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ABSTRACT

360◦ live video streaming is becoming increasingly popular. While providing viewers with

enriched experience, 360◦ live video streaming is challenging to achieve since it requires a

significantly higher bandwidth and a powerful computation infrastructure. A deeper under-

standing of this emerging system would benefit both viewers and system designers. Although

prior works have extensively studied regular video streaming and 360◦ video on demand

streaming, we for the first time investigate the performance of 360◦ live video streaming.

We conduct a systematic measurement of YouTube’s 360◦ live video streaming using various

metrics in multiple practical settings. Our research insight will help to build a clear under-

standing of today’s 360◦ live video streaming and lay a foundation for future research on this

emerging yet relatively unexplored area.

To further understand the delay measured in YouTube’s 360◦ live video streaming, we

conduct the second measurement study on a 360◦ live video streaming platform. While live

360◦ video streaming provides an enriched viewing experience, it is challenging to guarantee

the user experience against the negative effects introduced by start-up delay, event-to-eye

delay, and low frame rate. It is therefore imperative to understand how different computing

tasks of a live 360◦ streaming system contribute to these three delay metrics. Our measure-

ment provide insights for future research directions towards improving the user experience

of live 360◦ video streaming.

Based on our measurement results, we propose a motion-based trajectory transmission

method for 360◦ video streaming. First, we design a testbed for 360◦ video playback. The

testbed can collect the users viewing data in real time. Then we analyze the trajectories of

the moving targets in the 360◦ videos. Specifically, we utilize optical flow algorithms and

gaussian mixture model to pinpoint the trajectories. Then we choose the trajectories to be

delivered based on the size of the moving targets. The experiment results indicates that our

method can obviously reduce the bandwidth consumption.
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CHAPTER 1

INTRODUCTION

Live video streaming has played a pivotal role in shaping our lives in entertainment, surveil-

lance and teleconference. Based on video streaming market report in 2016 (rep 2016), the

global video streaming market will grow to 70.05 billion by 2021. In 2018, live video stream-

ing is overtaking the growth of other types of online videos, with an impressive annual market

increase of 113% (web 2018). With the emergence of 360◦ videos, 360◦ live video stream-

ing is becoming a new way to broadcast our everyday life. Viewers are allowed to freely

switch viewing directions of the panoramic content by dragging the mouse of a desktop,

swiping the screen of a smartphone or moving the head around with a head-mounted display

(HMD). Compared with regular live video streaming, 360◦ live video streaming can render

a panoramic view and enrich viewer experience in various applications. Major social media

websites such as Facebook and YouTube have all supported 360◦ live video streaming.

Despite the promising experience, achieving 360◦ live video streaming is challenging. Due

to its panoramic nature, 360◦ live video streaming needs to transport high-quality data of

multiple viewports and thus requires a significantly higher network bandwidth. Furthermore,

the computation time for video encoding, decoding and rendering must be minimized on

cameras and viewing devices to allow real-time 360◦ live video playback.

Delay is critical to live video streaming. Different delay metrics have various impacts

on user experience. Complex initialization between a client and a server may lead to an

excessive start-up delay, which decreases users’ willingness to continue the viewing. The

start-up delay may in turn result in a long event-to-eye delay, i.e., the time interval between

the moment an event happens on the remote scene and the moment when the event is
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displayed on the client device. Long event-to-eye delay causes significant lags in streaming

of live events such as sports, concerts, and business meetings. Moreover, the frame rate of a

live video is determined by how fast frames can be pushed through the system pipeline. A

low frame rate would make the video playback not smooth.

Facing these challenges, it is imperative to have an clear understanding of 360◦ live video

streaming and thus to assist both viewers and system designers of this technology. For

example, the viewers would like to know which video quality should be chosen when using

360◦ live video streaming service. For developers, an understanding of the system would

help to identify the problems that exist in today’s 360◦ live video streaming. This could

be the first step to design effective algorithms to optimize the 360◦ live video streaming

performance.

My research focuses on understanding the 360◦ live video streaming service, especially in

digging into a task-level understanding of the 360◦ live video streaming pipeline. In summary,

our contributions can be summarized as follows.

• Today’s 4K 360◦ live video streaming suffers from frequent rebuffering for 33% of the

playback time. In contrast, the smooth playback of a 360◦ video at 1080p and below

can be supported. However, this might imply unsatisfactory user experience in some

applications since only 15% ∼ 20% of the panorama would be viewed.

• One-way video delay is extremely high in 360◦ live video streaming. Viewers need

to wait for 13 seconds (480p) to 42 seconds (4K) to see the most recent events of

the remote site. Such delay performance could be acceptable for certain broadcasting

applications, but would be unsuitable for real-time interactive applications.
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• While DASH can reduce the rebuffering events and one-way video delay, it still does

not solve the problems of 4K 360◦ live video streaming. Surprisingly, viewers might

not necessarily have better experience in DASH-based 4K 360◦ live video streaming

than in non-DASH-based 1080p streaming.

• Although YouTube 360◦ live video streaming player has adopted a strategy to skip

frames in order to reduce the one-way video delay and keep the live video up to date,

the buffer management algorithm is still conservative to achieve real-time requirement.

• We identify the diverse relationship between the time consumption breakdown across

the system pipeline and the three delay metrics in live 360◦ video streaming.

• We build an open research prototype Zeus1 using publicly available hardware and

software to enable task-level delay measurement. The methodology for building Zeus

can be utilized in future 360◦ video research.

• We leverage Zeus to perform a comprehensive measurement study to dissect the time

consumption in live 360◦ video streaming and understand how each task affects different

delay metrics.

• We perform a comparison of Zeus against a commercial live 360◦ video streaming

system built on Ricoh Theta V and YouTube and validate that our measurement

results are representative of real world systems.

The rest of the proposal is organized as follows: Chapter 2 presents the background

of 360◦ video streaming. Chapter 3 investigates the problems of YouTube 360◦ live video

1https://github.com/junyiwo/Zeus
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streaming, which provides insights on commercial live video streaming platforms. Chapter 4

discusses the delay analysis and proposed method for delay measurement in 360◦ live video

streaming platforms, which help build a deeper understanding of delay in commercial live

video streaming. Chapter 5 introduces a motion-based transmission method for 360◦ video

streaming. Chapter 6 concludes our work.
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CHAPTER 2

BACKGROUND

In this chapter, we provide the background information of our topic. We review the rel-

ative concepts in the fields of 360◦ video, live video streaming, measurement study in the

subsections respectively.

2.1 360◦ video

360◦ videos are also known as immersive videos. They are video recording where each

direction of scenes will be recorded at the same time. 360◦ videos are normally generated

by two different types of cameras: a rig of normal cameras or multiple fish eye cameras

embedded into one camera. The rig of cameras usually contains more than five cameras that

cover all the directions(rig 2021). After being recorded by different cameras, the images will

be stitched to generate one 360◦ image by the camera itself or other platforms installing

software like Open Broadcaster Studio.

There are three major map projection methods to transform 360 videos into a 2D plane

before encoding. Specifically, they are equiractangular projection, pyramid projection and

cube projection. 360◦ videos need to be mapped since currently no encoder can encode

special videos. Equirectangular projection will first transform spherical coordinates of the

stitched sphere images into planar coordinates (Su & Grauman 2017; Wang et al. 2020, 2017).

Once received, the client will run the reverse projection which transforms the rectangular

from the plane back onto the sphere. However, this method introduces obvious distortion at

the poles of sphere. Pyramid projection maps the viewport to the base of the pyramid and

slides for the other part of a video frame (Nasrabadi et al. 2017; Duanmu et al. 2017; Zhou
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et al. 2019). However, it causes severe quality variance between the base and the slides,

which decrease the user’s experience. For the cube projection(Cheng et al. 2018; Sauer et al.

2018; Duanmu et al. 2018), video frames will be mapped to six faces of a cube. However, it

also has geometry distortion.

2.2 Live Video Streaming

Live video streaming is a new method for digital communication. Compared with Video

on Demand (VoD), live video streaming is when the streamed video being sent over the

Internet in real time instead of being recorded or stored before streaming. Currently, live

video streaming has an important impact on various business (web 2018). For example,

more and more schools and colleges utilize live video streaming for online classes during the

pandemic.

Compared with VoD, live video streaming provide better user experience. For example,

users can have real time interactions even if the video streaming was delivered to multiple

channels. Meanwhile, live video streaming is more authentic since there is no post produc-

tion. Moreover, live video streaming can save budget. For example, businesses that use live

video streaming don’t require everyone to stay in the same location. Everyone can receive

the same video streaming simultaneously. Thus, there is no need to pay the travel fee or any

other fee that needed to be considered.

2.3 DASH

Dynamic Adaptive Streaming over HTTP (DASH) has been widely used in live video stream-

ing and VoD since it was proposed in 2011(DAS 2021). Now it can supoort a wide range of
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devices such as mobile phones, laptops and tablets.

To delivery the video content, DASH divides them into small chunks which are sev-

eral seconds long. The HTTP server can save all the video chunks with different encoding

rate.Thus client players can download video chunks based on their network performance by

HTTP (Gadaleta et al. 2017; Sodagar 2011; Lederer et al. 2012). Specifically, HTTP server

will first sends client players a list of the available media segment URLs in a Media Presenta-

tion Description (MPD) file (Zhao et al. 2014). Then the client players fetch information like

maximum bandwidth and minimum bandwidth for the video, video resolution, and various

encoded alternatives of video chunks. Based on the MPD file and the network performance,

the client players can pick up an appropriate video stream and send an request to the HTTP

server.

Compared with other adaptive video streaming technologies such as HTTP Live Stream-

ing (HLS) and Microsoft Smooth Streaming, DASH has better performance(Zhu & Song

2015; Pan et al. 2016; Durak et al. 2020). For example, DASH support continued adaptation

to the bandwidth situation of the client. Meanwhile, it has smaller startup delay and video

buffering during the play. Moreover, it can bypass the firewall due to the usage of HTTP.
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CHAPTER 3

A Measurement Study of Youtube 360◦ Live Video Streaming

In this chapter, we study the issues about today’s commercial 360◦ live video streaming

systems by conducting a measurement study on YouTube 360◦ live video streaming.

3.1 Motivation

360◦ live video streaming is becoming increasingly popular due to the development of hard-

ware infrastructure. 360◦ cameras is expected to grow by 1.68 billion between 2021 and

2025 (360 2021). 360◦ live streaming has been widely used in multiple industries such as

education, commercial and sports. Compared with traditional live video streaming, 360◦

live video streaming provide uses an enriched experience due to the panoramic viewport.

With the increasing adoption of virtual reality, it is not hard to imagine a future where a

360-degree video would become the new norm rather than being the novelty it is today.

While providing viewers with enriched experience, 360◦ live video streaming is challenging

to achieve since it requires a significantly higher bandwidth and a powerful computation

infrastructure. A deeper understanding of this emerging system would benefit both viewers

and system designers. Although prior works have extensively studied regular video streaming

and 360◦ video on demand streaming, we for the first time investigate the performance of

360◦ live video streaming. We conduct a systematic measurement of YouTube’s 360◦ live

video streaming using various metrics in multiple practical settings.

Our key findings suggest that viewers are advised not to live stream 4K 360◦ video, even

when dynamic adaptive streaming over HTTP (DASH) is enabled. Instead, 1080p 360◦ live

video can be played smoothly. However, the extremely large one-way video delay makes it



9

only feasible for delay-tolerant broadcasting applications rather than real-time interactive

applications. More importantly, we have concluded from our results that the primary design

weakness of current systems lies in inefficient server processing, non-optimal rate adapta-

tion, and conservative buffer management. Our research insight will help to build a clear

understanding of today’s 360◦ live video streaming and lay a foundation for future research

on this emerging yet relatively unexplored area.

3.2 Related Work

In this section, we introduce the related work on video streaming measurement study. Based

on the video content, we divide the related work into two categories: regular live video

streaming and 360◦ video streaming.

Regular live video streaming. Regular live video streaming has been implemented

on different platforms. Yu et al (Yu et al. 2014) conducted a measurement study of three

mobile video call applications: FaceTime, Google Plus Hangout, and Skype. Through mea-

surements over a wide range of wireless network conditions, they showed that mobile live

video streaming quality is highly vulnerable to bursty packet loss and long packet delay. For

the broadcast applications, Tang et al (Tang et al. 2016a) described the characteristics of

live video streaming on Meerkat and Periscope and revealed the relationship among different

roles in the broadcast system. For example, the interaction between uploaders and viewers

shapes the video content. Ding et al (Ding et al. 2011) focused on YouTube uploaders’

characteristics (gender, age and geography distribution) and behavior. By analyzing 10,000

uploaders’ information, they demonstrated that most uploaders prefer to upload a contigu-

ous snippet of a video that is originally distributed outside of YouTube. Hamilton et al
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(Hamilton et al. 2014) investigated the behavior of Twitch’s viewers and uploaders. It is

interesting to observe that viewers tend to regard Twitch as a virtual place of social activity.

Although these works have shed some light on regular live video streaming system design,

the observation and principle cannot be directly used in 360◦ live video streaming systems.

360◦ video streaming. Recent efforts have been made towards the encoding/projection

(Xiao et al. 2017; Xie et al. 2017), view-adaptive streaming (Nguyen et al. 2018a; Qian et al.

2018a) and energy optimization (Yan et al. 2018) of 360◦ video streaming. Xiao et al (Xiao

et al. 2017) proposed a new encoding technique by converting the video encoding into a

storage costs optimization problem. Anh et al(Nguyen et al. 2018a) proposed a methodology

to collect saliency maps for 360◦ video based on previous study on human attention behaviors

in head-mounted display. They built a Deep Convolutional Neural Network (DCNN) based

on the generated saliency map. Then, a head movement prediction model is proposed to

predict user head movement using saliency maps generated from DCNN.

Meanwhile, researchers have attempted to understand 360◦ VoD streaming through mea-

surement studies (Zhou et al. 2017a; Afzal et al. 2017b; Jiang et al. 2017; Lo et al. 2017).

Afzal et al (Afzal et al. 2017b) characterized 360◦ videos by examining thousands of YouTube

videos across more than a dozen categories and reached the conclusion that 360◦ videos are

less variable in terms of bit rate and have less motion than regular videos. Zhou et al (Zhou

et al. 2017a) reverse-engineered the encoding solution of Oculus 360◦ VoD systems and iden-

tified it as offset cubic projection. Compared with the standard cubic encoding, the offset

cubic projection encodes a distorted version of the spherical surface, devoting more informa-

tion to the view in a chosen direction. Jiang et al (Jiang et al. 2017) analyzed the energy

consumption of 360◦ streaming on HMD under 8 test cases with different configurations and
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provided a detailed energy consumption breakdown of the system. They showed that the

HMD streaming overhead and network transmission account for approximately half of the

energy consumption. Lo et al (Lo et al. 2017) demonstrated the strength and weakness of

tile-based streaming for 360◦ videos over 4G networks. They observed that the tile-based

video streaming can clearly save the bandwidth but it may decrease the coding efficiency of

tiles.

Despite the insight obtained from these studies, our understanding about 360◦ live video

streaming is still limited. In this paper, we conduct a systematic study to facilitate viewers’

interaction with this new technology as well as to lay a foundation for future system design

in user experience and system performance optimization.

3.3 Measurement Setup

3.3.1 System Architecture

There are two types of architecture for 360◦ live video streaming systems: direct broad-

cast and indirect broadcast. For the indirect broadcast, a 360◦ camera is used to capture

panoramic images and stitch them into the equirectangular format. After being captured

by the camera, the 360◦ video will be transmitted to a client via USB or Ethernet connec-

tion. The client can be a desktop, laptop or mobile device on which a streaming software is

installed to encode the video. Then the video will be uploaded to a third-party server such

as YouTube’s video server. The server will transcode the video into multiple resolutions to

enable DASH support and then broadcast the video to viewers. After receiving the 360◦

video, a player will decode the video and render the spherical images for displaying. On

the other hand, for direct broadcast, the camera is connected with a router through wireless
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Figure 3.1 System architecture of the direct broadcast system.

networks so that the 360◦ video can be directly uploaded to a third-party server without a

desktop/mobile relay. These two systems have been widely applied.

In this paper, we build a direct broadcast system to transport the 360◦ live video. This

is a more practical case in everyday life as uploaders do not need extra devices to use as

the relay client when broadcasting the video. Figure 3.1 shows the architecture of the direct

broadcast system used in our measurement study.

3.3.2 Testbed

We build a testbed that consists of three components to study 360◦ live video streaming

over YouTube. The 360◦ camera is a Ricoh Theta V(Ric 2021), which can provide 360◦

live video streaming with different resolutions and bitrates. For the router, we use ASUS

RT-AC3100, a dual band gigabit router. It can support 2.4 GHz and 5 GHz wireless signals

simultaneously. However, we have verified that the camera only connects to the 2.4 GHz

wireless service in our measurement since the router complies to 5GHz standard W58 but

the Ricoh THETA V only complies to standard W52 (Oda 2018). The viewing player lies

in a desktop, residing in a normal university building. For the desktop, the CPU is an Intel

Xeon W-2135 with 12 cores at 3.7 Ghz, and the graphic card is a GeForce GTX 1080Ti. The
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high-end configuration makes it feasible to process 4K 360◦ live video streaming. The live

stream is sent to the desktop through a university LAN connection via a Gigabit Ethernet

cable. We have confirmed that the upload bandwidth from the camera to the YouTube server

is 60 Mbps and the download bandwidth is 16 Mbps.

To enable the end-to-end system, we implement several system components. First, we

install a plug-in (ric 2018) on the camera to establish the connection. The plug-in uses Real-

Time Messaging Protocol (RTMP), which is compatible to YouTube. We input the server

URL and stream key into the plug-in so that uploaders can easily live stream 360◦ video to

YouTube. The quality of camera capture can also be configured through the plug-in. On

the viewer side, we develop an 360◦ video player for video playback using IFrame player API

(?). The IFrame player API can embed a YouTube video player on a webpage and control

the player using JavaScript. After receiving the video file chunks, our player offloads much

of the processing work (decoding, audio synchronization) to dedicated video/graphic card of

the computer to expedite the video processing.

3.3.3 Metrics and Methodology

To evaluate the performance of the YouTube 360◦ live video streaming service, we use several

important metrics (Dobrian et al. 2011; Yu et al. 2014) for live video streaming.

• Rebuffering ratio is calculated as the rebuffering time divided by the duration of the

entire live video session. It is used to evaluate how long would the video stay in the

“freeze” status.

• Rebuffering frequency is calculated as the total number of rebuffering events divided
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by the duration of the entire live video session. Although the total stalling time could

be short, it is likely that the viewers may suffer from frequent rebuffering events which

also degrades viewing experience.

• One-way video delay is defined as the time difference between when a frame is captured

and when it is displayed on the screen. It measures how long it would take for a viewer

to see a remote event after the event occurs. The one-way video delay includes the

time for camera stitching and processing, video upload, YouTube processing, downlink

transmission, video decoding, and video rendering/display.

• Initial delay is the time difference between when the viewer sends a request to start

the live streaming to when the first frame is displayed.

Measuring these performance metrics is non-trivial. First, we have no access to the

rebuffering information on the YouTube website. During the live video session, we use

getPlayerState() function to monitor the live video streaming session. It outputs a set of

values, indicating the playback status– not started, ended, paused, playing, and buffering.

We also output information such as video quality and play time using getPlaybackQuality()

and getDuration() functions. Based on the system logs, we can compute the rebuffering

metrics.

Furthermore, it is challenging to collect the delay information since there is no API

support for inserting a timestamp into each frame on the camera side. Existing tools, such

as gStreamer and FFmpeg, cannot be directly applied on the camera. Even though frame

timestamp is available, it is unlikely to extract the application-layer information as the video

packets are encrypted by HTTPS. Therefore, we follow the methodology used in (Yu et al.
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2014) to measure the one-way video delay. The key idea is to let the camera capture a

stopwatch such that the camera-side timestamps become available. A second stopwatch is

run in the viewing device. By measuring the difference between the two clocks when the

same frame is shown, we are able to derive the one-way video delay. The configuration details

can be found in (Yu et al. 2014). For the initial delay, we can obtain it directly from the

second stopwatch on the viewing client. To automatically collect the delay data, we write a

script using Python 3.5 to extract the timestamps for both stopwatches.

We carry out the measurement inside a typical office building. The shooting scene gen-

erally contains professionals and office supplies such as desks and printers. As we focus on

the system performance from frame capture to frame display rather than the user interac-

tion and viewport switch, the viewer viewport does not change during the live session. The

camera can capture raw video at 480p, 720p, 1080p and 4K and the viewer will pick one

version upon live streaming request. The video frame rate is fixed at 30 frames per second.

We perform measurement studies on various practical settings to simulate real-world appli-

cation scenarios. For each video session, we measure the performance for 3 minutes and we

repeat this for 20 times. The measurement scenarios are divided into four categories.

• Default : the camera is fixed on a table. The video with the viewer-requested resolution

will be streamed.

• Moving : unlike Default, the uploader holds the camera and walks around the building

during the measurement. Other settings remain the same.

• DASH : The difference between DASH and Default is that the viewer-requested video

will be transcoded into more versions at the YouTube server in DASH scenario for
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downlink streaming (144p, 240p, 360p, 480p, 720p, 1080p, 1440p and 4K). Note that

the downlink-streamed DASH videos would not have higher resolution than the viewer-

requested version.

• Moving DASH : on top of Moving, the viewer also adopts DASH for downlink 360◦ live

video playback.

3.4 Measurement Results

In this section, we present the results and analysis obtained from the measurement studies.

3.4.1 Rebuffering Events

In this set of measurements, we measure the rebuffering events of 360◦ live video streaming.

Figure 3.2 illustrates the distribution of rebuffering time of all rebuffering events across all

video sessions in 4 measurement scenarios. We can observe that if the viewer-requested

resolution is 1080p and below, the rebuffering time is only around 0.5s to 0.8s. We also

identify in our data that the average frequency of rebuffering events is 0.6 times/min for those

sessions with a viewer-requested resolution at 1080p and below. This indicates a negligible

rebuffering for low-resolution live video streaming. However, if the viewer-requested video

is 4K, the viewer tends to suffer from an average of 6s stall with a longest stall up to 20s.

The major reason of this phenomenon is that 4K live streaming is still challenging in today’s

downlink networks. The rendering and processing of 360◦ videos further add computation

burden to the end-to-end pipeline, thereby causing delayed frame delivery and frequent

rebuffering.
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Figure 3.2 Distribution of rebuffering time across all sessions.

We also individually examine the rebuffering ratio and rebuffering frequency when a 4K

video is requested by the viewer in Figure 3.3. We observe that the rebuffering ratio is 23%

and the rebuffering frequency is more than 4 times/min even under Default. In Moving,

the viewer will suffer worse experience since the live video session stalls for approximately

40% of the time and the rebuffering occurs more than 6 times per minute. In fact, we have

verified that the moving camera introduces unstable upload bandwidth. Furthermore, the

dynamic content captured by the camera will enlarge the volume of the video, making the

encoding/decoding/rendering more challenging. In addition, it is important to observe that

the rebuffering ratio decreases when adaptive dynamic downlink streaming is enabled in

Moving DASH and DASH. However, since the camera-captured 4K video will be transcoded

into lower resolutions in DASH-enabled cases, the actual viewed video quality is far from

satisfactory. We will investigate the impact of DASH in Section 4.3.

Based on our results on rebuffering events, we can conclude that viewers would expe-

rience significant rebuffering when requesting 4K 360◦ live video on YouTube. To ensure
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Figure 3.3 Rebuffering ratio and frequency of 360◦ live video streaming in 4K resolution.

the smooth non-stalling playback, viewers are suggested to request a resolution at 1080p or

below. However, it is critical to note that viewer experience is likely to be unsatisfactory.

This is because the resolution of 1080p or below will become even lower during viewing since

only 15% ∼ 20% of the panorama would be actually viewed by the viewer.

3.4.2 Delay Performance

In this section, we evaluate various delay of 360◦ live video streaming service.

3.4.2.1 One-way Video Delay

Figure 3.4 shows the boxplot of one-way video delay under the scenarios of Default and

Moving. We observe that the one-way video delay for 4K 360◦ videos is significantly higher

than lower resolution. The delay range of 4K 360◦ live video streaming (25s to 60s) is also

clearly larger. Similar to what we explained in Section 4.1, this is because each frame in 4K

video contains over three times as many pixels as in lower-resolution videos. The excessive

size of the video consumes more time for video transport and processing.

Another interesting phenomenon is that movement has larger impact on 4K video than
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Default

Figure 3.4 One-way video delay in different scenarios.

Moving

Figure 3.5 One-way video delay in different scenarios.

lower-resolution video. While the one-way video delay of 4K video increases more than 6s in

Moving, lower-resolution videos show similar one-way video delay under Default and Moving.

The reason is that the network condition is significantly better than the required bandwidth
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Figure 3.6 Initial delay in default sce-
narios.

Figure 3.7 Initial delay in moving sce-
narios..

for lower-resolution video. Therefore, the network speed spikes introduced by the camera

movement have little impact on the one-way video delay.

3.4.2.2 Initial Delay

Figure 3.6 and figure 3.7 shows the initial delay of 360◦ live video streaming in different

scenarios. Even for the lowest resolution, viewers need to initially wait for approximately

39s before watching the 360◦ live video. The start-up waiting time for 4K videos can reach

55s. We observe from our results that the large initial delay is attributed to the heavy pre-

processing completed in YouTube server. In order to allow the option of DASH streaming, the

YouTube server has to transcode the viewer-requested 360◦ video into multiple resolutions.

The initial transcoding takes far more time than the subsequent frame by frame transcoding

since the YouTube server initially needs to set up the encoding configuration, generate the

Media Presentation Description (MPD) file, and possibly convert the projection/format of

the uploaded 360◦ video. Therefore, we see a larger initial delay than the one-way delay in

Figure 3.4.
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Figure 3.8 One-way video delay in DASH scenario.

From the above mentioned results, we can arrive at the conclusion that delay is probably

the biggest issue for 360◦ live video streaming, even for low-resolution videos. Although the

large initial delay and one-way video delay may be tolerant in some broadcasting applications,

they are far from the requirement of real-time interactive playback. The large one-way video

delay will make the viewing experience lag far behind the actual remote events. We note

that server processing has played a primary role in the undesirable delay performance. New

video/MPD preparation schemes at the server may be needed to expedite the 360◦ live video

streaming.

3.4.3 Impact of DASH

We have shown in Figure 3.3 that using DASH in downlink streaming can reduce the re-

buffering events. In this section, we conduct more experiments to investigate the impact of

DASH on 360◦ live video streaming, especially for 4K resolution.

Figure 3.8 shows the one-way video delay of 360◦ live video streaming under different
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Figure 3.9 Resolution of DASH & Moving DASH sessions.

viewer-requested resolutions in DASH scenario. We observe that the one-way video delay

is around 24.5s, which is smaller than the delay in Default and Moving scenarios. This is

because DASH can dynamically change the streamed video quality to match the network

condition. To further understand the viewing experience in DASH, we analyze the video

quality actually received and viewed during the measurement sessions. Figure 3.9 plots the

percentage of actually viewed video resolution under the viewer-requested resolution of 4K

across both moving and non-moving scenarios. We observe that although the requested

resolution is 4K, viewers will only watch a 4K video for 10% of the video session. Instead,

viewers spend 70% of the time viewing a 1080p video. Furthermore, the viewers will to need

switch among a total of five resolutions during the 3-min session. This could lead to mediocre

user experience with an one-way video delay of 25s, video resolution of around 1080p, and

quality variation among 5 resolutions. In fact, viewers are even suggested to directly request

the non-DASH 1080p video which can achieve a one-way video delay of 18s and a constant

video quality at 1080p.
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Figure 3.10 Per-session one way video delay in Default.

The reason of this nonpositive effects of DASH on 4K 360◦ live video is that a conservative

quality increment algorithm is adopted in the player. To further optimize the 360◦ live video

streaming system, it is imperative for system designers to develop new rate adaptation

algorithms suitable for 4K 360◦ live videos.

3.4.4 Session Trace Analysis

We have so far focused on the statistical results of the system performance. In this section,

we examine a 4K 360◦ live video session to identify more technical issues of existing streaming

solutions.

Specifically, we show the trace of one-way video delay for different viewer-requested res-

olutions under Default scenario in Figure 3.10. We see that the one-way video delay of

lower-resolution videos is stable. This is expected since lower-resolution videos can be easily

processed and transported in a typical computing and network environment. The large delay

stems from the initial setup as we discussed in Figure 3.6 and Figure 3.7.
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For the 4K resolution, the one-way video delay continuously climbs. This is mostly due

to the computation and networking constraints in handling 4K 360◦ live video. It is also

interesting to notice that the one-way video delay of 4K video always suddenly drops after

a spike and this pattern repeats across the session. After studying the trace of rebuffering

status, we learn that the delay spike occurs when the player is rebuffering. Once the buffer

is filled with enough video data, we observe that the player will drop a number of frames

and then resume the playback, thereby leading to the sudden drop of one-way video delay.

It is also worthwhile to point out that, no matter how long the rebuffering is, the one-way

video delay always drops down approximately 2.5s when the live video recovers from the

stall. This is because the player always skips roughly 2.5 seconds of frames when the buffer

is ready for playback.

In sum, while the existing player for 360◦ live video streaming does implement a scheme

to skip frames in order to keep the live video up to date, the one-way video delay is too

large to be acceptable. The inconsistency between the remote site and viewer will disable

all interactive applications. Therefore, new buffer management algorithms are needed to

address the trade-off between interactivity and scene fidelity.

3.5 DISCUSSION AND FUTURE WORK

Other network environment. In this paper, we only focus on measuring the performance

of 360◦ live video streaming in Wi-Fi upload and wired download environment. Indeed, the

network condition could be more diverse in practice. For example, the video may be uploaded

by LTE network through a smartphone or the viewer can use a mobile HMD to download the

video via wireless networks. However, we point out that the system performance of other
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network conditions are unlikely to be better than our setup. Hence, we believe that our

observation can generally be extended to other network environment.

Other 360◦ live video streaming platforms. We achieve a deeper understanding

of 360◦ live video streaming on YouTube using a Ricoh 360◦ camera. However, there are

other platforms (Facebook and Twitch) and cameras (Samsung and Nokia) supporting 360◦

live video streaming. The parallel computing and media processing capability of different

online platforms can be different and may impact the 360◦ live video streaming performance.

Similarly, the stitching quality and overhead of cameras may also determines the viewer ex-

perience. In this paper, we take the first step to study commercial 360◦ live video streaming.

A comprehensive full-scale study of 360◦ live video streaming pipeline is needed as future

work to provide further insight on optimizing the system performance. More specific metrics

will be used to further understand the system. Especially for 4K 360◦ live video streaming,

we will try to pinpoint the component for the relatively inferior performance.

3.6 CONCLUSION

This chapter proposes a new method to measure the 360◦ live video streaming in YouTube.

Specifically, we have built an end-to-end measurement testbed to investigate the performance

of 360◦ live video streaming on YouTube. We study the system performance and user expe-

rience under various requested resolutions (up to 4K). Our observation provides important

insight for both viewers and developers. Due to frequent rebuffering and annoying delay

performance, viewers are suggested not to live stream 4K 360◦ videos, even when DASH is

enabled. Although delay-tolerant applications can be achieved by broadcasting 1080p video,

the excessive one-way video delay will fail any interactive application. For system designers,
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it is important to devise new algorithms to improve the performance of video server pro-

cessing/transcoding, player rate adaptation, and player buffer management. The enhanced

designs will need to maximize the video quality while keeping the streamed content up to

date. We believe the results of this research can enable a suite of future works on live 360◦

videos, an emerging yet relatively unexplored topic in multimedia systems community.
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CHAPTER 4

An Analysis of Delay in Live 360◦ Video Streaming Systems

In this chapter, we extend our work to delay analysis over the whole pipeline of live 360◦

video streaming systems. Specifically, we will analyze relationships between different delay

metrics and task-level measurement results.

4.1 Motivation

Live video streaming services have been prevalent in recent years (web 2019). With the

emergence of 360◦ cameras, live 360◦ video streaming is emerging as a new way to shape our

life in entertainment, online meetings, and surveillance. A recent study shows that about

70% of users are interested in streaming live sports in 360◦ fashion (360 2019). Compared

with live regular video streaming, live 360◦ video streaming offers an immersive viewing

experience by first recording a scene in all directions with an omnidirectional camera and

then live streaming the 360◦ video to a user.

Delay is critical to live video streaming. Different delay metrics have various impacts

on user experience. Complex initialization between a client and a server may lead to an

excessive start-up delay, which decreases users’ willingness to continue the viewing. The

start-up delay may in turn result in a long event-to-eye delay, i.e., the time interval between

the moment an event happens on the remote scene and the moment when the event is

displayed on the client device. Long event-to-eye delay causes significant lags in streaming

of live events such as sports, concerts, and business meetings. Moreover, the frame rate of a

live video is determined by how fast frames can be pushed through the system pipeline. A

low frame rate would make the video playback not smooth.
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Guaranteeing user experience in 360◦ live video streaming against the above negative

effects of delay is especially challenging. First, compared to regular videos, live 360◦ videos

generate far more data and require additional processing steps to stitch, project, and display

the omnidirectional content. Second, the aforementioned delay metrics have an independent

effect on user experience. For example, a short event-to-eye delay does not guarantee a high

frame rate. To prevent undesirable user experience caused by delays, a key prerequisite is

to understand how different components of a live 360◦ streaming system contribute to the

three delay metrics. In particular, we must answer the following questions: (1) what tasks

does a live 360◦ video streaming system have to complete, and (2) how does the time spent

on each task affect user experience?

While a number of measurement studies have been conducted on regular 2D live video

streaming (Wang et al. 2016; Siekkinen et al. 2018; Tang et al. 2016b), the delay of live

360◦ video streaming has not been well understood. Recent works in 360◦ video streaming

focused on rate adaptation algorithms (Corbillon et al. 2017a, 2018; Nguyen et al. 2018b;

Chen et al. 2019) and encoding/projection methods (Corbillon et al. 2017b; Nasrabadi et al.

2017; Zhou et al. 2017b). The only two existing measurement studies on live 360◦ videos

(Yi et al. 2019; Liu et al. 2019) were performed on commercial platforms; both were only

able to treat the system as a black box and performed system-level measurements. They

were not able to dissect the streaming pipeline to analyze how each task of a live 360◦ video

streaming system contributes to the start-up delay, event-to-eye delay, and frame rate.

In this paper, we aim to bridge this gap by conducting an in-depth measurement study

of the time consumption across the end-to-end system pipeline in live 360◦ video streaming.

Such an analysis can pinpoint the bottleneck of a live 360◦ video streaming system in terms
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of different delay metrics, thus prioritizing the system optimization efforts. To our best

knowledge, the proposed measurement study is the first attempt to understand the task-

level time consumption across the live 360◦ video streaming pipeline and their impacts on

different delay metrics and user experience.

Performing such a measurement study is non-trivial because commercial live 360◦ video

streaming platforms are usually implemented as a black box. The closed-source implemen-

tation makes it almost impossible to measure the latency of each computing task directly.

To tackle this challenge, we build a live 360◦ video streaming research prototype, called

Zeus, using publicly available hardware devices, SDKs, and open-source software packages.

Composed of five components – a 360◦ camera, camera-server transmission, a video server,

server-client transmission, and a video client, Zeus can be easily replicated for future live

360◦ video streaming studies in areas such as measurement, modeling, and algorithm design.

Using Zeus, we evaluate micro-benchmarks to measure the time consumption of each task

in all five system components. Our measurement study has three important findings. First,

video frame copying between the CPU and GPU inside the camera consumes non-negligible

time, making it a critical task towards achieving a desired frame rate on the camera (typically

30 frames per second, or fps). Second, stitching a 360◦ video frame surprisingly has only a

minor effect on ensuring the frame rate. Third, server initialization before live streaming 360◦

videos is very time-consuming. The long start-up delay leads to a significant event-to-eye

delay, indicating an annoying streaming lag between what happens and what is displayed.

Overall, the camera is the bottleneck for frame rate whereas the server is the obstacle for

low start-up and event-to-eye delay.

Because of the implementation differences between Zeus and commercial live 360◦ video
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streaming platforms, the absolute values of the results obtained with Zeus may potentially

differ from those measured on commercial platforms. Therefore, we further perform mea-

surements on a commercial system, built using Ricoh Theta V and YouTube, treating it as

a black box and compare its component-level time consumption to the values obtained with

Zeus. We observe that the time consumption of each component in Zeus has a strong cor-

relation with that of the commercial system, suggesting that our findings can be generalized

to real-world live 360◦ video streaming systems.

4.2 Related Work

Regular live video streaming. A corpus of work has gained understanding of regular live

video streaming platforms. Wang et al. (Wang et al. 2016) analyzed the delay of Periscope,

a popular live video streaming App and showed that the client-buffering, chunking, and

polling are the major contributors to the high latency of HTTP Live Streaming (HLS)

systems. Siekkinen et al. (Siekkinen et al. 2018) studied user experience on mobile live video

streaming and observed that video transmission time is highly affected by live streaming

protocols. Researchers (Nihei et al. 2018; Sun et al. 2019) studied encoding methods to

reduce the transmission time introduced by bandwidth variance. Although these works are

beneficial to regular live video streaming, the observations cannot be applied to 360◦ videos

because multiple video views and extra processing steps of the live 360◦ video streaming.

360◦ video-on-demand streaming. Measurement studies on streaming pre-recorded

360◦ videos have been conducted (Afzal et al. 2017a; Zhou et al. 2017b; de la Fuente et al.

2019; Grzelka et al. 2019). Afzal et al. (Afzal et al. 2017a) characterized 360◦ videos by

examining thousands of pre-recorded YouTube videos across more than a dozen categories
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and concluded that latency is a highly important criterion when viewing 360◦ videos in VR

headsets. Zhou et al. (Zhou et al. 2017b) studied the encoding solution and streaming

strategy of Oculus 360◦ video-on-demand (VoD) streaming. They reverse-engineered the

offset cubic projection adopted by Oculus which encodes a distorted version of the spherical

surface and devotes more information to the view in a chosen direction. Previous studies also

showed that the delay of 360◦ VoD streaming affects viewport-adaptive streaming algorithms

(de la Fuente et al. 2019; Grzelka et al. 2019) and the rendering quality. Despite all efforts on

360◦ VoD measurement studies, none of them considers the 360◦ camera and the management

of a live streaming session, which are essential components in 360◦ live video streaming. Thus,

these works provide limited insight to live 360◦ video streaming.

Live 360◦ video streaming. Two recent works (Yi et al. 2019; Liu et al. 2019) have

studied commercial live 360◦ video streaming systems. Jun et al. (Yi et al. 2019) investigated

the YouTube platform for up to 4K resolution and showed that viewers suffer from a high

event-to-eye delay in live 360◦ video streaming. Liu et al. (Liu et al. 2019) conducted a

crowd-sourced measurement on YouTube and Facebook. Their work verified the high event-

to-eye delay and showed that viewers experience long session stalls. Chen et al. (Chen et al.

2019) proposed a stitching algorithm for tile-based live 360◦ video streaming under strict

time budgets. Despite the improved understanding of commercial live 360◦ video streaming

platforms, none of the existing studies dissected the delay of a live 360◦ streaming pipeline

at the component or task level. They failed to show the impacts of components/tasks on

delay metrics (start-up, event-to-eye, and frame rate). Our work delves into each component

of a canonical live 360◦ video system and presents an in-depth delay analysis.
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4.3 Canonical System Architecture

In live 360◦ video streaming, a 360◦ camera captures the surrounding scenes and stitches

them into a 360◦ equirectangular video frame. The 360◦ camera is connected to the Internet

so that it can upload the video stream to a server. The server extracts the video data and

keeps them in a video buffer in memory. The server will not accept client requests until

the buffered video data reach a certain threshold. At that time, a URL to access the live

streaming session will become available. Clients (PCs, HMDs, and smartphones) can initiate

the live streaming via the available URL. The server first builds a connection with the client

and then streams data from the buffer. Upon receiving data packets from the server, the

client will decode, project, and display 360◦ video frames on the screen.

As shown in the system architecture in Figure 4.1, the above workflow can be naturally

divided into five components – a camera, camera-server transmission (CST), a server, server-

client transmission (SCT), and a client. These components must complete several computing

tasks in sequence.

First, the 360◦ camera completes the following tasks.

• Video Capture obtains multiple video frames from regular cameras and stores them in

memory.

• Copy-in transfers these frames from the memory to the GPU.

• Stitching utilizes the GPU to stitch multiple regular video frames into an equirectan-

gular 360◦ video frame.
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Figure 4.1 The architecture of live 360◦ video streaming and the
tasks of the 5 system components. The top rectangle shows one-
time tasks whereas the 5 bottom pipes show the pipeline tasks that
must be passed through for every frame.

Figure 4.2 The Zeus prototype.

• Copy-out is the process of transferring the equirectangular 360◦ video frame from the

GPU to the memory.

• Format Conversion leverages the CPU to convert the stitched RGB frame to the YUV

format.
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• Encoding is the task that compresses the YUV equirectangular 360◦ video frame using

an H.264 encoder.

Then the CST component, e.g., WiFi plus the Internet, delivers data packets of the 360◦

video frame from the camera to the server.

Next, the following tasks are accomplished at the server.

• Connection is the task where the server builds a 360◦ video transfer connection with

the client after a user clicks the live streaming URL.

• Metadata Generation and Transmission is the process of producing a metadata file for

the live 360◦ video and sending it to the client.

• Buffering and Packetization is the process where the video data wait in the server

buffer, and then, when they are moved to the buffer head, the server packetizes them

for streaming.

The SCT component will then transmit data packets of the 360◦ video from the video

server to the video client.

Finally, the client completes the tasks detailed below.

• Decoding converts the received packets into 360◦ video frames.

• Rendering is a special task for 360◦ videos that projects an equirectangular 360◦ video

frame into a spherical frame and then renders the pixels of the selected viewport.

• Display is the process for the client to send the viewport data to the display buffer and

for the screen to refresh and show the buffered data.



35

It should be emphasized that the connection and metadata generation and transmission

are one-time tasks for a given streaming session between the server and a client, whereas all

other tasks are pipeline tasks that must be passed through for every video frame.

4.4 Dissecting Delay Metrics

In this section, we identify three main delay metrics that affect user experience and explain

how they are affected by the time consumption for different components, denoted by the

length of each pipe as shown in Figure 4.1.

Start-up delay. This is the time difference between the moment when a client sends

a streaming request and the moment when the first video frame is displayed on the client

screen. An excessive start-up delay is one primary reason that decreases users’ willingness

to continue video viewing (sta 2020). Formally, given the time consumption for the one-time

connection and metadata generation and transmission Tsrv,once, the server-client transmission

of a frame Tsct, and the time to process and display a frame on the client device Tclnt, the

start-up delay Dstart can be expressed as,

Dstart = Tsrv,once + Tsct + Tclnt (4.1)

The time consumption in the camera and camera-server transmission does not affect the

start-up delay. This is attributed to the system architecture where the live streaming will

not be ready until the server buffers enough video data from the camera. Therefore, there

should have been video frames already in the server before a streaming URL is ready, and a

client request is accepted.

Event-to-eye delay. This is the time interval between the moment when an event occurs
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on the camera side and the moment when the event is displayed on the client device. A long

event-to-eye delay will make users perceive a lag in live broadcasting of sports and concerts.

It will also decrease the responsiveness of real-time communication in interactive applications

such as teleconferences. It is evident that all tasks in live 360◦ streaming contribute to the

event-to-eye delay Devent−to−eye. After camera capture, video frames must go through and

spend time at all system components before being displayed on the screen, i.e.,

Devent−to−eye = Tcam + Tcst + Tsrv,once + Tsrv,pipe + Tsct + Tclnt (4.2)

where Tcam, Tcst, Tsrv,pipe are the time consumption of a frame on the camera, camera-server

transmission, and the pipeline tasks in the server (buffering and packetization). Note that

although the one-time connection and metadata tasks are not experienced by all frames,

their time consumption will be propagated to subsequent frames, thus contributing to the

event-to-eye delay.

Frame rate. This indicates how many frames per unit time can be processed and pushed

through the components in the system pipeline. The end-to-end frame rate of the system,

FR, must be above a threshold to ensure the smoothness of video playback on the client

screen. It is determined by the minimum frame rate among all system components and can

be formally represented as follows,

FR = min{FRcam, FRcst, FRsrv, FRsct, FRclnt} (4.3)

where FRcam, FRcst, FRsrv, FRsct, FRclnt are the frame rate of each system component. It is

important to note that the frame rate of a component, i.e., how many frames can flow through

the pipe per unit time, is not necessarily the inverse of the per-frame time consumption
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on that component if multiple tasks in a component are executed in parallel by different

hardware units. As illustrated in Figure 4.1, the end-to-end frame rate is determined by the

radius rather than the length of each pipe.

Dissection at the task level. Since the tasks within each component are serialized,

the time consumption and frame rate for each component (e.g., Tcam) can be dissected in

the same way as before. We omit the equations due to page limit.

4.5 The Zeus Research Prototype

Commercial live 360◦ video streaming systems are closed-source and there is no available

tool to measure the latency breakdown of commercial cameras (e.g., Ricoh Theta V), servers

(e.g., Facebook), and players (e.g., YouTube) at the task level. To enable measuring the

impact of the time consumption at the task level on live 360◦ video experience, we build

a live 360◦ video streaming system prototype, Zeus, shown in Figure 4.2, as a reference

implementation to the canonical architecture. We build Zeus using only publicly available

hardware and software packages so that the community can easily reproduce the reference

implementation for future research.

Hardware design. The 360◦ camera in Zeus consists of six GoPro Hero cameras ($400

each) (gop 2020) held by a camera rig and a laptop serving as the processing unit. The

camera output is processed by six HDMI capture cards and then merged and fed to the

laptop via three USB 3.0 hubs. The laptop has an 8-core CPU at 3.1 GHz and an NVIDIA

Quadro P4000 GPU, making it feasible to process, stitch, and encode live 360◦ videos. The

video server runs Ubuntu 18.04.3 LTS. The client is a laptop running Windows 10 with an

Intel Core i7-6600U CPU at 2.6 GHz and an integrated graphics card.
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Software design. The six cameras are configured in the SuperView mode to capture

wide-angle video frames. We utilize the VRWorks 360 Video SDK (sdk 2019) to capture

regular video frames in a pinned memory. To reduce the effects of camera lens distortion

during stitching, we first utilize the OpenCV function cv.fisheye.ca- librate() and the

second-order distortion model (sec 2013) to calculate camera distortion parameters (Zhang

2000). Video frames are then calibrated during stitching to guarantee that the overlapping

area of two adjacent frames will not be distorted. We copy the frames to the GPU via

cudaMemcpy2D() and use nvssVideoStitch() for stitching. Finally, we use FFmpeg for

encoding and streaming the 360◦ video. We use Real-Time Message Protocol (RTMP) in the

camera to push the live video for low-delay transmission. This is similar to most commercial

cameras, e.g., Ricoh Theta V and Samsung Gear 360.

For the video server, we run a Nginx-1.16.1 server. We use the HTTP-FLV protocol to

stream the video from the server to the client because it can penetrate firewalls and is more

acceptable by web servers, although other popular protocols, e.g., HLS, could have also been

used. The HLS protocol consumes time for chopping a video stream into video chunks with

different video quality, thus the start-up delay might be higher. To enable the server to

receive RTMP live video streams from the 360◦ camera and deliver HTTP-FLV streams to

the client, Nginx is configured as nginx-http-flv-module (mod 2018).

We design an HTML5 based video client using FLV.js, a flash-based module written in

JavaScript. Three.js is used to fetch a video frame from Flv.js and project it onto the sphere

format using render(). The sphere video frame is stored at the HTML5 element <canvas>,

which will be displayed on webpages. The client is embedded in a Microsoft Edge browser

with hardware acceleration enabled to support the projection and decoding.
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Measuring latency. We can measure the time consumption of most tasks by inserting

timestamps in Zeus. The exceptions are the camera-server transmission (CST) and server-

client transmission (SCT), where the video stream is chunked into packets for delivery since

both the RTMP and HTTP protocols are built atop TCP. As frame ID is not visible at

the packet level, we cannot identify the actual transmission time of each frame individually.

We instead approximate this time as the average time consumption for transmitting a video

frame in CST and SCT. For example, for the per-frame time consumption of CST, we first

measure the time interval between the moment when the camera starts sending the first

frame using stream frame() and the moment when the server stops receiving video data in

ngx rtmp live av(). We then divide this time interval by the number of frames transmitted.

4.6 Results

In this section, we report the time consumption of the tasks across system components

and discuss their effects on the start-up delay, event-to-eye delay, and frame rate. We also

evaluate the time consumption of the tasks under varying impact factors to expose potential

mitigation of long delay that affects user experience.

4.6.1 Experimental setup

We carry out the measurements inside a typical lab environment located in a university

building, which hosts the camera and the client. We focus on a single client in this paper

and leave multiple-client scenarios as future work. To mimic the real-world conditions expe-

rienced by commercial 360◦ video systems, we place the server at another university campus

over 800 miles away. Although the camera and the client are in the same building, this does
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not affect the results significantly as the video data always flows from the camera to the

server and then to the client.

The camera is fixed on a table so that the video content generally contains computer

desks, office supplies, and lab personnel. By default, each GoPro camera captures a 720p

regular video, and the stitched 360◦ video is configured as 2 Mbps with the resolution ranging

from 720p to 1440p (2K). We fix the resolution during a session and do not employ adaptive

streaming because we want to focus on the most fundamental pipeline of live 360◦ video

streaming without advanced options. The frame rate of videos is fixed at 30 fps. The Group

of Pictures (GOP) value of the H.264 encoder is set as 30. A user views the live 360◦ video

using a laptop client. A university WiFi is used for the 360◦ camera to upload the stitched

video and for the video client to download the live video stream. The upload and download

bandwidth of the university WiFi are 16 Mbps and 20 Mbps, respectively. For each video

session, we live stream the 360◦ video for 2 minutes and repeat this 20 times. The average

and standard deviation of the results are reported.

4.6.2 360◦ Camera

4.6.2.1 Video Capture Task

We vary the resolutions of the captured regular videos and show the video capture time in

Figure 4.3. The video capture time is short in general. It takes 1.68 ms to capture six 480p

video frames and 2.05 ms for six 720p frames. Both resolutions provide abundant details

for stitching and are sufficient to generate 360◦ videos ranging from 720p to 1440p that are

currently supported in today’s live 360◦ video platforms (YT 2020; FB 2020). While cap-

turing six 1080p and 1440p regular frames would consume more time, such high resolutions
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Figure 4.3 Video capture time versus
capture resolutions.

Figure 4.4 Copy-in time from differ-
ent memory locations.

of input regular videos are typically not required in current live 360◦ video applications.

4.6.2.2 Copy-in and Copy-out Tasks

Figures 4.4-4.5 show that the CPU-GPU transfer time is non-negligible. It takes 6.28 ms

to transfer six 720p video frames from pinned memory to GPU before stitching and as high

as 20.51 ms for copying in six 1440p frames. The copy-out time is shorter than the copy-in

time, taking 2.33 ms for a 720p 360◦ frame using the pinned memory and 4.47 ms using

the pageable memory. This is because the six 2D regular frames have been stitched into

one 360◦ frame, which reduces the amount of video data to be transferred. The results

indicate that transferring video data for GPU stitching does introduce extra processing and

such overhead can only be justified if the stitching speed in the GPU is superior. Moreover,

it is evident that pinned memory is preferred in CPU-GPU transfer. Pinned memory can

directly communicate with the GPU whereas pageable memory has to transfer data between

the GPU and the CPU via the pinned memory.



42

Figure 4.5 Copy-out time from differ-
ent memory locations.

Figure 4.6 Frame stitching time vs.
stitching options.

4.6.2.3 Stitching Task

We measure the stitching time using different stitching quality options in the VRWorks

360Video SDK, which execute different stitching algorithms. For example, “high stitching

quality” applies an extra depth-based mono stitching to improve the stitching quality and

stability. Surprisingly, the results in Figure 4.6 show that stitching time is not a critical

obstacle compared to the CPU-GPU transfer. It takes as low as 1.98 ms for stitching a 720p

equirectangular 360◦ video frame with high stitching quality and 6.98 ms for a 1440p frame.

This is in sharp contrast to previous 360◦ video research (Silva et al. 2016) that stressed the

time complexity of live 360◦ video stitching and proposed new stitching methods to improve

the stitching speed. The short stitching time is attributed to the fact that, given the fixed

positions of six regular cameras, modern GPUs and GPU SDKs can reuse the corresponding

points between two adjacent 2D frames for stitching each 360◦ frame without having to

recalculate the overlapping areas for every frame.
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Figure 4.7 Format conversion time
vs. stitching options.

Figure 4.8 Encoding time under dif-
ferent bitrates.

4.6.2.4 Format Conversion Task

Figure 4.7 shows the time consumption for converting the stitched 360◦ frame to YUV format

before encoding. This time is 3.75 ms for a 720p video frame and it is increased to 10.86 ms

for a 1440p frame. We also observe that the stitching quality has a negligible effect. This

is because format conversion time is primarily determined by the number of pixels to be

converted rather than the choice of stitching algorithms.

4.6.2.5 Encoding Task

Figure 4.8 illustrates the encoding time under different encoding parameters. As expected,

encoding time is one of the major tasks in the camera. Encoding a 1440p 360◦ frame at 2

Mbps consumes 20.74 ms on average; the encoding time is reduced to 15.35 ms when the

resolution is 720p as fewer pixels need to be examined and encoded. We also observe that

decreasing the bitrate by 1 Mbps can result in a 16.68% decrease in the encoding time. To

achieve a lower bitrate in an encoder, a larger quantization parameter (QP) is typically used

to produce fewer non-zero values after the quantization, which in turn reduces the time to
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encode these non-zero coefficients. Given the importance of encoding in the overall camera

time consumption, a tradeoff between frame rate and encoding quality must be struck in the

camera.

Furthermore, it is interesting to see that the encoding time increases as the GOP in-

creases, and then it starts decreasing once the GOP reaches a certain threshold. Increasing

the GOP length enforces the encoder to search more frames to calculate the inter-frame

residual between the I-frame and other frames, leading to a larger encoding time. However,

an I-frame is automatically inserted at scene changes if the GOP length is too long, which will

decrease the encoding time. Our results indicate that the GOP threshold for the automatic

I-frame insertion is somewhere from 40 to 50.

4.6.2.6 Impact on Delay Metrics

Our camera can achieve live streaming of 720p 360◦ videos at 30 fps, which is consistent with

the performance of state-of-the-art middle-end 360◦ cameras such as Ricoh Theta S (RSc

2020). The camera conducts a sequence of tasks for a frame one by one and does not utilize

parallel processing. Therefore, the frame rate of the camera output is simply an inverse of

the total time consumption of all tasks in the camera. This is consistent to our results that

the overall time consumption of camera tasks for a 720p frame is less than 33.3 ms. Our

results suggest that certain tasks can be optimized to improve the output quality of the

360◦ camera. In addition to the well-known encoding task, the optimization of CPU-GPU

transfer inside the camera is important, since this task consumes a noticeable amount of

time. On the other hand, there is little scope to further improve the stitching task since the

current stitching time is already low. Moreover, the parameter space of major tasks, such
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Figure 4.9 Encoding time of a 720p
frame versus GOP.

Figure 4.10 CST time under different
bitrates.

as encoding and CPU-GPU transfer, should be explored to balance the frame rate and the

video quality. These efforts can potentially improve the frame rate to support live streaming

of higher-quality videos that are only offered in high-end cameras or even unavailable in

today’s markets.

Note that tens of milliseconds spent on the camera will not affect the event-to-eye delay

in equation (4.2) significantly. The typical event-to-eye delay requirement for interactive

applications is no more than 200 ms (Szigeti & Hattingh 2004), and it can be further relaxed

to 4-5 seconds for live broadcasting of events (Xiao 2008). We also reiterate that the camera

has no effect on the start-up delay as defined in equation (4.1).

4.6.3 Camera-Server Transmission

We vary the bitrate and resolution of 360◦ videos sent by the camera and show the CST time

in Figure 4.10. The transmission time over the Internet is generally long compared to the

time consumption in the camera. It is clear that the CST time increases when the encoding

quality is higher. For example, it takes 37.83 ms to transmit a 720p 360◦ frame at 2 Mbps
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Figure 4.11 CST time versus upload
bandwidth.

Figure 4.12 Jitter of packet reception
time.

and as long as 73.23 ms for a 1440p frame.

In addition, we throttle the upload bandwidth to 2, 4, and 8 Mbps using NetLimiter and

evaluate the impact of network conditions on the CST time given the same video bitrate

of 2 Mbps. Figure 4.11 shows that, when the upload bandwidth is reduced to 2 Mbps, the

CST time dramatically increases to 270.79 ms for a 720p 360◦ frame, 286.13 ms for a 1080p

frame, and 318.17 ms for a 1440p frame. We also observe that when the upload bandwidth

is 8 Mbps, the CST time is similar to the case when there is no bandwidth throttling as in

Figure 4.10. This confirms that 8 Mbps is sufficient to support the 360◦ video transmission.

4.6.3.1 Impacts on Delay Metrics

The time consumption in the CST component generally has no effect on the frame rate,

since the CST component handles video data packet by packet continuously. As long as

consecutive packets are pushed back to back to the CST component, the output frame rate

of the CST will not change regardless of the processing time of a packet. One exception

might be when the variance of the packet transmission time in the CST component (jitter)
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is very large. Fortunately, Figure 4.12 shows that 90% of the packets are received 2 ms after

the reception of their previous packets. Thus, packets flow through the CST component

continuously and the negative effects on frame rate are not observed.

Similar to the camera, the CST component does not affect the start-up delay. However,

the large CST time plays an essential role in satisfying the requirement of event-to-eye delay,

especially when streaming high-quality videos in live interactive applications.

Since modern WiFi (802.11ac) has sufficient bandwidth to support a reasonable CST

time and stable delay jitter, future efforts should focus on improving the transmission design

in terms of the robustness against challenged networks.

4.6.4 Video Server

4.6.4.1 Connection Task

Once enough 360◦ video frames are received from the camera, the server is ready to accept

a client request by proceeding to the connection task. Figure 4.13 shows that the time

consumption on the connection task is long, taking around 900 ms. The connection task

starts with a TCP three-way handshake between the client and the server which consumes

tens of milliseconds. Then the server spends the majority of time (hundreds of milliseconds)

preparing the initial response to the client, which includes information about the streaming

session. It creates new threads, initializes data structures for the live video stream manage-

ment, and registers different handler functions, e.g., ngx http request handler, for accept-

ing the client request. Finally, the server transmits the initial HTTP response (excluding

video data) to the client. Since the amount of data transmitted during the connection task

is small, increasing download bandwidth does not reduce the connection time in a noticeable
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Figure 4.13 Connection time under
different download bandwidths.

Figure 4.14 Metadata gen. and tx
time under different download band-
widths.

way.

4.6.4.2 Metadata Generation and Transmission Task

Figure 4.14 shows the metadata generation and transmission time for download bandwidth of

2, 4, and 8 Mbps. The time consumption is long because the server must create and transmit

a metadata file detailing the format, encoding, and projection parameters of the 360◦ video.

This procedure includes retrieving video information from the camera, registering functions

and creating data structures, generating live video streaming threads to build the metadata

file, and sending it to the client. Since this is not a parallel process, it takes a long time

to execute these steps. The shortest time is 1512.90 ms for a 720p video stream under the

download bandwidth of 8 Mbps. Since reducing the bandwidth from 8 Mbps to 2 Mbps only

reduces the task time slightly, we can infer metadata generation dominates this task.
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4.6.4.3 Buffering and Packetization Task

We found that the time consumption for the server to buffer video data and packetize it

for downlink streaming is negligible. In other words, the server buffer is very small in order

to send out the received camera captured frames as soon as possible. Moreover, the Nginx

server utilizes pointers to record the locations of the received video data in the server buffer

and then directly fetches the video data using the pointers when adding FLV headers to

generate HTTP-FlV packets. No memory copy or transfer is needed for the received video

data, expediting the packetization task.

4.6.4.4 Impacts on Delay Metrics

Since the connection and metadata generation and transmission in the server occurs before

any video frames are pushed into the pipeline for streaming, they do not affect frame rate.

Given the negligible buffering and packetization time, the end-to-end frame rate would not

be impacted by the server.

However, the large time consumption of the connection and metadata generation and

transmission tasks introduces an excessive start-up delay that may degrade the users’ re-

tention of viewing after initializing the video session. The start-up delay in turn yields a

long event-to-eye delay. Even though the connection and metadata tasks occur only once,

video data are accumulated in the server buffer during the session start-up. The subsequent

video frames have to wait until previous frames are sent out, and thus, they also experience

a long event-to-eye delay. The long event-to-eye delay can undermine the responsiveness

requirement (∼ 200 ms (Szigeti & Hattingh 2004)) of interactive video applications. To

relieve the negative effects of long start-up and event-to-eye delay, researchers should focus
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Figure 4.15 SCT time under different
bitrates.

Figure 4.16 SCT time versus down-
load bandwidth.

on optimizing the workflow and data management in the server to minimize the preparation

step during the connection task.

4.6.5 Server-Client Transmission

Figure 4.15-4.16 show the SCT time for streaming a 360◦ frame from the server to the client.

The time consumption is similar to the CST task, taking 41.07 ms for a 720p 360◦ frame and

74.98 ms for a 1440p frame. This is because the camera and the client are equally far away

from the server in our setup, and both the upload bandwidth and download bandwidth are

high enough to support the video to be streamed. Similar to the CST time, the SCT time

decreases as the video quality degrades and the download bandwidth increases.

4.6.5.1 Impacts on Delay Metrics

Unlike the CST component, the SCT component is an important contributor to the start-up

delay because the first frame has to be streamed to the client before the display. On the

other hand, their impact on the event-to-eye delay and frame rate are similar. Users will

experience lag of events if the SCT time is high. If the network conditions are not stable, the
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Figure 4.17 Decoding time versus
360◦ frame resolutions.

Figure 4.18 Rendering time of differ-
ent hardware options.

continuous packet reception in Figure 4.12 may not hold for the SCT component, resulting

in a reduced frame rate.

4.6.6 Client

4.6.6.1 Decoding Task

Figure 4.17 shows the decoding time of a 360◦ frame in the client. The decoding time

is negligible; its average value over different resolutions is 0.62 ms. Modern computers

use dedicated hardware decoder for video decoding, significantly expediting the complex

decoding procedure that could have taken much longer in the CPU.

4.6.6.2 Rendering Task

We show the rendering time under different hardware configurations in Figure 4.18. We

see that the rendering time is also negligible, and the hardware acceleration expedites the

task. The time consumption for projecting the equirectangular frame and rendering the

viewport using GPU-based hardware acceleration is 1.29 ms for a 1440p video frame, an

89.13% decrease from the non-acceleration mode. The performance improvement is achieved
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by the massive parallelism of the GPU processing. Note that, although video frames are

transferred to the client GPU for rendering, this process is much less time consuming than

the CPU-GPU frame transfer in the camera, because a video frame is fetched from the WiFi

module to the GPU through Direct Memory Access.

4.6.6.3 Display Task

The display task involves two steps. First, the viewport data are sent to the display buffer.

Second, the screen refreshes at a certain frequency to display the most recently buffered data.

We found that the time consumption for sending data to the display buffer is negligible, and

thus the display time is determined by the refresh frequency. In our case, the screen refreshes

at 60 Hz, resulting in a 16.67 ms display time.

4.6.6.4 Impact on Delay Metrics

The frame rate of the client output is the inverse of its time consumption because of the non-

parallel frame-processing similar to the camera. Although extra projection and rendering

are needed for 360◦ videos, the tasks of the client can be completed with a fairly short time

consumption to achieve the 30-fps frame rate. Similarly, the client contribution to the start-

up delay and the event-to-eye delay is much less than the contribution of the server or SCT

component. We conclude that the client has minor impacts on the user experience due to its

negligible contribution to the three delay metrics, and thus, modern 360◦ video clients are

ready for high-quality high-requirement applications.
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4.7 Cross Validation

To confirm that the results collected by Zeus can be generalized to commercial live 360◦

video streaming systems and provide insight for system optimization, we conduct a cross

validation by comparing Zeus to a system using commercial products. As it is infeasible to

break down the task-level time consumption of commercial products, we treat them as black

boxes and compare the component-level time consumption.

Experiment setup. The commercial system uses a Ricoh Theta V as the camera which

has an Adreno 506 GPU for 360◦ video processing. An open-source plug-in (Ric 2019) is

installed in the camera so that it can communicate through WiFi with the server which is the

YouTube live streaming service. For the commercial client, we use an embedded YouTube

client via IFrame APIs and install it on the same laptop used in Zeus.

Although dissecting the time consumption of each task is infeasible on commercial prod-

ucts, we can utilize high-level APIs provided by these products to measure the time con-

sumption on each component. We calculate the time consumption of a frame in the Ri-

coh Theta V by recording the timestamps when it begins to generate a 360◦ video frame

(via scheduleStreaming.setSchedule()) and when the frame transmission starts (via

rtmpExtend.startSteam()). For the YouTube server, we monitor its status change via

the webpage interface used to configure the camera URL. We measure the time spent on the

server through the timestamps when a packet is received in the YouTube server and when

the server starts streaming. The time consumption on the YouTube client can be measured

by monitoring the buffering status YT.PlayerState. To calculate the frame transmission

time on the CST and SCT components, we record the timestamps when the first packet is
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Figure 4.19 Comparison of component time between Zeus and a commercial system (denoted
by CM).

sent and when the receiver stops receiving data and then divide this time interval by the

total number of frames transmitted.

Cross-validation results. Figure 4.19 shows the comparison of the time consumption

across the five system components of the two systems. We observe that the distribution of

the time consumption across system components on Zeus is similar to that on the commercial

system. Specifically, the time consumption in the camera, camera-server transmission, and

server-client transmission is almost the same, and the server in both systems consumes

significant time. We quantify the similarity between the two systems by calculating the

Pearson Correlation Coefficient (PCC) (pcc 2020), the Distance Correlation (DC) (dc 2020),

and the Cosine Similarity (CS) (cs 2020) of the time distribution across the five components.

In addition to the default static camera scenario, we further compare the moving camera

scenario, where a person holds the camera rig and walks around while live streaming 360◦

videos.

The results in Table 4.1 show the correlation between the two systems under static and

moving scenarios. The PCC and DC values are larger than 0.98 in both scenarios, indicating

the distribution of time across the five components in the two systems has a strong positive
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Table 4.1 Correlation of time consumption across five components between Zeus and the
commercial system.

Motion Resolution PCC DC CS

Static
720p 0.989045 0.993842 0.990239
1080p 0.987980 0.994173 0.990135
1440p 0.987269 0.994539 0.990206

Moving
720p 0.990334 0.994896 0.992691
1080p 0.990994 0.995165 0.992799
1440p 0.992019 0.995811 0.993636

correlation. The high CS value further implies that the 5-element vectors of component

time for both systems point to roughly the same direction, indicating that the most time-

consuming component of the two systems is the same (the server).

The strong correlation and similarity of the component-level measurement results with

the commercial live 360◦ video streaming system indicate that our results with Zeus are

representative of commercial live 360◦ video streaming systems. Our insights can thus be

generalized to minimize the negative effects on user experience caused by different delay

metrics in such systems.

We also observe that the YouTube server consumes more time because it handles a larger

number of clients than the Zeus server. In addition, it uses DASH that chunks and transcodes

a video into multiple versions and creates an MPD file, which also contributes to the latency.

The longer time at the YouTube client is attributed to its larger player buffer (∼ 1500 ms)

compared to Zeus (∼ 40 ms).

4.8 More Usage Scenarios

We have so far focused on the measurement result obtained from the default scenario defined

in section 4.6.1. In this section, we present the macro-benchmark results under multiple

realistic usage scenarios of the 360° video camera sensing system. We aim to compare the
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measurement results in order to uncover the impacts of the time consumption on delay

metrics under different scenarios. The requested video quality for camera sensing is set to be

720p with a bitrate of 2 Mbps. In addition to the Default scenario, we evaluate the following

additional usage scenarios of 360° video camera sensing.

• Simple: The experiment configuration of this scenario is based on the Default scenario.

The only difference is that all the lights in the lab are turned off. The captured content

is almost dark except for a laptop screen showing a timer that is used to remind us of

the experiment time.

• Lab Moving: Building on top of the Default scenario, the Lab Moving scenario involves

a moving camera. A person holds the camera rig and walks around the lab while the

camera captures content.

• Street Still: Instead of fixating the camera in the lab in the Default scenario, Street

Still places the camera in a fixed position on the sidewalk of a street in a city center.

Other settings remain the same as in the Default scenario.

• Street Moving: Based on the Street Still, we configure the Street Moving scenario by

having a person holding the camera rig while walking on the street sidewalk.

Figure 4.20 to Figure4.23 show the time breakdown of the camera component under

different scenarios. We observe that motion has an impact on the time consumption of

the camera. Both the Lab Moving and Street Moving scenarios consume more time on the

camera than their counterparts in the still scenarios (Default and Street Still) respectively.

We notice that the increased time stems mainly from the encoding. For example, it takes 8.12
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Figure 4.20 Camera Tasks. Figure 4.21 Server Tasks.

ms more time for encoding in Street Moving than in Street Still. The reason is that camera

motion increases the complexity and diversity of the captured video content, making it more

difficult for the encoder to find the redundancy between frames for encoding. It can also be

seen that the time increase from Default to Lab Moving is smaller than that from Street Still

to Street Moving. This is because the relatively simple background of the lab environment

does not introduce much variance to the video content. The time breakdown of other camera

tasks in different scenarios presents a similar pattern to the Default scenario. Regarding the

impacts on the delay metrics, we find that our insight obtained from the Default scenario still

holds in all scenarios. The only difference comes from the camera frame rate. Specifically, the

recommended 24–30 fps frame rate can be achieved in all scenarios except for Street Moving.

This identifies a possible bottleneck of the moving camera in the wild, which opens a new

door for future research in optimizing the computing workflow of 360◦ camera, especially the

encoding in moving scenarios.
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Figure 4.22 Client Tasks. Figure 4.23 Transmission Tasks.

4.9 Conclusion

In this chapter, we conduct the first in-depth analysis of delay across the system pipeline in

live 360◦ video streaming. We have identified the subtle relationship between three important

delay metrics and the time consumption breakdown across the system pipeline. We have built

the Zeus prototype to measure this relationship and study the impacts of different factors

on the task-level time consumption. We further validate that our measurement results are

representative of commercial live 360◦ video streaming systems.

Our observations provide vital insights in today’s live 360◦ video streaming systems.

First, the bottleneck of achieving a higher frame rate is the 360◦ camera. While there is

little space for improving the stitching, optimizing the encoding and CPU-GPU transfer

may elevate the achievable frame rate to the next level. Second, the most critical component

to satisfy the requirement of start-up delay and event-to-eye delay is the server. Workflow

optimization and server management can be utilized to mitigate the negative effects. In light

of these insights, future work can be focused on algorithm design in the camera to improve

frame rate and in the video server to shorten the delays as well as to support multiple clients.
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CHAPTER 5

A Motion-Based Trajectory Transmission Method for 360◦ Video Streaming

5.1 Motivation

360◦ video streaming has become more and more popular in recent years. It has been

applied to a diverse set of applications such as entertainment, smart home and art. 360◦

video market and virtual reality (VR) are expected to reach multi-million by 2026 with an

impressive increase compound annual increase rate (web 2018).Due to the development of

the 360◦ cameras (cam 2022), it is convenient for users to create 360◦ content and upload

to commercial meida platforms. Meanwhile, 360◦ videos provide enriched user experience

due to the ultra-high video resolution and the arbitrary viewing directions. Users can switch

to different viewing directions by dragging the mouse of a desktop, swiping the screen of a

smartphone or moving the head around with a head-mounted display (HMD).

Despite the better user experience, 360◦ video streaming is still challenging to achieve.

First, 360◦ video streaming requires a very large bandwidth consumption since the videos

records all angles of viewing direction which generate more video data to be delivered.

Second, the huge amount of generated video data increases the working load of different

processes like encoding, decoding and rendering which can lead to a large initial delay.

Considering these challenges, a lot of studies have been focused on 360◦ video streaming

algorithms. For example, existing work on viewport prediction algorithms (Qiao et al. 2020;

Li et al. 2022; Qian et al. 2018b, 2016) focused on predict a short-term or long-term viewport

for users. Other research efforts towards saliency map prediction (Chao et al. 2018; Nguyen

et al. 2018b; Zhu et al. 2019; Zhang et al. 2018). These works aim to improve the viewport
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prediction accuracy meanwhile focus on the region of interest. However, all these works

requires the hardware has a high computation ability.

In this chapter, we present a novel trajectory-based approach for the 360◦ video streaming.

To achieve this goal, we first analyze the trajectories of the moving targets in the 360◦ videos.

For a given video, we utilize optical flow algorithms and Gaussian mixture model to pinpoint

the trajectories. Then we choose the trajectories to be delivered based on the size of the

moving targets. To help users find the interested content of the 360 videos, we also visualize

the current viewing angle and a default viewing trajectory as a small playback window on top

the default playback screen. Our contributions can be summarized in two perspectives. First,

we proposed an light-weight trajectory-based viewport prediction methods. Our method does

not require heavy computation. Thus, it can be applied to more hardware devices. Second,

our algorithms reduced the bandwidth consumption of 360◦ video streaming.

5.2 Related Work

Viewport prediction algorithms based on users’ behavior. There are many studies

proposed viewport algorithms(Bao et al. 2016; Qian et al. 2018b; Corbillon et al. 2017b;

Akcay et al. 2021; Yaqoob & Muntean 2021) based on users head movement. Bao et al(Bao

et al. 2016) collected motion data for 153 subjects and designed a regression models to predict

the viewports. Their method can achieve a low failure ration when the prediction window is

short. Qian et al(Qian et al. 2018b) collected head movement traces from 130 diverse users

and proposed a tile-based viewport adaptive algorithm which can allocate higher bitrate

to the users’ interested area. The results show that their method can guarantee the users

experience while save up to 35% bandwidth. Corbillon et al (Corbillon et al. 2017b) utilized
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the head movement data to predict the viewport. Their method downloads the video version

with the high quality region closer to where the user will watch. Their method allows an

increase of 102% of the displayed quality for the same bandwidth budget

Viewport prediction algorithms based on saliency map. Many research works

focus on utilizing the saliency map to predict the viewport(Qiao et al. 2020; Zhu et al. 2019;

Li et al. 2022; Nguyen et al. 2018b). Qiao et al (Qiao et al. 2020) studied more than 200

videos and designed a Multi-Task Deep Neural Network(MT-DNN) for view port saliency

prediction. Their method improves the performance compared with state-of-the-art methods

such as SalGAN and DeepVS. Li et al(Li et al. 2022) utilized convolutional neural network

to design a field of view (FoV) prediction method. The method extracts the saliency features

for FoV prediction. The results show that their method is better than the other prediction

methods. Anh et al (Nguyen et al. 2018b) also proposed an saliency map prediction algorithm

for viewport prediction. They use deep neural network to train a self-built 360◦ video dataset

and the result show that they can accurate predict at 0.5-1.0s. However, all these methods

require a high computation.

5.3 METHOD

5.3.1 Testbed

We build a testbed to run our method. For the video server, we run a Nginx-1.16.1 server to

support 360◦ video streaming. The viewing player lies in a desktop. We design an HTML5

based video client using FLV.js, a flash based module written in JavaScript. Three.js is used

to fetch a video frame from Flv.js and project it onto the sphere format using render(). The

sphere video frame is stored at the HTML5 element ¡canvas¿, which will be displayed on
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Figure 5.1 Testbed 360◦ player.

Figure 5.2 360◦ video frame format conversion between sphere format and equirectangular
format.

webpages. desktop, the CPU is an Intel Xeon W-2135 with 12 cores at 3.7 Ghz, and the

graphic card is a GeForce GTX 1080Ti.

5.3.2 Conversion between 3D and 2D

Pinpoint the position of the viewport on the original 360◦ video is not easy. 360◦ videos

are saved as the equirectangular format. However, users can only watch part of the video

in the sphere format from the video player built by Three.js. Since Three.js has a different

coordinate system compared with the original 360 videos, we cannot directly pinpoint the

position of the viewport on the original 360◦ video frame from the video player. Figure 5.2

shows the conversion between the sphere format and and equirectangular format. As we

can see from the figure, the 360◦ video frame can be divided into four parts considering the

(xi, zi) position.

L1 : xi ≤ 0, zi > 0; (5.1)
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L2 : xi ≤ 0, zi ≤ 0; (5.2)

L3 : xi > 0, zi ≤ 0; (5.3)

L4 : xi > 0, zi > 0; (5.4)

Assume the position of a random pixel Ps is (xi, yi, zi) in the sphere format and the

corresponding position in the equirectangular format would be (x,y). Thus, we have

x = α/π ∗Wcanvas/2 +Wcanvas/2 (5.5)

y = 2 ∗ β/π ∗Hcanvas/2 +Hcanvas/2 (5.6)

where α is the angle between the z axis and the line OP. β is the angle between the line

OP and the line OPs.Wcanvas and Hcanvas are the width and the height of the video player,

respectively. For the α angle, it can be calculated by the formulas below:

α = −π − arctan(xi/zi)(Ps ∈ L1) (5.7)

α = − arctan(xi/zi)(Ps ∈ L2) (5.8)

α = − arctan(xi/zi)(Ps ∈ L3) (5.9)

α = π − arctan(xi/zi)(Ps ∈ L4) (5.10)

The β angle can be calculted by the formula below:

β = arctan(−yi/
√
xi

2 + zi2) (5.11)

After we get the trajectory from the 360◦ equirectangular videos, we also need to convert
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the coordinate into Three.js sphere coordinate system. Below we show the formulas to do

the conversion.

α = (x−Wcanvas/2)/(Wcanvas/2) ∗ π (5.12)

β = (y −Hcanvas/2)/(Hcanvas/2) ∗ π/2 (5.13)

Thus, the corresponding camera position (xc, yczc) can be calculated based on the formula

For 0 < α ≤ π/2

xc = ls ∗ sinα/(−r) (5.14)

zc = −ls ∗ cos(α)/(−r) (5.15)

For π/2 < α ≤ π

xc = ls ∗ sin(π − α)/(−r) (5.16)

zc = −ls ∗ cos(π − α)/(−r) (5.17)

For −π/2 < α ≤ 0

xc = −ls ∗ sin(−α)/(−r) (5.18)

zc = −ls ∗ cos(−α)/(−r) (5.19)

For −π < α ≤ −π/2

xc = −ls ∗ sin(π + α)/(−r) (5.20)
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zc = ls ∗ cos(π + α)/(−r) (5.21)

For the yc

yc = lt ∗ /(−r) (5.22)

where ls and lt can be calculated using formula 23 and 24. r is the radius of the rendered

sphere which can be configured in Three.js.

ls = r ∗ cos(β) (5.23)

ls = r ∗ sin(β) (5.24)

5.3.3 Pinpoint the Trajectory

To track the trajectory from the 360◦ videos, we use gaussian mixture model (GMM) and

optical flow algorithms. Gaussian mixture model is a probabilistic model that assumes all

the data points are generated from a mixture of a finite number of Gaussian distributions

with unknown parameters (gau 2022). Compared with those complex AI algorithms, GMM

can be applied for systems that do not have powerful computation ability. To achieve the

goal, we first need to detect the motion target by extracting the moving foreground from

the background of the video. Second, we need to filter some motion targets since they are

noise detected by GMM. After that we need to extract the features of the trajectory. We

calculate the average size of the moving target on the trajectory as the feature. It can be

calculated as:

Ft =
1

k

k∑
n=1

fs (5.25)
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Figure 5.3 Moving target detection. Figure 5.4 Woman in the mid.

Figure 5.5 Man in the mid. Figure 5.6 Woman in the left.

where Ft is the average size of each trajectory. k is the total number of the contours for each

moving target. fs is the size of each contour on the trajectory. Figure 5.3 shows the contours

of the moving targets. Figure 5.4 to Figure 5.6 shows the trajectories of the moving targets

in the video.

5.4 Experiment Results

5.4.1 Experiment Setup

To verify our method, we use a public dataset(Dharmasiri et al. 2021). It is an aggression

of six different published datasets which include 88 different 360◦ videos. Considering the

moving direction of the targets and the total amount in the 360◦ videos, we define three

different types of video.

Single-Single video: there is one moving target in the 360◦ video moving toward one
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Figure 5.7 R-squared values for three
types of videos.

Figure 5.8 Bandwidth Consumption
for three types of videos.

single direction.

Single-Multiple video: there is one moving target in the 360◦ video moving toward random

directions.

Multiple-Multiple video: there are multiple moving targets in the 360◦ video moving

toward random directions.

5.4.2 R-squared values

After pinpoint the trajectory, we use r-squared values to verify if our trajectory can present

the real one after filtering the noise. Figure 5.7 shows the r-squared values for three different

types of videos. We can see that the average R-squared values is around 0.8 which indicates

a good fitness. The reason is because that the targets are moving slowly and in a relatively

simple trajectory. We also observe that it has a lower R-squared values when there are

multiple moving trajectories. The reason is that some trajectories are in random directions.

Thus, it is difficult to find a line or curve to fit the trajectory.
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5.4.3 Bandwidth Consumption

To check the effectiveness of our method, we further verify the bandwidth consumption for

different types of videos. Figure 5.8 presents the results. We observe that our method can

obviously reduce the bandwidth consumption by approximately 75%. We also observe that

it would save more bandwidth for Multiple-Multiple videos. the reason is because that it

has more complex video content in that type of video. Thus, the viewport account for a

relatively small percent of the whole video.
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CHAPTER 6

Conclusion

In this dissertation, we first present the measurement study on 360◦ live video streaming

systems.Then we proposed a motion-based trajectory transmission method for 360◦ live

video streaming. We perform the first in-depth study of delay across the computing tasks

in 360◦ video camera sensing in this paper. We have characterized the three important

delay metrics by the time consumption breakdown across the tasks. A prototype Zeus has

been developed to measure this relationship and examine the task-level time consumption

in various usage scenarios. We finally compare Zeus with commercial systems and validate

that our measurement results are representative. Our findings provide critical insight for

improving 360◦ video camera sensing. First, the bottleneck of a higher frame rate is the

360◦ camera. Although the space for optimizing the stitching is limited, enhancing the

encoding and CPU-GPU transfer may elevate the frame rate to the next level. Second,

the server plays a decisive role in meeting the requirement of start-up delay and event-to-

eye delay. The existing sever workflow can be optimized to reduce the server time. In

light of these observations, future work should focus on algorithm design in the camera to

improve frame rate as well as in the server to shorten the delays and to support multiple

clients. After optimizing Zeus in terms of camera frame rate and server delay, it is important

to compare Zeus with emerging commercial systems that support 360° video live streaming

through advanced cameras, such as Ricoh Theta Z1. A full scale research including extensive

experiments are needed to confirm the applicability of the findings in this paper in the context

of challenging 4 K 360◦ video systems. Moreover, since user experience is also determined

by the quality of the received 360◦ videos, it is critical to understand how the delayed and



70

missed packet delivery would affect the distortion and quality of the video frames viewed by

the users.
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Sauer, J., Wien, M., Schneider, J., & Bläser, M. 2018, in 2018 Picture Coding Symposium

(PCS), IEEE, 66–70
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