a informação complementar oferecida pelo BPMN-E2. Motivada por alguns
contratempos durante o trabalho, uma técnica de clustering foi também desenvolvida para
reduzir o tamanho de event logs sem afetar a sua representatividade.

A notação BPMN-E2 foi também usada para modelar um processo real e o algoritmo de
conformance checking usado nesse contexto para ilustrar o seu potencial analítico.

Palavras-chave: Mineração de processos, Verificação de Conformidade, Verificação de
conformidade data-aware, Registo de eventos, Modelação de processos, BPMN, BPMN-E2,
Clustering de traços, Análise de clusters, Mineração de dados

v



C O N T E N T S

1 introduction 1

1.1 Motivation 1

1.2 Objectives 2

1.3 Dissertation layout 3

2 related work 4

2.1 Process Mining 4

2.1.1 Event logs and Process Mining perspectives 4

2.1.2 Conformance checking 5

2.1.3 Data-aware conformance checking 8

2.2 BPMN and BPMN-E2
9

2.3 Satisfiability Modulo Theories 10

2.4 Cluster Analysis 11

2.4.1 Distance measures 11

2.4.2 Hierarchichal clustering 12

2.4.3 Non-hierarchical clustering 12

2.4.4 Clustering in Process Mining 13

2.5 Summary 14

3 data-aware conformance checking 15

3.1 Design goals 15

3.2 Conversion phase 16

3.2.1 Directly follows Rules Model 16

3.2.2 SMT Solvers as conformance rules 17

3.2.3 Dealing with non-monitored activities 18

3.2.4 Associating rules to a DFRM 18

3.3 Conformance checking phase 20

3.4 Summary 22

4 event-based trace clustering for log reduction 23

4.1 Motivation 23

4.2 Vectorizing a trace 24

4.3 Clustering and sampling 24

4.4 Summary 26

5 implementation 27

5.1 Architecture 27

vi



contents vii

5.2 Main functionalities 29

5.2.1 Conversion 30

5.2.2 Conformance Checking 32

5.2.3 Event-based trace clustering for log reduction 33

5.3 Summary 34

6 proof of concept 35

6.1 Real-life use case 36

6.1.1 Event log 36

6.1.2 BPMN-E2 Process Model 37

6.1.3 Analyzing the results 39

6.2 Evaluation using synthetic data 42

6.2.1 Experimental setup 42

6.2.2 Conformance Checking evaluation 43

6.2.3 Event log reduction evaluation 45

6.3 Summary 46

7 conclusions and future work 47



L I S T O F F I G U R E S

Figure 1.1 BPMN documentation excerpt of Parenteral Nutrition (PN) mixtures
elaboration process. 2

Figure 1.2 Natural language documentation excerpt of PN mixtures elaboration
process. 2

Figure 2.1 Common structure of an event log [50]. 5

Figure 2.2 Types of Process Mining explained in terms of input and output
[48]. 6

Figure 2.3 BPMN core elements [25]. 9

Figure 3.1 Example of conversions from different BPMN-E2 extension elements.
Underscores (_) are used to distinguish between attributes belonging
to the source activity (prefix) and the target activity (suffix). 17

Figure 3.2 Rule association when event data is recorded at the start of an activ-
ity. 19

Figure 3.3 Rule association when event data is recorded at the end of an activ-
ity. 19

Figure 3.4 Rule association when event data is recorded at the start and at the
end of an activity. 20

Figure 3.5 Excerpt of a BPMN-E2 model, extended with advanced decision
points, activity durations and activity effects (left), and the respective
DFRM graph after conversion (right). 20

Figure 4.1 Stages of Event-based trace clustering for log reduction. Clustering stages
were taken from [24]. 25

Figure 5.1 Class diagram showing of the PM_BPMN_E2 library. 28

Figure 5.2 BPMNE2DiagramGraph class diagram . 30

Figure 5.3 DFRM class diagram. 31

Figure 6.1 Example of a conformance checking HTML report. 35

Figure 6.2 BPMN-E2 model of the road traffic fine management process. 38

Figure 6.3 Fitness values for each conformance rule. The results are colour-
coded, shades of green indicate satisfactory results while shades of
red indicate less than ideal results (with a threshold of 0.7). 39

Figure 6.4 Boxplot of the number of deviations per case. 40

Figure 6.5 Pie chart highlighting deviations per rule type. 41

Figure 6.6 Boxplot of duration for each duration-typed conformance rule. 41

viii



list of figures ix

Figure 6.7 Diagram ALL used during evaluation. Note that for each path,
despite the distinct number of activities the number of rules to test
was kept. 43

Figure 6.8 Evaluation heatmap. Execution time’s correlations are highlighted. 44

Figure 6.9 Conformance Checking errors after applying the event log reduc-
tion technique, using K-means (left) and DBSCAN (right) clustering
algorithms. 45



L I S T O F TA B L E S

Table 2.1 New elements introduced by the BPMN-E2 notation [40]. 10

Table 4.1 Excerpt of the event log used in Section 6. Used here to illustrate the
vectorization of event log traces. 24

Table 4.2 Vectorized traces extracted from Table 4.1, using the attributes amount,
dismissal, paymentAmount and expense. 24

Table 6.1 Excerpt of the road traffic fine management process’ event log. 36

Table 6.2 Rules extracted from process’ description. 37

Table 6.3 Evaluation results. 43

x



A C R O N Y M S

B

BPMN Business Process Model and Notation.

BPMN-E2 Business Process Model and Notation - Extended Expressiveness.

C

CSV Comma Separated Values.

D

DBSCAN Density-based Spatial clustering of applications with noise.

DFM Directly Follows Model.

DFRM Directly Follows Rules Model.

H

HACCP Hazard Analysis and Critical Control Points.

P

PN Parenterl Nutrition.

S

SMT Satisfiability Modulo Theories.

X

XES eXtensible Event Stream.

xi



1

I N T R O D U C T I O N

Nowadays, people and organizations are growing more dependant on technology and, as a
consequence, an increasing amount of data is constantly being collected [50]. Considering
this, today’s organizations aim to extract information and value from data stored in their
information systems to better improve their business and gain a competitive advantage over
other organizations [22, 27, 50]. Process Mining is a rather recent discipline that combines
data mining and process modeling to properly analyze the ever growing event data. It
aims to discover, monitor and improve real processes, by extracting meaningful insights
and knowledge from event logs [26, 49]. To do so, Process Mining relies on techniques that
can be grouped into one of three areas considering its intended purpose [48]: a) Discovery,
given an event log, produces a process model; b) Conformance Checking, given both an event
log and a process model, produces a report comparing the two and identifying possible
non-conformities between them; and c) Enhancement, given both an event log and a process
model, improves the latter with new information recorded on the former.

All of these techniques have been proven useful for many organizations that didn’t thought
possible the extraction of such valuable information out of their recorded logs [48]. In fact,
since its appearance, a community of over 60 organizations [26, 48] has been found with
members ranging from software vendors to research institutes [48]. In addition, several case
studies were conducted [35, 36, 41, 47], proving the usefulness of Process Mining on domains
such as Healthcare, Finance and IT.

Over the years, several Process Mining tools were built to help both academics and
business people better understand process models and "mine" useful information that
otherwise would not be discovered. Currently, some of the most relevant tools for Process
Mining are ProM [7], Disco [3], PM4py [6], Celonis [2].

1.1 motivation

Business Process Model and Notation - Extended Expressiveness (BPMN-E2) is an extension for
the BPMN notation language [38] that gives to the process model designer the possibility to
describe in a more detailed way the workflow behaviour, the activities being performed and

1



1.2. Objectives 2

the context of one particular process [40]. The necessity of a more context-aware approach
surfaced when dealing with process control environments, particularly Hazard Analysis and
Critical Control Points (HACCP) based environments where it is vital to ensure the safety
and security of products manufactured in a given industry (e.g., food, pharmaceutical or
cosmetics) [40]. In these scenarios, the business processes are explained in detail using both a
BPMN diagram and a natural language description that explains activity behaviour, quality
controls or how to proceed in case of hazards. An example of such a process description can
be found in Figure 1.1 and Figure 1.2.

Figure 1.1: BPMN documentation
excerpt of Parenteral
Nutrition (PN) mixtures
elaboration process.

Figure 1.2: Natural language documentation excerpt of PN
mixtures elaboration process.

With both a BPMN model and a natural language description, one has a rich and complete
representation of the business process, however, only the model can be used during Process
Mining tasks, which results in a loss of valuable information [40]. With this in mind,
the authors of the BPMN-E2 notation aimed to extend the BPMN element set with new
stereotypes that represent the most valuable information, formerly only present in natural
language documents.

1.2 objectives

Considering the previous discussion, the main goal of this dissertation is the development
of a new conformance checking algorithm, that takes into consideration the extended
expressiveness that the BPMN-E2 notation offers and builds a detailed report regarding
duration, side-effects, and control flow related non-conformities.
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To accomplish this primary goal, several secondary goals must be defined to assure the
success of the former. They are: a) identification and comprehension of the new elements
offered by the BPMN-E2 notation; b) study and comprehension of the state-of-the-art
algorithms used for conformance-checking purposes; c) development of a tool or plugin that
applies the new algorithm; d) evaluation of the algorithm’s performance and e) application
of the algorithm to a real life use case.

1.3 dissertation layout

This dissertation is organized in seven chapters.
The first chapter introduces Process Mining and explains the motivation behind this work,

as well as, its intended objectives.
The second chapter presents the related work on Process Mining, process modeling

(BPMN) and cluster analysis, introducing relevant concepts that inspired the remainder of
the work and, therefore, are essential for the remaining of the dissertation.

The third chapter explores the approach thought to accomplish the proposed objectives.
The main design goals are introduced and the several steps of the proposed conformance
checking algorithm are thoroughly explained.

The forth chapter introduces an event-based trace clustering technique aimed at reducing
the size of an event log. Although it diverges slightly from the conformance checking aspect
discussed until then, the proposal discussed in this chapter is, at is core, intended to reduce
execution time of the existing data-aware conformance checking techniques.

The fifth chapter focus on the implementation of the proposed algorithms. It introduces
the chosen programming language; highlights the main architectural choices and lists the
main functionalities of the developed library.

The sixth chapter evaluates the developed conformance checking algorithm by applying it
in the analysis of a real-life use case and testing its performance on synthetic event logs. The
developed clustering technique is also evaluated.

Finally, the seventh, and last chapter, concludes this document by summarising the work
done and exploring future work possibilities.



2

R E L AT E D W O R K

This chapter introduces and explains important concepts in the domains of: Process Mining,
namely event logs, perspectives, conformance checking and data-aware conformance-checking;
Process Modeling, focusing on the core notations of this dissertation, BPMN and BPMN-E2;
and cluster analysis.

At the same time, it explores the work and state-of-the-art techniques that have been
developed in the recent years regarding those same topics.

2.1 process mining

Nowadays, we find ourselves surrounded with IT systems that constantly collect and store
data about real-life events, such as, money withdrawal, social services appliances, tax
declaration’s submission, receipt’s emission and others [48].

Process Mining is a relative young research discipline that sits between Machine Learning
and Data Mining on the one hand, and Process Modeling and analysis on the other hand.
The idea of Process Mining is to discover, monitor and improve real processes (i.e., not
assumed processes) by extracting knowledge from event logs readily available in today’s
systems [48, 50].

Process Mining consists in a group of techniques that aim to extract knowledge from the
huge amount of event data being produced thus providing insights, identifying bottlenecks
and problems [48, 50], improving this way, both the organisation’s business processes and
the services offered to their clients.

2.1.1 Event logs and Process Mining perspectives

Process Mining is based on the assumption that it is possible to sequentially record events
such that each event refers to an activity (i.e., a well-defined step in some process) and
is related to a particular case (i.e., a process instance) [37, 48, 50], moreover a sequence of
activities is referred to as a trace.

4



2.1. Process Mining 5

Therefore an Event log is a multi-set of traces related to a particular business process. To be
properly analysed an event log must contain the following attributes [37]:

1. Case id, to identify the process instance being recorded;

2. Activity id, to identify the activity being performed;

3. Timestamp, to locate the activity in time, and provide order to the log.

Figure 2.1: Common structure of an event log [50].

Additional information can also be
stored, for example, the resource(s) per-
forming the activity or other relevant
data related to an activity (i.e., size of
an order, price of a product, type of cus-
tomer) [37,50]. Information such as this
can be proven of great value, allowing
for analysis from different perspectives
that complement the traditional control-
flow focused approaches.

The three most common perspectives
besides control-flow are [48, 50]:

• Organizational Perspective - Con-
cerns about the use of resources
and their relation. Structures
the organization by classifying re-
sources or showing the social net-
work;

• Time perspective - Concerns about the duration of the activities and the overall process.
Enables bottleneck discovery, service levels measurement, resource management, and
remaining case duration prediction;

• Case perspective - Concerns about properties about cases. These properties are com-
monly related to data elements that are relevant to the activities being performed.
Provides a deeper and more detailed view on cases and on the overall process.

2.1.2 Conformance checking

As can be seen in Figure 2.2, Process Mining techniques are divided into three types: a)
Discovery - techniques that take an event log and produces a process model based on it; b)
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Conformance Checking - techniques that takes both an event log and a process model and
produces a report to tackle non-conformities issues; and c) Enhancement - that produces a
new and enhanced model based on both an event log and a process model. The foundations
of this techniques are well established by the author Wil van der Aalst in [50], with new
approaches being developed based on them.

Figure 2.2: Types of Process Mining explained in terms of input and output [48].

Most of the research in Process Mining has mainly focused on discovery techniques,
neglecting the importance of conformance. Models must accurately represent the reality
of a process to provide trustworthy and effective decisions, however that is not always the
case, with models being wrongly constructed or becoming obsolete due to changes in the
business processes [37]. Conformance checking aims to pinpoint this deviations, enabling
either the correction of the model or the identification of process errors. To measure the level
of conformance between a model and an event log, one should be able to quantify how well
the model represents reality. For this purpose, there are four quality criteria that together
can be used to access the quality of a given model [9, 37, 50]:

1. Fitness - The model should allow for the behaviour seen in the event log;

2. Precision - The model should not allow for behaviour completely unrelated to what
was seen in the event log;

3. Generalization - The model should generalize the example behavior seen in the event
log;

4. Simplicity - The model should be as simple as possible (Occam’s razor).

Of the four, fitness is the most related criteria to conformance checking since it measures
the proportion of the event’s log valid behaviour according to the model [50]. Therefore,
most of the existing conformance checking techniques provide ways to compute this fitness
value.
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Token replay

Token replay fitness is calculated by replaying each trace of the event log on top of the
corresponding process model, while tracking all the situations where a transition was forced
to fire without being enabled [50] (i.e., a non-conformity) . For this purpose, four counters
are used:

1. Produced tokens - Counts the number of tokens that are produced by a transition;

2. Consumed tokens - Counts the number of tokens that are consumed by a transition;

3. Missing tokens - Counts the number of tokens that are missing when a transition needs
to be fired;

4. Remaining tokens - Counts the number of tokens that are yet to be consumed when
the trace ends.

This way, when comparing an event log with the correspondent process model the non-
conformities will be expressed by the missing and remaining tokens. A level of fitness can
be computed using the following equation:

f itness =
1
2

.(1− missing
consumed

) +
1
2

.(1− remaining
produced

)

Despite its simplicity, token based replayability has some shortcomings. In processes
where there are many deviations the model becomes “flooded with tokens” allowing for any
type of behaviour and therefore providing untrustworthy high levels of fitness. Moreover, if
a case does not fit, the approach does not attempt to create a corresponding path through the
model thus not providing a way to relate observed behaviour with modeled behaviour [50].

Alignment-based

An alignment between the event log and the process model indicates the most likely way that
a particular trace can be replayed in the model. To establish an alignment between process
model and event log we need to relate “moves” in the log to “moves” in the model [49]. A
move is a pair (x,y) where the first element refers to the log and the second element refers to
the model [50]. This way, an alignment is a sequence of moves, which can be:

1. Move in log - Denotes a move in the log, e.g., (a,�) represents an "a move" in the log,
not mimicked by the model.

2. Move in model - Denotes a move in the model, e.g., (�, a) represents an "a move" in the
model, not mimicked by the log.
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3. Move in both - Denotes a synchronous move, e.g., (a, a) represents an "a move" in both
the event log and the model.

It is important to note that, for a particular trace, there can be multiple alignments. The
aim is to find the optimal alignment, i.e., the shortest (or less costly) path between the start
and the end of the process [16,33]. Together, the optimal and worst alignment can be used to
compute the fitness of a trace regarding a process model, base on the following equations:

f itness = 1− cost of optimal alignment
cost of worst alignment

This way, the fitness for the entire log can be calculated using:

f itness = 1−
∑trace ε log cost of optimal alignment for trace

∑trace ε log cost of worst alignment for trace

2.1.3 Data-aware conformance checking

The lion’s share of Process Mining research focuses on control-flow, i.e., the ordering of
activities [18]. Therefore, the majority of the effort put on conformance-checking techniques
is pointing towards the control-flow perspective, ignoring other perspectives such as data,
resources and time [17]. This way, there can be a number of deviations that aren’t caught
during a conformance-checking task, e.g., activities that take longer than what is expected,
activities that should not be executed by a certain resource or activities that fail to make
specific changes.

Considering that focusing only on one perspective can lead to incomplete diagnosis, data-
aware (also called multi-perspective) conformance-checking techniques were developed [17–
19, 31]. In [17] a technique is proposed that extends control-flow alignments to incorporate
other perspectives by constructing an Integer Linear Programming (ILP) problem and
consequently solving it. In [31], a different approach is proposed using Compliance Rules
Graphs (CRG) [30] to declare a set of rules that the process execution must obey, each rule
is bound to an activity, thus enabling to pinpoint the cause of a violation. More recently,
in [28], Process Mining discovery and conformance approaches using Directly follows Models
were proposed, given its intuitiveness and simplicity; however, these techniques focused on
control-flow instead of data-flow. DFMs served as the baseline for the approach presented
in this dissertation (in Chapter 3), being extended with conformance rules to accommodate
data-aware conformance checking.
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2.2 bpmn and bpmn-e
2

To model a business process, with Process Mining tasks in mind, one should consider
which language to use (representational bias) ensuring that Process Mining techniques can be
executed flawlessly, without compromising the understandability of the results [26,48]. Over
the years, several process model notations where proposed, such as Petri nets, causal nets,
process trees and BPMN, being this the standard notation for business process modeling,
used by a variety of professionals in their everyday jobs (business analysts, product managers,
technical designers, system architects and more) [26]. For this reason, it is of great value
using BPMN to reduce representational bias for Process Mining, at least as a starting and
ending point [25], with conversions to and from more viable notations being made "under
the hood".

BPMN is a specification developed by the Business Process Management Initiative (BPMI).
Its primary goal is to provide a notation that is readily understandable by all business
users, from business analysts who create the initial drafts of the processes, to the technical
developers responsible for implementing the technology that will perform those processes,
and, finally, to the business people who will manage and monitor those processes. A
Business Process Model, then, is a network of graphical objects, which are activities (i.e.,
work) and the flow controls that define their order of performance [51].

Figure 2.3: BPMN core elements [25].

The BPMN notation provides a simple
and understandable mechanism for creating
business process models, being able to han-
dle the complexity inherent to business pro-
cesses. A BPMN diagram can be composed
by a number of graphical elements, depend-
ing on the domain and the process being
modeled. Nonetheless, there are six essen-
tial elements that together make the core of
a BPMN model (see Figure 2.3). These are:
a) Start Event, indicates where the process starts; b) End Event, indicates where the process
ends; c) Activity, work that a company performs; d) Sequence flow, shows the order of activ-
ities, i.e., how the process should flow; e) Parallel gateway, indicates concurrency between
activities; and f) Exclusive gateway, indicates exclusive decisions to be made. A list of other
more specific and complex elements can be found in [38] .

However, despite having a great support for process modeling, the BPMN notation has
some drawbacks when dealing with particular domains, namely HACCP systems [40]. For
this systems, two major issues where found:
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1. Difficulty in representing specific context details, complete workflow activities, and
the semantics of the path selection to be taken during a process instance. Temporal
features, identification of quality control and monitoring points and the effects of an
activity on the characteristics of a product can’t be modeled from a visual nor from a
machine-readable perspective.

2. Possible misleading conformance checking results when monitored and non-monitored
activities are present in the same model.

To solve this limitations, an already mentioned extension (BPMN-E2) was thought and
developed in [40] introducing several new human and machine readable elements that better
represent the contextual information of HACCP processes. Note that, despite the priority
given to HACCP systems, this notation can also be easily applied to other domains with the
same level of richness and expressiveness. In Table 2.1, there can be found the new elements
introduced by the BPMN-E2 notation.

Elements Definition Graphics

Monitoring
Point

Represents the measurement of a variable or a set
of variables in a specific point in the workflow.

Activity
Effect

Represents the activity effect, i.e., how the activity
affects a product or how it can change the product
characteristics.

Activity
duration

Represents an estimation of the expected execution
time of an activity.

Advanced
decision
point

Represents a decision point that allows to make
clear the reasons involved in a particular choice,
connecting the possible choices and paths with the
characteristics of the product and the measured
variables. It also distinguishes between Normal
(above) and Quality (bellow) decision points.

Table 2.1: New elements introduced by the BPMN-E2 notation [40].

These new elements allow for more detailed process models, considering new perspectives
that can be advantageous for both Process Modeling and Process Mining tasks.

2.3 satisfiability modulo theories

Satisfiability Modulo Theories (SMT) is the problem of deciding the satisfiability of a first-order
formula ϕ with respect to one or more decidable first-order background theory τ [13, 42]. A
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background theory constraints the interpretations of certain predicate and function symbols.
Simply speaking, an SMT problem for ϕ and τ is the question of whether there is a model
of τ that makes ϕ true.

An SMT solver is a program that implements the corresponding algorithms to automati-
cally determine whether a given formula is satisfiable [15]. An SMT solver distinguishes [11]:

• Underlying logic, e.g., first-order, modal, temporal, second-order...;

• Background theory, the theory against which satisfiability is checked;

• Input formulas, the class of formulas the solver accepts as input;

• Interface, the set of functionalities provided by the solver.

For this work, SMT solvers serve an essential role in the definition of a conformance rule
(see Chapter 3). Of all the existing background theories, this work’s focus will lie upon
Integer arithmetic, Real arithmetic and Arrays.

2.4 cluster analysis

Clustering is a technique that involves sorting cases or variables according to their similarity
on one or more dimensions, and producing groups that maximize within-group similarity
and minimize between-group similarity [23]. It has been used in several fields including
bioinformatics, industrial engineering, marketing, e-commerce and others [10], being used
as a exploratory tool to help researchers and organisations to handle large amounts of data.

Clustering methods can be arranged in two different categories: hierarchical and partitional,
each being composed of several individual algorithms with its own strengths and drawbacks.
In this dissertation clustering algorithms will be used to implement the event-based trace
clustering for log reduction technique presented in Section 4. In the following sections, we
will introduce and focus on K-Means and density-based spatial clustering of applications with
noise (DBSCAN) algorithms, since these were the ones used in this work. Nevertheless, this
technique can be extended to allow for other clustering algorithms

2.4.1 Distance measures

To group multidimensional data, one must be able to quantify the similarities between
each data point. Distance or similarity measures are therefore fundamental components in
clustering algorithms [39].
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The most used distance measure is the Euclidean distance, a special case of the Minkowski
metric [39] (where α = 2) defined as

dα (zu, zw) =

(
Nd

∑
j=1

(
zu,j − zw,j

)α

)1/α

= ‖zu − zw‖α (1)

When α = 1, the measure is referred to as the Manhattan distance [39]. Both the Euclidean
and the Manhattan measures are appealing [52] however using them to cluster data of high
dimensionality can prove ineffective because the distance between the patterns increases with
increase in dimensionality. On the other hand, the cosine distance (or vector dot product) -
sum of the product of each component from two vectors - is suitable for high dimensional
data [39]. There are several more distance measures that can be used for different types of
data. Interested readers are referred to [52].

2.4.2 Hierarchichal clustering

Hierarchichal clustering techniques are used to reveal nested structures of clusters within
the data [23]. These techniques generate a cluster tree by splitting clusters into smaller
ones (divisive) or merging clusters into larger ones (agglomerative) [23, 39]. Hierarchical
clustering requires the researcher to select a distance metric, which is a unit of measurement
for expressing the distances between cases. It also requires the researcher to select a way
of defining the link between clusters [23]. The advantages of hierarchical clustering are the
need not to specify the number of clusters a priori and its independence from the starting
conditions [39]. However, these algorithms are computationally expensive (time and space),
due to the usage and manipulation of the underlying cluster tree (or dendogram). This usually
makes hierarchical clustering inapt for larger datasets.

2.4.3 Non-hierarchical clustering

Non-hierarchical or partitional clustering, on the other hand, produces discrete clusters, by
dividing the dataset into a specified number of clusters [23, 39]. These techniques often
use an iterative algorithm that converge to an optimal value, trying to minimize a certain
criteria function locally (over a cluster) or globally (over the entire dataset) [24, 39]. Partional
clustering advantages are the disadvantages of Non-hierarchical clustering, however it requires
a pre-determined number of clusters that can largely impact the final results.

K-means, introduced in [32] is the most used partitional clustering algorithm. The aim of
K-means is to minimize intra-cluster distance [39]. With this method, initial cluster centroids
(values representing the average of each cluster on each variable) are manually or randomly
assigned. The algorithm then assigns cases to the cluster whose center is nearest, based on
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the Euclidean distance between them. Assigning the cases in this manner usually changes the
cluster centroids, and thus objects are reassigned to clusters and the centroids are updated
again. This process continues until no objects change their cluster memberships [23].

DBSCAN is a density based method which can identify arbitrary shaped clusters defined
as dense regions separated by low dense regions. DBSCAN starts with an arbitrary data
point of the dataset and checks for data points within a given radius (ε) [46]. A cluster is
formed if there are enough data points to do so, otherwise, the data point is marked as
noise. If a point is found to be a dense part of a cluster, its ε-neighbours are also part of
that cluster. Hence, all points that are found within the ε-neighbourhood are added, as
is their own ε-neighbourhood when they are also dense. This process continues until the
density-connected cluster is completely found. Then, a new unvisited point is retrieved and
processed, leading to the discovery of a further cluster or noise [45].

2.4.4 Clustering in Process Mining

Several clustering techniques have been used in the field of Process Mining, namely to
perform trace clustering. In [14], agglomerative hierarchical clustering is used to automatically
identify process execution classes based on selected case attributes. The main clustering unit
of their work is a sublog (i.e., a set of cases). They start by dividing the original event
log into smaller subsets and then merge them together based on their similarity until the
defined number of clusters is reached. The returned clusters form sublogs that can then be
individually analysed. Despite considering selected case attributes to initially slice the event
log, this approach relies solely on the control-flow distance to compute sublog similarity.

In [44], agglomerative hierarchical clustering, K-Means, Quality Threshold and Self-Organising
Maps were used to perform trace clustering. The concept of trace profile is introduced as a set
of related items that define a trace from a specific perspective. Each trace profile can be then
aggregated in a feature vector and fed to a cluster algorithm. Similarly to [14], this approach
aims to return a set of more homogeneous sublogs based on the chosen trace profiles. The main
advantage of this approach is the multi-perspective nature of the profiles. As an example,
the authors introduce: the activity profile - specifying which activities were executed; the
originator profile - counting how many events have been caused by each originator per trace;
the event profile - counting how many events are annotated with a specific attribute; amongst
others. In [43], the same authors compare several dimensionality reduction techniques to
improve the performance of the previous mentioned trace clustering technique.

Despite the effort put in trace clustering, the motivation of the existent approaches relies
on process discovery. It is known that large and complex event logs usually generate
hard-to-read spaghetti-like models. With trace clustering the creation of several sublogs can be
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leveraged to discover process models out of cases with similar behaviour, thus reducing the
process complexity and improving the model readability and comprehensibility.

The approach proposed in this disseration follows a different route, motivated by the
developed multi-perspective conformance checking algorithm. Instead of returning several
sublogs that add up to the original event log, we propose the use of clustering techniques to
generate a new, downsized event log that maintains the original process’ knowledge.

2.5 summary

In this chapter, several relevant topics and concepts were introduced. Their understanding
is necessary to understand the motivations and context in which the proposal lays its
foundations. The BPMN-E2 notation was presented in the context of the BPMN notation.
Furthermore, the current state-of-the-art data-aware conformance checking were introduced.
Finally, the area of cluster analysis was , namely its application in the area of Process Mining.
Knowing these topics, it is expected a smooth understanding of the upcoming chapters.



3

D ATA - AWA R E C O N F O R M A N C E C H E C K I N G

This chapter explains the conformance checking proposal advocated in this work, starting by
highlighting its main design goals, detailing then the rational and mechanisms sustaining its
development.

3.1 design goals

Considering that BPMN-E2 focuses on a process’ data flow, the developed conformance
checking mechanism must primarily be focused on the data perspective of Process Mining
and, thus, providing an efficient and viable way to pinpoint and warn about the following
deviations:

• Inconsistent activity effect

Assuming the existence of the “Activity effect” element, it should be possible to verify
if one or more data variables are being properly affected by an activity.

• Inconsistent activity duration

Assuming the existence of the “Activity duration” element, it should be possible to
compare the observed activity duration with the expected duration.

• Wrong path selection

Assuming the existence of the “Advanced decision point” element, it should be possible
to verify if a specific case took the right path according to the values of one or more
variables. Moreover, it is also possible to distinguish between “quality” and “normal”
decision points, thus enabling taking different measures regarding which type of
decision point was broken.

Furthermore, the mechanism should be able to distinguish between monitored and non-
monitored activities and act accordingly. Non-monitored activities do not produce event log

15
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records, and so it is important to disregard these activities during conformance checking in
order to reduce false negatives and provide more viable results.

To achieve this, a solution was devised considering two phases: 1) conversion, from BPMN-
E2 notation to a more suitable structure; and 2) conformance checking, replaying through the
event log while checking with the previous structure for eventual non-conformities.

3.2 conversion phase

To abstract the conformance checking algorithm from the initial model, there is the need for
an intermediate representation of the rules to be followed when replaying the log.

One viable structure that can accurately store this information is a Directly Follows Model
where the nodes represent the modelled activities and the edges represent a sequence flow
between activities. Moreover, each edge can be annotated with the set of rules that must
be satisfied when flowing from one activity to another. This annotated structure is here
defined as Directly Follows Rules Model (DFRM). This way, the conformance checking phase
itself is not compromised to a specific notation, providing only that a manual or automatic
conversion mechanism to a DFRM is available.

3.2.1 Directly follows Rules Model

In [28], Directly Follows Models (DFMs) are syntactically described as directed graphs in
which the nodes are either an activity, start or end. Therefore, the language of DFM consists
of all traces that can be obtained when flowing from the start node to the end node.

Definition 1. (Directly follows model - Syntax).
Given an alphabet Σ such that start 6∈ Σ and end 6∈ Σ, a directly follows rules model is a directed

graph (N, E), such that N : Σ ∪ {start, end} is a set of nodes and E : N × N is a set of edges.

Considering this, it is possible to extend a DFM by annotating each edge with a set of
conformance rules that must be followed when flowing from one node to another.

Definition 2. (Directly follows rules model - Syntax).
Given an alphabet Σ such that start 6∈ Σ and end 6∈ Σ, a directly follows rules model is a directed

graph (N, E, R, A), such that N : Σ ∪ {start, end} is a set of nodes, E : N × N is a set of edges, R is
a set of rules and A : E× R is a set of associations between edges and rules.

These rules can then be checked during conformance checking tasks to detect possible
non-conformities and deviations during process execution.
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3.2.2 SMT Solvers as conformance rules

Satisfiability Modulo Theories (SMT) addresses the problem of deciding the satisfiability of a
first-order formula with respect to some background theory. An SMT Solver is a tool for
deciding the satisfiability of formulas in these theories [20].

Attending to its logical nature, the problem of verifying a conformance rule can be seen
as an SMT problem considering, in this case, the following background theories: Arithmetic,
Real and Arrays. Consequently, a conformance rule can be mapped into an SMT Solver
instantiated with an initial set of assertions. Therefore, a conformance rule can be seen as
an SMT Solver instantiated with an initial set of assertions that refer to the conditions of a
BPMN-E2 element (see Figure 3.1). This assertions are extracted directly from the extension
elements being converted from their BPMN-E2 representation to an equivalent SMT-Solver
compatible expression (for this dissertation Z3 and its python interface - Z3Py - were used).

Figure 3.1: Example of conversions from different BPMN-E2 extension elements. Underscores (_) are
used to distinguish between attributes belonging to the source activity (prefix) and the
target activity (suffix).

During conformance checking, these rules can be tested by adding a set of new assertions
based on the event log data and solving the SMT problem. In case of satisfiability, the rule
is also satisfied, conversely, in case of unsatisfiability, the rule is not satisfied. It is also
important to store the type of the conformance rule in order to provide a more detailed
conformance checking report. Therefore, for each new BPMN-E2 element that generates a
conformance rule, a corresponding type is assigned.
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# Create conformance rule
temperature = Int('temperature')
s = Solver()
s.add(temperature > 7)

# Verify rule using log's temperature value
s.add(temperature == 9)
s.check() # satisfied

Listing 1: Process of rule verification

In the code snippet in Listing 1, the process of verifying a rule is demonstrated1. The SMT
Solver is initialised with an assertion (temperature > 7), this represents the conformance
rule to check. Then an equality assertion is added (temperature == 9), this represents the
actual value provided by the event log. Finally, the rule is checked. In this case, since the
provided temperature value is bigger than 7, the conformance rule is satisfied.

3.2.3 Dealing with non-monitored activities

One of the biggest advantages of BPMN-E2 notation is the identification and distinction
of monitored and non-monitored activities, thus providing a way to graphically represent
processes with partially monitored activities without influencing conformance-checking
results. Considering, for instance, the non-monitored activity A27 modelled in Figure 1.1,
traditional conformance checking approaches would be expecting records of this activity
execution in an event log, which would lead to the expected, yet incorrect, identification of a
conformance error.

To overcome this drawback, non-monitored activities must be filtered during the conver-
sion phase assuring that the inputs of non-monitored activities become connected to the
corresponding outputs. The automation of this process allows to maintain the consistency of
the diagram and to prevent the loss of information in the workflow, both of these problems
were addressed in [40].

3.2.4 Associating rules to a DFRM

With DFRMs and SMT Solvers as conformance rules in mind, the conversion phase consists
of parsing the BPMN-E2 source file whilst converting the new elements into SMT Solver’s
assertions and associating them with the respective edge of the DFRM. This raises the
question “To what activities should conformance rules be associated with?”. The answer is bound
to the way event data is recorded:

1 The example is written in Python using Z3 solver.
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1. Events are recorded when the activity starts.

In this case, when flowing from an activity A to an activity B only extensions elements
of A and of the sequence flow A→B should be included (see Figure 3.2).

Figure 3.2: Rule association when event data is recorded at the start of an activity.

2. Events are recorded when the activity ends.

In this case, when flowing from an activity A to an activity B only extensions elements
of B and of the sequence flow A→B should be included (see Figure 3.3).

Figure 3.3: Rule association when event data is recorded at the end of an activity.

3. Events are recorded when the activity starts and ends.

This particular case differs from the others since every activity is recorded twice (in the
beginning and at the end). This way, when flowing from an activity A to an activity B
only extensions elements of the sequence flow A→B should be included. Analogously,
when flowing from A:start to A:end and from B:start to B:end only extensions elements
of A and B should be included, respectively (see Figure 3.4).
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Figure 3.4: Rule association when event data is recorded at the start and at the end of an activity.

In the context of this dissertation, it was considered that event data is recorded at the end
of the activities, since that is the most common recording method [50]. An example of a
conversion process’ input and output is illustrated in Figure 3.5.

Figure 3.5: Excerpt of a BPMN-E2 model, extended with advanced decision points, activity durations
and activity effects (left), and the respective DFRM graph after conversion (right).

3.3 conformance checking phase

The second phase consists of the actual conformance checking algorithm. This algorithm will
receive an event log and a previously generated DFRM as inputs, and will either produce a
fitness value or a detailed report concerning the data-flow of the process as output.

The event log is parsed case-by-case, activity-by-activity keeping track of the most recent
attribute updates. Activities can create and alter these attributes. By comparing changes in
their values, it is possible to: 1) extract activity’s duration; 2) extract activity’s effect; and 3)
extract the path that was taken. This data is then fed to the previously generated DFRM,
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being used to check the satisfiability of the respective set of conformance rules. All detected
non-conformities are recorded, storing the conformance rules that were broken, the cases
they occurred in, and the activities and the attributes responsible for them. In this way, it is
possible to produce a report regarding [40]:

• Time - stating the correspondence between the theoretical time constraints and the real
time taken by the activities (measured in the event log timestamps);

• Activity effects - stating the expected activity effect over a process instance with the real
effect carried out;

• Quality points - stating the fulfillment of checkpoints on the workflow (checking whether
an instance has followed the correct path).

Alongside these reports, it is also possible to detect control-flow deviations when the
sequence flow observed in the event log does not exist in the DFRM. However, there are
better and more complete methods to tackle control-flow conformance-checking (namely,
alignments). This is why, a combination of state-of-the-art alignment-based methods with the
proposed approach is advised to provide a richer analysis regarding both control and data
flow perspectives.

There are four quality criteria (fitness, precision, generalisation and simplicity) that can be
used to access the quality of a given model [9, 37, 50]. Here, a way to compute the fitness
of a model is proposed, since it measures the proportion of the event log’s valid behaviour
according to the model [50]. Firstly, the fitness of an individual trace τ is considered to be
the percentage of rules that were satisfied. This way, assuming a BPMN-E2 model, the fitness
of a given trace can be computed simply using Eq. (2)

f (τ) =


satis f ied

total , if total > 0

1 , if total = 0
(2)

where satis f ied is the number of conformance rules that were satisfied and total is the total
number of conformance rules that were tested. This formula can be extended to support
weighting deviations according to their importance and severity by using Eq. (3) instead.

f (τ) =


∑ς∈vrules weight(ς)
∑ς∈trules weight(ς) , if trules 6= []

1 , if trules = []
(3)

where vrules is the list of conformance rules that were satisfied, trules is the list of con-
formance rules that were tested and weight is a function that retrieves the weight for a
particular conformance rule.
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At the event log level, fitness can be computed by averaging the fitness values of each log
trace. For an event log l and a model m, the fitness is computed using Eq. (4):

f (l, m) =
∑τ∈l f (τ, m)

length(l)
(4)

Note, in Eq. (3), that if the trace leads to no conformance rule verification, it is considered
as if there are no data-flow deviations. However, it can be the case that the trace does not
follow the correct control-flow in the first place, leading to certain rules not being tested.
With this in mind, interested readers are encouraged to complement the proposed approach
with state-of-the-art “traditional” conformance checking techniques, such as token replay
and alignments. This “hybrid” approach will provide insights on both control and data-flow
that can be leveraged to attain a more complete conformance analysis. As an example, an
overall fitness can be computed by combining the results from both approaches, as defined
in Eq.( 5):

f itness(l, m) = wt · ft + wcr · fcr (5)

where wt and ft are the weight and the fitness values of a state-of-the-art “traditional”
conformance checking approach, and wcr and fcr are the weight and the fitness values of the
proposed approach.

3.4 summary

In this chapter, the data-aware conformance checking algorithm was explained. The rational
behind the proposal was presented, as well as its different building blocks. In essence, a new
structure - DFRM - was introduced. They leverage the new BPMN-E2 elements by mapping
them into conformance rules (as abstractions of SMT Solvers). These rules are then verified
at runtime while maintaining a record of which conformance rules are met and which ones
are not. Finally, a way to compute fitness based on the obtained results was also discussed.

The development of this algorithm, entailed efforts of designing a way to reduce its
execution time. However, the one variable that weighted the most on this matter was the
size of the log, meaning that bigger logs would require more processing time. With this in
mind, an event-based trace clustering algorithm for log reduction was developed.
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E V E N T- B A S E D T R A C E C L U S T E R I N G F O R L O G R E D U C T I O N

This chapter introduces the event-based trace clustering technique used in this work to
downsize large event logs into a smaller one. Section 4.1 points the motivations for the
development of this technique. Sections 4.2 and 4.3 explain in detail how the technique
functions.

4.1 motivation

One of the main drawbacks of multi-perspective conformance checking techniques compared
to the more common control-flow approaches is that considerably larger amounts of traces
must be analyzed at runtime, which unavoidably leads to longer execution times for bigger
event logs. As an example, lets assume an event log with a thousand different cases that
span across ten trace variants, control-flow approaches only need to compute the fitness for
these ten variants and map it to the according cases. On the other hand, however, adding
the data perspective leads, in the worst case scenario, to a number of trace variants equal to
the total number of cases. Therefore, data-flow approaches oftentimes need to compute the
fitness for every single case in the event log.

With this in mind, and acknowledging that there is no “workaround” to this reality at the
algorithm level (the conformance checking task will always compute fitness for all individual
event log cases), a way to downsize the event log while retaining the most relevant cases
(data wise) was thought of. This can be done by sampling cases with distinct data-flow
behaviour and excluding those with similar behaviour.

In this scenario, given its importance in pattern recognition [39], cluster analysis can be
leveraged to group cases based on the values of different event attributes and their changes
during a process execution.

23
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case:concept:name concept:name time:timestamp amount expense paymentAmount totalPaymentAmount dismissal
A10005 Create Fine 2007-03-20 00:00:00+01:00 36.0 - - 0.0 NIL
A10005 Payment 2007-03-21 00:00:00+01:00 - - 36.0 36.0 -
N28738 Create Fine 2000-09-13 00:00:00+02:00 31.0 - - 0.0 NIL
N28738 Send Fine 2000-10-30 00:00:00+01:00 - 6.71 - - -
N28738 Payment 2000-12-05 00:00:00+01:00 - - 38.01 38.01 -

Table 4.1: Excerpt of the event log used in Section 6. Used here to illustrate the vectorization of event
log traces.

Create Fine Send Fine Payment
case

amount paymentAmount dismissal expense paymentAmount paymentAmount
A10005 36.0 0.0 0 (NIL) - - 36.0
N28738 31.0 0.0 0 (NIL) 6.71 36.0 38.01

Table 4.2: Vectorized traces extracted from Table 4.1, using the attributes amount, dismissal, paymentA-
mount and expense.

4.2 vectorizing a trace

A clustering algorithm operates over a number of data points called feature vectors [39]. In
turn, a feature vector is composed of several features (or attributes). To be able to execute
clustering algorithms over event log traces, they must be transformed into a corresponding
feature vector, with its features being the event’s attributes.

A vectorized trace can then be defined as an object whose items are the attributes of all
the log’s events and its values are the corresponding attribute’s data for that particular trace.
In order to vectorize a trace, the following steps are taken:

1. Assess which attributes should be present in the feature vector. Optionally, timestamps
can be leveraged to compute an activity duration, thus taking time perspective into
consideration during clustering.

2. Create a feature vector for each trace’s event containing the chosen attributes’ values. If
the particular event does not contain one or more of the selected attributes, they can
simply be omited.

3. Append all of the previous generated event feature vectors to form the final feature
vector.

The process of trace vectorization is illustrated in Tables 4.1 and 4.2.

4.3 clustering and sampling

The similarity between the different feature vectors is computed based on a distance measure,
used to evaluate how close two vectors are from each other. There are several distance measure
functions that can be used to assign a level of similarity between to data points, such as,
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Euclidean distance, city block distance, Minkowski distance, Canberra distance, cosine distance,
amongst others [52]. Onward we will use the Euclidean distance (described in Eq 1), since it
is the most used distance measure, however keep in mind that others can yield better results
depending on the underlying problem.

We will not delve into the inner works of clustering algorithms. Interested reader are
referred to [24]. Instead we assume their output as a group of clusters, each one representing
an hard partition of the original data with close proximity in regards to a number of features.
The underlying motif of using clustering analysis to perform event log reduction lies in
considering that all the traces belonging to a cluster provide the same amount of process
knowledge as its neighbours and, therefore, can be removed from the original event log
while keeping an accurate representation of how the process was conducted - this is hereby
defined as trace sampling. An high level view of this process can be seen in Figure 4.1.

Figure 4.1: Stages of Event-based trace clustering for log reduction. Clustering stages were taken from [24].

It is natural that the clusters have different sizes, containing less (or more) cases than the
others. To assure the reduced event log’s distribution of event behaviour remains unaltered
from the original’s, the amount of sampled cases must be proportional to the cluster’s size.
This way, the reduced event log keeps, not only the original’s data-flow behaviour, but also
the proportion in which this behaviour occurs. Take, as an example, an event log with 10

different cases, where 8 of them follow a specific data-flow and the remaining 2 follow a
different data-flow. Consider now a 50% reduction is necessary, it is important that the final
event log maintains this ratio of 8:2, by sampling 4 cases from the first cluster and 1 case
from the second cluster.

The main downsize of the event log reduction is the lost of process information due to the
exclusion of several traces from the original event log. Even though the most representative
cases are kept in the reduced version there can oftentimes exist traces that behave “oddly”
compared to the rest (the so called outliers). These outliers pose two drawbacks: a) it can
happen that they are assigned to clusters that do not reflect their actual behaviour and end
up being excluded; b) outliers are known to negatively impact certain clustering algorithms
disabling them from correctly identify clusters [21]. With this in mind, one should evaluate
the process data available and judge if the benefits of having a reduced event log make of
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for the loss of trace information. As a rule of thumb, log reduction can prove useful when
individual traces can be neglected by generalisation, such as, discovering a process model
from an event log or computing conformance checking fitness and precision. If the context
calls for a mandatory analysis on each trace to pinpoint deviations and its causes, a reduced
event log would naturally limit the analysis by omitting several cases. Nevertheless, even in
those cases, the reduced version can be used as a starting point to provide a general picture
of the problem at hands that could later be extended if a more thorough analysis is needed.

This technique was mainly developed as a solution to the long execution times experienced
during the previously proposed conformance checking technique, however since it operates
at the log level, one can use it to downsize any event log and apply it to other data-aware
Process Mining techniques, namely conformance checking, process discovery and process
enhancement.

4.4 summary

In this chapter, the event-based trace clustering for log reduction algorithm was explained.
Framed in the context of this dissertation’s purposal and inspired by other trace clustering
techniques, its main goal was the transformation of existing event logs by sampling the
cases that better generalise the business process. The proposed technique relies on three
stages: trace vectorization - pre-process the event log, based on user-selected criteria, to feed
it to state-of-the-art clustering algorithms ; clustering - group the previously created trace
vectors into heterogeneous clusters; sampling - select a percentage of cases from each of the
computed clusters. It is expected that each cluster contains cases that behave similarly in
regards to the selected attributes and, therefore, can be seen as redundant for certain Process
Mining tasks.

Although it was developed in the context of the data-aware conformance checking algo-
rithm proposed in the previous chapter, this technique was designed to work independent
of any Process Mining technique and therefore can, and should be, leveraged as a tool for
event log processing.
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I M P L E M E N TAT I O N

This chapter discusses the development of the techniques introduced in Chapter 3 and
4. Nowadays, both open-source (e.g., ProM and Apromore) and commercial (e.g., Disco,
Celonis, ProcessGold, etc.) tools are available for executing Process Mining tasks. However,
these tools are either restricting the use of custom algorithms (commercial tools) or relying
on standalone programs (open-source and commercial tools) that difficult the usage of
Process Mining in a more experimental setting. With this in mind, the library Process
Mining for Python (PM4Py) was built, lowering the barrier for algorithmic development
and allowing for easy integration of Process Mining algorithms with state-of-the-art Python
packages [6, 12]. Considering this increasing number of Python libraries that support Process
Mining, Process Modeling and Data Science, Python was chosen to build both the conformance
checking and the trace clustering algorithms, thus taking advantage of the existing libraries
and further contributing to its ecosystem by providing utilities for the BPMN-E2 notation
and the proposed conformance checking approach. Section 5.1 explains the code design and
architecture and Section 5.2 lists the library main functionalities and highlights important
development decisions made in the conversion and conformance algorithms.

5.1 architecture

The developed library is structured following the class diagram in Figure 5.1, with the
developed library being organised in five main packages:

• Objects

Contains all the classes and utilities needed to define the constructs introduced in
Section 3.

• Conformance

Contains all the classes and utilities needed to execute the conformance checking task
defined in Section 3.

27
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Figure 5.1: Class diagram showing of the PM_BPMN_E2 library.

• Clustering

Contains all the classes and utilities needed to execute the event-based trace clustering
algorithm defined in Section 4.

• Conversion

Contains utilities for converting a BPMN-E2 diagram into its respective DFRM.

• Visualization

Contains all the utilities needed for visualising both BPMN-E2 diagrams and DFRMs,
using Graphviz [4].

At the class level, it is possible to identify several relevant classes, them being:

• BPMNE2DiagramGraph

Defines a BPMN-E2 diagram. Extends PM4Py’s BPMN class by providing support to
define and import the new BPMN-E2 extension elements.

• DFRM

Defines a Directly Follows Rule Model. It uses a NetworkX [5] directed graph as the
underlying main structure and provides several methods to create and modify it by
adding and removing nodes, edges and rules.
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• Rule

Defines a conformance rule. Relies on Z3Py (Z3’s Python API) as the underlying SMT
Solver and provides an interface to add assertions and check if the rule is met given a
certain criteria.

• RuleParser

Wrapper class around an ANTLR4 grammar responsible for the interpretation and
conversion from the BPMN-E2 extension elements notation to Z3’s input format.

• Conformance.algorithm

Implements the conformance checker algorithm explained in Section 3. It follows the
strategy behavioural design pattern allowing to choose between different conformance
checking strategies. It also leverages PM4Py’s event log utilities for importing event
logs from XES file format. The machine learning library scikit-learn [8] is used to
execute the different clustering algorithms.

• Clustering.algorithm

Implements the clustering algorithm explained in Section 4. It follows the strategy
behavioural design pattern allowing to choose between KMeans and DBSCAN clustering
algorithms. It also leverages PM4Py’s event log utilities for importing event logs
from eXtensible Event Stream (XES) file format and to convert event logs into pandas
dataframes.

5.2 main functionalities

The developed library has the following main functionalities:

• Import BPMN-E2 diagrams;

• Convert BPMN-E2 diagrams to their respective DFRMs;

• Visualise BPMN-E2 diagrams and DFRMs using Graphviz;

• Execute the proposed data-aware conformance checking task;

• Produce pandas dataframes based on conformance checking results;

• Produce HTML reports regarding detected non-conformities (Figure 6.1);

• Execute the proposed event based log reduction task.

This section highlights the main development and algorithmic choices for conversion,
conformance and clustering techniques.



5.2. Main functionalities 30

5.2.1 Conversion

The conversion algorithm introduced in Chapter 3 transforms a BPMN-E2 structure into a
DFRM structure. To better understand how the conversion is done it is important to have a
general understanding of how this two structures are built.

BPMN-E2

Since the BPMN-E2 notation presents itself as an extension to the known BPMN nota-
tion, its implementation is built on top of an already developed BPMN Python library
(bpmn-Python [1]). As can be seen in Figure 5.2, BPMNE2DiagramGraph class extends
bpmn-Python:BPMNDiagramGraph class by including two new instance variables that store
the new elements proposed by the new notation: extension_elements and associations.
It also extends the class method load_diagram_from_xml() to import the new elements
and adds two new class methods view and save to print the graph and to save it as png,
respectively.

Figure 5.2: BPMNE2DiagramGraph class diagram .

DFRM

The DFRM class on the other hand, is composed of only one instance variable - graph - that
represents the DFRM itself (see Figure 5.3). It is also composed of several class methods that
enable the creation and manipulation of the graph structure. Methods add_nodes, add_edges()
and add_rules() are self-explanatory and enable the creation of the main DFRM’s elements.
Method verify_rules() is used to verify all the rules of a given edge. Finally, methods view
and save are used to print the graph and to save it as png, respectively.
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Figure 5.3: DFRM class diagram.

With both this structures cleared out, it is now possible to explain how the conversion
algorithm was thought and developed.

1 Function bpmn_e2_to_dfrm(bpmn_e2):
2 d f rm← new DFRM()
3 mapping← gateway_mapping(bpmn_e2)
4 add_nodes(d f rm, bpmn_e2)
5 add_edges(d f rm, bpmn_e2, mapping)
6 add_rules(d f rm, bpmn_e2, mapping)
7 remove_non_monitored(d f rm)
8 return d f rm

As can be seen, there the algorithm is divided in five main steps:

1. Create a gateway mapping. This auxiliary structure maps a gateway’s input to its
output. It is intended to allow for correctly creating edges and assigning decision rules.

2. Add nodes. Copies non-gateway elements from BPMN-E2 to DFRM.

1 Function add_nodes(d f rm, bpmn_e2):
2 foreach node in bpmn_e2.nodes do
3 if node.type is not gateway then
4 add node to dfrm

3. Add edges. Connects DFRM nodes based on BPMN-E2 sequence flows. Since DFRM
excludes gateway elements, a gateway mapping is needed to correctly connect nodes.

1 Function add_edges(d f rm, sequence_ f lows, mapping):
2 foreach flow in sequence_flows do
3 edge_sources← sources from mapping
4 edge_targets← targets from mapping
5 edges← connect edge_sources to edge_targets
6 add edges to d f rm
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4. Add rules. Assigns conformance rules to the respective DFRM edges. For each BPMN-
E2 element, a rule object is initialised based on its attributes. Then, the rule is added to
the respective edge. The edge is obtained by finding both the non-gateway source and
target nodes the rule element was bound to.

1 Function add_rules(d f rm, bpmn_e2, mapping):
2 foreach element in bpmn_e2.elements do
3 rule← create rule from element
4 rule_target← find bpmn_e2′s element the rule is bound to
5 predecessors← find rule_target′s predecessors elements
6 add rule to d f rm by binding it to the edges (rule_target, predecessors)

5. Remove non-monitored activities. Finally, exclude all non-monitored activities by re-
moving their respective nodes and rules while redirecting its edges from its predecessor
nodes to its successor nodes. This step is optional.

1 Def remove_non_monitored(d f rm):
2 foreach node in dfrm.nodes do
3 if node is non-monitored then
4 remove node from dfrm
5 remove node’s connected edges
6 add new edges by connecting node’s predecessors to its sucessors

5.2.2 Conformance Checking

The conformance checking algorithm follows the procedures mentioned in Section 3 strictly.
It starts by converting the BPMN-E2 and initialising both the results and attributes

structures. It then runs through every event log’s case and: 1) verifies the appropriate
conformance rules, 2) stores the obtained results and 3) updates the attributes with the more
recent values.
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1 Function conformance(event_log, bpmn_e2):
2 d f rm← bpmn_e2_to_dfrm(bpmn_e2)
3 results← []
4 attributes← initialize attributes from bpmn_e2 monitored variables
5 foreach case in event_log do
6 foreach event in case do
7 event_results = verify_rules(d f rm, attributes, event)
8 results.append(event_results)
9 update attributes with event

10 return results

The process of verifying a rule is straightforward. Considering that attributes stores the
most recent event’s attributes and event contains the attributes of the event currently being
parsed, the first step is to fetch from the DFRM the conformance rules that belong to the
transition from the previous to the current event. Then, each rule is verified by comparing
the changes in the events’ attributes.

1 Function verify_rules(d f rm, attributes, event):
2 source← case id from attributes
3 target← case id from event
4 results← []
5 rules← d f rm.rules(source, target)
6 foreach rule in rules do
7 assertion← z3 assertion from source and target
8 rule_result = rule.verify(assertion)
9 results.append(rule_result)

10 return results

5.2.3 Event-based trace clustering for log reduction

The log reduction algorithm proposed in Section 4 is composed of three main steps. The first
one is intended to prepare the event log data for clustering. This step starts by converting
the PM4Py’s event log structure to a pandas Dataframe for further and better processing. It
continues by removing the columns that were not specified by the user for clustering, next
categorical types are converted to numeric and a new column “duration” is added (only if
the user wants to take activity duration into consideration). Finally, each trace is vectorized
(as discussed in Section 4) and its data normalized. The second phase consists in applying
the clustering algorithm chosen by the user. For each resulting cluster N case indices are
sampled based on the parameters given by the user. These sampled indices are then used on



5.3. Summary 34

the last phase to point which cases are kept in the dataframe and which ones are not. The
dataframe is then converted in the PM4Py’s event log structure.

1 Function trace_clustering(event_log, cluster_by):
2 d f ← dataframe from event_log
3 d f _copy← mantain a copy from original dataframe
4 keep d f columns that are in cluster_by
5 convert d f ′s categorical types to numeric
6 add duration column to d f
7 vectorize trace
8 normalize d f data
9 clusters← apply state-of-the-art clustering algorithm
10 selected_indexes← []
11 foreach cluster in clusters do
12 selected_cases← sample n cases from each cluster
13 append selected_cases indexes to selected_indexes

14 reduced_d f ← filter d f _copy on selected_indexes
15 reduced_log← convert reduced_d f to PM4Py’s Event Log Structure
16 return reduced_log

5.3 summary

In this chapter, the implementation of the algorithms proposed in Chapters 3 and 4 were
discussed. The developed library was written using Python programming language due to
its increasing support of areas like data science and process mining. It recycles the event log
representation of the library PM4Py, extends the BPMN diagram representation of the library
bpmn-python to accommodate the new elements of the BPMN-E2 notation and defines
the DFRMs and conformance rules rules objects as discussed in the previous chapters.
Most important, it provides a faithful materialization of both the proposed data-aware
conformance checking and the event log reduction algorithms.

In the following chapter, the developed library will be used on a real-life process, guiding
the reader on how to leverage its functionalities to conduct a Process Mining analysis. The
performance of both algorithms will also be evaluated.
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P R O O F O F C O N C E P T

The main goal of the developed conformance checking task is to provide detailed insights on
inconsistencies found regarding three main aspects: a) activity effects; b) activity duration;
and c) path selection. To achieve this, the results of verifying every conformance rules
are recorded alongside contextual data regarding the moment the rule was being verified,
including the case, the activities and the event log values being processed. This data can
then be processed in multiple ways to meet the analytical goals of the users. Using the
developed library, an out-of-the-box HTML report similar to the one in Figure 6.1 can be
generated, containing several sections providing information and visualisations regarding
the process model and the event log, and fitness values (at case, rule and type level). It
is also possible, and encouraged to output the results using dataframes enabling a more
customised and powerful data analysis meeting the user’s business needs.

Figure 6.1: Example of a conformance checking HTML report.

In this chapter, the proposed conformance checking technique is tested on a real-life
scenario and evaluated using synthetic data. It starts, in Section 6.1, by providing a real-life
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use case analysis and showing how the developed library can be leveraged to perform multi-
perspective conformance analysis. In Section 6.2, time complexity and performance are
assessed using synthetically generated data. The event log reduction technique introduced
in Chapter 4 is also evaluated in this section.

6.1 real-life use case

At the moment of the writing, there was no real-life BPMN-E2 use case that could be
leveraged to provide a scenario were both a BPMN-E2 and the conformance checking task
could prove useful. Nevertheless, this was seen as an opportunity to find a real-life situation
where the proposal of this dissertation could be applied to gather significant insights.

For this, a real-life event log taken from an information system of the Italian police [34]
was used.

6.1.1 Event log

As stated in [34], the event log respects to a road traffic fine management process regarding
the creation, payment and appeal of fines. The event log is rich in attributes that can be
leveraged to support a data-aware conformance analysis. After a thorough analysis we verify
that the log is composed of 561.471 events recorded across 145,800 event traces, which were
recorded between January 2000 and June 2013.

case:concept:name concept:name time:timestamp amount expense paymentAmount totalPaymentAmount dismissal
A10004 Create Fine 2007-03-20 00:00:00+01:00 36.0 - - 0.0 NIL
A10004 Send Fine 2007-07-17 00:00:00+02:00 - 13.0 - - -
A10004 Insert Fine Notification 2007-07-24 00:00:00+02:00 - - - - -
A10004 Add penalty 2007-09-22 00:00:00+02:00 74.0 - - - -
A10004 Send for Credit Collection 2009-03-30 00:00:00+02:00 - - - - -
A10005 Create Fine 2007-03-20 00:00:00+01:00 36.0 - - 0.0 NIL
A10005 Payment 2007-03-21 00:00:00+01:00 - - 36.0 36.0 -
A16149 Create Fine 2007-10-24 00:00:00+02:00 36.0 - - 0.0 NIL
A16149 Send Fine 2008-01-18 00:00:00+01:00 - 13.0 - - -
A16149 Insert Fine Notification 2008-01-31 00:00:00+01:00 - - - - -
A16149 Insert Date Appeal to Prefecture 2008-02-12 00:00:00+01:00 - - - - -
A16149 Add penalty 2008-03-31 00:00:00+02:00 74.0 - - - -
A16149 Send Appeal to Prefecture 2008-03-31 00:00:00+02:00 - - - - #

Table 6.1: Excerpt of the road traffic fine management process’ event log.

As seen in Table 6.1, one can identify the following attributes:

• totalPaymentAmount - Total amount already payed by the offender;

• paymentAmount - Amount payed by the offender during the “Payment” event;

• amount - Monetary value of the fine;

• dismissal - Flag that indicates possible cause for a fine dismissal. “NIL” if the fine is not
dismissed, “G” if it is dismissed by the prefecture and “#” if it is dismissed by a judge;
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• expenses - Monetary value of extraordinary expenses such as the cost of sending the
fine via mail.

6.1.2 BPMN-E2 Process Model

The business process model was manually designed considering the petri net illustrated
in [34].

The general process flow is as follows. When a road traffic offence occurs, a fine is created.
The offender can then pay the fine partially or in full at several stages of the process. The
fine management is closed when the offender pays the full amount. If the process is still
open, a fine notification will be sent to the offender’s residency, after which he can choose to
appeal of the decision (to a judge and/or to the prefecture). If the fine is not paid before
180 days a penalty is added to the current fine’s amount. If the fine is still not paid, it will
eventually end by handing over the case for credit collection.

This process can than be enhanced with several BPMN-E2 elements to provide a data-flow
perspective at the activity level (see Table 6.2), resulting in the final BPMN-E2 model, as seen
in Figure 6.2.

Table 6.2: Rules extracted from process’ description.
Activity Rule type Description

Send Fine Duration Fine notification should be send until 60

days after fine creation.

Appeal to Judge Duration Offender has 60 days to appeal to judge
after being notified.

Add Penalty Effect When a penalty is added the fine’s pay-
ment amount must increase

Any −→ Insert for credit collection Decision
The fine going to credit collection, im-
plies that the offender did not pay the
fine’s full amount

Send Appeal to Prefecture −→ end Decision If the appeal to prefecture succeeds, the
fine is dismissed with flag "G"

Appeal to Judge −→ end Decision If the appeal to the judge succeeds, the
fine is dismissed with flag "#"

Any −→ end Decision The process should only end when dis-
missed or when the fine is fully paid

In addition, BPMN-E2 formally specifies that is mandatory to define a Monitoring Point
for all monitored activities. Therefore, all activities were extended with a Monitoring point.
However, most of these elements were left out from Figure 6.2 for comprehensibility purposes.
The resulting diagram, constitutes a centralized and easy-to-understand source of knowledge
related to the process being analyzed.
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Figure 6.2: BPMN-E2 model of the road traffic fine management process.
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6.1.3 Analyzing the results

Initially, the conformance checking task was used to resolve an overall fitness value to access
how well the event log fit the process model. In average, 3.68 conformance rules were tested
per case, reaching a total of 554.291 tested rules. Each case took, on average, 1.29 ms to
be processed. A fitness value of 0.813 was reached assuming the same weight for every
conformance rule. However, it was decided that the process end condition - a process should
only end when dismissed or when the fine is fully paid - had to weight more than the others
given the severity of its possible violation. Therefore, considering a 5 times increase in this
conformance rule weight, a new fitness value of 0.81 was reached. The insignificant change
in fitness can be seen as a sign that this rule was not broken that many times. In fact, there
were only 6986 (4.6%) deviations recorded for this particular conformance rule. Despite the
low number of occurrences, it still added up to 329.069,54 EUR in financial injury. It is also
relevant to note that the activity “Add Penalty” failed to increase the fine’s amount 13 times,
although not much, this deviations possible lead to more financial losses.

Figure 6.3: Fitness values for each conformance rule. The results are colour-coded, shades of green
indicate satisfactory results while shades of red indicate less than ideal results (with a
threshold of 0.7).

Shifting the perspective to the rule level, it was possible to compute a fitness value for each
conformance rule. These can be seen in Figure 6.3. It is concluded that most of the recorded
deviations are directly related to wrongly set dismissal values and delays in sending fine’s
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notifications. More precisely, 38% of times the fine was dismissed by the prefecture with a
wrong dismissal value, 39% the fine was dismissed by the judge with a wrong dismissal
value and 48% the fine was sent after the fixed limit to send fine’s notifications.

The analysis that follows was driven by a set of questions, to which an answer was sought.
They are:

What is the average number of deviations per case?

The average number of deviations per case, is relatively low, set at 0.39 deviations per case.
More precisely, there are 54.812 cases with at least one deviation, corresponding to 36.5% of
the total events. Analogously, the remaining cases have no data-flow deviations (73.5%). The
maximum number of deviations recorded in one individual case was 3, however, only 10

cases reflected this behaviour. This conclusions were supported by Figure 6.4.

Figure 6.4: Boxplot of the number of deviations per case.

What is the percentage of deviations per conformance rule type?

From the detected conformance rule deviations, it was possible to identify that all the rules
were at least broke once. Nevertheless, a clear amount of deviations were directly related to
activity duration, in fact, 86% of deviations were of this type. 14% were of type “decision”
and less than 1% were of type “effect”. This shows, that activity effects are taking place in a
correct manner whilst activity duration’s being violated more often and should be targeted
for a more detailed analysis. This conclusions were supported by Figure 6.5.
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Figure 6.5: Pie chart highlighting deviations per rule type.

What is the average activity duration when the activity duration typed rules fail?

For this particular scenario, two rules were defined: Time to Send fine (AD1) and Time to
Appeal (AD2). After an initial analysis, it was found that AD1 amount to, approximately,
99% of the this deviation type. This points out irregular behaviour regarding the process of
mailing the fine notification to the offender. The Italian law fixes the maximum time to send
the fine’s notification to 90 days. However, when this law is broken, the average amount of
time until mailing the fine is of 123 days, one month above the defined limit.

Figure 6.6: Boxplot of duration for each duration-typed conformance rule.
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In respect to rule AD2, despite being broken considerably less times, the delays were also
significantly larger. The maximum time to appeal to a judge was of 60 days. When this limit
is not abide, it takes in average 279 days to appeal to a judge, almost 7 months above the
defined limit. This conclusions were supported by Figure 6.6.

6.2 evaluation using synthetic data

In this section, several synthetic event logs were generated to evaluate the behaviour of the
proposed conformance checking and the event log reduction techniques.

6.2.1 Experimental setup

The conformance checking experiments were mainly focused in its time performance and
scalability, specifically:

1. How is performance affected by increasing the number of conformance rules in the model?

2. How is performance affected by increasing the number of cases in the event log?

3. How is performance affected by increasing the number of events per case in the event log?

With this in mind, four BPMN-E2 diagrams were created. All of them are composed of
five activities (A, B, C, D, E) and five monitoring groups. The first diagram (referred to
as AD) contains two extra activity duration elements, the second diagram (AE) contains
two extra activity effect elements, the third diagram (DP) contains two extra decision point
elements, finally, the forth diagram (ALL) contains all three elements from the previous
diagrams. Figure 6.7 illustrates the last diagrams used mentioned (ALL), the others are
exactly the same diagram but keeping only one type of extension elements.

The event logs, on the other hand, were designed to evaluate the scalability of the
approach. It was assured that every event log was fully compliant regarding the control-flow
perspective. In turn, each event log was generated with a combination of the following
characteristics: number of cases (1k, 10k and 100k) and number of events per case (2 and 4).
This results in 6 different event logs with increasing number of cases and events.

The following tests were executed in a machine with an 2,5 GHz Quad-Core Intel Core i7
CPU and 16 GB of RAM.
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Figure 6.7: Diagram ALL used during evaluation. Note that for each path, despite the distinct number
of activities the number of rules to test was kept.

6.2.2 Conformance Checking evaluation

To test the conformance checking approach, each event log was ran against each process
model, to a total of 24 tests. Each test was executed five times, the test results were then
averaged to obtain a final result, as shown in Table 6.3

Model Cases Events per case Execution time (s)

AD

1k
2 0.3142

4 0.3676

10k
2 2.9093

4 3.3608

100k
2 28.9304

4 33.3462

AE

1k
2 0.3520

4 0.3868

10k
2 3.4969

4 3.6441

100k
2 35.0104

4 36.5146

DP

1k
2 0.3372

4 0.3668

10k
2 3.2929

4 3.4433

100k
2 33.3938

4 33.6114

ALL

1k
2 1.0125

4 1.0740

10k
2 9.5141

4 10.0135

100k
2 95.4211

4 99.3699

Table 6.3: Evaluation results.
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Analysing the obtained results it is possible to assess the following in regards to the overall
performance. By isolating the event log, it is noticeable that verifying the same amount of
rules takes approximately the same time regardless of their type. This was expected since
every rule is built over a same SMT Solver. Furthermore, the conformance checking task
scales linearly regarding the number of rules being tested per case. This can be backed up
by the obtained results, considering a linear increase in the task duration for bigger logs
that comprise, naturally, more rules to be verified. The number of events per case, and
consequently, the total number of events, proved to be irrelevant to the overall performance
since the execution time is hardly affected by any change in their value if the number of
rules per case is kept the same.

Figure 6.8: Evaluation heatmap. Execution time’s correlations are highlighted.

Considering both the results on Table 6.3 and the heatmap on Figure 6.8, it is evident that
the execution time is mainly affected by the number of rules that are to be tested. The
proposed conformance checking task runs in O(N), with N being the number of rules to test.
This number is indirectly impacted by the number of cases (C) and the average number of
rules per case (R). This way, the previous time complexity can be re-written into O(C ∗ R).

The solution’s performance will then decrease for larger event logs and more rule-dense
BPMN-E2 diagrams.
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6.2.3 Event log reduction evaluation

The event log reduction experiments were conducted to assess how well did it perform. For
this, each clustering technique will be used to perform increasingly heavier log reductions
while verifying how it impacts both overall representability of the original event log and
the conformance checking task. To evaluate the goodness of clustering results, clustering
validation will be used, since it has long been recognized as one of the vital issues essential
to the success of clustering applications [29]. There are two main ways to perform clustering
validation: a) external clustering validation; and b) internal clustering validation. The former
uses external criteria to validate the results, e.g. cluster labels, whilst the latter uses features
inherent to the data itself [29, 52]. Commonly, it is hard to find real datasets that have prior
cluster information [29], making internal validation the only way to validate such problems.

In this particular scenario, only external cluster validation techniques were used, by
comparing fitness values obtained from the conformance checking task run over the original
event log with fitness values computed using its downsized versions. This way, it can
be assessed how different clustering algorithms and parameters impact the event log by
cross-referencing their fitness values with the original unaltered one.

The technique was applied to the event log introduced in Section 6.1. Five different
percentual downsizes (50%, 40%, 30%, 20%, 10%) were applied for both K-means and
DBSCAN clustering algorithms. Each downsized log was then fed into the developed
conformance checking algorithm. The error is computed simply by comparing the fitness
value obtained using the reduced event log with the fitness value obtained from the original
event log, using the absolute value of the difference between them. This way, it is possible to
measure how the results “drift” when different reduction parameters are used.

Since this technique relies heavily on how well the data is clustered, relevant parameters
were tweaked for each clustering algorithm. Different number of clusters and eps values were
used for K-means and DBSCAN, respectively.

Figure 6.9: Conformance Checking errors after applying the event log reduction technique, using
K-means (left) and DBSCAN (right) clustering algorithms.
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Analysing the graphs in Figure 6.9, it is noticeable that the difference in fitness value
for this particular scenario is minimal. In fact, the maximum error value does not exceed
0.0006, which is greatly satisfactory. In general, the error increases for heavier downsizes
with K-means performing better overall regardless of the insignificant difference between
the two clustering algorithms. Nevertheless, there are cases where heavier downsizes yield
better results. In fact, K-means algorithm performs at its highest on a 40% reduction with 25

clusters. On the other hand, DBSCAN algorithm excels on both 30% and 50% reductions
with an eps value of 0.5.

Considering that the conformance checking algorithms time complexity is O(C ∗ R), with
C being the total number of cases, i.e. the event log size, and R the average number of rules
per case, reducing the event log is bound to reduce the algorithm’s execution time. In fact, it
is expected that a given percentage reduction of the number of cases will result in the same
percentage reduction of the execution time. For this particular case, it would be possible
to reduce the original execution time of approximately 3 minutes to 18 seconds without any
significant change in the final result, by applying a 90% event log reduction.

6.3 summary

In this chapter, the developed techniques were tested against real-life and synthetic process
models and event logs. Using a real-life problem, it was possible to highlight the expres-
siveness and ease of modeling gained by using the BPMN-E2 notation. Moreover, a process
analysis was conducted using the developed approach, exposing the potential of using the
developed python library in conjunction with other data science libraries, such as pandas
and seaborn. The event log reduction technique was also tested using the real-life scenario’s
event log. The results proved to be very satisfactory, however clustering techniques are
highly affected by the context in which they are used and different logs could yield different
results. Using synthetic event logs, the overall performance was measured. The data-aware
conformance checking algorithm runs as expected, being directly influenced by the number
of conformance rules to check and the overall event log size.
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C O N C L U S I O N S A N D F U T U R E W O R K

In this dissertation a new conformance checking approach is proposed and developed. It
aims to take advantage of the new elements introduced with the new process model notation
- BPMN-E2 - an extension of the well known BPMN notation.

The extension elements of BPMN-E2 provide an added layer of expressiveness to the
BPMN notation that were previously only present in natural language documents that
complemented the process models. The approach relies on SMT Solvers to define a set of
conformance rules that must be followed during process execution. Therefore, there is one
initial phase that constitutes the conversion from BPMN-E2 to a valid conformance rule that
is later tested during the conformance checking phase.

An event log reduction algorithm was also proposed and developed following the trends
of. These use state-of-the-art clustering algorithms to identify certain behaviour patterns
on an event log and, mainly, to discover groups of less cluttered and easier to read process
models. In this dissertation, however, clustering algorithms are used with the purpose of
identifying homogeneous process behaviour between cases in order to downsize the event
log by sampling the cases that better represent the process execution and removing those
that prove to be redundant.

Both of the discussed approaches were developed using Python, due to the vast amount
of data mining related libraries and, especially, to the Process Mining library PM4Py. The
solution was then used to analyse real event data related to a Fine Management System
highlighting the benefits of the approach. Synthetic event logs were also used to evaluate
the performance of the conformance checking and the event log reduction algorithms.

There are still several ways to improve the currently developed features, such as: a)
improving the current visualization module to enable a better graphical representation
and an interactive manipulation a BPMN-E2 model; b) enabling the creation of custom
conformance rules that don’t fall under the built-in ones; c) developing a better API to
create independent DFRM’s that can be used in conjunction with any other type of model
notation; and d) allowing online conformance checking by extending support for streaming
event-data. Furthermore, this dissertation’s work can be seen as the gateway to start using
BPMN-E2 in the context of Process Mining, and, therefore it is important to mention that it
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focused only on one of the three types of Process Mining - conformance checking. This said,
there is still interesting and useful work to be done in respect to this new BPMN-E2 notation
and its usage in Process Mining techniques. Possible future work routes could include
the development of a process discovery technique to build BPMN-E2 models starting from
an attribute rich event log; the devlopment of a process enhancement technique to add the
BPMN-E2 extension elements to an already existing BPMN model; or even, the adaptation
of the current conformance checking technique to analyse streams of events in real time.



B I B L I O G R A P H Y

[1] bpmn-python. https://github.com/KrzyHonk/bpmn-python.

[2] Celonis. https://www.celonis.com/.

[3] Disco. https://fluxicon.com/disco/.

[4] Graphviz. https://graphviz.org/.

[5] Networkx. https://networkx.org/.

[6] Pm4py. https://pm4py.fit.fraunhofer.de/.

[7] Prom. https://promtools.org/.

[8] Scikit-learn. https://scikit-learn.org/.

[9] A Adriansyah, B. F. Van Dongen, and W. M.P. Van Der Aalst. Towards robust confor-
mance checking. In Lecture Notes in Business Information Processing, volume 66 LNBIP,
pages 122–133, 2011.

[10] Pavlo D. Antonenko, Serkan Toy, and Dale S. Niederhauser. Using cluster analysis for
data mining in educational technology research. Educational Technology Research and
Development, 60(3):383–398, 2012.

[11] Clark Barrett, Pascal Fontaine, and Cesare Tinelli. The SMT-LIB Standard Version 2.6.
Technical report, University of Iowa, 2017.

[12] Alessandro Berti, Sebastiaan J. van Zelst, and Wil van der Aalst. Process Mining for
Python (PM4Py): Bridging the Gap Between Process- and Data Science. CEUR Workshop
Proceedings, 2374:13–16, may 2019.

[13] Armin Biere, Marijn Heule, Hans Van Maaren, Toby Walsch, Clark Barrett, Roberto
Sebastiani, Sanjit A Seshia, and Cesare Tinelli. Handbook of Satisfiability Satisfiability
Modulo Theories. Technical report, OS Press, 2008.

[14] Yukun Cao. Attribute-Driven Hierarchical Clustering of Event Data in Process Mining Master
Thesis. PhD thesis, RWTH Aachen University, 2018.

[15] Franck Cassez and Anthony M Sloane. ScalaSMT: Satisfiability Modulo Theory in
Scala (tool paper). In SCALA 2017 - Proceedings of the 8th ACM SIGPLAN International
Symposium on Scala, co-located with SPLASH 2017, pages 51–55, 2017.

49

https://github.com/KrzyHonk/bpmn-python
https://www.celonis.com/
https://fluxicon.com/disco/
https://graphviz.org/
https://networkx.org/
https://pm4py.fit.fraunhofer.de/
https://promtools.org/
https://scikit-learn.org/


bibliography 50

[16] Massimiliano de Leoni, Jorge Munoz-Gama, Josep Carmona, and Wil M.P. van der
Aalst. Decomposing alignment-based conformance checking of data-aware process
models. In Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial
Intelligence and Lecture Notes in Bioinformatics), volume 8841, pages 3–20, 2014.

[17] Massimiliano De Leoni and Wil M.P. Van Der Aalst. Aligning event logs and process
models for multi-perspective conformance checking: An approach based on integer
linear programming. Lecture Notes in Computer Science (including subseries Lecture Notes
in Artificial Intelligence and Lecture Notes in Bioinformatics), 8094 LNCS:113–129, 2013.

[18] Massimiliano De Leoni and Wil M.P. Van Der Aalst. Data-aware process mining:
Discovering decisions in processes using alignments. Proceedings of the ACM Symposium
on Applied Computing, pages 1454–1461, 2013.

[19] Massimiliano De Leoni, Wil M.P. Van Der Aalst, and Boudewijn F. Van Dongen. Data-
and resource-aware conformance checking of business processes. Lecture Notes in
Business Information Processing, 117 LNBIP:48–59, 2012.

[20] Leonardo de Moura and Nikolaj Bjørner. Z3: An Efficient SMT Solver. In Lecture Notes
in Computer Science, pages 337–340. Springer-Verlag, 2008.

[21] Guojun Gan and Michael Kwok Po Ng. K-Means Clustering With Outlier Removal.
Pattern Recognition Letters, 90:8–14, 2017.

[22] Fritz H. Grupe and M. Mehdi Owrang. Data base mining: Discovering new knowledge
and competitive advantage. Information Systems Management, 12(4):26–31, 1995.

[23] David B. Henry, Patrick H. Tolan, and Deborah Gorman-Smith. Cluster analysis in
family psychology research. Journal of Family Psychology, 19(1):121–132, 2005.

[24] A. K. Jain, M. N. Murty, and P. J. Flynn. Data clustering: A review. ACM Computing
Surveys, 31(3):264–323, 1999.

[25] Anna A. Kalenkova, Massimiliano De Leoni, and Wil M.P. Van Der Aalst. Discovering,
analyzing and enhancing BPMN models using ProM. CEUR Workshop Proceedings,
1295:36–40, 2014.

[26] Anna A. Kalenkova, Wil M.P. van der Aalst, Irina A. Lomazova, and Vladimir A. Rubin.
Process mining using BPMN: relating event logs and process models. Software and
Systems Modeling, 16(4):1019–1048, 2017.

[27] Milan Kubina, Michal Varmus, and Irena Kubinova. Use of Big Data for Competitive
Advantage of Company. Procedia Economics and Finance, 26:561–565, 2015.



bibliography 51

[28] Sander J.J. Leemans, Erik Poppe, and Moe T. Wynn. Directly follows-based process
mining: Exploration & a case study. Proceedings - 2019 International Conference on Process
Mining, ICPM 2019, pages 25–32, 2019.

[29] Yanchi Liu, Zhongmou Li, Hui Xiong, Xuedong Gao, and Junjie Wu. Understanding of
internal clustering validation measures. In Proceedings - IEEE International Conference on
Data Mining, ICDM, pages 911–916, 2010.

[30] Linh Thao Ly, Stefanie Rinderle-Ma, and Peter Dadam. Design and verification of
instantiable compliance rule graphs in process-aware information systems. Lecture Notes
in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture
Notes in Bioinformatics), 6051 LNCS:9–23, 2010.

[31] Linh Thao Ly, Stefanie Rinderle-Ma, David Knuplesch, and Peter Dadam. Monitoring
business process compliance using compliance rule graphs. Lecture Notes in Computer
Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in
Bioinformatics), 7044 LNCS(PART 1):82–99, 2011.

[32] J MacQueen. Some methods for classification and analysis of multivariate observations.
In Proceedings of the fifth Berkeley Symposium on Mathematical Statistics and Probability,
volume 1, pages 281–296, 1967.

[33] Felix Mannhardt, Massimiliano de Leoni, Hajo A. Reijers, and Wil M.P. van der Aalst.
Balanced multi-perspective checking of process conformance. Computing, 98(4):407–437,
apr 2016.

[34] Felix Mannhardt, Massimiliano de Leoni, Hajo A. Reijers, and Wil M.P. van der Aalst.
Balanced multi-perspective checking of process conformance. Computing, 98(4):407–437,
apr 2016.

[35] R. S. Mans, M. H. Schonenberg, M. Song, W. M.P. Van Der Aalst, and P. J.M. Bakker.
Application of process mining in healthcare - A case study in a Dutch Hospital. Com-
munications in Computer and Information Science, 25 CCIS:425–438, 2008.

[36] Ronny S Mans, Helen Schonenberg, Giorgio Leonardi, and Silvia Panzarasa. Process
mining techniques: An application to stroke care Process Mining in Logistics View
project Operational support for business processes View project. Studies in health
technology and informatics, 136:573–8, 2008.

[37] Jorge Munoz-Gama. Conformance checking and diagnosis in process mining : comparing
observed and modeled processes. PhD thesis, Universitat Politecnica de Catalunya –
BarcelonaTech, 2014.



bibliography 52

[38] Object Management Group (OMG). Business Process Model and Notation (BPMN)
Version 2.0.2. Technical Report December, Object Management Group, 2013.

[39] Mahamed G.H. Omran, Andries P. Engelbrecht, and Ayed Salman. An overview of
clustering methods. Intelligent Data Analysis, 11(6):583–605, 2007.

[40] Mateo Ramos-Merino, Juan M. Santos-Gago, Luis M. Álvarez-Sabucedo, Victor M.
Alonso-Roris, and Javier Sanz-Valero. BPMN-E2: a BPMN extension for an enhanced
workflow description. Software and Systems Modeling, 18(4):2399–2419, aug 2019.

[41] A Rozinat, Ivo S.M. de Jong, C W Günther, and W. M.P. van der Aalst. Process mining
applied to the test process of wafer scanners in ASML. IEEE Transactions on Systems,
Man and Cybernetics Part C: Applications and Reviews, 39(4):474–479, 2009.

[42] Roberto Sebastiani. Lazy Satisfiability Modulo Theories. Journal on Satisfiability, Boolean
Modeling and Computation, 3(3-4):141–224, 2007.

[43] M. Song, H. Yang, S. H. Siadat, and M. Pechenizkiy. A comparative study of dimen-
sionality reduction techniques to enhance trace clustering performances. Expert Systems
with Applications, 40(9):3722–3737, 2013.

[44] Minseok Song, Christian W. Günther, and Wil M.P. Van Der Aalst. Trace clustering in
process mining. Lecture Notes in Business Information Processing, 17 LNBIP:109–120, 2009.

[45] N Suthar, I Jeet Rajput, and V Kumar Gupta. A Technical Survey on DBSCAN Clustering
Algorithm. Ijser.Org, 4(5):1775–1781, 2013.

[46] Karuna Kant Tiwari. DBSCAN : An Assessment of Density Based Clustering and It ’ s
Approaches. International Journal of Scientific Research & Engineering Trends, 2(5):109–113,
2016.

[47] W. M.P. van der Aalst, H. A. Reijers, A. J.M.M. Weijters, B. F. van Dongen, A. K. Alves
de Medeiros, M. Song, and H. M.W. Verbeek. Business process mining: An industrial
application. Information Systems, 32(5):713–732, 2007.

[48] Wil Van Der Aalst, Arya Adriansyah, Ana Karla Alves De Medeiros, et al. Process
mining manifesto. In Lecture Notes in Business Information Processing, volume 99 LNBIP,
pages 169–194, 2012.

[49] Wil Van der Aalst, Arya Adriansyah, and Boudewijn Van Dongen. Replaying his-
tory on process models for conformance checking and performance analysis. Wiley
Interdisciplinary Reviews: Data Mining and Knowledge Discovery, 2(2):182–192, 2012.

[50] Wil van der Aalst and Wil van der Aalst. Data Science in Action. In Process Mining,
pages 3–23. Springer Berlin Heidelberg, 2016.



bibliography 53

[51] Stephen White. Introduction to BPMN. IBM Cooperation, 2:1–11, 2004.

[52] D. S. Wilks. Cluster Analysis. International Geophysics, 100:603–616, 2011.




	1 Introduction
	1.1 Motivation
	1.2 Objectives
	1.3 Dissertation layout

	2 Related Work
	2.1 Process Mining
	2.1.1 Event logs and Process Mining perspectives
	2.1.2 Conformance checking
	2.1.3 Data-aware conformance checking

	2.2 BPMN and BPMN-E2
	2.3 Satisfiability Modulo Theories
	2.4 Cluster Analysis
	2.4.1 Distance measures
	2.4.2 Hierarchichal clustering
	2.4.3 Non-hierarchical clustering
	2.4.4 Clustering in Process Mining

	2.5 Summary

	3 Data-aware Conformance Checking 
	3.1 Design goals
	3.2 Conversion phase
	3.2.1 Directly follows Rules Model
	3.2.2 SMT Solvers as conformance rules
	3.2.3 Dealing with non-monitored activities
	3.2.4 Associating rules to a DFRM

	3.3 Conformance checking phase
	3.4 Summary

	4 Event-based trace clustering for log reduction
	4.1 Motivation
	4.2 Vectorizing a trace
	4.3 Clustering and sampling
	4.4 Summary

	5 Implementation
	5.1 Architecture
	5.2 Main functionalities
	5.2.1 Conversion
	5.2.2 Conformance Checking
	5.2.3 Event-based trace clustering for log reduction

	5.3 Summary

	6 Proof of concept
	6.1 Real-life use case
	6.1.1 Event log
	6.1.2 BPMN-E2 Process Model
	6.1.3 Analyzing the results

	6.2 Evaluation using synthetic data
	6.2.1 Experimental setup
	6.2.2 Conformance Checking evaluation
	6.2.3 Event log reduction evaluation

	6.3 Summary

	7 Conclusions and future work

