
Information Sciences 610 (2022) 830–846
Contents lists available at ScienceDirect

Information Sciences

journal homepage: www.elsevier .com/ locate/ ins
Efficient edge filtering of directly-follows graphs for process
mining
https://doi.org/10.1016/j.ins.2022.07.170
0020-0255/� 2022 The Author(s). Published by Elsevier Inc.
This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

⇑ Corresponding author.
E-mail addresses: david.chapela@usc.es (D. Chapela-Campa), marlon.dumas@ut.ee (M. Dumas), manuel.mucientes@usc.es (M. Mucientes),

lama@usc.es (M. Lama).
David Chapela-Campa a,⇑, Marlon Dumas b, Manuel Mucientes a, Manuel Lama a

aCentro Singular de Investigación en Tecnoloxías Intelixentes (CiTIUS), Universidade de Santiago de Compostela, Santiago de Compostela, Spain
bUniversity of Tartu, Tartu, Estonia
a r t i c l e i n f o

Article history:
Received 19 March 2021
Received in revised form 21 October 2021
Accepted 28 July 2022
Available online 5 August 2022

Keywords:
Process mining
Automated process discovery
Directly-follows graph
Edge filtering
a b s t r a c t

Automated process discovery is a process mining operation that takes as input an event log
of a business process and generates a diagrammatic representation of the process. In this
setting, a common diagrammatic representation generated by commercial tools is the
directly-follows graph (DFG). In some real-life scenarios, the DFG of an event log contains
hundreds of edges, hindering its understandability. To overcome this shortcoming, process
mining tools generally offer the possibility of filtering the edges in the DFG. We study the
problem of efficiently filtering the DFG extracted from an event log while retaining the
most frequent relations. We formalize this problem as an optimization problem, specifi-
cally, the problem of finding a sound spanning subgraph of a DFG with a minimal number
of edges and a maximal sum of edge frequencies. We show that this problem is an instance
of an NP-hard problem and outline several polynomial-time heuristics to compute approx-
imate solutions. Finally, we report on an evaluation of the efficiency and optimality of the
proposed heuristics using 13 real-life event logs.
� 2022 The Author(s). Published by Elsevier Inc. This is an open access article under the CC

BY license (http://creativecommons.org/licenses/by/4.0/).
1. Introduction

Process mining (PM) is a family of techniques to discover, monitor, and improve processes based on information extracted
from event logs recording the sequences of activities executed in a business process [27]. One of the main operations in the
field of PM is automated process discovery. The goal of automated process discovery is to generate a diagrammatic represen-
tation of the process recorded in an event log. This diagrammatic representation should be as understandable as possible,
since it is used by managers and analysts for exploratory analysis. At the same time, it should capture as much of the behav-
ior observed in the event log as possible.

Existing automated process discovery techniques produce various diagrammatic representations as outputs, including
process models in the Business Process Model Notation (BPMN), Petri nets, Process trees, and Directly-Follows Graphs
(DFG). The latter (DFGs) are commonly used in commercial PM tools [18]. A DFG is a directed graph wherein each vertex
denotes an activity of the process, and each edge denotes the fact that the target activity occurs immediately after the source
activity in at least one trace of the process (a directly-follows relation). In addition to being widely used in commercial PM
tools as a diagrammatic representation in its own right, DFGs are also used as an intermediate artifact by several algorithms
for discovering BPMN models or Petri nets [4,17].
manuel.

http://crossmark.crossref.org/dialog/?doi=10.1016/j.ins.2022.07.170&domain=pdf
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1016/j.ins.2022.07.170
http://creativecommons.org/licenses/by/4.0/
mailto:david.chapela@usc.es
mailto:marlon.dumas@ut.ee
mailto:manuel.mucientes@usc.es
mailto:manuel.lama@usc.es
mailto:manuel.lama@usc.es
https://doi.org/10.1016/j.ins.2022.07.170
http://www.sciencedirect.com/science/journal/00200255
http://www.elsevier.com/locate/ins

Fig. 1. Full DFG and filtered DFG of a patient treatment process in a Dutch hospital [19].

D. Chapela-Campa, M. Dumas, M. Mucientes et al. Information Sciences 610 (2022) 830–846
In real-life processes, the DFG of an event log may contain hundreds or thousands of edges, which hinders their under-
standability. For example, Fig. 1a shows the DFG of a process recording the trajectories of patients treated for Sepsis disease
in a Dutch hospital [19]. To tame this complexity, PM tools generally offer the possibility to simplify the full DFG by filtering
out the most infrequent directly-follows relations, thus keeping only the most frequent ones. For example, Fig. 1b shows the
filtered version of the previous DFG produced by a PM tool, namely Apromore.1

There are two desirable properties that should be preserved when filtering a DFG. One is that the filtered DFG must con-
tain all the vertices in the original (full) DFG. In other words, a filtered DFG must be a spanning subgraph of the full DFG. The
importance of this property has been highlighted by van der Aalst [26] who notes that when vertices are removed during
DFG filtering, some edges in the filtered DFG no longer have the semantics of a directly-follows relation, as some interme-
diate vertices are not shown. This may lead users to draw incorrect conclusions about the process.2

The second property is that every vertex in the filtered DFGmust be on a path from the vertex representing the start event
to the vertex representing the end event of the process. This property is called DFG soundness [18] and is required in order to
generate BPMN models (or workflow nets) from the DFG [4]. Intuitively, this property is needed because otherwise, the DFG
represents a process in which some of the activities (vertices) are unreachable from the start event, or cannot reach the end
event of the process.
1 https://apromore.org/.
2 Note that the techniques proposed in this paper can be applied to event logs where some activities have been removed during a pre-processing step. In this

case, the techniques will build a filtered DFG that contains all the retained activities. A directly-follows relation should then be interpreted with the meaning
that activity B ‘‘directly-follows” activity A modulo any removed activities. This approach may be useful if the removed activities are considered irrelevant by
the user.

831

https://apromore.org/

D. Chapela-Campa, M. Dumas, M. Mucientes et al. Information Sciences 610 (2022) 830–846
In this setting, this paper studies the following overarching research question: Given the full DFG of an event log, how to
efficiently compute a spanning and sound filtered DFG with a minimal number of edges, while retaining the most frequent
directly-follows relations of the original DFG? This question establishes a set of criteria to be met by the filtering approaches.
The DFG filtering operation must:

C1. Produce a sound filtered DFG.
C2. Produce a spanning filtered DFG.
C3. Seek to minimize the number of edges of the filtered DFG, while meeting criteria C1 and C2.
C4. Seek to maximize the sum of edges frequencies in the filtered DFG, while meeting criterion C3.

Note that by addressing this question, we also address the problem of computing (sound and spanning) DFGs with arbi-
trary levels of filtering. Indeed, if we can find a filtered DFG with a minimal number of edges, we can obtain larger (less fil-
tered) DFGs by simply adding back those edges that were left out from the minimal DFG, starting from the most frequent to
the least frequent edges.

Given the above research question, the contributions of this paper are:

1. We formalize the problem of DFG filtering as an optimization problem, namely that of computing a sound (C1) and span-
ning (C2) subgraph of a DFG with a minimal number of edges (C3) and a maximal sum of edge frequencies (C4).

2. We show that this problem is an instance of an NP-hard problem.
3. Accordingly, we propose a set of polynomial-time heuristic approximations to solve it.
4. We evaluate the proposed heuristics in terms of their efficiency (execution time) and their optimality, i.e. their ability to

minimize the number of edges and maximize the sum of edge frequencies.

The remainder of the article is structured as follows. Section 2 gives an overview of existing DFG filtering techniques. Sec-
tion 3 introduces basic notions of graph theory and process mining. Section 4 formalizes the problem of computing filtered
DFGs, while Section 5 presents heuristic approximations of this problem. Finally, Section 6 describes the empirical evalua-
tion, and Section 7 draws conclusions and sketches future work directions.

2. Related work

The problemofDFGfiltering has been previously studied by Leemans et al. [18], whooutline an approach forDFGfiltering in
three steps. First, themost infrequent directly-follows relations in the full DFG are identified. Second, all traces that contain at
least one occurrence of any of these infrequent relations are removed from the event log. Finally, the resulting filtered event log
is used to compute afilteredDFG. By construction, thefilteredDFG is sound.However, it is not a spanningDFG (not fulfillingC2).
For example, if a givenactivityAhas adirectly-follows relationwith say20activitiesB1 . . .B20, andevery oneof these relations is
infrequent, then all traces where A appears will be removed from the log, and hence A will not appear in the filtered DFG.

Conforti et al. [8] propose another approach in four steps. First, the most infrequent edges of the full DFG are identified
and removed from the DFG. This filtered DFG is not sound —some vertices might not be reachable from the start vertex or
cannot reach the end vertex of the DFG. In a second step, vertices that are not reachable from the start or that cannot reach
the end are removed in order to make the filtered DFG sound.3 Next, each trace in the event log is replayed against the filtered
DFG. Because some traces cannot be perfectly replayed in the filtered DFG, some of the events in a given trace might be removed
during the replay. In other words, every trace in the original log is retained in the filtered log, but some events are removed.
Finally, the resulting filtered log can be used to generate a filtered DFG. This filtered DFG is sound by construction, but it is
not spanning (not fulfilling C2). Indeed, some vertices are removed when the unsound filtered DFG is repaired. In addition,
as a result of the replay-filtering step, events that cannot be replayed are removed and, hence, some activities —specifically
those that participate only in infrequent relations— will not appear in the filtered log and in the corresponding filtered DFG.

As explained in [26], removing activities during DFG filtering changes the semantics of the DFG insofar as some edges in
the filtered DFG no longer represent directly-follows relations. Furthermore, filtering out traces in the event log in order to
generate a filtered DFG alters the frequency of the directly-follows relations —in other words, the frequencies of the directly-
follows relations in the filtered DFG are not necessarily the same as in the original DFG. In this paper, we study the problem
of computing filtered DFGs that are both sound and spanning, and such that the frequencies of the edges in the filtered DFG
coincide with those in the original DFG. In other words, we seek to filter edges in the DFG without filtering any vertex.

The problem of DFG edge filtering has also been addressed in the context of automated process discovery algorithms. For
instance, the Heuristics Miner [37] starts by computing the DFG and applies heuristics to assign a confidence measure to
each edge of the DFG. This confidence measure captures the degree of certainty that there is a true (sequential) dependency
between two activities, as opposed to an interleaved concurrency relation.4 Next, for each vertex, the algorithm retains the
3 The user may add a constraint stating that some of the vertices in the DFG are required and should not be removed from the filtered DFG.
4 In the heuristics miner, a concurrency relation is asserted between two activities A and B, if these two activities are executed in any order, i.e. sometimes A

follows B and other times B follows A. We note that other notions of concurrency have been proposed in the field of process mining. An in-depth treatment of
concurrency notions in process mining is provided in [2].

832

D. Chapela-Campa, M. Dumas, M. Mucientes et al. Information Sciences 610 (2022) 830–846
incoming and outgoing edges with the highest weight. Depending on some user-defined thresholds, some additional edges
associated with so-called short cycles may be retained as well. The goal of this filtering technique is to filter out directly-
follows relations that correspond to (interleaved) concurrency. It does not seek to minimize the number of edges of the filtered
DFG (i.e. does not fulfill C3) or to filter out infrequent relations from the DFG as we do in this paper (does not fulfill C4). Fur-
thermore, this technique may lead to unsound DFGs (does not fulfill C1).

The Inductive Miner also incorporates a DFG filtering technique based on edge frequency [17]. This technique starts by
computing an eventually follows graph —the transitive closure of the directly-follows relation [24]— and normalizing each
edge frequency by dividing it by the frequency of the strongest outgoing edge of its source vertex. Edges with a normalized
frequency under a defined threshold are then removed. This filtering approach may lead to filtered DFGs that are unsound
(does not fulfill C1). As a post-processing step, this unsound DFG may be turned into a sound DFG by removing unreachable
vertices, but then, the resulting filtered DFG is not a spanning DFG (does not fulfill C2).

In a similar vein, the Split Miner [4] includes a DFG filtering technique based on a variation of Dijkstra’s shortest path
algorithm. Augusto et al. filter a DFG by retaining for each vertex v the incoming edge that is part of the path source! v
with maximum capacity and the outgoing edge being part of the path v ! sink with maximum capacity. In this context,
the capacity of a path is the frequency of the least frequent edge in this path. This technique computes sound and spanning
DFGs, but it does not directly attempt to minimize the number of edges in the filtered DFG (does not fulfill C3), nor to max-
imize the sum of the edge frequencies (does not fulfill C4), as we will further discuss in the following sections.Table 1 shows
the desired criteria for the DFG filtering problem introduced in Section 1, and which of the discussed techniques fulfill each
of them. The only DFG filtering approach that produces a sound (C1) and spanning (C2) filtered DFG is the Split Miner DFG
filtering. None of the approaches directly seeks to minimize the number of edges (C3) or to maximize the frequency of the
retained edges (C4). Regarding criterion C3, existing techniques offer a threshold to control the number or the percentage of
edges to be removed, but they cannot be used to maximally filter the DFG. In the case of criterion C4, some techniques (indi-
rectly) consider the frequency of the edges during removal, but they do not always remove edges in such a way as to retain
the most frequent ones, while the Heuristics Miner DFG filtering removes edges without taking into account their frequency.

3. Preliminaries

In this section, we introduce some basic notions of process mining and graph theory related to the problem that is being
addressed. We consider a business process that involves a set of activities A. We denote each of these activities with a. An
event e denotes one execution of an activity. We write OðeÞ to denote the activity associated with an event e. Usually, an
event carries additional information besides an activity label, such as one or more timestamp(s), the resource who performed
the activity, etc. However, in this paper, we focus on constructing DFGs where each vertex represents an activity and, hence,
we do not consider such additional attributes. A trace s ¼ h e1; . . . ; en i is a list (sequence) of events, such that event ei was
executed before ej for every 1 6 i < j 6 n. A trace represents one execution of the process. We use Oðs; iÞ to retrieve from
trace s the activity a executed in the event ei. An event log is defined as a collection (multi-set) of traces
L ¼ ffs1; . . . ; smgg recording m executions of a process. Finally, we use the term trace variant to refer to each unique activity
sequence h a1; . . . ;an i of a log L, where the frequency of a trace variant is the number of traces s 2 L having the same activity
sequence. Fig. 2b shows an example of an event log composed of 26 traces grouped in 12 trace variants —each trace variant
frequency is depicted in parentheses.

From an event log, we can construct a DFG capturing the consecutive (directly-follows) relations between the activities
observed in the log.

Definition 1 (Directly-Follows Relation). Given two activities a1;a2 2 A, and an event log L, there is a directly-follows relation
from a1 to a2 in L, denoted by a1>La2, iff 9ei; ej 2 s j j ¼ iþ 1 ^ OðeiÞ ¼ a1 ^ OðejÞ ¼ a2. The frequency, or weight, of a directly-
follows relation is the number of times it is present in the event log, and it is denoted by ja1>La2j.

The DFG of an event log is a directed graph where each vertex represents an activity observed in the event log, and each
edge represents a directly-follows relation. To make the start and the end of the process explicit, it is customary to include an
explicit start vertex and an explicit end vertex in the DFG of an event log. Fig. 2b depicts an example of the full DFG corre-
Table 1
DFG filtering techniques and their fulfillment of the set of criteria introduced in Section 1. ‘U’ and ‘X’ denote that the filtering technique does or does not
ensure to fulfill the criterion, respectively. In the case of criterion 4, ‘�’ denotes the filtering techniques that partially fulfill the criterion —they do not focus on
maximizing the sum of edges frequency, but they remove the edges regarding their frequency.

Filtering approach Desired search criteria

C1 C2 C3 C4

Leemans et al. [18] U X � �
Conforti et al. [8] U X � �
Weijters et al. Heuristics Miner [37] X U � X
Leemans et al. Inductive Miner [17] X U � �
Augusto et al. Split Miner [4] U U � �

833

Fig. 2. Example of an event log and its corresponding full DFG.

D. Chapela-Campa, M. Dumas, M. Mucientes et al. Information Sciences 610 (2022) 830–846
sponding to the event log in Fig. 2a. As an example, edge ðG;DÞ —with a weight of four— represents the directly-follows rela-
tion G D that appears in the trace variants h C; G; D; E; F; I; J i —grouping two traces— and h C; G; H; G; D; E; F; I; J i —
grouping another two traces.

Definition 2. [Full Directly-Follows Graph (DFG) of an event log] Given an event log L recording the executions of a set of
activities A, its (full) directly-follows graph is a (directed) graph DFG ¼ ðV ; EÞ, where V ¼ A

Sfsource; sinkg is the set of
vertices corresponding to each activity a 2 A plus a start activity —source— and an end activity —sink—, and
E ¼ fðu;vÞ 2 V � V j ðju>Lvj > 0Þ _ ðu ¼ source ^ v ¼ Oðs;1Þ ^ s 2 LÞ _ ðv ¼ sink ^ u ¼ Oðs;nÞ ^ s 2 LÞg is the set of directed
weighted edges, each edge representing a directly-follows relation observed in the event log. The weight of an edge is given
by a function x : E! N, where xððu;vÞÞ ¼ ju>Lv j iff u;v 2 A, otherwise xððsource;vÞÞ ¼ jTj j s 2 T ^ Oðs;1Þ ¼ v or
xððv ; sinkÞÞ ¼ jTj j s 2 T ^ Oðs;nÞ ¼ v . Furthermore, we define the total weight of a DFG as the sum of its edges weight
XðDFGÞ ¼P

e2ExðeÞ.

Herein, whenever we use the term DFG of an event log, we refer to the full DFG of an event log as defined above. In this
paper, we also consider subgraphs of the DFG of an event log, which we call filtered DFGs (F-DFGs for short).

Definition 3 (Filtered Directly-Follows Graph (F-DFG of an event log)). Given an event log L and its (full) directly-follows graph
DFG ¼ ðV ; EÞ, a filtered DFG of L is a graph F-DFG ¼ ðV 0; E0Þ such that V 0#V ^ E0 # E.

Following Definition 3, an F-DFG can be unsound and not spanning. Nevertheless, as stated in Section 1, we are interested
in obtaining sound filtered DFGs. To formally define the soundness property, we use the following notations. Given a vertex
v 2 V ; �v ¼ fðv1;v2Þ 2 E j v ¼ v2g denotes the set of incoming edges of vwhile v� ¼ fðv1;v2Þ 2 E j v ¼ v1g denotes the set of
outgoing edges. We note that �source ¼£ and sink� ¼£. A (directed) path from one vertex u to another vertex v, denoted by
u! v , is a sequence of edges h ðv1;v2Þ; ðv2;v3Þ; . . . ; ðvk-1;vkÞ i where u ¼ v1 and v ¼ vk.

Given the above, Leemans et al. [18] define DFG soundness as follows.

Definition 4 (Sound DFG). A DFG ¼ ðV ; EÞ is sound iff 8v 2 V there is a path source! sink such that v is one of the vertices in
that path.

As discussed in Leemans et al., the DFG of an event log is sound by construction. On the other hand, a filtered DFG may be
unsound, as the paths from a given vertex to the end vertex may be broken once some edges are removed.

A second property we seek to ensure is that a filtered DFG should be spanning. We say that a (filtered) DFG is spanning if it
contains all the activities observed in the event log (A). Trivially, the DFG of an event log is spanning, but a filtered DFG may
or may not have this property.

In this paper, we are specifically interested in extracting minimal-sized spanning filtered DFGs. To this end, we will make
use of the concept of spanning arborescence, which is the smallest spanning sub-graph that can be extracted from a given
directed graph G.

Definition 5 (Spanning Arborescence). Given a directed graph G ¼ ðV ; EÞ, an arborescence (a.k.a. a branching) of G is a tuple
B ¼ ðV 0; E0Þ where V 0#V and E0# E, such that for two distinct edges ðu;vÞ; ðu0;v 0Þ 2 E0;v – v 0, and B contains no cycle, i.e. it
contains no path h ðv1;v2Þ; ðv2;v3Þ; . . . ; ðvk �1;vkÞ i such that v1 ¼ vk. An arborescence is spanning iff V 0 ¼ V .

For example, Fig. 3 depicts an example of a spanning arborescence of the DFG in Fig. 2b, with root in the start vertex ‘j >’.
834

Fig. 3. Example of a spanning arborescence of the DFG in Fig. 2a with root in ‘j >’.

D. Chapela-Campa, M. Dumas, M. Mucientes et al. Information Sciences 610 (2022) 830–846
4. Problem formulation

As stated in Section 1, the goal of this paper is, given a DFG ¼ ðV ; EÞ with jEj ¼ n, to efficiently compute a sound and span-
ning F-DFG ¼ ðV ; E0Þ with minimum number of edges, and maximum total weight, denoted by MWMF-DFG.

Definition 6 (Maximum Weight Maximally Filtered Directly-Follows Graph (MWMF-DFG)). Given an event log L, and its
directly-follows graph DFG ¼ ðV ; EÞ, a maximumweight maximally filtered directly-follows graph is a sound filtered directly-
follows graph MWMF-DFG ¼ ðV ; E0Þ j E0 � E such that 8F-DFG ¼ ðV ; E00Þ j E00 � E ½jE0j < jE00j _ ðjE0j ¼
jE00j ^ XðMWMF-DFGÞ P XðF-DFGÞÞ�, i.e. the number of edges of MWMF-DFG is minimum, and its total weight is
maximum among all other F-DFG of the same size.

The rationale for seeking a filtered DFG of minimal size is that, once we have such a DFG, we can construct filtered DFGs of
any larger size (up to the size of the full DFG of the event log) by simply adding some of the edges that were filtered out. The
rationale for maximizing the sum of the edge weights is to ensure that, overall, we retain the most frequent relations during
the filtering. Fig. 4 depicts an example of two MWMF-DFGs of the DFG in Fig. 2b. Note that a DFG may have multiple
MWMF-DFGs. Both graphs contain 13 edges and have a total weight of 147. We can see that none of the edges can be
removed without violating the soundness, and that there is no other sound and spanning F-DFG having fewer edges, or a
higher total weight —for the same number of edges. Once an MWMF-DFG with jE0j ¼ k j k < n has been obtained, a set of
sound and spanning F-DFG ¼ ðV ; E00Þ with jE00j ¼ m j k < m < n, maximizing the total weight, can be easily computed by add-
ing the edges from E n E0 in weight descending order.

In order to analyze the complexity of the problem of finding an MWMF-DFG, we consider the unweighted version of this
problem, namely that of finding a sound and spanning maximally filtered DFG (SSMF-DFG), where an SSMF-DFG is the F-DFG
of a given DFG that is sound and spanning and has the minimum possible number of edges. Clearly, the complexity of com-
puting an MWMF-DFG is the same or higher than that of computing an SSMF-DFG, since solving the former problem imme-
diately gives us a solution to the latter one.

The SSMF-DFG problem is an instance of the Minimum Spanning Strong Sub(di) graph (MSSS) problem, which has been
proved to be NP-hard5 [5,16]. Given a strongly connected6 graph G ¼ ðV ; EÞ, the MSSS problem consists of finding the strongly
connected spanning subgraph MSSS ¼ ðV ; E0Þ j E0# E, such as the number of edges jE0j is minimum.

To map the SSMF-DFG problem into an instance of the MSSS problem, we make a DFG ¼ ðV ; EÞ strongly connected by add-
ing the edge ðsink; sourceÞ to E—we call it the augmented graph of DFG. TheMSSS ¼ ðV ; E0Þ of this augmented graph has a path
between every two vertices u;v 2 V . Thus, it has a path from every vertex v 2 V to source. As �source ¼ ðsink; sourceÞ, all these
paths must contain sink and, thus, for all v 2 V , there must be a path v ! sink. In the same way, there must exist a path
source! v for all v 2 V . Thus, by removing ðsink; sourceÞ, we obtain a maximally filtered DFG.

This proves that, if we solve the SSMF-DFG problem, we would have solved the MSSS problem for a subclass of graphs —
those having an edge ðu;vÞ such that ju � j ¼ 1 and j � v j ¼ 1.

5. Approach

In this section, we propose several polynomial-time heuristics to approximate theMWMF-DFG problem (cf. Section 4). As
the proposed techniques seek to generate an MWMF-DFG but do not necessarily find it, we will refer to the outputs of these
techniques as MWMF-DFG approximations, or simply F-DFGs.
5 TheMSSS problem has been shown to be polynomial for certain restricted families of graphs: graphs with cycles of size no more than three edges, extended
semicomplete graphs, and quasi-transitive graphs [5]. Nevertheless, none of these results apply to the problem presented in this paper, as the only restrictions
in the graph are those implied in Definition 2. Furthermore, it has been proved that for any graph with a cycle of more than 17 edges, the problem is MAX
SNP� hard, implying that there cannot exist a polynomial-time approximation scheme for this problem, unless P ¼NP [16].

6 A graph G ¼ ðV ; EÞ is strongly connected if there is a path u! v for every two vertices u;v 2 V .

835

Fig. 4. Example of two MWMF-DFG of the DFG in Fig. 2b, formed by 13 edges and with a total weight of 147.

D. Chapela-Campa, M. Dumas, M. Mucientes et al. Information Sciences 610 (2022) 830–846
5.1. Greedy approach

A naive approach to approximate the computation of an MWMF-DFG, is to remove edges from the full DFG, one after
another, in ascending weight order, i.e. from least frequent to most frequent. To ensure that the removal of an edge does
not lead to an unsound F-DFG, we propose to perform two breadth-first searches after each removal: one forward from
source to sink, and another backward from sink to source. If all the vertices are reached in both searches, the result is sound
and the filtering can continue with the next edge. Otherwise, the edge has to be put back before considering the removal of
the next edge. Note that not all edges have to be considered for removal.

Performing two breadth-first searches for every edge is inefficient, and thus we should avoid it if possible. We note that
the removal of an edge ðu;vÞ 2 E such that ju � j ¼ 1 _ j � v j ¼ 1 —i.e. ðu;vÞ is the only outgoing edge of u, or the only incom-
ing edge of v— will necessarily lead to u or v not having any incoming or outgoing edge, thus violating the soundness prop-
erty. Accordingly, we will not consider such edges for removal.

The above observations lead to a straightforward Greedy algorithm for DFG filtering.7

Greedy:
let G ¼ ðV ; EÞ be a sound DFG
let x be a weight function over E
put in Ef all the edges in E
while Ef has unvisited edges:
remove unvisited ðu;vÞ 2 Ef with min xððu;vÞÞ
mark ðu;vÞ as visited
if (ju � j > 1 and j � v j > 1):
remove ðu;vÞ from Ef
if (ðV ; Ef Þ is not sound):
add ðu;vÞ back to Ef

return ðV ; Ef Þ
This technique computes sound and spanning F-DFGs. The spanning property is ensured because the algorithm does not
remove any vertex. Soundness is ensured by checking that this property is maintained after each edge removal.

Nevertheless, this removal of edges may affect future removals and block the removal of other edges, which may lead to a
non-optimal result in both dimensions (size and total weight). Fig. 5 shows the F-DFG obtained by applying Greedy to the
DFG in Fig. 2b. The removal of ðH; EÞ from the full DFG forces ðG;DÞ and ðH;GÞ to be kept in the F-DFG to ensure soundness,
and makes ðj >;DÞ redundant. In this context, an edge ðu;vÞ from a DFG is redundantwhen there is an alternative path u! v
not including ðu;vÞ in it. Conversely, Fig. 4 shows that keeping ðH; EÞ in the F-DFG and removing ðG;DÞ allows us to obtain a
higher total weight with the same number of edges.

Given that two breadth-first searches are being executed for each edge, the time complexity of the Greedy approach is
OðEðV þ EÞÞ, being E the number of edges and V the number of vertices in the DFG. Assuming the number of edges is greater
than the number of vertices —otherwise, no filtering is needed— we can express the time complexity of Greedy as OðE2Þ.
7 This greedy approach is used in some commercial tools, including APROMORE.

836

Fig. 5. MWMF-DFG approximation formed by 13 edges and with a total weight of 145, computed by Greedy for the DFG in Fig. 2b.

D. Chapela-Campa, M. Dumas, M. Mucientes et al. Information Sciences 610 (2022) 830–846
5.2. Two Way Edmonds approach

An MWMF-DFG is a spanning F-DFG with minimum number of edges and maximum total weight, where for all vertices
v 2 V , there must be a path source! v and another path v ! sink. A spanning arborescence of a DFG is a tree rooted at a
vertex r, where for all v 2 V there is a path r ! v . Chu and Liu [7] and Edmonds [11] have independently presented an
approach to efficiently compute, given a graph, a spanning arborescence such as the sum of its edges weight is maximum
(or minimum) —a.k.a., an optimum branching.

We propose a technique, henceforth referred to as Two Ways Edmonds (TWE), that consists of merging the maximum
weight spanning arborescence with root in source (B!), and the reversed maximum weight spanning arborescence with root
in sink (B). 8

Two Ways Edmonds:
let G ¼ ðV ; EÞ be a sound DFG
let x be a weight function over E

let E�1 be the reverse operation which changes the direction of each edge in E
B! ¼ ðV ; E!Þ # spanning arborescence of G with root in source

B ¼ ðV ; E Þ # spanning arborescence of G0 ¼ ðV ; E�1Þ with root in sink

E0 ¼ E!
S ðE Þ�1

return ðV ; E0Þ

This technique computes sound and spanning F-DFGs. The spanning property is ensured because each of the two arbores-
cences (the forward B! and the backward B) are spanning, and thus their union contains all the vertices in the full DFG.
Soundness is also ensured by construction. By combining B! and B we ensure that for all v 2 V n fsource; sinkg there is a
path source! v —contained in B!— and a path v ! sink —contained in B .

Fig. 6c depicts the F-DFG obtained by applying TWE to the DFG in Fig. 2b. First, TWE computes the maximum weight
spanning arborescence with root in source (B!, depicted in Fig. 6a) by applying the Chu-Liu-Edmonds algorithm to the com-
plete DFG. Then, TWE reverses the edges of the complete DFG, applies the Chu-Liu-Edmonds algorithm, and turns back the
edges again to obtain the reversed maximumweight spanning arborescence with root in sink (B , depicted in Fig. 6b). As we
can see, the result of this combination can contain redundant edges that can be removed to improve the filtering —e.g. ðB; ½�Þ.
Accordingly, we propose an alternative technique consisting of applying Greedy to the F-DFG computed by Two Ways
Edmonds (TWE+G) to remove these redundant edges, whose result can be seen in Fig.6.

The time complexity of TWE is given by the time complexity of Chu-Liu-Edmonds algorithm, which is OðEVÞ, being E the
number of edges and V the number of vertices in the DFG. Nevertheless, more efficient algorithms have been proposed with
time complexities of OðElogðVÞÞ by Tarjan [25] (after a correction made by Camerini et al. [6]), and of OðEþ VlogðVÞÞ by
Gabow et al. [13]. Regarding TWE+G, each arborescence has V � 1 edges, and thus, the Greedy addition runs over an
F-DFG with a maximum of 2V � 2 edges. This reduces both the number of breadth-first searches, and the possibility to
remove an edge that causes to end in a local optimum. Hence, the time complexity of TWE+G is OðEV þ V2Þ.

5.3. SplitMiner filtering approach

Augusto et al. proposed in [4] a process discovery algorithm named Split Miner. One of the first steps of this algorithm is
to filter a DFG seeking to minimize the number of edges while maximizing the total weight of the graph. This approach
8 A similar approach has been proposed in [12] as a 2-approximation to the MSSS problem, where the arborescence and reversed arborescence having the
same root are merged to obtain a spanning strongly connected subgraph.

837

Fig. 6. Maximum weight spanning arborescences and MWMF-DFG approximations computed by TWE and TWE+G for the DFG in Fig. 2b.

D. Chapela-Campa, M. Dumas, M. Mucientes et al. Information Sciences 610 (2022) 830–846
retains, for each vertex v, the incoming edge that is part of the path source! v with maximum capacity and the outgoing
edge being part of the path v ! sink with maximum capacity. In this context, the capacity of a path is the frequency of
the least frequent edge in this path. Henceforth, we will refer to this technique as Split Miner filtering (SMf).

Note that Augusto et al.’s proposal aims to discover a BPMN process model, and thus, they apply different pruning strate-
gies before the filtering phase. The starting point of their filtering technique is not the complete DFG, but a pruned DFG
where the short cycles —i.e. cycles formed by two edges such as ða; bÞ and ðb; aÞ— are pruned by removing the edge with less
weight, or both edges if a concurrency relation between the vertices in the cycle is detected. In our approach, we do not need
to remove such short cycles, hence we do not apply the short-cycle pruning step of the Split Miner algorithm, but only the
filtering step. We present below a declarative description of the SMf algorithm. The original one is a variant of Dijkstra’s
shortest path algorithm and is presented in [4].

Split Miner filtering:
let G ¼ ðV ; EÞ be a sound DFG
let x be a weight function over E
let E0 be an empy edge set
for v in V:
add to E0 the ðu;vÞ 2 E having max capacity
add to E0 the ðv ;uÞ 2 E having max capacity

return ðV ; E0Þ
838

D. Chapela-Campa, M. Dumas, M. Mucientes et al. Information Sciences 610 (2022) 830–846
This algorithm computes sound and spanning F-DFGs. The spanning property is ensured because the algorithm does not
remove any vertex in the filtering. Soundness is ensured because every vertex v has an incoming edge that is part of a path
from source to v as well as an outgoing edge that is part of a path from v to sink.

We note that this algorithmmay remove the edge with higher weight because the decision is based on the capacity of the
paths, not on the edges weight. As an example, to choose which of the incoming edges of E to retain, Fig. 7 shows all the paths
j >! E and their capacities. In this case, during the filtering, the retained incoming edge of E is ðD; EÞ, not because it is the
edge with the highest weight, but because it is part of the path with maximum capacity (Fig. 7a). The same process is exe-
cuted to retain one incoming and one outgoing edge per vertex. Fig. 8a shows the F-DFG obtained by applying the Split Miner
filtering to the DFG in Fig. 2b. We can see that the edge ðB;AÞ has been discarded in favor of ðj >;AÞ because the capacities of
all paths j >! A are 1, and the latter was chosen first.

Similar to the TWE approach, the SMf result may contain redundant edges —e.g. ðC; EÞ—, and thus, we also propose an
alternative technique consisting of applying Greedy to the F-DFG computed by Split Miner filtering (SMf+G) in order to fur-
ther minimize the number of edges. The output of SMf+G is depicted in Fig. 8b, where we can see that the removal of the
edge ðB:AÞ by SMf makes the edges ðj >;AÞ and ðB; ½�Þ necessary to maintain the soundness, causing SMf+G to not reach an
optimal solution.

To perform the capacity calculation of each element, Augusto et al. propose a variant of Dijkstra’s shortest path algorithm,
which re-inserts a vertex to the search list when its capacity has been updated. This approach has a time complexity of
OðEþ fVÞ, where E is the number of edges, V is the number of vertices in the DFG, and f is the maximum number of incoming
Fig. 7. Paths j >! E and their capacities —i.e. for each path, the least of its edges weight.

Fig. 8. MWMF-DFG approximations computed by SMf and SMf+G for the DFG in Fig. Fig. 2b.

839

D. Chapela-Campa, M. Dumas, M. Mucientes et al. Information Sciences 610 (2022) 830–846
edges to a vertex in the graph. Similar to TWE+G, the F-DFG obtained by SMf has a maximum of 2V � 2 edges. Hence, the
time complexity of SMf+G is OðEþ V2Þ.

6. Evaluation

This section reports on an experimental evaluation of the proposed techniques in terms of their computational efficiency
and in terms of their ability to maximally filter the full DFG of an event log while retaining the most frequent behavior
recorded in the original log. The section first discusses the datasets used in the evaluation followed by the evaluation setup
and the findings.

6.1. Datasets

In the interest of enhancing the ecological validity of the empirical evaluation, we took as a starting point a collection of
real-life events logs available in the 4TU Centre for Research Data.9 As of 30 November 2020, this collection contains 48 (real-
life) event logs. We selected a subset of them using the following criteria:

� We discarded datasets in the collection that do not capture the execution of a business process as defined in [10], i.e. a
collection of activities performed by multiple actors in view of providing an outcome that is of value to a customer. Given
this definition, we discarded event logs recording the execution of software tests or software models (JUnit 4.12 log,
Apache Commons Crypto, Statechart workbench), a group of clickstream logs (BPIC 2016), an autonomous vehicle log (Nasa
CEV), and a log of a lighting controller.
� We discarded event logs with trivial behavior, specifically a log with one single trace variant (Credit Requirement) and a
log consisting of only three activities (BPIC 2013).
� Some of the event logs are part of a group. For example, there is a group of five logs that were used in the BPIC 2015 chal-
lenge. All these logs represent the same process executed at different organizations (in this case, five municipalities). In
such situations, we only retained one representative log per group. Specifically, we only retained the first of the five BPIC
2015 event logs. From the Unrineweginfectie group, recording urinary tract infection (UTI) cases, we only retained Logboek
3 since it is the one with the largest number of trace variants. Similarly from the BPIC 2020 group, we retained the one
with the largest number of trace variants (Travel permit data). Finally, from the BPIC 2014 group, we retained Activity log
for incidents since the other two tables in this dataset do not have a timestamp column.
� We discarded event logs that correspond to pre-processed variants of other event logs included in the collection. Specif-
ically, we discarded the CoSeLoG group of logs as this group contains pre-processed versions of logs in the BPIC 2015
group. We also discarded a dataset containing pre-processed versions of other event logs in the collection, which were
used in an automated process discovery benchmark.

Based on the above inclusion criteria, we ended up with 13 event logs. Table 2 shows the characteristics of the logs and of
their full DFGs. The size of the logs varies from dozens to tens of thousands of trace variants and from hundreds to millions of
events. The full DFGs range in size from 12 to 626 vertices and from 25 to 4821 edges. Note that there are two datasets with a
notably higher number of vertices and edges (Hospital Log and BPIC 2015), but they have a ratio of edges to vertices (i.e. den-
sity) comparable to other logs. When it comes to density, the two most distinctive datasets are UTI Cases with 2 edges per
vertex (lowest density) and BPIC 2014 with 19 edges per vertex (highest density).

6.2. Experimental setup

We evaluated the five approaches presented in Section 5: Greedy (G), Two Ways Edmonds (TWE), Two Ways Edmonds
combined with Greedy (TWE+G), Split Miner filtering (SMf), and Split Miner filtering combined with Greedy (SMf+G). The
SMf technique is implemented in Java. This implementation takes as input a parameter g corresponding to the desired level
of filtering. We set g ¼ 1:0 so the resulting F-DFG is the most filtered one that this technique can produce. All the other tech-
niques were implemented in Kotlin and they have no configuration parameters. The implementations of all five techniques
are available at https://github.com/david-chapela/dfg-edge-filtering.

We recall that the problem addressed in this paper is that of efficiently computing a sound and spanning subgraph of a
full DFG with a minimal number of edges and a maximal sum of edge frequencies, as formulated in Section 4. Accordingly,
we evaluate the goodness of the presented algorithms in terms of the number of edges of the filtered DFGs they produce as
well as the total weight of the filtered DFGs. We note that it is unfair to compare F-DFGs of different sizes in terms of their
total weight, as an F-DFG with more edges will presumably have a higher total weight. To address this concern, before com-
paring the MWMF-DFG approximations produced by different algorithms for a given log, we normalize the sizes of these
MWMF-DFG approximations so that they all have the same size. Let N be the size of the largest of the MWMF-DFG
approximations produced by different algorithms for a given log. To normalize, we take eachMWMF-DFG approximation that
9 https://data.4tu.nl/search?q=:keyword:%20%22real%20life%20event%20logs%22.

840

https://github.com/david-chapela/dfg-edge-filtering

Table 2
Characteristics of the datasets used in the experimentation: for each event log the number of traces (# traces), number of trace variants (# trace variants),
number of events # events, and minimum (Min.) and maximum (Max.) trace length; and for the full DFG of each event log the number of vertices (# vertices),
number of edges (# edges), and the ratio of the number of vertices to the number of edges (jEj=jV j).

Event log Full DFG

traces # trace # events Trace length # vertices # edges jEj=jV j
Dataset variants Min. Max.

Hospital Log [28] 1,143 981 150,291 1 1,814 626 4,295 6.86
BPIC 2012 [29] 13,087 4,366 262,200 3 175 26 137 5.27
BPIC 2014 [30] 46,616 22,632 466,737 1 178 41 798 19.46
BPIC 2015 [31] 1,199 1,170 52,217 2 101 400 4,821 12.05
BPIC 2017 [32] 31,509 15,930 1,202,267 10 180 28 191 6.82
BPIC 2018 [35] 43,809 28,457 2,514,266 24 2,973 43 619 14.40
BPIC 2019 [33] 251,734 11,973 1,595,923 1 990 44 538 12.23
CCC 2019 [22] 20 20 697 26 59 31 150 4.84
BPIC 2020 [34] 7,065 1,478 86,581 3 90 53 568 10.72
Sepsis Cases [19] 1,050 846 15,214 3 185 18 135 7.50
Road Traffic [9] 150,370 231 561,470 2 20 13 78 6.00
UTI Cases [14] 1,650 50 6,973 2 35 12 25 2.08
Hospital Billing [20] 100,000 1,020 451,359 1 217 20 158 7.90

D. Chapela-Campa, M. Dumas, M. Mucientes et al. Information Sciences 610 (2022) 830–846
has a size less than N, and we add back, one by one, the filtered edges in weight descending order until the size of the
extended MWMF-DFG is equal to N. The total weight of the resulting extended MWMF-DFG is called the normalized total
weight. We use this latter measure, instead of the total weight of the MWMF-DFG approximations.

Naturally, we also seek to obtain a filtered DFG that retains, to the maximal possible extent, the behavior recorded in the
event log from which the full DFG is extracted. We also seek to obtain a precise filtered DFG, i.e. a filtered DFG that captures
the smallest possible amount of extra behavior (i.e. behavior not observed in the event log). Accordingly, we also report on
the fitness and precision of the filtered DFGs w.r.t. the original event logs. To measure fitness, we translate each maximally
filtered DFG into an equivalent Petri net (by treating the filtered DFG as an automaton) and we then apply the alignment-
based fitness measure defined in [1].10 To measure precision, we use a recently proposed approach for measuring precision of
Petri nets against event logs [15]. This precision measure evaluates the amount of behavior captured by the model but not
observed in the event log. The method for calculating this measure takes as input a parameter called ‘‘number of skips” which
corresponds to the maximum allowed number of non-conforming movements (skips) that may exist between a trace produced
by the model and a ‘‘matching” trace in the log. If the number of skips required to match a given trace of the model with any one
trace in the log is greater than this number, the technique considers that this model trace cannot be matched (i.e. this behavior
does not occur in the log). We measured the precision with a number of skips of 3 and 5. We did not measure with higher values
because increasing the number of skips impacts the computation time and causes more datasets to time-out, which makes the
precision metric less useful for comparison purposes. Unfortunately, even when restricting the number of skips to a small num-
ber (3 or 5), the implementation of the precision measure in [15] does not scale up to the size of the largest event logs in this
empirical evaluation. To cope with this limitation, we set a time-out of 4 h when measuring precision. No precision values are
reported in the case of a time-out.

Finally, we measured the efficiency of each approach by means of their execution time (runtime) from the moment the
event log is read from secondary storage to the moment the maximally filtered DFG has been constructed in memory. All the
experiments were conducted on Intel(R) Core(TM) i5-8250U with 8 GB of RAM running JVM 11.

6.3. Results

In this section, we present the results obtained in the performed evaluation of the proposed techniques.

6.3.1. Number of edges
Table 3 shows the number of edges of the MWMF-DFG approximation computed by each algorithm. SMf presents the

worst results. It yields the smallest F-DFG only in the dataset with the lowest edge to vertex ratio —UTI Cases— where all
techniques converge to the same result. TWE outperforms SMf in eight datasets, but both of them perform worse than
the other algorithms. The best results are obtained by G, TWE+G, and SMf+G which produce filtered DFGs with very compa-
rable number of edges. We note that SMf+G never yields better results than TWE+G, and is outperformed by it in three data-
sets. Conversely, TWE+G outperforms G in three datasets —BPIC 2014, BPIC 2015 and CCC 2019—, G outperforms TWE+G in
one dataset —Hospital Log—, and both obtain the same results in the remaining nine datasets.

In order to statistically analyze if there is a difference between the techniques insofar as the number of edges is con-
cerned, we performed a Friedman ranking test followed by a Holm post hoc test using STAC [23]. The Friedman ranking test
10 This approach to measure fitness of filtered DFGs was proposed in [18].

841

Table 3
Number of edges of the MWMF-DFG approximations computed by each of the proposed tech-
niques, for the datasets presented in Table 2. The gray cells mark, for each dataset, the best result
(s) out of the five filtering techniques.

D. Chapela-Campa, M. Dumas, M. Mucientes et al. Information Sciences 610 (2022) 830–846
calculates a rank for the approaches based on their performance, where the lower the rank, the better. On the other hand, the
Holm post hoc method computes the significance of the difference between every two techniques. Table 4 shows the results
of the statistical tests. We applied the Holm post hoc test using the first ranked approach —TWE+G— as a control method,
thus calculating the p-value for each comparison of TWE+G with each of the other approaches. We can see that TWE+G has
been ranked as the best technique, with significance values proving that TWE+G is superior to TWE and SMf. Regarding TWE
+G, SMf+G, and G, there is not enough evidence to conclude that their performance is different.
6.3.2. Total weight
Table 5 provides the normalized total weights of theMWMF-DFG approximations produced by G, TWE+G, and SMf+G. We

do not include TWE and SMf in this table because we showed above that their performance regarding the number of edges is
clearly below that of the other techniques. We observe that SMf+G does not outperform the other two techniques in any
dataset, although it achieves the best result in eight datasets, ex aequo with other techniques. G outperforms the other
two techniques in one dataset and achieves the best results (ex aequo with other techniques) in other nine datasets. Finally,
TWE+G outperforms the other two techniques in three datasets and achieves the best results (ex aequo with other tech-
niques) in other seven datasets.
6.3.3. Fitness
Table 5 depicts the fitness of the MWMF-DFG approximations computed by each of the techniques. The relative perfor-

mance of the techniques in terms of fitness is similar to their relative performance in terms of normalized total weight in
all datasets except three (BPIC 2018, BPIC 2020, and Sepsis cases). In the BPIC 2018, the three techniques yield the same fit-
ness value, although TWE+G obtained a worse normalized total weight. This can be explained by the small difference in the
normalized total weight. The same occurs in the Sepsis cases dataset, where SMf+G yields slightly lower normalized total
Table 4
Non-parametric tests for the performance of the five techniques
regarding the number of edges.

Algorithm Friedman Ranking Holm Adj. p-value

TWE + G 1.885
SMf + G 2.154 1.000
G 2.192 1.000
TWE 4.077 2.8E�3
SMf 4.692 6.0E�5

842

Table 5
Total weight, Alignment-based fitness, and precision of theMWMF-DFG approximation computed by G, TWE+G, and SMf+G, normalized by adding back some of
the filtered edges in weight-descending order until the three filtered DFGs have the same size (denoted by # edges). The gray cells mark, for each dataset, the
best result(s) out of the five filtering techniques.

D. Chapela-Campa, M. Dumas, M. Mucientes et al. Information Sciences 610 (2022) 830–846
weight but similar fitness. Regarding the BPIC 2020, although the three techniques yield the same normalized total weight,
TWE+G yields higher fitness.

We note that the fitness values shown in Table 5 are relatively low. This result is not surprising given that the DFGs of the
filtered logs contain only a small fraction of the edges in the original log. For example, the normalized filtered DFGs of the
Hospital Log only have 21% (918/4,295) of the edges of the full DFG. Even more strikingly, the normalized filtered DFGs of the
BPIC 2015 log have only 10% (496/4,821) of the edges of the full DFG. While maximally filtered DFGs clearly enhance the
understandability of the visualizations produced by process mining tools, this understandability comes at the cost of accu-
racy. Whenever possible, users of DFGs should consider adjusting the level of edge filtering in order to strike a balance
between understandability and accuracy.

We also note that the SMf+G approach leads to low fitness in the case of the Hospital Log, while the pure greedy (G) and
the TWE+G approach achieve comparatively better fitness. This can be explained by the fact that this event log contains a
large number of edges with a frequency of one in the full DFG, while some of the edges have a high frequency. Most of
the nodes in this log have one incoming and one outgoing edge with high frequency, and then a number of other edges with
a frequency of one or other low frequencies. This structure lends itself to the strategy followed by the greedy approach,
which in such cases will naturally tend to retain the main pathways in the DFG. Conversely, the SMf approach tries to keep
edges that are part of a path from a vertex to the sink (or from the source to a vertex) with the largest capacity. As a result,
SMf may drop some paths that contain edges with relatively high frequency when these same paths also contain edges with
very low frequency.
6.3.4. Precision
Table 5 depicts the precision (with the number of skips set to three) of theMWMF-DFG approximations computed by each

of the techniques. A dash in this column indicates that the precision measurement timed-out after 4 h. We observe that the
results of the three algorithms are very close to each other in five out of the seven datasets. Regarding the other two, SMf+G
obtains slightly lower precision values. Nevertheless, the values in these cases are comparable. We have also measured the
precision setting the number of skips to five. When the number of skips is five, the values of precision are generally higher in
absolute numbers (than with three skips), but in relative terms the results are similar.

We performed a statistical test to determine if we can assert a statistically significant difference between the techniques
in terms of normalized total weight and fitness. In both cases, total weight and alignment-based fitness, the Friedman rank-
ing placed TWE+G first, followed by G and SMf+G. However, the post hoc significance results do not allow us to conclude that
this difference is statistically significant. Regarding the precision, there are too few data points to do a statistical test.
843

D. Chapela-Campa, M. Dumas, M. Mucientes et al. Information Sciences 610 (2022) 830–846
6.3.5. Runtimes
Table 6 shows the average runtime of the evaluated techniques for each of the datasets —measured as the average of ten

executions. TWE and TWE+G present the lowest runtimes in all cases except the two datasets having more than 400 activ-
ities— Hospital Log and BPIC 2015. Regarding these two datasets, G presents the worst runtimes exceeding 50 s in both cases,
while SMf obtains the best runtimes with values under 100 ms, followed by SMf+G with values under 2 s, and by TWE+G
with runtimes of 4 and 5 s.

Table 7 shows the results of the Friedman ranking and Holm post hoc tests regarding Table 6 runtime values. We have
used the first ranked approach —TWE— as a control method for the Holm post hoc tests. As we can see, the most efficient
technique is TWE, followed by TWE+G. Regarding the post hoc tests, there is a significant difference to conclude that
TWE outperforms G, SMf, and SMf+G, but not to determine it outperforms TWE+G.
6.3.6. Threats to validity
The reported evaluation has a number of threats to validity. First, a potential threat to internal validity in regard to the

evaluation of runtime execution times is the fact that we conducted experiments using a single computing environment. The
results might differ on other computing environments. To mitigate this threat to validity, we executed each experiment ten
times and reported the average. We did not observe major variations between different executions. To ensure the repro-
ducibility of the results, we have relied on publicly available logs and we have publicly released the implementations of
the proposed techniques.

Another threat to potential validity is the fact that we relied on only one measure of fitness. However, this measure is
widely used in the field of automated process discovery [3]. Related to the above, we compared the total weights using a
normalization approach. There may be other approaches to perform such a comparison.
Table 6
Runtimes of the proposed techniques measured as the average of ten executions. The gray cells mark,
for each dataset, the best result(s) out of the five filtering techniques.

Table 7
Non-parametric tests for the performance of the five techniques
regarding the runtimes.

Algorithm Friedman Ranking Holm Adj. p-value

TWE 1.308
TWE + G 2.538 0.204
G 3.000 2.9E�4
SMf 3.885 0.045
SMf + G 4.269 2E�5

844

D. Chapela-Campa, M. Dumas, M. Mucientes et al. Information Sciences 610 (2022) 830–846
A potential threat to external validity is given by the use of a limited number of event logs (13 logs). To mitigate this risk,
we selected these log using carefully justified criteria, in such a way that the selected logs are representative of a broader
pool of real-life logs. Furthermore, the event logs cover different industry domains (banking, IT services, healthcare, etc.)
and they have a wide range of characteristics with respect to size and complexity.

7. Conclusion and future work

In this paper, we have formalized the problem of DFG simplification as an optimization problem where we seek to obtain
a filtered DFG with the least possible number of edges while maximizing the frequency of the retained edges —i.e. the total
weight. We have shown that this problem is an instance of an NP-hard problem from the graph theory field. Accordingly,
we have presented a set of polynomial-time heuristics to approximate the problem, and we have conducted an evaluation to
compare the optimality and the runtime performance of these heuristics.

Based on the results, we found that none of the heuristics outperforms the others across all datasets. In 9 out of the 13
datasets, three of the heuristics (G, TWE+G, and SMf+G) yield the lowest number of edges. The TWE+G approach produces
the lowest number of edges in other three datasets —in one of which it does so ex aqueo with SMf+G—, while Greedy out-
performs the other approaches in the remaining dataset. Regarding the total weight, similar observations can be made. TWE
+G obtains the best results in most of the datasets, outperforming G in three of them, but being outperformed by it in other
three. SMf+G never outperforms the other techniques, but it yields the same results in seven datasets. Similar observations
can be made when comparing the relative performance of the proposed techniques in terms of fitness. Regarding precision,
all techniques present very comparable results, with slightly lower values of SMf+G in two of the datasets. We have per-
formed a set of non-parametric statistical tests to compare the techniques regarding the filtering performance, concluding
that there is not enough evidence to say there is a difference between TWE+G, G, and SMf+G. On the other hand, these three
techniques outperform TWE and SMf in a statistically significantly manner.

Regarding the execution time, the most efficient technique is TWE, closely followed by TWE+G. TWE+G outperforms G in
execution time in all the cases, and it underperforms SMf + G only in the two datasets that contain with more than 400 activ-
ities. This behavior was predictable given the worst-time complexity analysis of the algorithms (cf. Section 5). Indeed, TWE is
more dependent on the number of vertices than SMf —with time complexities of OðEVÞ and OðEþ fVÞ, respectively.

In summary, barring situations where the number of activities in the process is high, TWE+G offers the best trade-off
between filtering performance and execution time. In the case of processes with hundreds of activities, SMf+G is a preferable
option, as it sacrifices filtering performance but yields lower execution times.

One of the purposes of DFG filtering is to produce DFGs that are easier to comprehend. In this paper, we measured the
simplicity of a DFG in terms of the number of edges. While the number of edges has been shown to be correlated with under-
standability in the context of process modeling [21], a lower number of edges does not always imply higher understandabil-
ity. An avenue for future work is to conduct user studies to determine how different DFG filtering techniques compare to
each other in a practical setting. Several algorithms for automated discovery of process models (BPMN models or Petri nets)
take a DFG as a starting point, e.g. Split Miner [4], Inductive Miner [17], Fodina [36]. A possible direction for future work is to
study how the DFG filtering approaches proposed in this paper can be integrated into these automatic process discovery
algorithms and what trade-off —e.g. in terms of accuracy or simplicity measures —they provide relative to the existing
DFG filtering methods integrated into these algorithms.

CRediT authorship contribution statement

David Chapela-Campa: Conceptualization, Methodology, Software, Validation, Formal analysis, Investigation, Data cura-
tion, Writing – original draft, Writing – review & editing, Visualization. Marlon Dumas: Conceptualization, Methodology,
Investigation, Resources, Writing – review & editing, Visualization, Supervision, Project administration, Funding acquisition.
Manuel Mucientes: Methodology, Writing – review & editing, Supervision, Project administration, Funding acquisition.
Manuel Lama: Methodology, Writing – review & editing, Supervision, Project administration, Funding acquisition.

Declaration of Competing Interest

The authors declare that they have no known competing financial interests or personal relationships that could have
appeared to influence the work reported in this paper.

Acknowledgements

We thank Luciano García-Baíuelos for proposing the idea of combining the results of Chu-Liu-Edmonds’ algorithm to filter
a DFG. We also thank Adriano Augusto for providing us with the implementation of the Split Miner filtering technique. This
research was funded by the Spanish Ministry of Economy and Competitiveness (TIN2017-84796-C2-1-R) and the Galician
Ministry of Education, Culture and Universities (ED431G/08). These grants are co-funded by the European Regional Devel-
opment Fund (ERDF/FEDER program). D. Chapela-Campa is supported by the Spanish Ministry of Education, under the
845

D. Chapela-Campa, M. Dumas, M. Mucientes et al. Information Sciences 610 (2022) 830–846
FPU national plan (FPU16/04428 and EST19/00135). This research is also funded by the Estonian Research Council (grant
PRG1226).

References

[1] A. Adriansyah, B.F. van Dongen, W.M.P. van der Aalst, Conformance checking using cost-based fitness analysis, in: Proceedings of the 15th IEEE
International Enterprise Distributed Object Computing Conference, EDOC 2011, IEEE Computer Society, 2011, pp. 55–64.

[2] A. Armas-Cervantes, M. Dumas, M.L. Rosa, A. Maaradji, Local concurrency detection in business process event logs, ACM Trans. Internet Technol. 19 (1)
(2019) 16:1–16:23.

[3] A. Augusto, R. Conforti, M. Dumas, M.L. Rosa, F.M. Maggi, A. Marrella, M. Mecella, A. Soo, Automated discovery of process models from event logs:
Review and benchmark, IEEE Trans. Knowl. Data Eng. 31 (4) (2019) 686–705.

[4] A. Augusto, R. Conforti, M. Dumas, M.L. Rosa, A. Polyvyanyy, Split miner: automated discovery of accurate and simple business process models from
event logs, Knowl. Inf. Syst. 59 (2) (2019) 251–284.

[5] J. Bang-Jensen, G.Z. Gutin, Digraphs – Theory, Algorithms and Applications, second ed., Springer Monographs in Mathematics, Springer, 2009.
[6] P.M. Camerini, L. Fratta, F. Maffioli, A note on finding optimum branchings, Networks 9 (4) (1979) 309–312.
[7] Y.J. Chu, T.H. Liu, On the shortest arborescence of a directed graph, Sci. Sin. 14 (1965) 1396–1400.
[8] R. Conforti, M.L. Rosa, A.H.M. ter Hofstede, Filtering out infrequent behavior from business process event logs, IEEE Trans. Knowl. Data Eng. 29 (2)

(2017) 300–314.
[9] M.M. de Leoni, F. Mannhardt, Road traffic fine management process, 2015.
[10] M. Dumas, M.L. Rosa, J. Mendling, H.A. Reijers, Fundamentals of Business Process Management, second ed., Springer, 2018.
[11] J. Edmonds, Optimum branchings, J. Res. Natl. Bureau Standards B 71 (4) (1967) 233–240.
[12] G.N. Frederickson, J. JáJá, Approximation algorithms for several graph augmentation problems, SIAM J. Comput. 10 (2) (1981) 270–283.
[13] H.N. Gabow, Z. Galil, T.H. Spencer, R.E. Tarjan, Efficient algorithms for finding minimum spanning trees in undirected and directed graphs,

Combinatorica 6 (2) (1986) 109–122.
[14] P. Gunst, Urineweginfectie (uwi-casus) logboek, 2020.
[15] A.A. Kalenkova, A. Polyvyanyy, A spectrum of entropy-based precision and recall measurements between partially matching designed and observed

processes, in: E. Kafeza, B. Benatallah, F. Martinelli, H. Hacid, A. Bouguettaya, H. Motahari (Eds.), Service-Oriented Computing – 18th International
Conference, ICSOC 2020, Dubai, United Arab Emirates, December 14–17, 2020, Proceedings. Vol. 12571 of Lecture Notes in Computer Science, Springer,
2020, pp. 337–354.

[16] S. Khuller, B. Raghavachari, N.E. Young, Approximating the minimum equivalent digraph, SIAM J. Comput. 24 (4) (1995) 859–872.
[17] S.J.J. Leemans, D. Fahland, W.M.P. van der Aalst, Discovering block-structured process models from event logs containing infrequent behaviour, in: N.

Lohmann, M. Song, P. Wohed (Eds.), Business Process Management Workshops – BPM 2013 International Workshops, Beijing, China, August 26, 2013,
Revised Papers. Vol. 171 of Lecture Notes in Business Information Processing, Springer, 2013, pp. 66–78.

[18] S.J.J. Leemans, E. Poppe, M.T. Wynn, Directly follows-based process mining: Exploration & a case study, in: International Conference on Process Mining,
ICPM 2019, Aachen, Germany, June 24–26, 2019, IEEE, 2019, pp. 25–32.

[19] F. Mannhardt, Sepsis cases – event log, 2016.
[20] F. Mannhardt, Hospital billing – event log, 2017.
[21] J. Mendling, H.A. Reijers, W.M.P. van der Aalst, Seven process modeling guidelines (7PMG), Inf. Software Technol. 52 (2) (2010) 127–136.
[22] J. Munoz-Gama, R.R. de la Fuente, M.M. Sepúlveda, R.R. Fuentes, Conformance checking challenge 2019 (ccc19).
[23] I. Rodríguez-Fdez, A. Canosa, M. Mucientes, A. Bugarín, STAC: A web platform for the comparison of algorithms using statistical tests, in: A. Yazici, N.R.

Pal, U. Kaymak, T. Martin, H. Ishibuchi, C. Lin, J.M.C. Sousa, B. Tütmez (Eds.), 2015 IEEE International Conference on Fuzzy Systems, FUZZ-IEEE 2015,
Istanbul, Turkey, August 2–5, 2015, IEEE, 2015, pp. 1–8.

[24] S. Smirnov, M. Weidlich, J. Mendling, Business process model abstraction based on synthesis fromwell-structured behavioral profiles, Int. J. Cooper. Inf.
Syst. 21 (1) (2012) 55–83.

[25] R.E. Tarjan, Finding optimum branchings, Networks 7 (1) (1977) 25–35.
[26] W.M. van der Aalst, 2019. A practitioner’s guide to process mining: Limitations of the directly-follows graph.
[27] W.M.P. van der Aalst, Process Mining – Data Science in Action, second ed., Springer, 2016.
[28] B. van Dongen, Real-life event logs – hospital log, 2011.
[29] B. van Dongen, Bpi challenge 2012, 2012.
[30] B. van Dongen, Bpi challenge 2014: Activity log for incidents, 2014.
[31] B. van Dongen, Bpi challenge 2015 municipality 1, 2015.
[32] B. van Dongen, Bpi challenge 2017, 2017.
[33] B. van Dongen, Bpi challenge 2019, 2019.
[34] B. van Dongen, Bpi challenge 2020: Travel permit data, 2020.
[35] B. van Dongen, F.F. Borchert, Bpi challenge 2018, 2018.
[36] S.K.L.M. vanden Broucke, J.D. Weerdt, Fodina: A robust and flexible heuristic process discovery technique, Decis. Support Syst. 100 (2017) 109–118.
[37] A.J.M.M. Weijters, J.T.S. Ribeiro, Flexible heuristics miner (FHM), in: Proceedings of the IEEE Symposium on Computational Intelligence and Data

Mining, CIDM 2011, part of the IEEE Symposium Series on Computational Intelligence 2011, April 11–15, 2011, Paris, France, IEEE, 2011, pp. 310–317.
846

http://refhub.elsevier.com/S0020-0255(22)00865-9/h0005
http://refhub.elsevier.com/S0020-0255(22)00865-9/h0005
http://refhub.elsevier.com/S0020-0255(22)00865-9/h0005
http://refhub.elsevier.com/S0020-0255(22)00865-9/h0010
http://refhub.elsevier.com/S0020-0255(22)00865-9/h0010
http://refhub.elsevier.com/S0020-0255(22)00865-9/h0015
http://refhub.elsevier.com/S0020-0255(22)00865-9/h0015
http://refhub.elsevier.com/S0020-0255(22)00865-9/h0020
http://refhub.elsevier.com/S0020-0255(22)00865-9/h0020
http://refhub.elsevier.com/S0020-0255(22)00865-9/h0030
http://refhub.elsevier.com/S0020-0255(22)00865-9/h0035
http://refhub.elsevier.com/S0020-0255(22)00865-9/h0040
http://refhub.elsevier.com/S0020-0255(22)00865-9/h0040
http://refhub.elsevier.com/S0020-0255(22)00865-9/h0050
http://refhub.elsevier.com/S0020-0255(22)00865-9/h0050
http://refhub.elsevier.com/S0020-0255(22)00865-9/h0055
http://refhub.elsevier.com/S0020-0255(22)00865-9/h0060
http://refhub.elsevier.com/S0020-0255(22)00865-9/h0065
http://refhub.elsevier.com/S0020-0255(22)00865-9/h0065
http://refhub.elsevier.com/S0020-0255(22)00865-9/h0080
http://refhub.elsevier.com/S0020-0255(22)00865-9/h0105
http://refhub.elsevier.com/S0020-0255(22)00865-9/h0120
http://refhub.elsevier.com/S0020-0255(22)00865-9/h0120
http://refhub.elsevier.com/S0020-0255(22)00865-9/h0125
http://refhub.elsevier.com/S0020-0255(22)00865-9/h0135
http://refhub.elsevier.com/S0020-0255(22)00865-9/h0135
http://refhub.elsevier.com/S0020-0255(22)00865-9/h0180

	Efficient edge filtering of directly-follows graphs for process mining
	1 Introduction
	2 Related work
	3 Preliminaries
	4 Problem formulation
	5 Approach
	5.1 Greedy approach
	5.2 Two Way Edmonds approach
	5.3 SplitMiner filtering approach

	6 Evaluation
	6.1 Datasets
	6.2 Experimental setup
	6.3 Results
	6.3.1 Number of edges
	6.3.2 Total weight
	6.3.3 Fitness
	6.3.4 Precision
	6.3.5 Runtimes
	6.3.6 Threats to validity

	7 Conclusion and future work
	CRediT authorship contribution statement
	Declaration of Competing Interest
	Acknowledgements
	References

