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ABSTRACT

Brain disorders are often linked to disruptions in the dynamics of the brain’s intrinsic

functional networks. It is crucial to identify these networks and determine disruptions in

their interactions to classify, understand, and possibly cure brain disorders. Brain’s network

interactions are commonly assessed via functional (network) connectivity, captured as an

undirected matrix of Pearson correlation coefficients. Functional connectivity can represent

static and dynamic relations. However, often these are modeled using a fixed choice for

the data window. Alternatively, deep learning models may flexibly learn various represen-

tations from the same data based on the model architecture and the training task. The

representations produced by deep learning models are often difficult to interpret and require

additional posthoc methods, e.g., saliency maps. Also, deep learning models typically re-

quire many input samples to learn features and perform the downstream task well. This

dissertation introduces deep learning architectures that work on functional MRI data to es-

timate disorder-specific brain network connectivity and provide high classification accuracy

in discriminating controls and patients. To handle the relatively low number of labeled sub-

jects in the field of neuroimaging, this research proposes deep learning architectures that

leverage self-supervised pre-training to increase downstream classification. To increase the

interpretability and avoid using a posthoc method, deep learning architectures are proposed

that expose a directed graph layer representing the model’s learning about relevant brain

connectivity. The proposed models estimate task-specific directed connectivity matrices for

each subject using the same data but training different models on their own discrimina-

tive tasks. The proposed architectures are tested with multiple neuroimaging datasets to

discriminate controls and patients with schizophrenia, autism, and dementia, as well as

age and gender prediction. The proposed approach reveals that differences in connectivity

among sensorimotor networks relative to default-mode networks are an essential indicator



of dementia and gender. Dysconnectivity between networks, especially sensorimotor and

visual, is linked with schizophrenic patients. However, schizophrenic patients show increased

intra-network default-mode connectivity compared to healthy controls. Sensorimotor con-

nectivity is vital for both dementia and schizophrenia prediction, but the differences are in

inter and intra-network connectivity.

INDEX WORDS: Self-supervised Learning, Dynamic directed connectivity, Inter-
pretable deep learning, resting state fMRI, brain disorders
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CHAPTER 1

INTRODUCTION

Brain disorders are often driven by disruptions in the dynamics of the brain’s intrinsic func-

tional networks, making it extremely important to identify these networks and determine

disruptions in their dynamics. For example, (Culbreth et al. 2021; Yu et al. 2011; Zhang

et al. 2019; Zhu et al. 2020; Morgan et al. 2020a; Lynall et al. 2010; van den Heuvel et al.

2010) show that schizophrenic patients have high level of functional disconnectivity between

brain networks. Dysregulated brain dynamics and dysregulated dynamic connectivity across

the brain’s multiple functional networks is seen in Schizophrenic patients (Supekar et al.

2019). In Alzheimer’s disease (AD), disrupted brain dynamics demonstrate cognitive dys-

function (Haan et al. 2011). (Cordova-Palomera et al. 2017) suggests that brains of AD

patients display altered oscillatory patterns and functional coupling alterations along with

decreased global metastability. Alterations in brain activity have been linked to autism spec-

tral disorder (ASD), (Just et al. 2012; Yahata et al. 2016) show dysfunctional brain activity

among brain’s functional network for ASD patients. (Zeng et al. 2017) show significantly

lower whole-brain activity for the ASD group.

It is possible to indirectly measure brain function activity to various degrees of precision

using brain imaging methods, such as functional magnetic resonance imagining (fMRI). fMRI

captures the nuances of spatio-temporal dynamics that could potentially provide clues to the

causes of mental disorders and enable early diagnosis. However, the obtained data for a single

subject is of high dimensionality (often in thousands) m and to be useful for learning, and



statistical analysis, one needs to collect datasets with a large number of subjects n. Yet, for

any kind of a disorder, demographics or other types of conditions, a single study is rarely

able to amass datasets large enough to go out of the m ≫ n mode.

fMRI captures voxel-level data and does not provide intrinsic functional networks nor

their connectivity. It is extremely challenging for any machine learning (ML) or deep learn-

ing (DL) model to work directly on the voxel-level data to even perform classification between

patients and healthy controls (HC). Therefore, to reduce the number of features, methods

are used to get regions made up of several voxels and the connectivity between these regions.

To spatially split the brain into networks, existing studies either divide the brain into mul-

tiple regions using existing pre-defined brain atlases such as Shaefer (Schaefer et al. 2017),

and many others, or estimate constituent components using inference methods, such as in-

dependent component analysis (ICA) (Hyvärinen & Oja 2000). Whereas, the connectivity

is often assessed via the functional (network) connectivity (F(N)C). Although any statistical

dependence measure can be used to represent the FC or FNC, almost always FC or FNC

is represented as an undirected correlation matrix of Pearson correlation coefficient (PCC)

between the regions/components.

These hand-crafted features (correlation matrices) are used in studies of the brain have

demonstrated the overarching value of inspecting the brain and its disorders through the

undirected weighted graph of the fMRI correlation matrix. (Yan et al. 2017) uses FC as

features to predict schizophrenia-related changes. Whereas, (Parisot et al. 2018) uses FC

alongside phenotypic and imaging data as inputs to extract graph features for the classifi-



cation of AD and Autism. (Kawahara et al. 2016) uses connection strength between brain

regions as edges, typically defined as the number of white-matter tracts connecting the re-

gions. (Ktena et al. 2017) employs spectral graph theory to learn similarity metrics among

functional connectivity networks.

ML and DL methods can use FC matrices to perform classification between patients

and HC with high accuracy. Many studies use FC to predict the gender or disease/disorder

(Arslan et al. 2018; Kazi et al. 2021; Kim & Ye 2020; Ktena et al. 2018; Ma et al. 2019)

using graph neural networks (GNNs) or other such methods. However, the dynamics of brain

function vanishes into proxy features such as correlation matrices of FC. Correlation based

FC matrices have many shortcomings including but not limited to inflexibility in terms of

the downstream task, undirected relations among regions and networks, and limitation in

capturing temporal dynamics.

One of the aims of this research is to show that dynamic DL architectures can be created

that work directly on the BOLD time courses and learn task-dependent directed connectivity

structures between networks for individual subjects. Interpretation of these estimated con-

nectivity structures could lead to useful insights regarding brain functionality and multiple

brain disorders.

This dissertation presents these DL architectures and shows that DL architectures with-

out using hand-crafted features can beat SOTA ML and DL methods that use hand-crafted

features in discriminating controls and patients with schizophrenia, autism, and dementia,

as well as age and gender prediction from functional MRI data. More importantly, this



work shows that connectivity matrices estimated by our DL architectures are more inter-

pretable, are robust to confounding factors, show direction of connectivity between networks

and capture more temporal dynamic states than correlation based FC matrices.

1.1 Background and Related Work

This section gives background to the data used in neurogimaging, and also explains why

deep learning methods were preferred instead of classical machine learning methods. Cur-

rent limitations of deep learning methods, especially in the field of neuroimaging are also

discussed.

1.1.1 fMRI, Brain Parcellation and Connectivity

fMRI measures BOLD (Blood Oxygenation Level-Dependent) signal that relies on regional

differences in cerebral blood flow to delineate regional activity and captures the functional

activity of the brain over time with high spatial resolution. fMRI measures the small changes

in blood flow that occur during brain activity. Blood flow to the brain is highly locally

controlled by the oxygen and carbon dioxide level in the regions of cortex. When brain

activity is increased in a region of the cortex, oxygen is extracted from the local capillaries

which results into a decrease in local oxygenated hemoglobin, and an increase in locally

deoxygenated hemoglobin. In response to this, with a lag of few seconds, cereberal blood

flow increases causing a surplus of oxygenated hemoglobin to the region of activity. This

oxygenation process is measured during fMRI as deoxygenated hemoglobin is paramagnetic

whereas oxygenated hemoglobin is not.



1.1.1.1 Atlas based regions

fMRI measures voxels, but usually relevant brain regions are much larger; therefore, there are

different methods to divide a brain, based on structural or functional features into multiple

ROIs, where each ROI is a collection of multiple voxels. ROIs help focus on regions rather

than individual voxels and help to reduce the number of dimensions as in most studies, voxels

are summed/averaged inside a region. Many pre-defined atlases exist (Schaefer et al. 2017;

Tzourio-Mazoyer et al. 2002; Desikan et al. 2006) that divide the brain into ROIs based on

different techniques like local gradient approach, internal coherence, global similarity, etc.

1.1.1.2 ICA

ICA (Comon 1994; Hyvärinen & Oja 2000) is a computational method to separate a multi-

variate signal into maximally independent sub-components/ variables. The ability of ICA to

extract maximally independent components is instrumental when data is collected via meth-

ods like fMRI, which presumably captures the mixture of underlying components of brain

activity, it is beneficial to extract the original components using these mixtures. ICA works

on two assumptions: 1) The original components are independent, and 2) The components

have non-gaussian distribution.

The first assumption is intuitive as ICA finds independent components, giving the min-

imum number of components required to get the observed data. The basis of the second

assumption is the central limit theorem (CLT) that states that the distribution of the sum

of two random variables will be more Gaussian than either individual variable, even if the



individual variable is non-gaussian itself. ICA uses CLT and the non-gaussian assumption

to uncover non-gaussian independent components from the observed data. Mathematically

let’s assume two variables x1 and x2 are observed which are linear combination of the two

non-gaussian independent variables s1 and s2. Thus;

x1 = a11 ∗ s1 + a12 ∗ s2 (1.1)

x2 = a21 ∗ s2 + a21 ∗ s2 (1.2)

and let;

y1 = w11 ∗ x1 + w12 ∗ x2 (1.3)

y2 = w21 ∗ x2 + w21 ∗ x2 (1.4)

According to CLT, y is more gaussian than the signals s as it is a linear combination of

them and will be least gaussian when it is directly proportional to either of the independent

components. Therefore, increasing the non-gaussainity of y will uncover the original compo-

nent/variable s. The non-gaussainity is measured by kurtosis (k), as k = 0 for the gaussian

distribution. Thus ICA is framed as an optimization problem where

max kurt(w1x1 + w2x2) (1.5)

s = w1 ∗ x1 + w2 ∗ x2 (1.6)



1.1.1.3 Correlation-based Functional Connectivity

FC is used in many studies to study brain disorders. In almost all cases FC is computed

using PCC which is defined as:

r =

∑n
i=1(xi − x)(yi − y)√∑n
i=1(xi − x)2(yi − y)2

(1.7)

where x and y represent mean values. PCC measures the linear correlation between two

data samples and holds the commutative property. This study refers to matrices captur-

ing functional connectivity between networks at a whole-brain level as functional network

connectivity (FNC) (Jafri et al. 2008; Allen et al. 2011b) and when operating on ROIs – as

FC.

1.1.2 Deep Learning

This section explains the pros and cons of machine learning (ML) and deep learning (DL)

methods the reason of choosing DL over classical ML methods such as support vector machine

(SVM), logistic regression (LR), and many others.

1.1.2.1 Why DL?

Classical machine learning algorithms (SVM, LR) have proven to be highly efficient in classi-

fication tasks (Williams et al. 2006; Jalil et al. 2010). These algorithms work on hand-crafted

features, e.g., FC matrices (Yan et al. 2017), and produce state-of-the-art results (Douglas

et al. 2011). Modern biomedical imaging, functional MRI, collects high dimensional data,

where the number of measured values (m) per sample can exceed tens of thousands. Ma-



chine learning algorithms do not provide good classification performance in this case as the

data dimensions are much higher than the number of data samples (n) available for train-

ing, thus creating the curse of dimensionality (m ≫ n). Dimensionality reduction methods,

such as FC, reduce these dimensions and provide hand-crafted features. These hand-crafted

features are then necessarily void of many valuable properties and dynamics initially present

in the data. On the other hand, using data dynamics is essential for finding distinct features

and their relations, responsible for classifying and understanding the system/brain. These

dynamics are crucial for the neuroimaging field, where causes and functional/effective con-

nectivity between brain regions of the underlying brain disorders are still unclear. Finding

the causes of disorders and the underlying brain networks’ connectivity can potentially help

prevent, delay and even cure these disorders. As DL methods have the ability to work on

raw data and extract task-based useful features, an argument can be made that DL can

provide us with useful insights in the field of neuroimaging. DL has its own challenges, one

of them is the requirement of a lot of labelled subjects, a problem which is typically solved

using self-supervised pre-training which are discussed and applied in the models proposed in

this research.

1.1.2.2 Pre-Training

In many fields (Hénaff et al. 2019; Devlin et al. 2018; Lugosch et al. 2019) researchers tradi-

tionally employ un-supervised/self-supervised pre-training (Erhan et al. 2010). Furthermore,

self-supervised methods with mutual information objective can perform competitively with

supervised methods (Oord et al. 2018; Hjelm et al. 2018b; Bachman et al. 2019) and are



suitable for several applications (Anand et al. 2019; Ravanelli & Bengio 2018). Pre-training

and transfer learning have also been used for neuro/brain imaging (Mensch et al. 2017;

Thomas et al. 2019; Mahmood et al. 2020a; Li et al. 2018). Self/un-supervised pre-training

on large unlabeled data helps the model to learn useful embeddings/representations, which

are then transferred over during training on the small labeled dataset for the downstream

task. Pre-training to a certain level can bypass the need to acquire large labeled training

datasets and achieve higher classification performance than non-pre-trained counterparts

(Mahmood et al. 2021a).

1.1.2.3 Self-attention

The concept of self-attention has been applied to a variety of tasks related to NLP such as;

reading comprehension, abstractive summarization, and text representations (Cheng et al.

2016; Lin et al. 2017; Parikh et al. 2016; Paulus et al. 2017). Self-attention allows the inputs to

interact among themselves and find out global dependencies among the inputs and outputs.

The dependencies are represented as weights, which measure the attention given to inputs by

other inputs. The outputs given by the module are linear combinations of the inputs and the

relative weights (dependencies/attention). The critical advantage of self-attention is that it

is not commutative, meaning the attention given by two inputs to each other does not have

to be equal. Self-attention is most commonly used for inputs of a sequence through time,

but this work uses the concept to find dependencies between regions/components/sequences

with a goal creating an attention module that learns connectivity between brain regions.

The self-attention model creates three embeddings namely (key, query, value) for each



input, which are usually created using simple linear layers to map the inputs to a smaller

dimension. With ϕ representing a linear layer, keyi = ϕk(inputi), queryi = ϕq(inputi),

valuei = ϕv(inputi). To create weights between an input and every other input, the model

takes dot product of an inputs’s query with every other input’s key embedding to get scores

between them. Hence, scoreij = queryi · keyj. The scores are then converted to weights

using softmax. wi = Softmax(scorei) where scorei ∈ R1×r is a vector of scores between

region i and every other region. The weights are then multiplied with the value embedding

of each input and summed together to create a new representation for inputi. The following

equations show how to get new input embedding and weight values.

keyi = inputi ∗W (k), valuei = inputi ∗W (v), queryi = inputi ∗W (q)

K = ||ri=1key
T
i = keyTi ||....||keyTr , weighti = softmax(queryi ∗K)

new inputi =
r∑
j

(weightij ∗ valuej)

(1.8)

This process is carried out for all the regions, producing a new representation of every

input and the weights between inputs.

1.1.2.4 Graph Neural Networks

Datasets from different fields are represented as a graph. Graph networks (Scarselli et al.

2009; Bruna et al. 2014) are proposed to work on such datasets. Recently, GNN (Graph

Neural Networks) have been extensively used to learn representations on graph-structured

data (Bronstein et al. 2017; Hamilton et al. 2018; Gilmer et al. 2017; Parisot et al. 2018).

GNNs take nodes from data and update representations of nodes with the help of different



aggregating functions. The aggregate functions work using a message-passing system, where

a node receives messages from its neighbors, which are defined by edges. Lets represent a

graph G with V,A,E where V ∈ Rn×m is the matrix of vertices, with xni representing the

ith node/vertex, having m dimensions. A,E ∈ Rn×n are the adjacency and edge weight

matrices. A GNN module takes multiple steps, where at every step s, each node aggregates

feature vectors of every other node relative to the weight edge between the nodes and pass

the resultant, and its own feature vector through another neural network to obtain new

embedding for itself.

xni
s = ϕ(xni

s−1,
⋃

∀nj :nj−>ni

ejix
nj

s−1) (1.9)

Here
⋃

is the aggregate function which can be sum, max, average, or any other function

which is permutation invariant. ϕ represents any neural network such as GRU. The learned

representations can then be used for node classification, graph classification, or predicting

edges between nodes by using an existing true graph structure or learning the graph (Monti

et al. 2016; Velickovic et al. 2018; Kipf & Welling 2017; Gilmer et al. 2017; Zitnik et al. 2018;

Zhang & Chen 2018; Wang et al. 2019; Kipf et al. 2018; Zitnik et al. 2018).

1.1.3 Challenges and Limitations

The association of brain disorders with abnormal static or dynamic functional connectivity

highlights the need to develop models that can identify disorder-specific connectivity aber-

rations. This observation guides development of various approaches to brain connectivity

analysis (Yan et al. 2017; Parisot et al. 2018; Ktena et al. 2017; Arslan et al. 2018; Kazi



et al. 2021; Kim & Ye 2020; Ktena et al. 2018; Ma et al. 2019). However in most existing

approaches, the functional connectivity matrices are not informed by the prediction task but

instead estimated prior to training; thus, they depend entirely on the chosen input window

of data samples. The independence from the downstream task results in inflexible estimation

of connectivity matrices as the estimate is unchanged regardless of whether the task is to

predict a brain disorder, age, or other quantity. (Kim et al. 2021) proposed a method where

the functional connectivity structure is computed based on the learned representations of the

data, but even this method lacks a learnable connectivity estimation method. This study

makes and argument that task-dependent connectivity matrices can be estimated by a deep

learning (DL) model using learnable weights. DL models are flexible in their ability to learn

a variety of representations from the same data based on the architecture and ground-truth

signal used in training.

However, using a DL method to estimate a connectivity matrix can be challenging without

the presence of the ground-truth graph during training. Another problem of many DL

models is lack of consistency and interpretability in the learned representations. Saliency

maps commonly used to address interpretability of these models (Simonyan et al. 2014; Ras

et al. 2021; Angelov et al. 2021; Lewis et al. 2021) may be difficult to interpret (Liu et al.

2021). Arguably, the difficulty of interpreting representations is the reason why studies using

DL models incorporate inflexible but interpretable feature selection steps for connectivity

estimation, for example Pearson correlation coefficients (PCC) (Freedman et al. 2007).

In most of the current studies, functional connectivity estimates are either static or



dynamically computed using a sliding window approach dependent on the window size and

stride (Fu et al. 2018; Damaraju et al. 2014; Armstrong et al. 2016; Gadgil et al. 2021; Yao

et al. 2020; Fu et al. 2020). Unable to capture non-stationarity, static matrices miss essential

information about dynamics. For example, dynamic functional connectivity estimates show

re-occurring patterns which cannot be captured by their static counterparts (Allen et al. 2012;

Hutchison et al. 2013; Calhoun et al. 2014). Using a static graph learning method to capture

a dynamical system may reduce classification performance (da Xu et al. 2020). (Kipf et al.

2018) show improved results by just dynamically re-evaluating the learned static graph during

testing. The improved performance for the relevant task is understandable as the dynamic

connectivity provides essential information about the system, for instance, capturing re-

occurring patterns. The brain’s functional activity is also perceived to be highly dynamic and

hence cannot be faithfully captured with a static or even window-based approach (Yaesoubi

et al. 2018).

Furthermore, studies using functional connectivity to measure connectivity between brain

regions or networks do not capture the direction of interaction and only measure undirected

statistical dependence such as correlations, coherence, or transfer entropy. Correlation can

arise for many reasons; for example, due to a common cause when an unobserved network

affects two networks that are observed (Spirtes et al. 1993; Pearl 2000). Arguably, dynamics

of interaction among brain networks is beyond simple correlations and correlation may only

partially describe it. Whereas, effective connectivity is a more general way to represent

dynamic and directed relationships among brain’s intrinsic networks. As introduced by



(Friston 2011) effective connectivity falls into a model-based class of methods while multiple

other methods, including those in the model-free class have been since developed (Chickering

2002a; Spirtes & Glymour 1991; Chickering 2002b; Bielza & Larranaga 2014; Goebel et al.

2003; Deshpande et al. 2011; Mitra et al. 2014; Seth et al. 2015; Schreiber 2000; Vicente

et al. 2011; Ursino et al. 2020; Gorrostieta et al. 2013; Chiang et al. 2017).

1.2 Contributions

In this dissertation work, the following objectives were made and accomplished:

1. Develop novel pre-training/transfer learning methods to increase the classification per-

formance of deep learning models in neuroimaging, where m >> n. See Chapter: 3.

2. Construct models that automatically identify disease-specific brain networks specified

based on existing brain atlases. See Chapter: 4.

3. Build deep learning methods that, in an end-to-end manner for each subject, estimate

connectivity structures between the disease-specific spatially mapped brain networks.

See Chapter: 4 and 5.

4. Develop deep learning architecture which produces dynamic, interpretable and di-

rected connectivity matrices without the help of an additional posthoc interpretability

method. Introspection of the estimated graphs and discover disorder specific spatial

and temporal bio-markers for multiple brain disorders. See Chapter: 5.
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CHAPTER 2

INPUT DATA

This section presents the different datasets used throughout this study and the different

pre-processing piplelines used.

2.1 fMRI Data

In this work, resting state functional magnetic resonance imaging (rs-fMRI) data as input

to our models. Six brainimaging datasets used in this study are collected from FBIRN

(Function Biomedical Informatics Research Network 1) (Keator et al. 2016) project, from

COBRE (Center of Biomedical Research Excellence) (Çetin et al. 2014) project, from release

1.0 of ABIDE (Autism Brain Imaging Data Exchange 2) (Di Martino et al. 2014) and from

release 3.0 of OASIS (Open Access Series of Imaging Studies 3) (Rubin et al. 1998). Healthy

controls from the HCP (Human Connectome Project 4) (Van Essen et al. 2013) are used for

gender prediction. Subjects from ABCD (Adolescent Brain Cognitive Development 5) (Casey

et al. 2018) are also used for gender prediction. Refer to Table 2.1 for details of the datasets.

Datasets used for specific model is mentioned in relevant chapters.

2.1.1 Preprocessing

Two typical brain parcellation techniques are used in this work; independent component

analysis (ICA) and regions of interest (ROIs) based on a pre-defined atlas. The preprocessing

1FBIRN phase III is used.
2http://fcon_1000.projects.nitrc.org/indi/abide/
3https://www.oasis-brains.org/
4Scans from the first session are used.
5First scans from the first session are used.

http://fcon_1000.projects.nitrc.org/indi/abide/
https://www.oasis-brains.org/


pipeline used depends on the parcellation technique and the pipeline used in state-of-the-art

studies for the dataset. All the preprocessing was done before training the model.

2.1.1.1 ICA Parcellation:

For all experiments conducted using ICA as brain parcellation technique the fMRI data

was preprocessed using statistical parametric mapping (SPM12, http://www.fil.ion.ucl.

ac.uk/spm/) under the MATLAB 2021 environment. A rigid body motion correction was

performed to correct subject head motion, followed by the slice-timing correction to account

for timing difference in slice acquisition. The fMRI data were subsequently warped into the

standard Montreal Neurological Institute (MNI) space using an echo planar imaging (EPI)

template and were slightly resampled to 3 × 3 × 3 mm3 isotropic voxels. The resampled

fMRI images were then smoothed using a Gaussian kernel with a full width at half maximum

(FWHM) = 6 mm.

Subjects are selected for further analysis (Fu et al. 2021a) if the subjects have head

motion ≤ 3◦ and ≤ 3 mm, and with functional data providing near full brain successful

normalization (Fu et al. 2019). 100 ICA components are estimated using a novel fully

automated Neuromark pipeline “neuromark fmri 1.0”6 described in (Fu et al. 2019). This

method is capable of capturing robust imaging features that are comparable across subjects,

datasets, and studies, which is beneficial for those studies need replication. The Neuromark

framework leverages an adaptive-ICA technique that automates the estimation of comparable

brain markers across subjects, datasets, and studies. A set of component templates were

6https://trendscenter.org/data/

http://www.fil.ion.ucl.ac.uk/spm/
http://www.fil.ion.ucl.ac.uk/spm/
https://trendscenter.org/data/


used as references to guide the estimation of single-scan components for the data. These

component templates were created via a unified ICA pipeline. They were constructed using

an independent resting-state fMRI data with large samples of healthy subjects from the

genomics superstruct project (GSP). The GSP data include 1005 subjects’ scans that passed

the data QC. High model order (order = 100) group ICA was performed on the GSP data,

and then the independent components (ICs) from the GSP data were used as the references

to extract components for each dataset used for experiment in this study. The Neuromark

framework extracts the components for each subject respectively, which means that the

estimation of features of each subject is not influenced by the others. However, the choice

of components (and number of components) can influence accuracy, but our study is not

focusing on determining the best number of ICs rather use the available components and let

the model decide the task-dependant components.



Table 2.1: Details of the datasets used throughout this

research.

Name Category Preprocessing Parcellation Subjects 0 Class 1 Class time-points
FBIRN Schizophrenia SPM12 ICA 311 151 160 157
OASIS Dementia SPM12 ICA 912 651 261 157
ABIDE Autism SPM12 ICA 569 (TR=2) 255 314 140
ABIDE Autism SPM12 ICA 869 398 471 140
HCP Gender SPM12 ICA 833 390 443 980
ABCD Gender SPM12 ICA 10976 5697 5279 370
FBIRN Schizophrenia SPM12 Shaefer 200 311 151 160 157
HCP Gender Glasser Shaeffer 200 942 411 531 1200

ABIDE Autism C-PAC Shaeffer 200 871 403 468 83-316

2.1.1.2 Region Parcellation:

State-of-the-art methods use different preprocessing pipelines for different datasets. For com-

parison with these methods on HCP, ABIDE, and FBIRN datasets, the same preprocessing

pipelines as in the relevant comparing method were selected. HCP (Van Essen et al. 2013)

data used in this study was first minimally pre-processed following the pipeline described

in (Glasser et al. 2013). The preprocessing includes gradient distortion correction, motion

correction, and field map preprocessing, followed by registration to T1 weighted image. The

registered EPI image was then normalized to the standard MNI152 space. To reduce noise

from the data, FIX-ICA based denoising was applied (Salimi-Khorshidi et al. 2014; Griffanti

et al. 2014). To minimize the effects of head motion subject scans with framewise displace-

ment (FD) over 0.3mm at any time of the scan were discarded. The FD was computed with

fsl motion outliers function of the FSL (Jenkinson et al. 2012). There were 152 discarded

scans from filtering out with the FD, and 942 scans were left. For all experiments, the scans



from the first run of HCP subjects released under S1200 were used. ABIDE (Di Martino et al.

2014) was pre-processed using C-PAC (Aertsen & Preissl 1991). The preprocessing includes;

slice time correction, motion correction, skull striping, global mean intensity normalization,

nuisance signal regression, band pass filtering, and finally functional images were registered

to anatomical space (MNI12). After pre-processing using C-PAC, 871 out of 1112 subjects

were chosen based on the visual quality, inspected by three human experts which looked

for brain coverage, high movement peaks and other artifacts resulted by scanner (Abraham

et al. 2017; Parisot et al. 2018; Cao et al. 2021). To pre-process FBIRN data, SPM12 pipeline

was used as explained in previous section with few extra steps. After the smoothing using a

Gaussian kernel, the functional images were temporally filtered by a finite impulse response

(FIR) bandpass filter (0.01 Hz-0.15 Hz). Then for each voxel, six rigid body head motion

parameters, white matter (WM) signals, and cerebrospinal fluid (CSF) signals were regressed

out using linear regression.

In this work, in total three atlases were used for brain parcellation; Shaefer (Schaefer et al.

2017), automated anatomical labeling (AAL) (Tzourio-Mazoyer et al. 2002), and Harvard

Oxford (HO) (Desikan et al. 2006), a with 200, 116, and 111 regions respectively. For each

region, average value is computed for all the voxels falling inside a region, thus resulting into

a single time-series for each region. After dividing data into regions, each time-series was

standardized by their zscore having zero mean and unit variance.
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CHAPTER 3

PRE-TRAINING AND SELF-SUPERVISED LEARNING

Un/Self-supervised pre-training is a well-known technique to get a head start for the deep

neural network (Erhan et al. 2010). It finds wide use across a number of fields such as

computer vision (Hénaff et al. 2019), natural language processing (NLP) (Devlin et al. 2018)

and automatic speech recognition (ASR) (Lugosch et al. 2019). However, outside NLP

unsupervised pre-training is not as popular as supervised.

Recent advances in self-supervised methods with mutual information objectives are ap-

proaching performance of supervised training (Oord et al. 2018; Hjelm et al. 2018b; Bachman

et al. 2019) and can scale pre-training to very deep convolutional networks (e.g., 50-layer

ResNet). They were shown to benefit structural MRI analysis (Fedorov et al. 2019), learn

useful representations from the frames in Atari games (Anand et al. 2019) and for speaker

identification (Ravanelli & Bengio 2018). Pre-trained models can outperform supervised

methods by a large margin in case of small data (Hénaff et al. 2019).

Earlier work in brain imaging (Khosla et al. 2019b; Plis et al. 2014) have been based on

unsupervised methods to learn the dynamics and structure of the brain using approaches such

as ICA (Calhoun et al. 2001) and HMM (Eavani et al. 2013). Deep learning for capturing the

brain dynamics has also been previously proposed (Hjelm et al. 2014, 2018a; Khosla et al.

2019a). In some very small datasets, transfer learning was proposed for use in neuroimaging

applications (Mensch et al. 2017; Li et al. 2018; Thomas et al. 2019). Yet another idea is the

data generating approach (Ulloa et al. 2018). ST-DIM (Anand et al. 2019) has been used



for pre-training on unrelated data with subsequent use for classification (Mahmood et al.

2019b).

One of the goals of this dissertation is to enable the direct study of brain dynamics in the

m ≫ n situation. In the case of brain data it, in turn, can enable an analysis of brain function

via model introspection. This chapter presents a novel self supervised training schema which

reinforces whole sequence mutual information local to context (whole MILC). The whole

MILC model shows how one can achieve significant improvement in classification directly

from dynamical data on small datasets by taking advantage of publicly available large but

unrelated datasets. Research work in this chapter demonstrates that it is possible to train a

model in a self-supervised manner on dynamics of healthy control subjects from the Human

Connectome Project (HCP) (Van Essen et al. 2013) and apply the pre-trained model to a

completely different data collected across multiple sites from healthy controls and patients.

This chapter shows that pre-training on dynamics allows the encoder to generalize across a

number of datasets and a wide range of disorders: schizophrenia, autism, and Alzheimer’s

disease. Importantly, it is shown that learnt dynamics generalizes across different data

distributions, as the proposed model pre-trained on healthy adults shows improvements in

children and elderly.

3.1 Method

This chapter presents MILC as a self-supervised pre-training method. MILC is used to

pre-train on large unrelated and unlabelled data to better learn data representation. The



learnt representations are then used for classification on downstream tasks adding a simple

linear network on top of the pre-training architecture. The fundamental idea of MILC is

to establish relationship between windows (a time slice from the entire sequence) and their

respective sequences through learning useful signal dynamics. In all of the experiments,

encoded rsfMRI ICA time courses is used as the sequences and a consecutive chunk of time

points as windows. The model uses the idea to distinguish among sequences (subjects) which

proves to be extremely useful in downstream tasks e.g classification of HC or SZ subjects. To

realize the concept, mutual information of the latent space of a window and the corresponding

sequence as a whole is maximized.

Let D = {(ui
t, v

j) : 1 ≤ t ≤ T, 1 ≤ i, j ≤ N} be a dataset of pairs computed from ICA

time courses. ui
t is the local embedding of t-th window taken from sequence i, vj is the global

embedding for the entire sequence j. T is the number of windows in a sequence, and N is

the total number of sequences. Then D+ = {(ui
t, v

j) : 1 ≤ t ≤ T, i = j} is called a dataset of

positive pairs and D− = {(ui
t, v

j) : 1 ≤ t ≤ T, i ̸= j} — of negative pairs. The dataset D+

refers to a joint distribution and D− — a marginal distribution of the whole sequence and

the window in the latent space. Eventually, the lower bound with InfoNCE estimator (Oord

et al. 2018) If (D
+) is defined as:

I(D+) ≥ If (D
+) ≜

N∑
i=1

T∑
t=1

log
exp f((ui

t, v
i))∑N

k=1 exp f((u
i
t, v

k))
, (3.1)

where f is a critic function. Specifically, a separable critic f(ut, vs) = ϕ(ui
t)

⊺(vj), is used,

where ϕ is some embedding function parameterized by neural networks. Such embedding



function is used to calculate value of a critic function in same dimensional space from two

dimensional inputs. Critic learns an embedding function such that critic assigns higher values

for positive pairs compared to negative pairs: f(D+) ≫ f(D−).

The critic function takes the latent representation of a window and sequence as input.

This work defines latent state of window as an output zit produced by the CNN part of

MILC, given input from t-th window xi
t of sequence i. The latent state of sequence as cj is

the global embedding obtained from MILC architecture. Thus the critic function for input

pair (xi
t, x

j)—a window and a sequence—is f = ϕ(zit)
⊺(cj). The loss is InfoNCE with f as

L = If . The scheme of the MILC is shown in Figure 3.1.

3.1.1 Transfer and Supervised Learning

In the downstream task, the representation (output) of the attention model pre-trained using

MILC is used as input to a simple binary classifier on top. Refer to section 3.2.1 for further

details.

3.2 Experiments

In this section, the performance of the model is shown on both, synthetic and real data.

Three different variations of the proposed model are shown to test the advantage of pre-

training on large unrelated dataset — 1) FPT (Frozen Pre-Trained): The pre-trained model

is not further trained on the dataset of downstream task, 2) UFPT (Unfrozen Pre-Trained):

The pre-trained model is further trained on the dataset of downstream task and 3) NPT

(Not Pre-trained): The model is not pre-trained at all and only trained on the dataset of



Latent embedding

infomax

Decode Random initialization

Back Propagation

Pre-Training

21

x

w1

h1

w2

h2

wn

hn

z1

n

biLSTM

Time Courses

O
ve

rla
p

N layer 
CNN 

Encoder

N layer 
CNN 

Encoder

N layer 
CNN 

Encoder

C
om

po
ne

nt
s

x x

z2 zn

attention

c

MILC

w1 w2 wn

a1 a2 an

cat cat cat

c

y1 y2 yn

yny1 y2

attention

models

× × ×

Input / Output

random initialization pretrained initialization

en
co

de
r

bi
LS

T
M

x

ba
ck

 p
ro

pa
ga

tio
n

NPT FPT UFPT

Σ

Figure 3.1 Left: MILC architecture used in pre-training. ICA time courses are computed
from the rsfMRI data. Results contain statistically independent spatial maps (top) and their
corresponding time courses. Right Up: Detail of attention model used in MILC. Right
Down: Three different models are used for downstream tasks.

downstream task. The models are shown in Figure 3.1. In each experiment, all three models

are compared to demonstrate the effectiveness of unsupervised pre-training.

3.2.1 Setup

The CNN Encoder of MILC for simulation experiment consists of 4 1D convolutional layers

with output features (32, 64, 128, 64), kernel sizes (4, 4, 3, 2) respectively, followed by ReLU



after each layer followed by a linear layer with 256 units. For real data experiments, the

model uses 3 1D convolutional layers with output features (64, 128, 200), kernel sizes (4, 4, 3)

respectively, followed by ReLU after each layer followed by a linear layer with 256 units.

The model uses stride 1 for all of the convolution layers. Testing is also performed against

autoencoder based pre-training for simulation experiment, for which the same CNN encoder

is used as for MILC in the reduction phase. For the decoder, the reverse architecture of the

encoder is used that results in 10× 20 windows at the output.

In MILC based pre-training, for all possible pairs in the batch, feature z from the output

layer of CNN encoder is taken. The latent representation of the entire time series is then

passed through biLSTM. The output of biLSTM is used as input to the attention model to

get a single vector c, which represents the entire time series. Scores are calculated using z

and c as explained in 3.1. Loss is computed using these scores. The neural networks are

trained using Adam optimizer.

In downstream tasks the higher interest is in subjects for classification task, for each

subject the output of attention model (c) is used as input to a feed forward network of two

linear layers with 200 and 2 units to perform binary classification. For experiments, a hold

out is selected for testing and is never used through the training/validation phase. For each

experiment, 10 trials are performed to ensure random selection of training subjects and, in

each case, the performance is evaluated on the hold out (test data). The code is available

at: https://github.com/UsmanMahmood27/MILC

https://github.com/UsmanMahmood27/MILC


3.2.2 Simulation

To generate synthetic data, multiple 10-node graphs are created with 10×10 stable transition

matrices. Using these graphs, multivariate time series are generated with autoregressive

(VAR) and structural vector autoregressive (SVAR) models (Lütkepohl 2005).

50 VAR times series with size 10× 20000 are split into three time slices respectively for

training, validation and testing. Using these samples, MILC is pre-trained to assign windows

to respective time series.

In the final downstream task, the model classifies the whole time-series into VAR or SVAR

(obtained by randomly dropping 20% VAR samples) groups. 2000 generated samples are

split as 1600 for training, 200 for validation and 200 for hold-out test. For both pre-training

and downstream task, the same set up as described in section 3.2.1 is followed.

Effectiveness of MILC is compared with the model used in (Mahmood et al. 2019b) and

two variations of autoencoder based pre-training. The two variations of autoencoder are

acquired by replacing the CNN encoder of (Mahmood et al. 2019b) and MILC by the pre-

trained or randomly initialized autoencoder during downstream classification, depending on

the model as explained in section 3.2. These two variations are referred as AE STDIM and

AE STDIM+attention. Note that difference between the two is the added attention layer in

the later during downstream classification.

It is observed that the MILC based pre-trained models can easily be fine-tuned only

with small amount of downstream data. Note, with very few samples, models based on

the pre-trained MILC (FPT and UFPT) outperform the un-pre-trained models (NPT),
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Figure 3.2 Left: Area Under Curve (AUC) scores for VAR vs. SVAR time-series classi-
fication using MILC, ST-DIM and autoencoder based pre-training methods. MILC based
pre-training greatly improves the performance of downstream task with small datasets. On
the other side, ST-DIM works better than autoencoder based pre-training which completely
fails to learn dynamics and thus exhibits poor performance. Right: Datasets used for pre-
training and classification tasks. Healthy controls from the HCP (Van Essen et al. 2013) are
used for pre-training guided by data dynamics alone1. The pre-trained model is then used
in downstream classification tasks of 3 different diseases, 4 independently collected datasets,
many of which contain data from a number of sites, and consist of populations with sig-
nificant age difference. The age distributions in the datasets have the following mean and
standard deviation: HCP: 29.31 ± 3.67; ABIDE: 17.04 ± 7.29; COBRE: 37.96 ± 12.90;
FBIRN: 37.87± 11.25; OASIS: 67.67± 8.92.

ST-DIM models, autoencoder based models. ST-DIM based pre-training model (Mahmood

et al. 2019b) performs reasonably well compared to autoencoder and NPT models, however,

MILC steadily outperforms ST-DIM. Results show that autoencoder based self-supervised

pre-training does not assist in VAR vs. SVAR classification. Refer to Figure 3.2 Left for

the results of simulation experiments.



3.2.3 Brain Imaging

3.2.3.1 Datasets

Next, MILC is applied to brain imagining data. Refer to Figure 3.2 for the details of the

datasets used. MILC is compared with ST-DIM based pre-training shown in (Mahmood

et al. 2019b).

3.2.3.2 Schizophrenia

For schizophrenia classification, experiments are conducted on two different datasets; FBIRN (Keator

et al. 2016) and COBRE (Çetin et al. 2014). The datasets contain labeled Schizophrenia

(SZ) and Healthy Control (HC) subjects.

FBIRN

The dataset has total 311 subjects. Two hold-out sets with sizes 32 and 64 are used for

validation and test respectively, remaining are used for supervised training. The details of

the results are shown in Figure 3.3. We can see that the pre-trained MILC models outperform

NPT and also ST-DIM based pre-trained models.

COBRE

The dataset has total 157 subjects — a collection of 68 HC and 89 affected with SZ. Two

hold-out sets of size 32 each are used for validation and test respectively. The remaining

data is used for supervised training. The results in Figure 3.3 strengthen the efficiency of

MILC. That is, with only 15 training subjects, FPT and UFPT perform significantly better



Figure 3.3 AUC scores for all the three models (Refer to Figure 3.1) on real dataset. With
every dataset, models pre-trained with MILC (FPT, UFPT) perform noticeably better
than not pre-trained model (NPT). Results also show that the learnability of MILC model
dramatically increases with small increase in training data (x axis). As we can see across
the datasets, MILC outperforms ST-DIM with a large margin offering ∼ 10% higher AUC
when maximum achievable AUC scores are compared.

than NPT having ≃ 0.20 difference in their median AUC scores.

3.2.3.3 Autism

With 569 total subjects, 255 are HC and 314 are affected with autism. 100 subjects are used

each for validation and test purpose. The remaining data is used for downstream training

i.e., autism vs. HC classification. Figure 3.3 shows, MILC pre-trained models perform

reasonably better than NPT and thus reinforces the proposed hypothesis that unsupervised

pre-training learns signal dynamics useful for downstream tasks. Possibly, the reason why

pre-trained models do not work well for 15 subjects is that the dataset is much different than

HCP. The big age gap between subjects of HCP and ABIDE is a major difference and 15

subjects are not enough even for pre-trained models. Refer to Figure 3.2 for the demographic



information of all the datasets.

3.2.3.4 Alzheimer’s disease

The dataset OASIS (Rubin et al. 1998) has scans for HC and patients suffering from different

kind of dementia. For this experiment, only HC and Alzheimer’s classification is performed.

(186) subjects with Alzheimer’s (AD) and equal number of randomly chosen HC are used.

Two hold-out sets each of size 64 respectively are used for validation and test purpose. The

remaining are used for supervised training. Refer to Figure 3.3 for results. The AUC scores

of pre-trained models is higher than NPT starting from 15 subjects, even with 120 subjects

NPTdoes not perform equally well.

3.2.4 Saliency

The experiments demonstrate that with the whole MILC pre-training it is possible to achieve

reasonable prediction performance from complete dynamics even on small data. Importantly,

it is now possible to investigate what in the dynamics was the most discriminative (see

Figure 3.4).

3.3 Conclusions

As the work shown in this chapter demonstrates, self-supervised pre-training of a spatio-

temporal encoder gives significant improvement on the downstream tasks in brain imaging

datasets. Learning dynamics of fMRI helps to improve classification results for all three

dieseases and speed up the convergence of the algorithm on small datasets, that otherwise do
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Figure 3.4 Example saliency maps from a pre-trained MILC model: one for a healthy control
and one for a schizophrenia subject (FBIRN data). More work is needed, but we can see
that not only the proposed model predicts diagnosis but also can point out when during the
resting state scan discriminative activity was observed.

not provide reliable generalizations. Although the utility of these results is highly promising

by itself, it is expected that further model introspection would yield insight into the spatio-

temporal biomarkers of schizophrenia. It may indeed be learning crucial information about

dynamics that might contain important clues into the nature of mental disorders. Also,

learning disorder-specific graph structure between the input networks can help to discover

useful insights.
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CHAPTER 4

DISORDER-SPECIFIC GRAPH ESTIMATION

Existing studies often heavily depend on the underlying method of functional connectivity

estimation, in terms of classification accuracy, feature extraction, or learning brain dynamics.

Studies like (Rashid et al. 2016; Saha et al. 2020; Salman et al. 2019) depend on hand-

crafted features. These studies work very well on classification but do not learn a sparse

graph of brain’s network connectivity and not too helpful for identifying bio-markers in the

brain. Many functional connectivity studies (Du et al. 2018) on brain disorders utilize ROIs

predefined based on anatomical or functional atlases, which are either fixed for all subjects

or based are based on group differences.

These approaches ignore the possibility of inter-subject variations of ROIs, especially

the variations due to the underlying disease conditions. They also rely on the complete set

of these ROIs discounting the possibility that only a small subset may be relevant for the

disorder. A disorder can have varying symptoms for different people, hence making it crucial

to determine disorder and subject specific ROIs.

This chapter addresses the problems of using a fixed method of learning functional con-

nectivity and using it as a fixed graph to represent brain structure (the standard practices)

by utilizing a novel attention based Graph Neural Network (GNN) (Li et al. 2016), called

BrainGNN. The proposed model, BrainGNN is applied to fMRI data and 1) achieve com-

parable classification accuracy to existing algorithms, 2) learn dynamic graph functional

connectivity, and 3) increase model interpretability by learning which regions from the set



of ROIs are relevant for the classification, enabling additional insights into the health and

disordered brain.

4.1 Materials and Methods

4.1.1 Materials

In this chapter, the data from Function Biomedical Informatics Research Network (FBIRN) (Keator

et al. 2016) dataset is used to train and test BrainGNN. The dataset includes schizophre-

nia (SZ) patients and healthy controls (HC). Resting fMRI data from the phase III FBIRN

were analyzed for this project. The dataset has 368 total subjects out of which 311 were

selected based on the preprocessing method explained in Section 2.1.1.1. To partition the

data into regions use automated anatomical labeling (AAL) (Tzourio-Mazoyer et al. 2002)

which contains 116 brain regions. Taking sum of the voxels inside a region is an easy and

common method but this gives and unfair advantage to bigger regions. For this, the weighted

average of the voxel intensities inside a region are taken instead of summation. Weight is

the value of a voxel being inside a region, as these values are not binary. Averaging helps

to negate the bias towards bigger regions. This results in a dataset D = (S1, S2, S3......Sn)

where Si ∈ Rr×t, n = 311, r = 116, t = 160.

4.1.2 Method

The architecture of the proposed model has three distinct parts: 1) a Convolutional Neural

Network (CNN) (Lecun et al. 1998) that creates embeddings for each region, 2) a Self-

Attention mechanism (Vaswani et al. 2017) that assigns weights between regions for func-



tional connectivity and 3) A GNN that uses regions (nodes) and edges for graph classification.

This section explains the purpose and details of each part separately. Refer to Figure 4.1 for

the complete architecture diagram of BrainGNN.

4.1.2.1 CNN Encoder

A CNN (Kiranyaz et al. 2021) encoder is used to obtain the representation of individual

regions created in the preprocessing step outlined in 4.1.1. Each region vector of dimen-

sion t = 160 is passed through multiple layers of one dimensional convolution, and a fully

connected layer to get final embedding. The one dimensional CNN encoder used in the

architecture consists of 4 convolution layers with filter size (4, 4, 3, 1), stride (2, 1, 2, 1) and

output channels (32, 64, 64, 10). This is followed by a fully connected layer resulting in a

final embedding of size 64. The model uses rectified linear unit (ReLU) as an activation

layer between convolution layers. Each region is encoded individually to later on create con-

nections between regions and interpret which regions are more important/informative for

classification. The one dimensional CNN layer embeds the temporal features of regions and

the spatial connections are handled in the attention and GNN parts of the architecture.
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Figure 4.1 BrainGNN architecture using a) Preprocessing: To preprocess the raw data with

different steps (4.1.1). b) 1DCNN: To create embedding for regions (4.1.2.1). c) Self-

attention: To create connectivity between regions (4.1.2.2) d) GNN: To obtain a single

feature vector for the entire graph (4.1.2.3) and e) Linear classifier: To obtain the final clas-

sification.

4.1.2.2 Self Attention

Using the embeddings created by the CNN encoder, the model estimates the connectivity

between the regions of the brain using multi-head self-attention following Vaswani et al.

(2017) . The self-attention model creates three embeddings namely (key, query, value) for

each region, which in the proposed architecture are created using three simple linear layers.

Each linear layer ϕ is of size 24. keyi = ϕk(regioni), queryi = ϕq(regioni), valuei =

ϕv(regioni). To create weights between a region and every other region, the model takes dot

product of a region’s query with every other region’s key embedding to get scores between



them. Hence, scoreij = queryi ·keyj. The scores are then converted to weights using softmax.

wi = Softmax(scorei) where scorei ∈ R1×r is a vector of scores between region i and every

other region. The weights are then multiplied with the value embedding of each region and

summed together to create new representation for a regioni. Following equations show how

to get new region embedding and weight values.

keyi = regioni ∗W (k), valuei = regioni ∗W (v), queryi = regioni ∗W (q)

K = ||ri=1key
T
i = keyTi ||....||keyTr , weighti = softmax(queryi ∗K)

new regioni =
r∑
j

(weightij ∗ valuej)

(4.1)

This process is carried out for all the regions, producing new representation of every

region and the weights between regions. These weights are then used as the functional

connectivity between different regions of brain for every subject. The self attention layer

encodes the spatial axis for each subject and provides with the connection between regions.

The weights are learned via end to end learning of the model performing classification. This

frees from using predefined models or functions to estimate the connectivity.

4.1.2.3 GNN

The graph network used in BrainGNN is based on a previously published model Li et al.

(2016). Each subject is represented by a graph G having V,A,E where V ∈ Rr×t is the

matrix of vertices, where each vertex is represented by an embedding acquired by self-

attention. A,E ∈ Rr×r are the adjacency and edge weight matrices. Since the proposed

model do not use any existing method of computing edges, a complete directed graph with



backward edges is constructed, meaning every pair of vertices is joined by two directed edges

with weights eij and eji ∈ E. For each GNN layer, at every step s, each node, which is a

region sums feature vectors of every other region relative to the weight edge between the

nodes and pass the resultant and it’s own feature vector through a gated recurrent unit

(GRU) network Cho et al. (2014), to obtain new embedding for itself.

xni
s = GRU(xni

s−1,
∑

∀nj :nj−>ni

ejix
nj

s−1) (4.2)

where GRU can be explained by following set of equations, with hs−1 representing the result

of sum in Equation 4.2:

zs = σ(W(z)xs−1 +U(z)hs−1)

rs = σ(W(r)xs−1 +U(r)hs−1)

hs
′ = σ(Wxs−1 + rs ⊙Uhs−1)

xs = σ(zs ⊙ hs−1 + (1− zs)⊙ h′
s)

(4.3)

The number of steps is a hyper-parameter and are set as 2 based on the experiments.

The graph neural network helps nodes to create new embeddings based on the embeddings

of other regions in the graph weighted by the edge weights between them. In the proposed

architecture, 6 GNN layers are used, as shown in experiments of Bresson & Laurent (2017)

that it provides with the highest accuracy, with the first 3 followed by a top-k pooling

layer Gao & Ji (2019); Knyazev et al. (2019). On the input feature vectors which are the

embeddings of the regions, the pooling operator learns a parameter (p) which is to assign

weight to the features. Based on this parameter, top (k) layers are chosen in each pooling



layer and the rest of the regions are discarded from further layers. The pooling method can

be explained by the following equations.

y =
Xp

∥p∥

i = topk(y)

X ′ = (X ⊙ tanh(y))i,

A′ = Ai,i

(4.4)

X′ and A′ are the new features and adjacency matrix acquired after selecting top (k)

regions. Pooling is performed to help model focus on the important regions/nodes which

are responsible for classification. The ratio of nodes to keep in the pooling layer is a hyper-

parameter and set as (0.8, 0.8, 0.3) ratios respectively. Since each subject is represented as

graph G, in the end graph classification is performed by pooling all the feature vectors of

the remaining 23 regions/nodes. To get one feature vector from the entire graph the output

of three different pooling layers are concatenated. The complete graph is passed into three

separate pooling layers. Each of the pooling layer gives one feature factor. In the end,

the three vectors are concatenated to get one final embedding for the entire graph which

represents a subject. The proposed architecture uses graph max pool, graph average pool

and attention based pool Vinyals et al. (2016). The dimension of the resulting vector is 96.

The feature vector is then passed through two linear layers of size 32 and 2. As the name

suggests, graph max pool and graph average pool just gets the max and average vector from

the graph whereas attention based pooling multiplies each vector with a learned attention

value before summing all the vectors.



4.1.2.4 Training and Testing

To train, validate and test the model proposed in this chapter the total 311 subjects are di-

vided into three groups of size 215, 80 and 16, for training, validating and testing respectively.

To conduct a fair experiment 19 test folds are created and for each fold 10 randomly-seeded

trials are performed, resulting in a total of 190 trials, and selecting 100 subjects per class

for each trial. Area under the ROC (receiver operating characteristic) curve (AUC) is calcu-

lated for each trial. The model is trained in an end to end fashion, using Cross Entropy to

calculate loss by giving true labels Y as targets. Adam is used as the optimizer and reducing

learning rate on plateau with patience 10. Early stopping is used with the model based on

validation loss, with patience of 15. Let θ represent the parameters of the entire architecture.

loss = CrossEntropy(Ŷ , Y ) (4.5)

θ∗ = argmin
θ

(loss; θ) (4.6)

4.2 Results

This section shows three different groups of results. 1) The classification results, 2) Regions’

connectivity and 3) Key regions selection. The study discusses these in the following sections.

The proposed model is tested and compared against the classical machine learning algorithms

and Mahmood et al. (2020b) on the same data used in BrainGNN. The input for the

machine learning model is sFC matrices produced using Pearson product-moment correlation

coefficients (PCC).



4.2.1 Classification

As mentioned, the AUC metric is used to quantify the classification results of the proposed

model. AUC is more informative than simple accuracy for binary classification. Figure 4.2

shows the results for the proposed model. Figure 4.3 shows the ROC curves of the models

for each fold. The performance is comparable to state of the art classical machine learn-

ing algorithms using hand crafted features and existing deep learning approaches such as

Mahmood et al. (2020b), which performed test on independent component analysis (ICA)

components with a hold out dataset. Comparison with other machine and deep learning

approaches is shown in Figure 4.4 and prove the claim of BrainGNN providing state-of-the-

art results. BrainGNN gives almost the same mean AUC as the best performing model i.e.

SVM (Support Vector Machine). Presumably, these results are currently among the best

on the unmodified FBIRN fMRI dataset Rashid et al. (2016); Saha et al. (2020); Salman

et al. (2019). Table 4.1 shows the mean AUC for each cross validation fold that was used

for experimentation for BrainGNN. As it is shown in the table that AUC has high variance

across the different test sets of cross validation. To make more sense out of the functional

connectivity and region selection, both results are based on the second test fold which gives

the highest (∼ 1) AUC score.

4.2.2 Functional Connectivity

The functional connectivity between regions of the brain is crucial for understanding how

different parts of brain are interacting with each other. The proposed model uses the weights



assigned by the self-attention module of as the connection between regions. Figure 4.5 shows

weight matrices for the second test set in cross validation. Weight matrices of subjects

belonging to SZ class turn out to be much sparser than weights of healthy controls subjects.

The result shows that the connectivity is limited to fewer regions, and functional connectivity

differs across classes and fewer regions get higher weights in case of SZ subjects. Statistical

testing is also performed to confirm that the weight matrices of HC differ from those of

SZ subjects. For this purpose, two sets each representing the concatenation of the weights

of 8 test subjects belonging to a class are created. 2 different testing are performed and

shown in Table 4.2. P-value of < 0.0001 shows that we can reject the null-hypothesis, hence

making it highly likely that the difference between weights of HC and SZ subjects is not

zero. FC matrices produced using PCC method, do not provide such level of information

and almost all regions get unit weight between other regions. 4.5 shows the usefulness of

learning connectivity between regions in an end-to-end manner while training the model for

classification.
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Figure 4.2 KDE plot of probability density of ROC-AUC score on FBIRN dataset. The 190

points on the x-axis signifies the 19 fold cross validation, 10 trials per cross validation. With

average and median of ((∼ 0.8)), density peaks at (∼ 0.8) AUC.
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Figure 4.3 Shows the ROC curves of the 19 models generated using each fold of cross vali-

dation. The graph is symmetrical and well balanced. It shows that the model did not learn

one class over the other.



SVM
Lin

ea
r

SVM
Lo

gis
tic

Reg
re

ss
ion

 (L
2)

M
ult

ila
ye

r

Per
ce

pt
ro

n

Bra
inG

NN

Ran
do

m

For
es

t

Nea
re

st

Neig
hb

or
s

Vot
ing

W
ho

leM
IL

C

(N
PT)

W
ho

leM
IL

C

(F
PT) Naiv

e

Bay
es

Dec
isi

on

Tre
e

W
ho

leM
IL

C

(U
FPT)

Lo
gis

tic

Reg
re

ss
ion

 (L
1)

0.40

0.45

0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

Figure 4.4 BrainGNN comparision with other popular methods. BrainGNN provides mean

AUC as 0.79, which is just (∼ 0.02) less than the best performing model (SVM). Methods

like WholeMILC (UFPT) and l1 logistic regression failed to learn on the input data. The l1

logistic regression model does perform better with a very weak regularization term.

Table 4.1: Showing mean AUC of 10 trials for each cv

fold

CV Fold 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

AUC 0.695 0.955 0.644 0.752 0.908 0.917 0.894 0.803 0.649 0.805 0.922 0.699 0.625 0.780 0.794 0.766 0.914 0.750 0.777



4.2.3 Region Selection

The pooling layer added in the GNN module allows to reduce the number of regions. Func-

tionality across brain regions differ significantly and not all regions are affected by a disorder

or have any noticeable affect on classification. This makes it very important to know which

regions are more significantly informative of the underlying disorder and study how they get

affected or affect the disorder. Figure 4.6a shows the final 23 regions selected after the last

pooling layer in the GNN model which is just 20 percent of the total brain regions used.

The relevance of these regions is further signified by the fact that the graph model has no

residual connections and the final feature vector created after the last GNN layer is through

the feature vectors of these regions. Figure 4.6b shows the location of the selected regions

in the MNI brain space, regions are distinguished by color. Each region is assigned one unit

from the color bar, used to represent signal variation in the fMRI data.

Table 4.2: Statistical testing between weight matrices of

HC and SZ. The test shows that weights of regions differ

across HC and SZ subjects. Refer to Figure 4.4 for mean

and deviation of these folds.

Test P Value

Mann-Whitney U Test 0.0
Welch’s t-test 0.0
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Figure 4.5 Connectivity between regions of subjects of both classes using BrainGNN and sFC
(PCC method). BrainGNN: The similarity of connection between a class and difference
across class is compelling. Weights of SZ class are more sparse than HC, highlighting the
fact that fewer regions receive higher weights for subjects with SZ. Refer to Table 4.2 for
results of statistical testing between weights of HC and SZ subjects. sFC: The matrices are
symmetric but are less informative than those produced by BrainGNN. Most of the regions
are assigend unit weight.
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Figure 4.6 4.6a: Histogram of regions selected after the last pooling layer of GNN. 2nd fold

of the cross validation gives this figure. All 23 regions are selection equal number of times

(16). It further signifies the important of these regions, showing that for all subjects across

both classes, these 23 regions are always selection. 4.6b: Mapping the 23 regions back on the

brain across the three anatomical planes. 100th time point is selected for these brain scans.

X axis shows different slices of the plane.



4.3 Discussion

The richness of results in the three presented categories highlights the benefits of the proposed

method. High classification performance shows that the model can accurately classify the

subjects and hence can be trusted with the other two interpretative results of the chapter.

Functional connectivity between regions shown in the chapter is of paramount importance as

it highlights how brain regions are connected to each other and the variation between classes.

Learning functional connectivity end-to-end through classification training frees the model

from depending on an external method. The sparse weight matrix of subjects with SZ shows

that connectivity remains significant between considerably fewer regions than for healthy

controls. Notably, the attention based functional connectivity cannot be interpreted as the

conventional correlation based symmetric connectivity. Due to the inherent asymmetry in

keys and values the obtained graph is directed but is also prediction based rather than simply

correlation. It is expected that that a further investigation into the obtained graph structure

will bring more results and deeper interpretations. The sparsity is to be further explored

and seen in context of the regions selected, shown in the last section of results. The final

regions selected by the model strengthens the proposed hypotheses that not all regions are

equally important for identifying a particular brain disorder. Reducing the brain regions by

almost 80% helps in identifying the important regions for classification of SZ. The regions

selected by the proposed model such as (cerebellum, temporal lobe, caudate, SMA) etc have

been linked to the disease by multiple previous studies, hence reassuring the correctness of

the model Haan et al. (2011); Fu et al. (2021b); Zeng et al. (2017); Culbreth et al. (2021).



We can see an immediate benefit of using GNNs, specifally the proposed BrainGNN model

to study functional connectivity. The data-driven model almost eliminates manual decisions

transitioning graph construction and region selection into the data-driven realm. With this

BrainGNN opens up a new direction to the existing studies of connectivity and it is safe to

expect that further model introspection to yield insight into the spatio-temporal biomarkers

of brain disorders. The next goal of this dissertation is to make appropriate changes in the

proposed model and/or propose new models that can lead to better estimation of the brain

network connectivity.
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CHAPTER 5

DIRECTED INSTANTANEOUS CONNECTIVITY ESTIMATION

To estimate brain networks’ connectivity that is 1) directed, 2) interpretable, 3) flexible, and

4) dynamic, a novel approach is developed and shown in this chapter. The approach is called

the Directed Instantaneous Connectivity Estimator (DICE): a predictive model to estimate

dynamic directed connectivity between brain networks, represented as a dynamically varying

directed graph by predicting the downstream binary label. This proposed model may be

placed into the category of model-free connectivity methods as it does not model the data

generation process. This chapter defers to using “directed (network) connectivity” (D(N)C)

for the graphs that DICE estimates.

Unlike existing supervised DL models that typically produce difficult-to-interpret repre-

sentations, DICE is designed primarily with interpretability in mind. The proposed model

DICE reveals what it learned about the dynamics of brain network connectivity without

using post hoc interpretability methods. Effectively, this work has lead to a “glass-box”

layer within a traditionally “black-box” DL model. In contrast to commonly used hidden

layers, the “glass-box” layer propagates a weighted adjacency matrix of a directed graph,

ensuring that it is interpretable in the context of the classification task. Hence, by estimating

DC based on the task and using only the estimated connectivity structure for classification,

DICE learns to capture task-relevant networks and their connectivity, leading to a flexible

estimation of an interpretable DC. By estimating DC instantaneously (window-size = 1),

DICE removes the need for the window-size parameter used in many dynamic connectivity



studies.

To thoroughly validate DICE’s performance, a series of experiments are conducted on

four neuroimaging datasets that span three disorders (schizophrenia, autism, and dementia)

and cover a wide age range. The model is trained on classification tasks for each of these

brain disorders, age prediction, and gender classification, and analyze the resulting DC of

the “glass-box” layer. Surprisingly, the deliberate focus on stable interpretable results has

an enhancing side effect on DICE’s predictive performance. Results show, the model’s pre-

dictions are better or on par with state-of-the-art methods that were developed with a focus

on classification performance rather than interpretability. The model’s results show that

when learning to classify subjects based on a specific criterion, DICE estimates interpretable

DCs specific to that criterion. For gender and mental disorder classification, subgraphs em-

phasized by the learned DCs are discriminative of gender and mental disorders, respectively.

It is also also demonstrated in experiments that DICE learns interpretable DCs distinct

to dementia, gender, and age prediction for the same subjects by enhancing connectivity

for networks that pertain to the training signal. The flexible estimation of DC structures

advances the results of Salehi et al. (Salehi et al. 2020), which show that functional parcel

boundaries change for an individual based on the cognitive state. This work shows an in-

creased utility of the inferred directionality for increasing the precision of explainable group

differences. As a result, DICE can resolve more states in fMRI dynamics than is resolvable in

typical dynamic functional network connectivity analyses. Additionally, DICE incorporates

a temporal attention module that highlights crucial time steps relevant to the task, further



improving the interpretation of predictions for the dynamics. The learned DC structures

and temporal attention weights are stable and consistent across randomly-seeded trials.

5.1 Materials and Methods

5.1.1 Materials

Resting state functional magnetic resonance imaging (rs-fMRI) data as input to DICE. DICE

is tested by classifying three different brain disorders, predict gender and age of subjects. For

each brain disorder binary classification of healthy controls (HC) and patients is performed.

Four datasets used for experiments are collected from FBIRN (Function Biomedical Infor-

matics Research Network 1) (Keator et al. 2016) project, from release 1.0 of ABIDE (Autism

Brain Imaging Data Exchange 2) (Di Martino et al. 2014) and from release 3.0 of OASIS

(Open Access Series of Imaging Studies 3) (Rubin et al. 1998). Healthy controls from the

HCP (Human Connectome Project) (Van Essen et al. 2013) are used for gender prediction.

Refer to Table 2.1 for details of the datasets.

5.1.1.1 Preprocessing

Two typical brain parcellation techniques are used to create data for experiments; indepen-

dent component analysis (ICA) and regions of interest (ROIs) based on a pre-defined atlas.

The preprocessing pipeline used depends on the parcellation technique and the pipeline used

in state-of-the-art studies for the dataset. Refer to Section 2.1.1 for more details.

1FBIRN phase III are used.
2http://fcon_1000.projects.nitrc.org/indi/abide/
3https://www.oasis-brains.org/

http://fcon_1000.projects.nitrc.org/indi/abide/
https://www.oasis-brains.org/


To get ROIs, two atlases for brain parcellation are used; Shaefer (Schaefer et al. 2017),

and Harvard Oxford (HO) (Desikan et al. 2006) with 200, and 111 regions respectively. For

each region, average value is computed for all the voxels falling inside a region, thus resulting

into a single time-series for each region. After dividing data into regions, each time-series

was standardized by their zscore having zero mean and unit variance. All the preprocessing

was done before training the model.

5.1.2 Method

DICE receives the time-courses of the ICA components or ROIs represented as a matrix of size

N ∗T (Number of components/ROIs * Number of time-points) and learns a set of T directed

graphs representing the dynamic DC or DNC between spatial components (e.g., ICA-based

spatial components, regions from an atlas), which are designated as nodes of a graph by

predicting the binary labels. Let G represent the set of graphs where G = {g1, g2, ..., gT}

where T is the total time-points and gt = (Vt, Et), where, Vt and Et represent the nodes

and edges present at time-point t. To create the graph gt, firstly a bidirectional long short-

term memory (biLSTM) (Schuster & Paliwal 1997) module is used to create the embedding

hi
t of node i at time t. Then a self-attention module (Vaswani et al. 2017) is used which

takes all such embeddings at each time t and create a weight matrix among nodes thus

providing the DC (graph) between nodes at each time-point. To create a final graph Gf for

downstream classification, a temporal attention model is used that assigns a weight to each

gt and compute the weighted sum of the set G. The working and purpose of each module is

explained in detail in the following sections. Figure 5.1 shows the complete architecture.



Figure 5.1 DICE architecture using biLSTM, self-attention and temporal attention. The
model uses self-attention between the embeddings of all components/nodes at each time-
point to estimate the DC Wi. Temporal attention is used to create a weighted sum of the
T DC. Architecture details of temporal attention is shown in Figure 5.2.

5.1.2.1 biLSTM

The time-point value xi
t for node i at time t can be effected by many different factors

and relations. Capturing these relations can increase model interpretability and improve

downstream classification performance. In a time-series (fMRI data), one of these factors is

the values/data at previous time-points xi
1...t−1. In fMRI data, this relationship is unknown



and is hard to capture and hence cannot be computed using a fixed method/formula (hand-

crafted features). The difficulty is further increased by a) low temporal resolution of fMRI

data and b) the fact that it is unknown how farther in time the effects of a time-point remains

in a time-series. These effects are different for each subject and can even vary among nodes of

the same subject. LSTMs have proved to be extremely effective for time-series/sequence data

where the model takes an input from a sequence at time-point t and create representation for

current and also predict representation for future time-courses based on the representation

of previous time-points. LSTMs learn the temporal relationships between data through the

cell’s memory and forget gate. These gates are optimized on the data and downstream task

(ground-truth signal) and the relationships between data are learned instead of computed.

The working of the LSTMs can be explained by the following set of equations. σ represents

sigmoid activation, b are the biases, and ⊙ is the Hadamard product (Million 2007).

it = σ(Wiixt + bii +Whiht−1 + bhi)
ft = σ(Wifxt + bif +Whfht−1 + bhf )
gt = tanh(Wigxt + big +Whght−1 + bhg)
ot = σ(Wioxt + bio +Whoht−1 + bho)
ct = ft ⊙ ct−1 + it ⊙ gt

ht = ot ⊙ tanh(ct)

(5.1)

Here ht is the representation/embedding for the input at t. The model uses a biLSTM to

create representation ht for each node i. Thus hf
t = LSTM(xt,ht−1), h

b
t = LSTM(xt,ht+1)

and ht = concatenate(hf
t ,h

b
t). Here hf

t and hb
t are representation for forward and backward

pass. LSTM is used for each node (component/region) individually, sharing weights of

LSTM among the nodes. xi
t (scalar value) is given as input to the LSTM along with hidden

vector and receive hi
t for the node i, which solves the window size problem occurring in



dynamic-FNC studies. To make it easier to understand, one can assume that in DICE the

window size is 1. This allows the model to later instantaneously compute connectivity matrix

(links/edges) between the nodes at each time-point. The biLSTM receives temporal values of

each component/region separately but share the weight matrices across regions. This allows

the biLSTM to learn the temporal connections by looking at multiple nodes but does not

learn spatial dependencies among nodes. For this exact reason self-attention across nodes is

used in DICE.

5.1.2.2 Self-Attention

A node in a graph can be linked with other nodes represented as the edge connectivity

between them. The connectivity between nodes influence the value of a node (xi
t) at a

certain time-point. Thus it is important to measure the connectivity between nodes for

the construction and interpretation of the graph. In fMRI data where each xi is a brain

region/component, capturing the DC or DNC between nodes shows how brain networks are

linked with each other and the direction of flow of information between brain networks.

The estimated matrices can then be used to explain brain working and brain disorders.

Connectivity between brain regions is independent of the structural connectivity and thus

is unknown. To capture the directed connectivity between brain regions, a self-attention

module is used in this work.

Self-attention module captures the weights between n inputs of a sequence. Since in a

dynamic system (brain network), the connectivity between nodes can change at any instance,

therefore, at each time-point t a sequence of n vectors h1
t ...h

n
t , n = total nodes, is passed as



input to the self-attention module and create the weight matrix Wt, where each Wt ∈ Rn∗n

is the connectivity weight matrix of input nodes at time-point t.

The self-attention module creates three embeddings, namely, key (k), value (v), and

query (q) and creates new embeddings for each input using these embeddings. The following

set of equations can sum up the whole process. For simplicity, the t is omitted from these

equations. ⊺ represents transpose and ⊕ represents concatenation.

ki = hi⊺W(k), vi = hi⊺W(v), qi = hi⊺W(q)

K = ⊕n
i=1k

i⊺, wi = softmax(qiK)
W = ⊕n

i=1w
i

(5.2)

Here W ∈ Rn∗n is the connectivity matrix between n nodes in the graph. As brain

disorder are associated with disruptions in the connectivity of brain’s intrinsic network, only

the learned directed connectivity matrices W are used for downstream classification and

not the features, thus forcing the model to estimate the differences in connectivity between

the two classification groups (e.g., HC and patients). As DICE is tuned to estimate the

DC or DNC for the groups of subjects and output the it, DICE captures and shows the

basis of downstream classification. The DC or DNC estimated by the model can be easily

represented as a graph which are extremely easy to interpret. The self-attention glass-box

layer shows task-dependant nodes (brain regions) and their connectivity.

The features that represent time-courses are used to learn/estimate the DC or DNC

structure. As the true connectivity/graph structure is never available in many applica-

tions to directly compare with, this study proposes that a connectivity matrix leading to

state-of-the-art classification performance makes it more reliable than using the representa-
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Figure 5.2 GTA architecture for temporal attention. W1−T matrices are summed to create
Wglobal. Using Wglobal and Wi attention score αi is created for each time-point. Refer to
equations in 5.3 and 5.4 for working details. Here f denotes the average function.

tions/embeddings for classification.

5.1.2.3 Temporal Attention

As the model uses only the learned connectivity matrices for downstream classification. For

this purpose, there is a need to create a single weight matrixW f based on theW1−T matrices.

For the downstream classification task, not all the time-points are equally important, hence

it is crucial to incorporate a temporal attention module which assigns weight to each Wt

and calculate a weighted average of all the weight matrices. This section introduces a novel

temporal attention module which is called global temporal attention (GTA). GTA: To give



the attention module a global view of the graph, this work presents a new method called

GTA. The global view allows the model to learn how each DC contributes to the global

graph or structure of the data in the downstream task. GTA module creates an average of

all the T DC and call it Wglobal representing the global view. Then the similarity of each

local Wt with the global view is compared and used them to create the temporal attention

vector α. Figure 5.2 shows the architecture details.

Wglobal = 1
T

∑T
t=1 Wt

W̃t = Wt ⊙Wglobal

α = (⊕T
t=1((((flat(W̃t))W

MLPl1)WMLPl2)WMLPl3)

(5.3)

Here ⊙ is the Hadamard product (Million 2007) between matrices. Wf is computed as:

Wf =
T∑
t=1

Wtαt (5.4)

5.1.3 Training

GTX 2080 with PyTorch as ML framework is used for the experiments. The hidden di-

mensions for the biLSTM was set to 100, whereas, self-attention including key, query, and

value modules, were all set to 48. The dimensions of multi-layer perceptron (MLP) layers

for calculating temporal attention vector were η1 ∗ len(flat(Wt)), η2 ∗ len(flat(Wt)), and 1

with η1 = η2 = 0.05. It was noticed in the experiments that multiple heads of self-attention

increases stability of the estimated DC. Batch normalization is used after the first MLP

layer. ReLU activation was used in DICE between the MLP layers. A final two-layer MLP

was used to get logits for binary classification problem with Wf as input with dimensions

64 and 2. Cross-entropy loss with Adam optimizer was used to calculate loss and optimize



the model during training. Let θ represent the parameters of the entire architecture, ŷ being

the predictions and y the true labels, the loss is calculated as:

loss = CrossEntropy(ŷ,y) + λ∥θ∥1 (5.5)

θ∗ = argmin
θ

(loss) (5.6)

Additional experiments were also done with an additional loss terms to encourage the

model to estimate connectivity matrices where the values of the main diagonal are closer

to 1. Please refer to Section B for details. L1-regularization was used to get a sparser

solution. λ (regularization weight) was set as 1e−6 and learning rate was 2e−4. Based on

the experiment, learning rate was reduced either when validation loss reached plateau by a

factor of 0.5 or exponentially with γ = 0.99. Early stopping was used to stop training the

model based on validation loss and patience of 25. For each dataset (ICA components or

ROIs), to have a fair result, n-fold testing was performed where the value of n depended on

the dataset and methods the model was compared against. For each test fold experiments

were performed with 10 randomly-seeded trials. This study reports the mean AUC-ROC

(Area Under Curve - Receiver Operating Characteristic) across the n test folds and the

10 randomly-seeded trials as it is a more reliable metric than simple accuracy for binary

classification tasks. For example, for FBIRN data there were 18 test folds and for each fold

10 trials were performed, which gave a list of 180 AUC-ROC values and the average of these

values are reported to show classification performance of the model. In some cases metrics



as well, such as accuracy are also reported. Due to the size of the data, there was a need to

make some hyper-parameter changes for HCP region-based (ROIs) experiments. The hidden

dimension size for bilstm and self-attention module was set to 64 and 32. η1 was set to 0.005.

Furthermore, because of memory constraints encountered during HCP region experiments,

during both training and testing total time-points (1200) were divided into a set of three,

each having 400 time-points. Logits were acquired for all and the mean was computed to

get final logits. Batch size was set to 32.

5.1.3.1 Hyper-parameters Selection and Fine-tuning

All the parameters (hidden dimensions, number of layers, η1, η2, λ, learning rate, γ, patience,

batch size) mentioned in section 5.1.3 were set as hyper-parameters. The hyper-parameters

were fin-tuned based on the average performance of the model on validation dataset across

all the folds. Hyper-parameters tuning was not based on the test folds and only test-set

results are reported. Notably, for the experiments on DICE, the order of subjects for each

dataset was permuted and the experiments were performed using the permuted order. This

was done to avoid imbalance of subjects in the folds. On the same lines, when dividing

the data into n-folds (test folds) the number of subjects of both classes in each fold were

balanced. For example, in case of FBIRN data with 311 subjects and 151 and 160 subjects

in class 0 and 1 respectively. When performing 18 fold testing, each test fold consisted of

⌊151
18
⌉ subjects from class 0 and ⌊160

18
⌉ subjects from class 1 and the rest of the data was used

for training and validation, where the validation set size was kept same as the test set size.

The validation set was used for hyper-parameters tuning, early stopping during training and



selecting the model to apply on the test data. It was made sure that no subject (or sessions

of a subject) repeated across training, validation and test sets. The exact size of training,

validation and test set can be calculated using the criteria mentioned above and the total

number of subjects and number of folds mentioned in Table 2.1. In some of the experiments

keeping the same number of subjects in each fold created a small data leakage at the end. For

the results reported, the maximum leakage was for FBIRN dataset with 18 test folds. For

this purpose, another experiment was performed on FBIRN dataset where the last fold had

all the left out subjects to prevent any data leakage. This had no effect on the performance

of the model. Refer to Table A.1 for results with different folds.

5.2 Experiments

To test if DICE accomplishes all the goals, this study performs detailed experiments by

classifying three brain disorders, classify male and female groups for HCP and OASIS sub-

jects, and predict age for OASIS subjects. Experiments for all datasets were performed

using ICA time-courses and experiments on FBIRN, ABIDE and HCP data were performed

using regions-based (ROIs) data as well. Average results for all the trials are reported. De-

pending on the experiment, the classification results are compared with state-of-the-art DL

methods (Mahmood et al. 2019a, 2020a, 2021b; Gadgil et al. 2021; Kim & Ye 2020; Zhang

et al. 2018a; Weis et al. 2019; Arslan et al. 2018) and ML methods (Support Vector Machine

(SVM), Logistic Regression (LR)). To avoid any discrepancy the results of the DL methods

are taken directly from the published studies, even though some studies use test data instead



of validation data for selecting the best performing model/parameters. For ML methods the

python package Polyssifier4 was used which selects the best model/parameters based on the

performance on validation data.

To show the efficacy of DICE, the acquired results are divided into three broad categories.

The following sections show a) classification performance of DICE, b) learned DC and DNC

and c) the effects of temporal attention module.

5.2.1 Classification

Figure 5.3 shows the classification performance of DICE using ICA data, Table 5.1 shows

the performance using region-based (ROIs) data of FBIRN and HCP, and Table 5.2 shows

results on ABIDE region-based (ROIs) data.

4https://github.com/alvarouc/polyssifier

https://github.com/alvarouc/polyssifier
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Figure 5.3 AUC comparision of DICE model with four different methods (MILC (Mahmood
et al. 2020a), STDIM (Mahmood et al. 2019a), logistic regression (LR), support vector
machine (SVM)), over four different datasets using ICA time-courses (Ref to section 2.1.1.1).
The proposed method significantly outperforms SOTA methods. Autism experiments with
869 subjects (all TRs) were performed as well. As DICE does not have a pre-training step,
NPT is compared with not-pre-trained (NPT) version of MILC and STDIM. Input to ML
methods were the same ICA time-courses, not the FNC matrices. Any notable study for
gender classification of HCP subjects using was not found that used ICA components as
notable methods used ROIs based data. The results using ROIs are shown in Table 5.1. 18
test folds were used for Schizophrenia experiments, all other experiments were done with 10
test folds. Refer to Section A for results on different number of test-folds.



Table 5.1: Classification performance comparison of

DICE with other DL methods on region-based (ROIs)

data of HCP and FBIRN datasets (Ref to section 2.1.1.2).

Our DICE model outperforms all other methods in al-

most every metric. The best two scores are shown as bold

and italic respectively. Note: As DICE uses all the re-

gions in the atlas the mean accuracy for SVM-RBF Weis

et al. (2019) is reported in this table. The results for

GCN Arslan et al. (2018) on HCP data are reported by

GIN Kim & Ye (2020). GIN Kim & Ye (2020) and ST-

GCN Gadgil et al. (2021) use test data as validation data

for choosing the best performing model. It is worth not-

ing that a newer version of GIN Kim & Ye (2020), named

STAGIN Kim et al. (2021) reports AUC and ACC score

of 92.96 and 88.20 respectively using 1093 subjects, and

5-fold testing. STAGIN Kim et al. (2021) reports much

lower ACC for GIN and ST-GCN (81.34 and 76.95 re-

spectively) when not using test data as validation data

and keeping other parameters (data, preprocessing, par-

cellation etc.) same. NA: Not Available.



HCP - Gender Classification FBIRN
DICE GIN SVM-RBF GCN ST-GCN PLS DICE BrainGNN

AUC 0.935 NA NA NA NA 0.881 0.825 0.788
ACC (%) 85.8 84.6 68.7 83.98 83.7 79.9 NA NA
Precision (%) 85.7 86.19 NA 84.59 NA NA NA NA
Recall (%) 90.2 86.81 NA 87.78 NA NA NA NA

Parcellation
Shaefer
200

Shaefer
400

Shaefer 400
+ Fan 39

Shaefer
400

Multi-modal
22

Dosenbach
160

Shaefer
200

AAL
116

Test Folds 10 10 10 10 5 10 18 18
Subjects 942 942 434 942 1091 820 311 311
Study Our Kim & Ye (2020) Weis et al. (2019) Arslan et al. (2018) Gadgil et al. (2021) Zhang et al. (2018a) Our Mahmood et al. (2021b)

Table 5.2: Comparison of AUC score on ABIDE region-

based (ROIs) dataset. Existing methods use Harvard

Oxford (HO) parcellation with 111 brain regions, there-

fore DICE was tested DICE using two atlases. Unlike

Parisot et al. (2018); Cao et al. (2021) DICE uses only

fMRI data. We can see that DICE model doesn’t depend

on the region atlas and gives similar performance using

different atlases for region parcellation of the brain. 10

test folds were used for DICE experiments.

Method Parcellation Input n regions AUC

DICE Shaefer fMRI data 200 0.70
DICE HO fMRI data 111 0.69
GCN Parisot et al. (2018) HO fMRI + phenotypic data 111 0.75
DeepGCN Cao et al. (2021) HO fMRI + phenotypic data 111 0.75
Metric Learning Ktena et al. (2018) HO fMRI data 111 0.58

DICE beats every state-of-the-art method used for comparison in this work in almost

every metric for both ICA and region-based (ROIs) fMRI data across all datasets when using

similar input data (fMRI). As DICE does not use phenotypic information about subjects, it

lacks behind (Parisot et al. 2018; Cao et al. 2021) on ABIDE. Parisot et al. (Parisot et al.



2018) reports a decrease of ∼ 2.5 AUC by using a different phenotypic information which

clearly shows the dependence on phenotypic data. Whereas, Ktena et al. (Ktena et al. 2018)

reports much lower AUC score by using only fMRI data. ML methods fail completely even on

ICA data, this study attributes this failure to two reasons. 1) The number of dimensions (m)

being much higher than the number of subjects (n), thus creating the curse of dimensionality

(m >> n) and 2) The ML methods do not compute a graph structure for estimating the

connectivity between the networks/components and instead mostly work with independent

networks/components. Presumably, no other model gives such high classification score across

four neuroimaging datasets. The high classification score of the model computed using only

the learned DC structure increases the confidence in the correctness of the learned DC

structures.

5.2.2 Directed Connectivity

The learned interpretable, task-dependent (flexible) directed connectivity structures by DICE

is the most important contribution of this work. As this is a novel work, this chapter shows

in detail, different aspects of the learned connectivity structures. This section a) compares

the learned DNC with FNC computed via PCC, b) compares the differences in DC and

DNC between multiple classification groups, c) shows how direction matters in connectivity,

something which is not captured by FC and FNC, d) dives into the fact mentioned in intro-

duction that unlike computed FNC (using PCC) the learned DNC of DICE is task dependent

and changes based on the downstream task (ground-truth signal) and e) shows the dynamic

connectivity states for FBIRN data for HC and schizophrenia (SZ) subjects. All the aspects



(a-e) discussed in detail in following sections show the correctness and interpretability of the

learned DC and DNC. The interpretability of the connectivity matrices estimated by DICE

give insight into how brain networks are linked with each other and with the downstream

classification task. This is very crucial to understand brain disorders and relevant brain

networks. Unlike typical FC and FNC which ranges from -1 to 1, DICE’s learned matrices

are based on attention and hence ranges from 0 to 1. More information on this in appendix

B.

5.2.2.1 DNC vs FNC

As the true connectivity between brain networks is not known, the learned DNC is compared

with FNC. Figure 5.4 shows the DNC learned by DICE and the FNC computed using PCC

using ICA components for FBIRN dataset. The DNC is Wf explained in section 5.1.2.3.

Both DNC and FNC is the mean matrix for highest performing fold of FBIRN dataset

with 16 subjects. The 100 ICA components are divided into informative (53) and noise (47).

This section shows the connectvity between 53 non-noise components. These components are

further divided into 7 domains/networks following (Allen et al. 2011a). Both matrices clearly

show high intra-domain connectivity. The learned DNC shows similar pattern of FNC which

increases the confidence in the DNC learned by DICE but there are very important differences

between the two. Inter-network connectivity: We can see that the estimated DNC finds

much more inter-network connectivities than the FNC which is mostly intra-network and

has very low scores between networks. Directionality: Regarding the direct influence,

DNC estimated by DICE is directed and shows components in visual affecting components



through out the domains, such information is not present in the FNC which is un-directed

(symmetric across main diagonal) and does not show the direction of connectivity. Refer to

section 5.2.2.2 for more detail on this.

(a) DICE DNC (b) PCC FNC

Figure 5.4 Here comparison is done between the estimated DNC with computed FNC using
PCC method. 5.4a is the connectivity matrix generated by DICE for FBIRN dataset. A
test fold of 16 subjects was used and computed mean DNC for all subjects (10 trials per
subject). 5.4b is the mean connectivity matrix of the same subjects generated by PCC.
Both figures show similar intra-network connectivity patterns, which verifies the correctness
of the connectivity matrix learned by DICE. DICE’s estimated DC is directed and captures
more inter-network connectivity than FNC. To match the positive weights of DICE, the FNC
matrices are normalized from 0 to 1 instead of -1 to 1.

To compare the connectivity matrices in terms of classification results, this study uses

an LR model by giving PCC-based FNC and the learned DNC as input. Refer to Table 5.3

for comparison.



Table 5.3: D/FNCs matrices are compared on the basis

of AUC score on FBIRN dataset. A logistic regression

(LR) model is trained using FNCs computed by PCC,

and using DNCs estimated by DICE. Performance using

estimated DNCs is in reaching distance of ML methods

using hand-crafted features (FCs). A show some experi-

ment details that lead to an even improved classification

results.

Method Input Mean Max Min Std Dev

LR PCC FNC 0.883 1 0.72 0.085
LR Our DNC 0.86 1 0.62 0.096



5.2.2.2 Directed Connectome

Capturing directed connectivity is one of the methods to understand the direction and flow of

information in the brain. Learning the direction of connectivity is one of the main advantages

of DICE as it might explain the direct influence of brain networks upon each other. To show

the direction between components, the estimated DNC of FBIRN subjects is divided into two

connectomes showing the direction. Figure 5.5 left shows the edges from a to b where a > b.

For example the edge between (8, 23) shows the edge from 23 to 8, whereas, Figure 5.5 right

shows the opposite. It is clear from the figure that direction matters and the connectivity

between brain regions is beyond simple statistical dependence. For example, Figure 5.5

shows that the components in visual network (VIN) affect components in other networks

and the edges in the opposite direction are relatively much fewer. We also see direction of

connectivity from cognitive control (CC) to sensorimotor (SM). Existing studies (Breukelaar

et al. 2017; Cole & Schneider 2007; Tsai et al. 2019) show that cognitive control is responsible

for activities like attention, remembering and execution, things which are required when

doing a motor task controlled by sensorimotor. Such directionality is important to study

brain’s working in more detail and is not present in FNC used by existing methods. The

results are further discussed in section 5.3.1
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Figure 5.5 The figure shows the top 10% directed edges of FBIRN DNC. The numbers
represent the 53 non-artifact components. The figure clearly shows the high intra-domain
connectivity which matches the existing literature. Direction clearly matters as visual com-
ponents affect other components but not the opposite way. The direction of edges between
CC and SM networks is also of significance. Edges: VI → other: 79, other → VI: 25. CC
→ SM: 9, SM → CC: 3.

5.2.2.3 Connectivity Differences Among Groups

As hypothesized that brain disorders are linked with the connectivity of brain’s intrinsic

networks, this section shows how the learned DC and DNC changes for subjects belonging

to different groups. Figure 5.6a shows the DNC estimated by DICE of HC and SZ subjects for

FBIRN data whereas Figure 5.6b shows DNC of male and female groups for OASIS dataset.

Both results are computed using ICA pre-processed data. For ICA based DNC, there are

similarity between the two matrices as they come from the same joint ICA. However, there

are visible difference between the two for multiple networks like visual (VI), cognitive control



(CC), default-mode (DM) and cerebellum (CB). The biggest difference between HC and SZ

groups seems to be in the connectivity strength for VIN. For OASIS results 5.6b we can

see that females show high connectivity scores in default-mode network (DMN) compare to

males and low sensori-motor network (SMN) connectivity compare to males, this has been

verified by existing studies (Kim et al. 2021; Filippi et al. 2013; Mak et al. 2016; Ritchie

et al. 2018). To verify this by numbers, this study uses statistical testing to compare the

two groups (male, female) and compare average connectivity for male and female in DMN

and SMN. Table 5.4 shows the statistical results.



(a) FBIRN DNC

(b) OASIS DNC

Figure 5.6 DNC matrices across the binary classification groups using ICA data are compared
in this figure. Figure 5.6a is the estimated DNC on FBIRN data for HC and SZ patients. We
can see high inter and intra-connectivity in SM and VI networks for HC, which is missing
in SZ patients. Figure 5.6b compares DNC between male and female groups using OASIS
data. Female group shows hyper-connectivity in DMN and hypo-connectivity in SMN when
comparing to male groups.



Table 5.4: Shows stats between male and female DNCs

(5.6b) estimated using ICA time-courses of OASIS . We

can see that the estimated DNCs for male and female

subjects are highly significantly different. For females

DMN is hyper-connected than SMN whereas for male

SMN has higher average connectivity score than DMN.

This shows that the model accurately captures the group

differences among male and female subjects and uses the

connectivity difference in DMN and SMN to classify male

and female subjects. F - Female, M - Male, All - All net-

works/complete matrix. Results of classification perfor-

mance is shown in Table 5.8. Table 5.5 shows the p-value

significance ranges.

Network 1 Network 2 Test Type P-value Avg. Connectivity 1 Avg. Connectivity 2
t-test 1e-250

F All M All manwhitneyu 1e-256 0.353 0.311

t-test 0.15
F DM F SM manwhitneyu 0.12 0.536 0.510

t-test 5e-5
M DM M SM manwhitneyu 4e-5 0.417 0.575

t-test 6e-4
F DM M DM manwhitneyu 4e-4 0.536 0.417

t-test 3e-4
F SM M SM manwhitneyu 5e-5 0.510 0.575



Table 5.5: Ranges of p-value and the corresponding sig-

nificance level. ns (no significance).

P-value p > 0.10 0.05 < p < 0.10 0.01 < p < 0.05 0.005 < p < 0.01 0.0001 < p < 0.005 p < 0.0001
Significance ns * ** *** **** *****

Figure 5.7 performs the same experiment for region-based (ROIs) data. Here the regions

for both sides of the brain (left and right) are divided into 7 domains following shaefer

(Schaefer et al. 2017). Again, in Figure 5.7a for HC we can see high connectivity score

between regions of the same network. We also see connectivity between regions of same

network across left and right side of the brain. The diagonals on top and bottom of the

main diagonal shows this. Whereas the DC of SZ subjects is weakly connected compared

to HC and is mostly shows intra-network connectivity. The sparsity explains and support

the existing literature explaining SZ as functional dysconnectivity between brain networks

(Culbreth et al. 2021; Yu et al. 2011; Zhang et al. 2019; Zhu et al. 2020; Morgan et al. 2020b;

Lynall et al. 2010; van den Heuvel et al. 2010).

Figure 5.7b compares male and female groups based on region-based (ROIs) HCP data.

We can see similar patterns of hyper-connectivity of DMN and hypo-connectivity of SMN

in females as compared to males. As the region-based (ROIs) parcellation divides the brain

into left and right, we also see that females have high intra-network connectivity between

left and right side of the brain as compared to males.



(a) FBIRN DC

(b) HCP DC

Figure 5.7 The figure compares the estimated DCs of HC with SZ and male with female using
region-based (ROIs) FBIRN and HCP data. 5.7a show high weakly connected brain networks
for SZ subjects whereas 5.7b show hyper-connectivity of DMN and hypo-connectivity for
SMN for females as compared to females. The black and grey color denotes the regions in
left and right side of the brain. Refer to Table 5.6 for a statistical comparison between female
and male DCs.



To verify the visual results, statistical testing is used to compare the DMN and SMN

between males and females. The stats confirm the visual results with 1) female DMN showing

higher connectivity than female SMN and male DMN, and 2) male SMN showing higher

connectivity than male DMN and female SMN. We also see that the networks are highly

statistically different. Refer to Table 5.6.

Table 5.6: Shows stats between male and female DCs

(5.7b) estimated using region-based (ROIs) HCP dataset.

We clearly see that females have hyper-connectivity in

DMN and hypo-connectivity in SMN as compare to

males. Female group has higher connectivity scores in

DMN compared to SMN and male DMN whereas male

group has higher connectivity in SMN compared to DMN

and female SMN. This shows that our learned model

accurately captures the differences in DMN and SMN

connectivity among males and females and uses that for

classification. F - Female, M - Male, L - Left, R - Right.

Table 5.5 shows the p-value significance ranges.



Network 1 Network 2 Test Type P-value Avg. Connectivity 1 Avg. Connectivity 2

F All M All
t-test 1e-14

0.455 0.533manwhitneyu 1e-25

F L DM temp F L SM
t-test 2e-3

0.689 0.632manwhitneyu 4e-3

F R DM temp F R SM
t-test 7e-4

0.671 0.593manwhitneyu 4e-4

M L DM temp M L SM
t-test 2e-7

0.567 0.622manwhitneyu 1e-3

M R DM temp M R SM
t-test 9e-4

0.558 0.611manwhitneyu 2e-4

F L DM temp M L DM temp
t-test 4e-5

0.689 0.567manwhitneyu 6e-5

F R DM temp M R DM temp
t-test 8e-5

0.671 0.558manwhitneyu 3e-5

F L DM pCunPCC F L SM
t-test 2e-4

0.718 0.632manwhitneyu 1e-3

F R DM pCunPCC F R SM
t-test 1e-5

0.758 0.593manwhitneyu 5e-5

M L DM pCunPCC M L SM
t-test 2e-7

0.548 0.622manwhitneyu 3e-4

M R DM pCunPCC M R SM
t-test 1e-2

0.547 0.611manwhitneyu 1e-2

F L DM pCunPCC M L DM pCunPCC
t-test 2e-4

0.718 0.548manwhitneyu 3e-4

F R DM pCunPCC M R DM pCunPCC
t-test 3e-4

0.758 0.547manwhitneyu 7e-4

F L SM M L SM
t-test 1e-1

0.632 0.622manwhitneyu 4e-1

F R SM M R SM
t-test 1e-2

0.593 0.611manwhitneyu 2e-3

5.2.2.4 Task dependent DNC

Human brain can be divided into multiple parts/regions where each region is linked with a

set of tasks. For example, the hippocampus is associated with memory. Thus it is impor-

tant to know which region/network(s) are linked with the downstream task (e.g. disorder

classification). Finding the linked regions/networks would help understand the disorder and

allow to study the association of these regions/network(s) with the disorder in more detail.

This section shows how the DNC structure learned by DICE changes and identifies differ-

ent networks for the same subjects based on the downstream task. For this purpose, this



study performs an experiment, where the estimated DNC for OASIS data is compared when

predicting dementia, age and gender of the same subjects. The number of subjects were

balanced with both HC and patients equalling 50% of the total subjects but had ∼ 62%

female subjects. Figure 5.8 shows that DICE produces task dependent DNC and the net-

works/domains showing high connectivity for each task adheres to the existing literature.

The Figure 5.8a shows the DNC learned when classifying subjects for dementia. We can

see high connectivity for components in the SM, DM, and CB networks. These networks

are linked with dementia in existing literature, which support the results of the proposed

method. Whereas when classifying gender of same subjects, the estimated DNC is differ-

ent and show high connectivity for components in DM and reduced connectivity for SMN.

Figure 5.8d shows the FNC computed via PCC for the same subjects. As FNC computed

using PCC is only data dependent, the FNC would remain same for all the tasks and shows

the inflexibility of the method. Figure 5.8 therefore shows a) DICE learns task dependent

DNC and b) DICE accurately finds networks linked with the downstream classification task.

This as a significant advantage over studies which compute a fixed/static FNC using PCC

and hence is independent of the downstream task. We can see that Figure 5.8b which is the

learned connectivity structure when predicting age does not show high connectivity between

networks and the connectivity values for SMN and DMN are almost same. This could be a

reason of small age variance in the dataset. Statistical scores are used to verify the visual

results. Table 5.7 shows the statistical difference between the three DCs as a whole and

between DMN and SMN. The estimated DCs are also compared with FC 5.8d.
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(d) PCC FNC

Figure 5.8 The figure shows how DICE estimates flexible DNC structures based on the
ground-truth signal. DICE was trained for different classification tasks and use same test
subjects to compare the estimated DNC for the subjects. All figures are mean DNC esti-
mated for the same subjects with 5 randomly-seeded trials. 5.8a is the mean connectivity
matrix estimated by DICE when trained to classify dementia. We can see high connectivity
values for SC, SM, and CB networks. 5.8c is the mean DNC for the same subjects when
the model is trained for gender prediction. We notice lower SM network connectivity and
higher connectivity for DM network when predicting gender of OASIS subjects. 5.8d is the
FNC computed using PCC. The FNC is independent of the task and would remain fixed
(inflexible).

Table 5.7: Statistical difference of the learned connectiv-

ity matrices for OASIS ICA when predicting dementia,

age and gender. The results show that the learned con-

nectivity matrices are highly statistically different and

SMN gets higher connectivity scores than DMN for de-

mentia prediction whereas the opposite is seen for gender

prediction.



Network 1 Network 2 Test Type P-value Avg. Connectivity 1 Avg. Connectivity 2

Dementia All Age All
t-test 5e-22

0.323 0.168manwhitneyu 1e-38

Dementia All Gender All
t-test 2e-3

0.323 0.311manwhitneyu 8e-4

Age Gender
t-test 2e-301

0.168 0.311manwhitneyu 1e-301

Dementia DM Dementia SM
t-test 1e-7

0.478 0.645manwhitneyu 8e-8

Age DM Age SM
t-test 6e-1

0.294 0.308manwhitneyu 6e-2

Gender DM Gender SM
t-test 4e-1

0.527 0.555manwhitneyu 1e-1

FNC DM FNC SM
t-test 3e-2

0.487 0.580manwhitneyu 7e-3

Dementia DM Age DM
t-test 9e-6

0.478 0.294manwhitneyu 5e-7

Dementia DM Gender DM
t-test 2e-1

0.478 0.527manwhitneyu 1e-1

Age DM Gender DM
t-test 3e-7

0.294 0.527manwhitneyu 5e-8

Dementia SM Age SM
t-test 8e-34

0.645 0.308manwhitneyu 3e-23

Dementia SM Gender SM
t-test 4e-4

0.645 0.555manwhitneyu 1e-4

Age SM Gender SM
t-test 1e-18

0.308 0.555manwhitneyu 4e-17

We can see that all three DNCs are extremely statistically different. It is also proven that

DMN is given higher connectivity scores for gender prediction whereas, SMN connectivity

is much higher when predicting dementia comparing to gender and age prediction tasks. To

clear how the connectivity values change for DMN and SMN this study point outs the average

connectivity scores of the networks for dementia and gender classification and compare it

with the values of DMN and SMN computed via PCC. The connectivity values in FC for

SMN and DMN are 0.580 and 0.487 respectively (and would remain same irrespective of



the classification task). Whereas, when classifying dementia DICE show much higher SMN

average value of 0.64 and a little decreased value of 0.478 for DMN showing a focus on SMN

despite having more female subjects in the test set. When predicting gender for the same

subjects the DNC estimated by DICE has a decreased SMN value of 0.555 and increased

value of 0.527 for DMN hence focusing less on SMN and more on DMN when compared to

the dementia classifying task thus verifying that the estimated DCs are task-dependent and

not only data dependent. The meaning and significance of this result are further discussed

in section 5.3.3.

To see the matrices as graph of nodes (regions) and edges (connectivity), Figure 5.8a

and 5.8c are plotted on the brain and show the results in Figure 5.9. The figure shows high

number of nodes and edges among components of VIN and SMN and among the two networks

for dementia classification 5.9a, and high number of nodes and edges among components in

DMN for gender classification 5.9b.



(a) Dementia prediction

(b) Gender prediction

Figure 5.9 The nodes and top 10% edges of the DCs are mapped on the brain, estimated for
dementia and gender classification tasks, performed on OASIS dataset (same subjects). The
size of the nodes is the sum of the outgoing and incoming edge weights. The arrows shows
the direction of connectivity. We can see a high number and size of nodes and edges for SMN
and VIN for dementia 5.9a, whereas for gender 5.9b we can see high node and edge size for
DMN. Compare the red (DM) nodes and edges in Figure 5.9a with Figure 5.9b in the left
side figures. Figure 5.9a also shows high connectivity between SM and VI networks which
is missing in Figure 5.9b (right side figures). This reveals the networks and edges (graphs
and subgraphs) relevant to the classification signal (e.g disorder) without need of comparison
with other data. The results and their impact are further discussed in section 5.3.3.



Table 5.8: Dementia, gender classification and age pre-

diction results on OASIS dataset. The table shows the

DICE’s results with ML methods using FC computed via

PCC. Even with hand-crafted features ML methods per-

form similarly as our model. It is possible that the same

input because of FC being only data dependent is one of

the reasons of ML methods performing lower than DICE

for Dementia and age prediction.

Dataset Model Task N Folds Input Metric Score
OASIS DICE Dementia classification 10 ICA AUC 0.752
OASIS Logistic Regression Dementia classification 10 FNC AUC 0.745
OASIS DICE Gender classification 10 ICA AUC 0.906
OASIS Logistic Regression Gender classification 10 FNC AUC 0.948
OASIS DICE Age prediction 10 ICA MAE 6.14
OASIS Linear Regression Age prediction 10 FNC MAE 7.17
OASIS Lasso Age prediction 10 FNC MAE 6.89



5.2.2.5 Dynamic Connectivity States

Studies like (Sakoğlu et al. 2010; Allen et al. 2012; Hutchison et al. 2013; Calhoun et al.

2014) show that human’s brain FC is dynamic and can be used to find patterns which are

not visible in static FC studies. These studies show that dynamic FC show re-occuring

patterns. To study these patterns, dynamic connectivity of the human brain is divided into

distinct k states (Rashid et al. 2014; Damaraju et al. 2014; Fu et al. 2021a). There are

multiple methods proposed to find the k states with k-means being one of the most used

methods. These studies show that the transition and time spent in each state is different

for patients (SZ, dementia, autism) and HC. To validate the acquired results and to find

such patterns k-means is used to find k (5) such states using the DCs estimated by DICE

for FBIRN dataset. The time spent by both groups (SZ and HC) per state is calculated and

compared.

Figure 5.10 shows that SZ subjects spend more time in weakly connected states (1,3) than

HC which stay in states which show high connectivity score for visual (VI) and sensorimotor

(SM). We also see that HC tend to change state more often than SZ which spend ∼ 66%

time in one state (number 3). Existing studies (Yaesoubi et al. 2018; Miller & Calhoun

2020b,a) show that window-less approach can find dynamic patterns that are not captured

by the vastly used window-based approach. As DICE is an instantaneous model, this study

investigates if DICE can capture more dynamic states than the window-based dynamic-FNC

studies. For this purpose, using elbow method (Marutho et al. 2018), it is found that the best

k for the estimated DCs is not 5, and set k = 10 and show the resultant states in Figure 5.11.



Figure 5.10 Five states computed using k-means on the DCs estimated by DICE for FBIRN
dataset. First row shows the k means of the estimated DCs, second row shows the percentage
time spent by both groups in each state, with the total time points being 155. Time spent
in each state by SZ and HC differ significantly and matches the existing literature. The
figure shows that a) time spent in each state is different by HC and SZ, b) SZ spend much
more time in state 3 (weakly connected) than HC, c) HC spend more time than SZ in states
(2,4, 5) which show high connectivity for VI, and SM networks, and d) Standard deviation
of time for SZ is much higher (320.47) than HC (206.26) which shows that SZ stay in one
state much more than HC which tend to change state more often. The stars denote the
significance of difference in time spent in each state by the two groups. Table 5.5 shows the
p-value significance ranges.

We can see that the model captures additional states that were not visible with k = 5. The

additional states found show the pattern of directionality, specially in the states where HC

spend more time than SZ. For example, in Figure 5.10, state 2 show dense connectivity for

components in VIN and the direction is from VI to other states, and state 5 show similar

direction but with sparse connectivity. Figure 5.11 captures the additional state (9) which

shows the opposite direction, that is, VIN has mostly incoming edges. Presumably, this state

represents the brain activity when different networks (e.g. SMN) are giving input to VIN to



control the vision. This result is discussed in section 5.3.4.

Figure 5.11 10 states captured by k-means on the temporal DCs estimated by DICE on
FBIRN complete dataset are shown here. The rows shows the means and the percentage
of time spent by HC and SZ subjects in each state. DICE can capture more states than
the standard (4-5) states captured by window-based approaches. The additional states not
present in Figure 5.10 show the change of direction in connectivity. State 9 shows the
opposite direction of connectivity between VIN and other networks, where VIN has mostly
incoming edges. The ratio of time spent by HC and SZ subject in different states is similar
to the results of Figure 5.10.

5.2.3 Temporal Attention

The proposed temporal attention module finds the important time-points that are relevant

for the downstream task (e.g. gender prediction). As not all time-points are equally im-

portant for the downstream task, and fMRI data has low temporal resolution, the temporal

attention is an effective way of finding important bio-markers for neuroimaging dataset.

Finding the relevant time-points can help reduce the data and allow to focus on activities at

specific points. Figure 5.12 shows the weights assigned to the subjects of FBIRN.

Weights for 16 subjects (8 per class) with 10 randomly-seeded trials are shown. The

results show that the temporal attention module is very stable and assign similar weights to

the time-points for every trial.

To further check the correctness of the time-points selected by DICE and how these time-

points are useful in terms of classification performance, this study performs an experiment
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Figure 5.12 Temporal Attention weights for one of the test folds (16 subjects) of FBIRN.
Attention weights are computed using GTA module. X and y axis represent time-points and
subject number respectively. The figure shows that for each subject, the attention weights
remain stable across multiple randomly-seeded trials (10). The values of the 10 trials are
used to create the confidence interval for each subject. The consistency is greatly increased
with an increase in number of training subjects. Note: For each subject the subject number
was added to the attention weights to separate the weights, as for each subject the weights
have a range of 0− 1. Dark and light colors represent SZ and HC subjects respectively.

where after training the model, Wt of the top 5% values was used to train an LR model and

then use the top 5% time-points of the test data to test the model. Similar experiments for

bottom 5% values were performed as well. Table 5.9 shows the comparison for the three brain

disorder dataset. The results show that the LR model provides high AUC score by just using

5% of the important time-points. Thus, it proves that a) not all time-points are important

for classification of the downstream task and b) DICE accurately finds the important time-



points. This study uses an LR model for this experiment to show that the learned top

and bottom 5% values are not limited to the proposed DICE model but is generalized such

that an independent LR module gives high classification performance using the top 5% data

identified by DICE and does not learn on the low 5% data. Finally, the experiments also

show that not using the temporal attention reduces the model classification performance by

upto 10% A.2.

Table 5.9: AUC score comparison on brain datasets with

ICA components by using all, top 5% and bottom 5%

time-points only. A logistic regression (LR) model was

trained using the time-points identified by DICE and

compare the results when using top and bottom 5% time-

points. We can see that using only top 5% time-points are

enough to almost reach the AUC using all time-points.

Method FBIRN OASIS ABIDE

100% DICE 0.86 0.752 0.722
Top 5% LR 0.85 0.743 0.706

Bottom 5% LR 0.566 0.548 0.532

5.3 Discussion

The experiment of this study revealed a number of interesting properties of DICE and

uncovered some interpretable directed connectivity graphs that are of high utility for the

neuroimaging field. As supported by results, models with glass-box layer like DICE have



a high potential for studying resting-state dynamics of the brain. In the following sections

most pertinent results are discussed.

5.3.1 Inter-network and Directed Connectivity

Results in Sections 5.2.2.1 and 5.2.2.2 show that DICE infers DNC that agrees with the

essential findings of the FC studies (Yan et al. 2017; Parisot et al. 2018; Kawahara et al.

2016; Ktena et al. 2017; Arslan et al. 2018; Kazi et al. 2021; Kim & Ye 2020; Ktena et al. 2018;

Ma et al. 2019) and provides two additional aspects: inter-network connectivity and direction

of connectivity. The inter-network connectivity is of great significance as the brain is not

made up of isolated networks and many tasks require information passing and neurons firing

through multiple networks. Thus making it crucial to find how these networks are connected

to each other if connected at all for patients and controls. Capturing the dysconnectivity

between networks for patients can lead to knowledge discovery about the functionality of

the human brain and the effects of brain disorders on it. Furthermore, finding directionality

between networks is also of great significance. This study showed in experiments that DICE

captures the direction of connectivity between networks. The direction of connectivity from

VI to other networks, and from CC to SM networks is justifiable. Existing studies (Breukelaar

et al. 2017; Cole & Schneider 2007; Tsai et al. 2019) show that cognitive control is responsible

for functions like attention, remembering, and execution. These functions are often required

when doing a motor task controlled by sensorimotor, which hints at the direct effect of the

CC network on the SM network, captured by DICE. Regarding VI and other networks, it

is known that VI is mostly a means of input (visuals) to our brain, which is then processed



by different parts of the brain. Thus, most of the flow of information is from VI to other

networks and few in the opposite direction, which is required to control VI for accomplishing

different motor tasks controlled by SM. Therefore, the experiments also show that most

incoming connections to VI are through the SM network, thus accurately capturing the

flow of information between networks. This flow of information is not captured in simple

correlations. These two aspects can be crucial in understanding brain working and are

currently missed in connectivity estimation methods such as FNC.

Directed connectivity directed influence of an intrinsic brain network on other networks.

Estimating the direction of connectivity may simplify targeted interventions that are instru-

mental in establishing causal relations. Capturing causality between networks further helps

to understand complex systems and answer counter-factual questions (Schölkopf et al. 2021),

and is left to future work. The proposed model finds non-negative relations between com-

ponents/nodes, which are considered as dependencies or relevance rather than correlations.

However, the negative correlations in FC and FNC are also helpful and provide descrip-

tive information. It might be an easy fix to incorporate negative relations in connectivity

matrices estimated by DICE. This is discussed in section B.

5.3.2 Interpretability

Section 5.2.2.3 shows how the DC and DNC estimated by DICE are interpretable in how

accurately they capture the difference in connectivity between 1) schizophrenia patients and

controls and, 2) male and female groups. In classifying schizophrenia patients from controls,

DICE learned the most significant differences were in the VI, SM, and DM networks. Controls



show robust connectivity of VI and SM with each other and with other networks, which is

missing for SZ patients. The finding of dysconnectivity and/or lower connectivity scores

for VI and SM networks for SZ patients is not surprising as there exists ample evidence in

prior studies of schizophrenia leading to multiple abnormalities related to visual and motor

functions such as perception of contrast and motion, detection of visual contours, and control

of eye movements to name a few (Silverstein & Rosen 2015; Butler et al. 2008; Chen et al.

1999; Kéri et al. 2002). These abnormalities certainly affect motor skills which presumably is

a reason for the low connectivity for SM and VI networks captured by DICE for SZ patients.

DICE also captures hyper-connectivity in DMN for SZ patients which is reported by existing

studies (Guo et al. 2017).

Whereas in classifying gender in the same dataset, DICE emphasized hyper-connectivity

in the DM network and hypo-connectivity for the SM network for females compared to

males. The differences captured in the DC and DNC for both tasks are supported by existing

studies (Culbreth et al. 2021; Yu et al. 2011; Zhang et al. 2019; Zhu et al. 2020; Morgan et al.

2020b; Lynall et al. 2010; van den Heuvel et al. 2010; Kim et al. 2021; Filippi et al. 2013;

Mak et al. 2016; Ritchie et al. 2018) that show the role of the DMN in gender classification

and VI dysconnectivity for schizophrenic patients. Similarly to existing studies (Zhang et al.

2018b; Ingalhalikar et al. 2014), DICE shows that female subjects have higher connectivity

between the contralateral homologue brain networks relative to males.

DL models are commonly viewed as black-box models because of the difficulty of interpre-

tation and not easily explained performance on the tasks they are trained on. These models



can show excellent performance on tasks such as classification based on the reasons that are

not substantially revealing about the input data nor their dynamics. One reason is shortcut

learning (Geirhos et al. 2020): a DL model can classify images with or without airplanes

with high accuracy by paying attention exclusively to the background (blue sky). Although

predictive, such models cannot help in knowledge discovery. To control for shortcut learning

it is important to be able to see why predictions are made. One approach is making DL

model interpretable. For that a posthoc method is often used, e.g., saliency maps (Simonyan

et al. 2014; Ras et al. 2021; Angelov et al. 2021; Lewis et al. 2021). Such methods explain

the input data by finding which part(s) of the input the model is most sensitive to. Saliency

maps have shown some good results in computer vision tasks in 2d images. The use of

saliency maps in neuroimaging and temporal data has different challenges (Liu et al. 2021)

as the output maps are noisy, difficult to interpret and does not provide good boundaries

nor the connection between different salient regions. Selection of the method for obtaining

saliency maps is also something to consider as some of the methods are architecture based.

Hence, using saliency maps to get task-specific brain’s connectivity graph is not feasible

using current methods. To overcome the black-box nature of DL models and avoid using a

posthoc method, this study focused on the interpretability of the model’s results. For this

purpose, as brain disorders are commonly associated with disruptions in the connectivity

pattern of brain networks, this study used only the learned connectivity matrices by DICE

for the downstream classification or prediction tasks, thus making the model extract the

abnormality in connectivity relevant to the ground-truth signal. One way to conceptualize



about the proposed approach is to think of the generated DC and DNC as a “glass-box layer”

(clear and interpretable) layer as noted in Figure 5.1. This approach combines flexibility (the

layer is trainable) with interpretability and enables the model to capture differences in the

connectivity of the groups in classification task. Regression is also possible with the proposed

approach, although it is left for the future work. The proposed “glass-box layer” approach

enables learning the essential networks and their connection to other networks relevant to

the training signal and directly output that without using a posthoc method. As the DC

and DNCs estimated by DICE are based on learnable functions, the output matrices can

have slightly different values when the model is retrained, which is an attribute of DL mod-

els. Therefore, all the connectivity matrices shown in the chapter are averaged over several

randomly-seeded trials.

5.3.3 Task-dependent Flexible DNC

This work fully utilizes the flexibility of the proposed DL model to learn task-dependent

(ground-truth signal) directed connectivity structures. It is shown in Section 5.2.2.4 that

DICE estimates DNC structures for the same subjects that are distinct to the ground-truth

task of dementia, age, or gender. Hence DICE can show the networks and their connectivity

crucial for specific downstream tasks. The networks identified by the model through the

learned DNC for dementia classification (SM, CB, VI) match the results of prior studies (In-

galhalikar et al. 2014; Albers et al. 2015a; Filippi et al. 2017; Grant et al. 2014; Jacobs et al.

2017). Whereas, for gender prediction, the most prominent network identified by the net-

work was DM, which again matches existing literature (Kim et al. 2021; Filippi et al. 2013;



Mak et al. 2016; Ritchie et al. 2018). This is a strong validation of the ability of DICE to find

disorder-dependent networks and connectivity patterns. This study showed in Figure 5.8a

that DICE focused more on SMN than DMN despite having almost two-thirds of female

subjects in the test set. This result is significant because the model learned that the SMN

connectivity, is more important than DMN for the downstream task of dementia classifica-

tion and hence enhances the signals for SMN. This eliminates the need to acquire strictly

matched subjects with only the difference(s) for which you want to find the relevant networks

and connectivity. For example, when trying to find the networks related to schizophrenia

using PCC, one needs to find two groups (schizophrenia patients and controls) that do not

have any other differences. Extraneous differences would create ambiguity regarding whether

the networks identified are related to the disorder (schizophrenia) or some other difference,

e.g., gender. Instead of explicitly confronting the confounding factors by regressing them out

or taking equivalent measures, DICE performs the “de-confounding” implicitly based on the

training labels.

Another notable property of DICE is that it finds the relevant networks and the con-

nectivity structures (sub-graphs) without receiving them during training, making DICE a

self-supervised graph learning model.

5.3.4 Dynamic DNC and Temporal-attention

As hypothesized, and shown in previous studies (Sakoğlu et al. 2010; Allen et al. 2012;

Hutchison et al. 2013; Calhoun et al. 2014) results in Section 5.2.2.5 show that connectivity

between brain’s intrinsic network is dynamic, and dynamic connectivity can capture patterns



which are missed by static models. Notably, controls and SZ patients spend different amounts

of time in each state 5.10. Controls spend more time than SZ patients in strongly connected

states, especially for visual and sensorimotor networks. On the other hand, SZ patients

spend time in weakly connected states and do not often spend time in other states. Similar

patterns were observed in FNC studies (Rashid et al. 2014; Damaraju et al. 2014; Rabany

et al. 2019; Wang et al. 2014; Yang et al. 2022).

Moreover, using all subjects in the FBIRN (Keator et al. 2016), DICE finds additional

states doubling the state resolution. This temporal resolution increase is explained by instan-

taneity of directed connectivity estimation in DICE in contrast to using a sliding window.

Therefore, estimating connectivity instantaneously makes the model robust and finds pat-

terns that are missed when using a window-based approach. Another explanation and an

additional factor is the increased richness of representation via a directed graph - the con-

nectivity matrices of DICE have twice the number of parameters compared to FC and FNC.

The experiment with k=10 states show similar patterns of strongly and weakly connected

states but they now vary in the direction of the connectivity. This result shows that both

the connectivity strength and direction of connectivity are dynamic (changes over time). As

this state is rare (based on time spent), it would be harder for window-based approaches to

capture it. It would be interesting to see when and how the direction of connectivity changes

and how external factors like performing a task can trigger these changes. This, however, is

a topic of the future work.

Finally, this study showed that not all time-points of the fMRI data are equally important



to the downstream prediction task and discriminative connectivity matrices exhibit temporal

dynamics. Using temporal attention, DICE finds important time-points relevant to the

ground-truth signal used in training. This further helps in interpretability as DICE finds

the time-points where the brain activity shows signals relevant to the task. Potentially,

this would also be important in task data where the subject is asked to perform different

tasks, and the DICE model can be used to find out which task revealed the symptoms of

the underlying disorder. The experiments show that temporal attention assigns stable and

consistent weights to time-points across different randomly-seeded tasks. It was also notice

that a) just 5% of time-points are sufficient for achieving high classification performance and

b) exclusion of temporal attention (assigning the same weight to every time-point) negatively

affects classification performance. Consistent temporal attention values across randomly-

seeded trials further strengthens the evidence of temporally dynamic discriminative DCs and

the value of attention mechanism. As the experiments show, the proposed attention module

is indeed reliable per the definitions and potential issues discussed by Jain et al. (Jain

& Wallace 2019) and Wiereffe et al. (Wiegreffe & Pinter 2019). As a learnable method,

DICE and other “glass-box layer” models need to be able to consistently across training

runs assign temporal attention values and estimate connectivity between nodes, whereas

inflexible methods computing correlations such as PCC do not have this property. In a

way, flexibility of the learnable model comes with an additional requirement of stability of

learned interpretations. Even though DICE model works well by showing high classification

performance and assigning consistent self and temporal attention values on relatively small



datasets, having more subjects for training leads to an even more consistent assignment of

temporal weights.

5.4 Conclusions

The work in this chapter demonstrates importance of learnable interpretable estimators of

dynamic, directed, and task-dependent connectivity graphs from fMRI data. DICE learns to

estimate interpretable dynamic and directed graphs that represent the directed connectivity

among brain networks. The end-to-end training process removes the need for existing exter-

nal methods such as PCC and K-means, which are interpretable but inflexible and strictly

depend on the input data. Implementing DICE with glass-box layer allowed to bypass the

need for a posthoc method for interpreting learned model representations.

Connectivity matrices estimated by DICE show how brain connectivity changes across

disorders, genders, and age. The learned connectivity matrices help understand the human

brain and its disorders as the actual ground-truth connectivity matrix is not available. Fur-

thermore, this study moved from FC and FNC to DC and DNC to learn the direction of

connectivity and simultaneously removed the issue of window sizing of input data by making

the model instantaneous. The learned connectivity matrices provide knowledge that adheres

to existing studies. Utilizing flexibility of DL models in learning data representations, this

study shows that using the same data, distinct connectivity structures can be learned based

on the downstream task and the ground-truth signal. This flexibility allows acquiring more

information from the data by using different training labels, which would require a much



more involved process of data selection and manual filtering out of confounding factors for

methods that are fully determined by the data, like PCC. DICE highlights different net-

works linked with the downstream classification task, e.g., the default mode network for

gender prediction. Unlike other interpretable models that may pay for it with a decrease in

classification performance (Johansson et al. 2011; Dhurandhar et al. 2018; Luo et al. 2019;

Shukla & Tripathi 2012), DICE beats state of the art methods in multiple classification

problems on four neuroimaging datasets.

For classification DICE uses the learned connectivity structures. Together with the

temporal weights these structures are reasonably consistent across varying seeds. Notably,

DICE’s performance drops without the use of temporal attention. The temporal attention

module of the model finds interpretable bio-markers crucial to performing the classification

task and shows that only a small fraction of time-points is enough for attaining maximum

performance. Notably, not all time points are discriminative, as evident from the sparse

distribution of temporal attention weights in Figure 5.12 and high predictive power of just

the top 5% of the attention weights of Table 5.9.

As the ground truth for the dynamic graph structure in resting state fMRI is unavailable,

there is a need for models with “glass-box layer“ like DICE that can estimate this structure

based only on the data and classification labels.

Next, the goal is to use a self-attention based module on the temporal axis as well. This

would allow to replace the ’black-box’ biLSTM with a ’glass-box’ module.



5.5 Spatio-temporal Self-attention

This section presents a glass-box transformer model Glacier that provides interpretability on

spatial and temporal dimensions. Glacier shows that unlike the hybrid models deep learning

can be successfully applied to neuroimaging without incorporating another method. Glacier

uses self-attention (Vaswani et al. 2017) and mixes space and time dimensions to create

directed and dynamic connectivity matrices between brain’s intrinsic networks.

The results show that the DNC matrices estimated by Glacier are downstream task-

dependent and uncovers crucial spatial and temporal biomarkers. Results also show that

using the estimated DNCs Glacier beats state-of-the-art models on brain disorder classifica-

tion (schizophrenia, dementia, and autism), gender classification and age prediction.

5.5.1 Method

Traditionally, deep neural networks are used to create embeddings from the data. These

embeddings created from different modules are used for downstream task but are often

difficult to interpret. To solve this problem, this study presents Glacier as a deep learning

model to estimate the dynamic connectivity graph between the nodes present in the dataset.

Instead of the embeddings, Glacier uses only the learned graph structure for the downstream

task. By not using the embeddings, the model is forced to learn distinct graph structure

for the groups present in the data (e.g., HC and Patients). The idea of the model is to

use self-attention to uncover task-dependent spatio-temporal dependencies while performing

downstream classification. These dependencies are used to interpret the results and highlight



important biomarkers. It can be noticed that interpreting distinct graphs are much easier

than interpretting embeddings that are often in high dimension space. The directed edges

of the learned graph represent the directed connectivity score estimated via self-attention.

Glacier is composed of three main parts based on self-attention and attention. A temporal

attention is performed to create a final static graph based on which classification is performed.

The working of Glacier is explained in this section. Refer to Figure 5.13 for the architectural

details of the model.

Temporal Mixing

Important information is present in the temporal dimension of datasets which are of sequen-

tial form (time-series). For example in speech datasets, the location of the words in a sentence

have great significance and changing the order can result in different meaning. Similarly,

temporal dimension of medical imaging data is also of critical nature, where indicator(s) of

the interested problem are seen at specific time-points and which have a significance effect

on other time-points. To capture these time-sensitive dependencies Glacier uses transformer

encoder (Vaswani et al. 2017). Using the dependencies the encoder mixes the temporal di-

mension and outputs new embeddings which have more influence by the time-points that

are identified as important by the model. These temporal dependencies are later used to

interpret the temporal dimension.

Glacier is used to capture directed dependencies between every time-point. As the de-

pendencies can be different for the nodes in the dataset, time-series of each node is given

individually as input but share the weights of the model. To convert the scalar value xi
t



representing the value of ith node at time-point t into a vector, firstly a feed-forward neural

network is used whose output is passed to the transformer encoder which outputs the vector

cit.

Spatial Mixing

Nodes of a system are dependant and affect each other through time. The rate of change in

these dependencies is reliant on the underlying system. Activity in human brain is extremely

dynamic and can change at any moment. To capture dynamic directed connectivity between

nodes of the system, self-attention between the nodes at each time-point is used. At any

time-point t the self-attention module receives N embeddings represented by vector c and

output a depenedency matrix W. The W matrix is represented as the directed connectivity

between the nodes.

Temporal Attention and Classification

To create a single weight matrix Wf for downstream task the weighted average of W1−T

matrices are acquired. The same GTA module presented in Section 5.1.2.3 is used for that

purpose.

5.5.2 Datasets and Training

Glacier is applied to neuroimaging datasets because of two major reasons. Firstly, neuroimag-

ing is a field where results need to be transparent and interpretable and mere classification

performance is not enough to trust the results. Secondly, as brain disorders are linked with



Figure 5.13 Glacier is comprised of two self-attention modules for temporal and spatial
mixing. Temporal attention on top is used for selecting important time-points. Multi-layer
perceptron (MLP) take a final graph to make downstream classification.

dysconnectivity in the connectivity between brain’s intrinsic network, Glacier which uses

only the estimated graph between nodes for classification is an ideal fit for such fields and

dataset. Glacier was tested on four different neuroimaging datasets. These datasets represent

the functional activity of the brain captured via resting state functional magnetic resonance

imaging (fMRI) scans. Four datasets used in this study include FBIRN (Function Biomedical

Informatics Research Network1) (Keator et al. 2016) project, release 1.0 of ABIDE (Autism

1fBIRN phase III is used.



Brain Imaging Data Exchange2) (Di Martino et al. 2014) and release 3.0 of OASIS (Open

Access Series of Imaging Studies3) (Rubin et al. 1998) to predict schizophrenia, autism and

dementia respectively. Subjects from the ABCD(Adolescent Brain Cognitive Development

4) Casey et al. (2018) datasets are used for gender prediction. FBIRN dataset was divided

into 18 test folds were used all other datasets were divided into 10 test folds.

5.5.2.1 Preprocessing

Instead of using the voxel-level data, for disorder classification and gender prediction on

ABCD data, independent component analysis (ICA) and for gender prediction on HCP pre-

defined atlas based region of interest (ROIs) was used as brain parcellation method. Refer

to Section 4.1.1 for details.

5.5.2.2 Training

Training of the model is performed similarly to as explained in Section 5.1.3 without some

minor hyper-parameters changing. Mean area under curve - receiver operating characteristic

(AUC-ROC) and other metrics are reported to show classification performance.

5.5.3 Results

This section shows the classification performance and the interpretable connectivity matrices

estimated by Glacier.

2http://fcon 1000.projects.nitrc.org/indi/abide/
3https://www.oasis-brains.org/
4First scans from first session are used .
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Figure 5.14 AUC comparision of Glassier model with six different methods (BNT (Kan
et al. 2022), DECENNT (Mahmood et al. 2022) MILC (Mahmood et al. 2020a), STDIM
(Mahmood et al. 2019a), LR, SVM), over three different datasets on ICA time courses.
Glacier outperforms SOTA methods. It can be seen that when using ICA time-courses (TC)
ML methods fail significantly, however SOTA DL and ML methods perform comparable to
Glacier only if they are provided with hand-crafted features (FNC matrices computed by
PCC.)

5.5.3.1 Classification

Glacier performs better or in reaching distance compared to state-of-the-art methods. 5.14

shows the AUC of Glacier for brain disorder classification using ICA time-courses as input

data. 5.10 shows the performance for gender classification on HCP data using regions of

interest (ROIs) extracted via Shaefer atlas (Schaefer et al. 2017).



Table 5.10: Classification performance comparison of

Glacier with other DL methods on ROIs data of HCP.

Our model gives comparable performance to state-of-the-

art results in every metric. The best two scores are shown

as bold and italic respectively. Note: The results for

GCN Arslan et al. (2018) on HCP data are reported in

GIN paper Kim & Ye (2020).

Glacier DICE GIN GCN

AUC 0.935 0.936 NA NA
ACC(%) 85.6 86.0 84.6 83.98
Precision (%) 85.3 87.2 86.19 84.59
Recall (%) 90.5 88.6 86.81 87.78

Parcellation
Shaefer
200

Shaefer
200

Shaefer
400

Shaefer
400

Validation 10 10 10 10
Subjects 942 942 942 942

5.5.3.2 Interpretation

Group Differences

5.15 shows the ENC estimated by Glacier for HC and SZ patients using FBIRN dataset.

The ENCs are the average of multiple test subjects using 10 randomly seeded trials. It is

noticeable that HC show hyper-connectivity as compared to SZ patients. The inter-network

dysconnectivity for SZ patients is reported in existing studies. Furthermore, HC show high

connectivity between VI and SM networks and connectivity of subcortical (SC) network

is shown with cerebellum (CB), default-mode (DM), and cognitive control (CC) networks.
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Figure 5.15 The estimated connectivity matrix of HC and SZ patients are compared. The
axis show the components divided into 7 networks. Different connectivity patterns are shown
for HC and SZ patients across multiple networks, especially VI, SM and DM networks.

Whereas, SZ patients does not show such patterns rather show hyper-connectivity in DMN

as compared to the HC.



Flexible Connectivity Estimation

One of the biggest advantage of Glacier is that as the model extracts useful features (connec-

tivity matrices) and does not rely on inflexible hand-crafted features. The flexibility allows

Glacier to produce task-specific (e.g., brain disorder) connectivity matrix and produce sub-

graphs for a brain disorder. Thus highlights crucial brain networks connectivity patterns.

Figure 5.16 shows how Glacier focuses on SM network for dementia prediction and on DM

network for gender prediction of the same subjects. Static PCC based FC is inflexible and

produces same result irrespective of the task.

Temporal Connectivity Estimation

As the proposed Glacier model also uses self-attention based module on the temporal axis,

it is possible to visualise and interpret the connectivity weights estimated for the time-

courses. Figure 5.17 shows the temporal connectivity matrices for the 7 networks for HC

and SZ patients estimated on FBIRN dataset. We can see that for each network some of the

time-points are assigned higher weights than the others.

5.5.4 Conclusions

Glacier shows the importance of using glass-box deep learning models that are interpretable.

Glacier was used to estimate connectivity between brain’s intrinsic networks. The estimated

matrices not only provided high classification score but more importantly captured the dif-

ferences in brain networks connectivity between HC and patients. This work also showed

that deep-learning models can be successfully applied to fields like neuroimaging for clas-
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Figure 5.16 Glacier estimates flexible DNC structures based on the ground-truth signal.
Glacier was trained for different classification tasks and use same test subjects to compare
the estimated DNC for the subjects. 5.16a is the connectivity matrix estimated by Glacier
when trained to classify dementia. 5.16b is the DNC for the same subjects when the model
is trained for gender prediction. 5.16c is the FNC computed using PCC. The FNC is inde-
pendent of the task and would remain fixed (inflexible). Notice how average value of SM in
5.16a is higher than 5.16b and 5.16c. Whereas average value of 5.16b is higher than 5.16a
and 5.16c. This shows that Glacier gives more attention to disorder-specific networks. Im-
portance of SM for dementia prediction and DM for gender predcition is shown is existing
studies Albers et al. (2015b); Kim et al. (2021).

sification and interpretability without incorporating other statistical or ML methods. For

future work, It would be interesting to test the model on task-fMRI data which would give

the ground-truth important time-points depending on the task. This would allow to compare

the time-points marked as important by the model against the ground-truth time-points.
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Figure 5.17 Temporal connectivity matrix estimated by Glacier for the time-points. The
matrices of the components are divided into the same 7 networks and the average was taken
of all the matrices in each network. The figure shows the the 7 matrices, one for each network
for HC and SZ patients take from FBIRN dataset.
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CHAPTER 6

CONCLUSIONS AND FUTURE WORK

This research in this dissertation showed that DL models could be instrumental in neu-

roimaging. Interpretable DL models can beat classical ML-based models without using

hand-crafted features. More importantly, the flexibility of DL in learning representations

allows for estimating subject and disorder-specific brain network connectivity graphs. The

estimated graphs and subgraphs can be used to uncover disorder-specific biomarkers. The

proposed idea of including the glass-box interpretable layer(s) significantly increases the in-

terpretability of the representations learned by the DL model. This research is an initial

step towards using DL to estimate the brain’s network connectivity. Further research will

take us closer to estimating the causality between brain networks.

For future work, a natural extension would be to omit pre-processing with a dimensional-

ity reduction method—like ICA or region-based parcellation—and train a model end-to-end

on the voxel-level data. This, however, may require substantially larger datasets and may not

be as valuable as the current model for an average-sized research dataset. As the proposed

models can estimate the direction of connectivity, for future work, it would be interesting

to examine how the direction of connectivity changes through time and during tasks for HC

and patients. A natural extension of this work would be the application on task-fMRI data

and compare the temporal bio-markers with known important time-points.

Furthermore, implicit-layer(s) based methods, especially neural-ODE (NODE) should be

a good next step of this study. NODE-based DL architectures have proven their value in



fields where learning data dynamics is essential. NODE architectures applied on the temporal

axis can help solve the problem of different temporal resolutions in datasets acquired from

multiple sites, e.g., ABIDE. Learning the derivatives of the embeddings would also make it

more interpretable and flexible, as shown in studies like (Hasani et al. 2020).



Appendices



A Ablation Study

This section shows the stability of the DICE model in terms of classification performance

by changing different hyper-parameters. This section also shows that as DICE was not

fine-tuned extensively for different experiments, it is possible to achieve better classification

performance than reported in the relevant chapter. Table A.1 shows the effect of number

of test folds on classification performance of DICE. Table A.2 shows the effect on perfor-

mance when changing the size of hidden dimensions. Also, as FBIRN experiments with 18

fold testing created the biggest leakage, the experiment without leakage was necessary for

completeness and shows model performs similarly. All other experiments had leakage of 1-2

subjects whose effect should be insignificant. In Table A.3, we can see that it is possible to

get a bit different classification results than ones reported in the main body by permuting

the subjects in different order.



Table A.1: The table shows the effect of the different

number of cross-validation folds on the classification per-

formance of the DICE model using ICA data. Additional

experiment (18, no leakage) where the last fold had all

the remaining subjects to prevent any data leakage was

also performed. We see that the DICE shows similar

performance on different number of cross-validation folds

with an increase in performance with a greater number

of folds.

Dataset Number of test folds Mean AUC Median AUC
FBIRN 4 0.859 0.861
FBIRN 18 0.86 0.861
FBIRN 18, no leakage 0.86 0.861
ABIDE 5 0.7052 0.71
ABIDE 10 0.722 0.732
OASIS 5 0.741 0.749
OASIS 10 0.752 0.758



Table A.2: The table shows how hidden dimensions of

different modules of the model affect classification per-

formance of DICE model. The table shows it is possi-

ble to get better results than ones reported in the main

body of the paper. Similar results were seen for other

datasets as well. We see how removing the temporal at-

tention reduces the model’s classification performance.

None means the final connectivity matrix Wf was just

the average of each Wt.

Dataset biLSTM dimension Self-attention dimension γ2 Temporal Attention Mean AUC Median AUC
FBIRN 100 48 0.05 GTA 0.86 0.861
FBIRN 100 48 0.05 None 0.733 0.764
FBIRN 100 64 0.05 GTA 0.858 0.861
FBIRN 128 64 0.025 GTA 0.865 0.875
FBIRN 128 64 0.025 None 0.761 0.778
FBIRN 64 32 0.05 GTA 0.849 0.858



Table A.3: Permuting the order of the subjects can lead

to a small variation in the classification performance.

Dataset biLSTM dimension Self-attention dimension γ2 Permutation Mean AUC Median AUC
FBIRN 100 48 0.05 Random 0.86 0.861
FBIRN 128 64 0.025 Random 0.865 0.875
FBIRN 100 48 0.05 Default order 0.86 0.889
FBIRN 128 64 0.025 Default order 0.858 0.875



B DNC with negative weights

Connectivity of a node with itself equal to one is the only known and correct bias that

can be used while estimating connectivity matrix between nodes. Therefore an additional

experiment is done withe the DICE model by adding a new loss term in Equation 5.5 and

create following two variations.

loss = CrossEntropy(ŷ,y) + β(1− 1

N
tr(tanh(Wf ))) + λ∥θ∥1 (B.1)

loss = CrossEntropy(ŷ,y) + β(1− 1

N
tr(sigmoid(Wf ))) + λ∥θ∥1 (B.2)

The second term in equations B.1 and B.2 is used to encourage the model to produce

connectivity matrices with the average value of the main diagonal closer to 1. tr represents

the trace of a matrix. β is a regularization coefficient and kept as 0.75. β equal to 1 does

push the diagonal closer to 1 but leads to reduction in classification performance. It was

found in the experiments that the second term results in more stable and easier to visualize

matrices across multiple trials. The added term did not significantly affect the classification

performance as shown in Table B.4 with tanh and sigmoid activation. Figure B.1 shows the

same matrix as Figure 5.6a created with the new loss equation B.1.



Table B.4: Classification performance of DICE on

FBIRN ICA data with the new term added in the loss

function. There is not a significant difference in perfor-

mance, though marginal improvement is seen with sig-

moid activation.

Dataset Added loss term Mean AUC Median AUC
FBIRN None 0.86 0.861
FBIRN tanh 0.859 0.861
FBIRN sigmoid 0.862 0.875
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Figure B.1 DNC estimated by DICE model using the loss equation B.1. Same FBIRN

subjects as in Figure 5.6a were used for creating this figure.

Figure 5.4 is also re-created using the new loss equations B.1 and B.2 and show the

estimated DNC in Figure B.2. The added loss terms noticeably increase the values on the



diagonal of the connectivity matrices closer to 1. Notably, the difference between diagonal

and non-diagonal values is higher in DNC with tanh loss term than sigmoid based DNC.

Presumably, this is probably because the output value for non-negative input (0) in sigmoid

is 0.5 and not 0 as in tanh. Hence, the loss for sigmoid is in the range [0-0.5] and not [0-1].

The choice of the function depends on the application and factors such as the presence of

self edges, negative edges, the range of the edge weights etc.

(a) DICE DNC

SC AU SM VI CC DM CB

SC
AU

SM
VI

CC
DM

CB

HC

0.0

0.2

0.4

0.6

0.8

1.0

SC AU SM VI CC DM CB

SC
AU

SM
VI

CC
DM

CB

0.0

0.2

0.4

0.6

0.8

1.0

(b) DICE DNC - Tanh
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Figure B.2 Comparison of the DNCs learned with the additional regularization terms in
the loss function against the DNC created using original loss and PCC FNC. As expected,
regularization pushes the diagonal closer to 1. Also the difference between values of diagonal
and non-diagonal elements is higher in tanh based DNC B.2b as compared to sigmoid based
DNC B.2c. Similarly to Figure 5.4 these matrices are averaged across multiple tries.

As FC and FNC are computed using PCC method to measure the correlations, it has

negative correlations as well. These negative correlations are used in different studies and

have meaningful interpretations. Therefore, this study also tried to accommodate negative

values in the DC and DNC estimated by the DICE model. This can be done easily by making

a small tweak in the self-attention part of the model. Equation 5.2 uses softmax function

to get the weights and forces them in the range 0-1. Negative weights can be achieved by

replacing the softmax function with tanh. Figure 5.4a is re-created by estimating negative



weights as well. We see in Figure B.3 that DICE can capture the negative weights by making

a small tweak in the self-attention part but detail experiments are required to check the

classification performance, stability, and interpretation if negative weights are incorporated.

Also, incorporating negative weights require some hyper-parameter changes as well. This is

left as future work.
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Figure B.3 DNC estimated by DICE model by incorporating negative weights in self-attention

module. Same subjects of FBIRN were used as in Figure 5.4a. The diagonal is manually

asigned 0 weight.
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