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Abstract. Sensor fusion techniques are able to increase robustness and
accuracy over data provided by isolated sensors. Fusion can be performed
at a low level, creating shared data representations from multiple sensory
inputs, or at a high level, checking consistency and similarity of objects
provided by different sources. These last techniques are more prone to
discard perceived objects due to overlapping or partial occlusions, but
they are usually simpler, and more scalable. Hence, they are more ad-
equate when data gathering is the key requirement, while safety is not
compromised, computational resources may be limited and it is impor-
tant to easily incorporate new sensors (e.g. monitorization in smart envi-
ronments or object recognition for social robots). This paper proposes a
novel perception integrator module that uses low complexity algorithms
to implement fusion, tracking and forgetting mechanisms. Its main char-
acteristics are simplicity, adaptability and scalability. The system has
been integrated in a social robot and employed to achieve multimodal
object and person recognition. Experimental results show the adequacy
of the solution in terms of detection and recognition rates, integrability
into the constrained resources of a robot, and adaptability to different
sensors, detection priorities and scenarios.

1 Introduction

European society faces important changes in the near future. The upcoming Sil-
ver society [8], the energy and resources recent crisis, the increasing demand for
teleworking and reducing the carbon footprint, the new Industry 4.0 and busi-
ness models focused on data mining and processing, pave the way for a new social
model. This model implies a strong presence of technology in daily life settings,
as a tool to address many of the challenges produced by these changes, which
have been recently augmented (sometimes, drastically) by the COVID-19 pan-
demic [14]. Smart environments able to monitor, assist and communicate with
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people are experiencing an exponential development, supported by advances in
electronics, Artificial Intelligence, robotics, data mining and ubiquitous comput-
ing.

Among the devices found in these technological environments, robots may
be one of the most versatile ones. The current advances in robotics point to-
wards using these agents to offer proactivity, ubiquity and adaptability, and
they have the potential to act as a natural interface between the human user-
Mesh Bed Compensation and the environment [6]. However, adherence problems
are a common issue for these robots working in daily life settings, specially if
they cannot adapt to the particular tasks, contexts and needs and preferences
of the different users [8]. Hence, it is important to provide these robotic agents,
or better, the complete technological ecosystems they belong to, with the capa-
bility to robustly detect and recognize objects and people in the environment,
and modify their behaviour accordingly.

While isolated sensors can be used to detect and recognize objects and people
in an environment, sensor fusion techniques promotes a robustness increase on
the perception process, allowing to overcome each sensor’s weaknesess using the
strenghts of the remainder [7]. Multimodal perception and sensor fusion are no
new techniques, but in recent years this research field has received a growing
attention due to the expansion of smart environments and sensor networks, such
as the ones mounted in autonomous or semi-autonomous vehicles [15]. Among
the numerous approaches to multi-sensor data fusion, it is possible to set the
following classification: high-level fusion (HLF), low-level fusion (LLF), and mid-
level fusion (MLF) [15]. LLF and MLF approaches deal with data fusion among
different sensors, allowing for cooperative detection and tracking to construct
shared perceptual maps, such as the one proposed in [10] to track objects in
3D space fusing optical flow, scene flow, stereo-depth, and 2D object detections,
or the proposal in [9] that relies only in 2D and 3D bounding box detection to
produce a more scalable fusion system. Ferreira et al. [7] also rely on low level
audiovisual fusion, performed using a Bayesian framework, to drive the attention
of a robot, while in [4] detected legs and faces are integrated using an Unscented
Kalman Filter. Recognition is addressed in a posterior step through histogram
analysis using the Bhattacharyya coefficient.

HLF approaches, on the other hand, carry out object detection or a tracking
algorithm independently for each sensor, and subsequently performs fusion. They
are usually easier to implement and scale, but they may discard objects with low
confidence values in situations such as overlapping [15]. Among the different HLF
proposed approaches, there are many based on fuzzy methods such as the one
Ban et al. [2] implement to fuse speaker and face recognition. Particle filters are
also frequently employed to fuse perceived objects, as in [1] where a multirobot
visual tracking particle filter is proposed to track a certain object identified by
its color among multiple robots. There are other approaches, finally, that employ
computationally lighter approaches. Hence, Reily et al. [13] propose to control
the fusion of multiple sensors via a weighted combination of observations. These
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weights also control the display of observations to a human operator, providing
enhanced situational awareness.

This paper presents a new HLF multimodal recognition system, based on a
perception integrator module relying on confidence and pose criteria to provide
a fused set of objects. The integrator uses low complexity algorithms to imple-
ment fusion, tracking and forgetting mechanisms. Its main characteristics are
simplicity, adaptability and scalability. While the system can be integrated in
any technological ecosystem including any kind of sensors, its HLF nature makes
it a better solution for non-critical object detection (as pointed out in [15], more
complex LLF or MLF approaches may be better candidates when avoiding false
negatives is a must). Hence, we describe and test in the paper the application of
the system to a certain use case: object and person recognition for social robots.

2 Software and hardware assets

2.1 Cognitive architecture

This paper proposes a multimodal recognition system that is integrated in the
CORTEX cognitive architecture [5]. The main characteristic of CORTEX is the
existence of a unified, dynamic working memory that represents information
at different abstraction levels, from raw perceptual data to high-level symbols
and action plans. This so-called Deep State Representation (DSR) becomes a
short-term dynamic representation of the context, both internal (inner state,
proprioception) and external (environmental data, objects and people in the en-
vironment). Around this DSR, a set of agents are deployed that interact through
this shared representation to achieve different goals. This structure allows decom-
posing the functionality of the system into a set of software components, that can
be placed anywhere in the reactive-deliberative spectrum, and that are in charge
of different functionalities. The CORTEX implementation employed in this pa-
per implements the DSR and the agents using the robocomp framework [11],
while processing modules (i.e. software components) connected to these agents
may be implemented in different frameworks and middlewares, such as Robot
Operating System (ROS) [12].

2.2 Robotic platform

In this paper, the recognition system considers input data coming from differ-
ent sources, all of them related to a particular Socially Assistive Robot (SAR),
that integrates an instance of the CORTEX architecture. Figure 1(left) shows
the robot employed in the tests performed in the paper. The base of this robot
is the CLARA robot [3], developed in the CLARC EU Project (ECHORD++
FP7-ICT-601116) to perform Comprehensive Geriatric Assessment (CGA) pro-
cedures, and currently deployed in a retirement house to implement different
user defined tasks [8]. This robot is already using CORTEX to: (i) navigate
autonomously in dynamic daily life environments; (ii) interact with people in
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constrained scenarios using speech, a tactile screen and other ad-hoc devices;
(iii) allow healthcare professionals to set an agenda for the different use cases
the robot can perform; (iv) detect people in its surroundings using two different
mechanisms (LIDAR-based and vision-based) that will be detailed in Section 4.

Fig. 1. (Left) Socially Assistive Robot employed in this paper; and (Right) Multimodal
recognition system overview

The perceptual capabilities of the robot are extended in the paper including
two additional modules devoted to recognition: one of them is an Intel Real Sense
F455 camera, specifically designed for face recognition applications, and the
other is a Keonn AdvanReader-10 RFID reader, connected to two Advantenna-
p12 antennas, allowing the robot to locate RFID tags. These two both systems
are also deeply detailed in Section 4.

3 Multimodal recognition system

Figure 1 (right) shows an overview of the proposed multimodal recognition sys-
tem. All these software components are programmed as ROS nodes. The system
is basically composed by a set of object generator modules, that receive data
from sensors and generate detected objects Om

k, and a Multimodal Perception
Integrator (MPI) that, upon receiving any new object Om

k from an object gener-

ator module, processes it and produces the output of the system,
−→
Oi. This output

is the set of detected objects, that is sent to a robocomp agent to be inserted
into the DSR. Hence,

−→
Oi is a vector containing the set of detected objects for

iteration i, where a new iteration is performed every time any sensor produces
a new detected object. Each of the objects in the vector

−→
Oi, and each of the

objects detected by object generator modules Om
k, contain the fields detailed

in (1).
O = (id, Cid, type, Ctype,−→p ,−−→perr, t) (1)
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where O stands for a certain detected object, id is its identifier (i.e. an unam-
biguous identifier for that object, such as the passport number of a person),
Cid is the confidence value associated to id in the range [0...1], type is the type
of object (e.g. ”chair” or ”person”), Ctype is the confidence value associated to
type in the range [0...1], −→p is the pose (position and orientation) of object O
in the format (x, y, z, yaw, pitch, roll), −−→perr codes the error of each pose data, so
that the value of each pose coordinate j of the object should be considered as
p(j)± perr(j), and t is a timestamp recording the time in which that object was
detected.

It is interesting to highlight that vector
−→
Oi may contain several objects shar-

ing the same object type (e.g. several ”chair” objects), but it is also possible
to have several objects sharing the same id (e.g. several detections of a certain
person), due to the probabilistic nature of the data provided by the sensors. An-
other relevant characteristic of the selected notation is that it is possible to have
unknown fields for id and type (the label unknown is used in these situations,
and the corresponding confidence Cid or Ctype is set to 0.0), and also for the
pose data (in that case, the corresponding −−→perr coordinate will be -1).

3.1 Object generators

Different sensors may provide different data in different formats. In order to
keep the Multimodal Perception Integrator (MPI) module independent from the
particular data sources and make the system easily scalable, a set of object gen-
erator modules appears which process the sensor data (Ra

b in Figure 1 (Right))
and converts them to a standard object representation Oa

b able to be used by the
MPI. These object generators check consistency of generated object data (e.g.
by assigning a certain type to the data provided by a certain sensor), and fill
empty fields if required (e.g. by inserting a timestamp in case it is not available
in the sensor).

3.2 Multimodal Perception Integrator (MPI)

This module is in charge of producing the set of detected objects to be inserted
in the DSR. As the flow diagram in Figure 2 depicts, upon receiving a new object
Om

k from any of the active object generator modules (see Fig. 1 (Right)), the

MPI triggers a fusing process that will generate a new output vector
−→
Oi by

adding or fusing Om
k to the previous instance of the output vector

−−−→
Oi−1, and

deleting (forgetting) objects which data can no longer be considered reliable.
The fusing process will try to fuse the input object with the ones already

detected, following a certain order that is determined by rearranging
−−−→
Oi−1 to

−−−→
O′

i−1. Rearranging is performed using a certain sorting function fsort(
−→
O,R)

that, given a certain input object R, sort objects in
−→
O . Then, object Om

k is

tested against the objects in
−−−→
O′

i−1 (see Figure 2).
The selected sorting function fsort strongly influences the outcome of the

system. For the tests conducted in this paper, fsort is implemented as depicted in
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Fig. 2. Flow diagram of the forgetting and fusing process in the MPI

(2), where
−−−−−−→
O(tX ; iY ) stands for a subset of

−→
O including all objects with type = X

and id = Y . The values that X and Y indexes can have are the following: (i)
R when the value is equal to the corresponding value of input object R (e.g.
−−−−−−→
O(tR; iR) is the subset of

−→
O including all objects that have the same type and

the same id than R); (ii) U when the value is unknown; and (iii) O when the
value is not R nor unknown (i.e. the object has a recognized type or id value,
that differs from the one of the input object).

fsort(
−→
O,R) = (

−−−−−−→
O(tR; iR)||

−−−−−−→
O(tR; iU )||

−−−−−−→
O(tR; iO)||

−−−−−−→
O(tU ; iR)||

−−−−−−→
O(tU ; iU )||

−−−−−−→
O(tU ; iO)||

−−−−−−→
O(tO; iR)||

−−−−−−→
O(tO; iU )||

−−−−−−→
O(tO; iO))

(2)

Equation 2 shows that the proposed implementation firstly looks for a pos-
sible fusion in the subset of objects that share the type and id of R. If no fusion
is performed, the function looks in the subset of objects that have the same type
than R, but have an unknown id, and so on. The use of this particular function
prioritizes the fusion with a priori similar objects, but it is also possible to fuse
objects having different id or even different types, to deal with noisy or impre-
cise detectors. It is also interesting to point out that, in the common situation
in which setting an id for an object always implies setting a type, the only effect

in the previous function will be that
−−−−−−→
O(tU ; iR) =

−−−−−−→
O(tU ; iO) =

−−−−−−→
O(tO; iR) = ⊘.

3.3 Forgetting obsolete objects

Pose uncertainty can grow over time, depending on the nature of the perceived
object. If this uncertainty grows over a certain threshold θ, the object information
should be considered obsolete and the object removed from the system. Figure 2
shows the flow diagram followed by the forgetting and fusion algorithm employed
in the MPI. As depicted, there are two steps in which object’s obsolescence is
checked. Checking is based on the time difference between two detected objects,
∆t. This difference is processed by a function fu that defines how uncertainty
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grows in time. The implementation of fu may depend on different factors, such
as the quality of the sensor or the object type. In this paper, the algorithm
has been set to a worst-case error increment: 2 meters per second for position
coordinates, and 2π radians per second for orientation coordinates.

The first check is performed to the incoming object Om
k, considering a ∆t

that is the maximum time difference between the timestamp of Om
k and the

timestamps of objects in
−−−→
Oi−1. O

m
k will be forgotten if fu(∆t) > θ and the

input object was perceived before the object in
−−−→
Oi−1 which timestamp was used

to compute ∆t.
Objects in

−−−→
Oi−1, on the other hand, will be checked for removal before they

are compared against Om
k. In this case, ∆t is computed as the time difference

between that particular object and Om
k. Again, the object will be discarded if

fu(∆t) > θ.

3.4 Fusion algorithm

Providing none of them has been forgotten, in order to fuse two objects O1 and
O2, it is firstly necessary to update the pose uncertainty (−−→perr) of the first object
detected. Being ∆t the difference between the timestamps of both objects, the
object with an older timestamp will have its −−→perr values modified before the
fusion as perr(k) = fu(∆t) ∗ perr(k). Then, the two objects will fuse if and only
if all the following criteria are met: (i) their id can fuse; (ii) their types can fuse;
and (iii) their poses can fuse.

Algorithm 1 shows these steps for the possible id fusion of two objects O1 and
O2. The confidence-based fusion procedure is designed to: (i) fuse objects that
are similar (with the same id); (ii) fuse unknown objects with known objects; and
(iii) fuse objects with a low recognition probability with objects more robustly
detected. The type fusion algorithm follows the same steps as id fusion.

In order to understand how the complete MPI works it is important to re-
member that a fusion will only be performed if the pose fuse criterion, and not
only the id and type fuse criteria, is met. Being voxel1 and voxel2 the 3D vol-
umes in which O1 and O2 may be located, pose fusion is achieved as detailed by
Algorithm 2.

To summarize, two certain objects will fuse if their possible poses overlap,
and: (i) they are similar (regarding id and/or type); (ii) one of them is not
classified (i.e. id and/or type are unknown) while the other is; (iii) they are not
similar but the confidence in the classification was low for both of them.

4 Experimental setup: employed sensors

While the proposed system may incorporate any different data source, this sec-
tion details the ones integrated in the robot used in this paper.

RFID identification. CLARA robot is equipped with an RFID reader and
two antennas. The antennas are located at the robot’s front with an horizontal
angle between them of 60° (30° between each one and the robot’s frontal plane),
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Algorithm 1 Confidence fusion algorithm (id)

1: if id1 ̸= unknown and id1 = id2 then
2: idfused set to the value of the object with higher Cid

3: Cfused
id set to the value of the object with higher Cid

4: end if
5: if id1 = unknown then
6: idfused set to id2

7: Cfused
id set to C2

id

8: end if
9: if id1 ̸= unknown and id1 ̸= id2 then
10: if (C1

id + C2
id) ≤ 1.0 then

11: idfused set to the value of the object with higher Cid

12: Cfused
id set to the value of the object with higher Cid

13: else
14: no fusion
15: end if
16: end if

Algorithm 2 Pose fusion algorithm

1: if voxel1 overlaps voxel2 then
2: for k = 1, 2, . . . do
3: if (perr(k)

1 ≥ 0.0) and (perr(k)
2 ≥ 0.0) then

4: e = (perr(k)
1 + perr(k)

2) or e = minimum arch containing overlapping
circle sections

5: d = p(k)2 − p(k)1

6: p(k)fused = p(k)1 + d ∗ perr(k)1/e
7: α1 = (perr(k)

1 − |d ∗ perr(k)1/e|)
8: α2 = (perr(k)

2 − |d ∗ perr(k)2/e|)
9: perr(k)

fused = min(α1, α2)
10: else
11: if (perr(k)

1 ≥ 0.0) then
12: p(k)fused = p(k)1

13: perr(k)
fused = perr(k)

1

14: else
15: if (perr(k)

2 ≥ 0.0) then
16: p(k)fused = p(k)2

17: perr(k)
fused = perr(k)

2

18: else
19: perr(k)

fused = −1
20: end if
21: end if
22: end if
23: end for
24: else
25: No fusion
26: end if



Multimodal object recognition module 9

so radiation patterns of both antennas, characterized by a 90° beam width at
horizontal plane, overlap. This setup allows to locate RFID tags by comparing
the RSSI levels received by each antenna with the estimated attenuation due to
path loss and antenna’s radiation pattern, modeled as a cardioid.

Vision-based person detection. Our main object generator is a vision
based module using an Intel RealSense RGBD camera and an Intel Neural Com-
pute Stick (NCS2). Within this module we load a MobileNet-SSD neural network
model inside the NCS2 to compute the bounding box and category of an object
from the color camera. Then, depth analysis is performed to extract the bound-
ing box surrounding the object in 3D coordinates.

LIDAR-based person detection. The LIDAR is the sensor that covers a
wider area for the robot, with respect to the other sensors mounted. Thus, this
module can detect people in ranges where the other object generator modules
can not. The LIDAR detector pipeline has three steps. First, the laser scan is
splitted in different segments by a Jump Distance Segmentation algorithm which
divide two consecutive points in different segments if the euclidean distance
between them is larger than a threshold. Secondly, a set of features are extracted
from every segment. Thirdly, these features are forwarded to a boosting model
previously learned. Once a segment is classified as a person, then, its pose is
calculated as the centroid of the segment. Finally, this data is sent to the MPI.

Vision-based face recognition. The last sensor that gets into the mix is
the Intel RealSense ID for facial authentication, face camera from go on. This
device has the capacity to extract faceprints from the person’s face in front of
the robot and store it in a secure database. As the bounding box of the face
and the faceprint score are the only two outputs we receive from the device, we
extract the face pose by matching the face camera image with the RGBD camera
image and point cloud described in section 4.

5 Experiments

The system has been tested in a real unconstrained environment, where people
move around the robot and different objects are randomly distributed. Detection
confidence values for the different sensors were empirically set according to prior
evaluation of their isolated performance, and remained fixed for all performed
experiments. In order to provide a quantitative evaluation of the solution, an
experimental setup was prepared in which a chair is located in a fixed, known
position of the map, and a person moves two meters, from one known position
to another (see Figures 3(a) and (b)). Other objects (an additional chair, a
table, etc.) are scattered through the environment. Figures 3(b) and (d) show
the associated output of the MPI module during one of the experiments. The
box drawn in the virtual map for each object measures its position uncertainty.
In this sample, the person (Ale) is correctly identified thanks to the combined
use of the RFID detector and the face recognition system. Once labelled, the
person is still identified even when the two previous modules are not perceiving
him, thanks to the leg and object detection modules keeping an updated pose of
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the person. Note that the RFID and face recognition modules only can detect
the person while he is into the nearest position.

Fig. 3. Experiments. (a): Scene 1 perceived in t; (b) Objects provided by MPI for scene
1; (c) Scene 2 perceived in t+δ; (d) Objects provided by MPI for scene 2.

Tables 1 and 2 show the results offered by the different sensors and the MPI
for two objects (the person and the chair on the left) during two tests lasting for
one minute each. Each table includes the number of detected id and type for each
object, along with the confidence values average (C̄), the position mean error (ē)
and its standard deviation (σe) with respect to the ground-truth, and average
detections per second (fps). Table 1 shows results when the person starts the test
close to the robot and moves to a further position, while 2 shows the opposite
case (the person moves closer). More than 4000 incoming inputs from the object
generator modules where fed to the MPI, coming from different sources, in each
test. These tables show how the fusing algorithm takes the best characteristics
for each input module (frequency, confidence and accuracy) improving the ones
collected by isolated sensors, even when only one sensor is detecting an object,
thanks to the fusion mechanism. It can also be seen in Table 1 how recognized
objects are tracked and kept on recognized as long as any sensor is still detecting
them: in this test, the RFID recognized the person but only while he was close
to the robot, at the beginning of the test. However, even when RFID no longer
detected the person, the leg and object detection modules kept on doing it. These
new detected objects fuse with previous ones and the id of the person propagates
during this de facto tracking process. Moreover, once a sensor is able to provide
a high confidence value for an object, even if that sensor no longer detects the
object, that confidence value persists thanks to the followed fusion approach (see
Algorithm 1). Table 2, on the other hand, shows how the confidence associated
to each sensor affects obtained results. Hence, the relatively low type confidence
included in Table 2 can be explained because initially only LIDAR (with low
confidence associated) was detecting the legs of the person.
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faceRecog LIDAR objDetect RFID Fused

P
e
r
s
o
n

id (C̄id) 4 (89.3%) 0 0 132 (100%) 1649 (100%)
type (C̄type) 4 (89.3%) 1304 (18.0%) 209 (99.0%) 132 (100%) 1649 (100%)

ē 0.12 0.09 0.18 0.44 0.08
σe 0.01 0.04 0.11 0.11 0.05
fps 0.06 20.17 3.23 2.04 25.51

C
h
a
ir

id (C̄id) 0 0 0 0 0
type (C̄type) 0 0 437 (94.2%) 0 437 (95.9%)

ē 0.54 0.54
σe 0.36 0.46
fps 0 0 6.76 0 6.76

Table 1. Object detection and recognition results. Person moves away from the robot

6 Conclusions and future work

The qualitative results show that the proposed fusion technique can overcome the
limitations of individual sensors, offering improved results over isolated devices.
It can also extend the results of a correct detection or recognition over time
thanks to the fusing algorithm acting as a de facto tracking system. The solution
is lightweight, able to run in autonomous agents, and easily scalable to include
new sensors, mobile or fixed. Future work will firstly focus on looking for better
matches in the fusing algorithm, as the current proposal just fuses the new
detection with the first match. Even if the sorting function is adequate, this
criterion is too constrained. More complex settings, including several people and
moving devices, will also be addressed. Moreover, fusion with data provided by
sensors installed in several robots and/or as part of smart environments will also
be evaluated. Ablation studies considering different sensors in the fusion process
will be conducted to analyze the influence of each sensor. Context information
and learned cues will also be used to fed high-level knowledge to the MPI just
like any other sensor (e.g. the daily agenda of a person can help filtering the
possible identifications offered by perceptors). Finally, a comparison between
the presented HLF approach with other MLF and LLF approaches that use DL
techniques will also be addressed.

faceRecog LIDAR objDetect RFID Fused

P
e
r
s
o
n

id (C̄id) 2 (88.1%) 0 0 96 (100%) 844 (100%)
type (C̄type) 2 (88.1%) 1257 (16.8%) 152 (97.3%) 96 (100%) 1507 (67.6%)

ē 0.06 0.10 0.14 0.65 0.10
σe 0.01 0.01 0.04 0.09 0.03
fps 0.03 18.27 2.21 1.40 21.91

C
h
a
ir

id (C̄id) 0 0 0 0 0
type (C̄type) 0 0 497 (94.4%) 0 497 (96.3%)

ē 0.53 0.53
σe 0.39 0.43
fps 0 0 7.23 0 7.23

Table 2. Object detection and recognition results. Person moves closer to the robot
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comp: A tool-based robotics framework. In: Ando, N., Balakirsky, S., Hemker, T.,
Reggiani, M., von Stryk, O. (eds.) Simulation, Modeling, and Programming for
Autonomous Robots. SIMPAR 2010. Lecture Notes in Artificial Intelligence. vol.
6472, pp. 251–262. Springer Berlin Heidelberg, Darmstadt, Germany (2010)

12. Quigley, M., Conley, K., Gerkey, B., Faust, J., Foote, T., Leibs, J., Wheeler, R.,
Ng, A.Y., et al.: Ros: an open-source robot operating system. In: ICRA workshop
on open source software. vol. 3, p. 5. Kobe, Japan (2009)

13. Reily, B., Reardon, C., Zhang, H.: Multi-modal sensor fusion and selection for
enhanced situational awareness. In: Dennison Jr., M.S., Krum, D.M., Sanders-
Reed, J.N., Arthur III, J.J. (eds.) Proc. of Virtual, Augmented, and Mixed Reality
(XR) Technology for Multi-Domain Operations II. vol. 11759. SPIE, Florida, USA
(april 2021)

14. Vimarlund, V., Borycki, E.M., Kushniruk, A.W., Avenberg, K.: Ambient assisted
living: Identifying new challenges and needs for digital technologies and service
innovation. Yearb Med Inform 30(1), 141–149 (august 2021)

15. Yeong, D.J., Velasco-Hernandez, G., Barry, J., Walsh, J.: Sensor and sensor fusion
technology in autonomous vehicles: A review. Sensors 21(6) (2021)


