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a b s t r a c t 

Maintaining the identity of multiple objects in real-time video is a challenging task, as it is not always 

feasible to run a detector on every frame. Thus, motion estimation systems are often employed, which ei- 

ther do not scale well with the number of targets or produce features with limited semantic information. 

To solve the aforementioned problems and allow the tracking of dozens of arbitrary objects in real-time, 

we propose SiamMOTION. SiamMOTION includes a novel proposal engine that produces quality features 

through an attention mechanism and a region-of-interest extractor fed by an inertia module and pow- 

ered by a feature pyramid network. Finally, the extracted tensors enter a comparison head that efficiently 

matches pairs of exemplars and search areas, generating quality predictions via a pairwise depthwise re- 

gion proposal network and a multi-object penalization module. SiamMOTION has been validated on five 

public benchmarks, achieving leading performance against current state-of-the-art trackers. Code avail- 

able at: https://www.github.com/lorenzovaquero/SiamMOTION 

© 2022 The Author(s). Published by Elsevier Ltd. 

This is an open access article under the CC BY-NC-ND license 

( http://creativecommons.org/licenses/by-nc-nd/4.0/ ) 
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. Introduction 

Visual object tracking consists in maintaining the identity of 

ne or more targets throughout a video. This is among the first 

teps in video analytics applications, enabling systems to carry 

ut functions that range from video surveillance to robot navi- 

ation [1] . Traditionally, multiple object tracking (MOT) has been 

ddressed through the association of detections. Namely, for each 

ew frame, a pre-trained detector is run in order to locate all the 

bjects of interest in the scene. Following this, the current detec- 

ions are associated with those of the previous frame, revealing the 

isplacements and scale changes of the objects of interest. 

However, when considering the use of a tracker to tackle a 

eal-world problem there can be numerous constraints to consider. 

ne of the most common and, at the same time, one of the most 

hallenging restrictions is the real-time processing of the video, 

s traditional MOT systems are computationally very expensive. 

mongst all the methods proposed at the MOT2020 Challenge [2] , 

nly 5 are able to run in real-time without considering the de- 

ector time. If we also take into account the detector runtimes, 

ll these approaches should be discarded 

1 , as accurate detectors 
∗ Corresponding author. 

E-mail address: lorenzo.vaquero.otal@usc.es (L. Vaquero) . 
1 We consider that a system/module operates in real-time if it runs at least at 

5 fps for HD720 resolution on an NVIDIA TITAN V or similar. 
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lone already struggle to keep up with real-time —EfficientDet- 

3 [3] runs at 23 fps on an NVIDIA TITAN V for HD720 images. 

Thus, it is necessary to adopt mechanisms capable of provid- 

ng the position of the objects in all the frames without relying on 

ontinuous detections ( Fig. 1 ). This is what is often referred to as 

otion estimation between detections, which nowadays is powered 

y Visual Object Tracking (VOT) approaches, giving rise to the con- 

ept of multiple visual object tracking (MVOT). These methods are 

pplied across various types of systems, as they benefit from the 

atest advances in single-object tracking [5] . However, since these 

rackers are designed for a single target and their multiple instanti- 

tion is costly, such solutions are only suitable for uncrowded sce- 

arios. To tackle this issue, the approach of addressing the prob- 

em more globally arises, trying to share as many computations as 

ossible between objects [4] . This allows to keep up with several 

ozens of targets in real-time while applying single-object tracking 

pproaches. Still, the full potential of this concept has not yet been 

xploited. 

In order to expand the current trend of visual object trackers 

or motion estimation we propose SiamMOTION ( Siam ese M ultiple 

 bject T racker with I nertia and attenti O n N etwork). SiamMOTION 

elies on the fundamentals defined in [4] for tracking multiple ob- 

ects in an efficient and scalable manner and integrates them with 

he latest single object tracking methods, all while solving some 

ore problems of the aforementioned architecture. SiamMOTION’s 

rchitecture includes a proposal engine (PE) that integrates an in- 
under the CC BY-NC-ND license 

https://doi.org/10.1016/j.patcog.2022.109141
http://www.ScienceDirect.com
http://www.elsevier.com/locate/patcog
http://crossmark.crossref.org/dialog/?doi=10.1016/j.patcog.2022.109141&domain=pdf
https://www.github.com/lorenzovaquero/SiamMOTION
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:lorenzo.vaquero.otal@usc.es
https://doi.org/10.1016/j.patcog.2022.109141
http://creativecommons.org/licenses/by-nc-nd/4.0/


L. Vaquero, V.M. Brea and M. Mucientes Pattern Recognition 135 (2023) 109141 

Fig. 1. Comparison of (a) a multi-object tracking system lacking motion estimation 

between detections, (b) SiamMT [4] , and (c) our proposal (SiamMOTION). Notice 

how (a) is unable to handle all frames and (b) does not detect changes in the aspect 

ratio of the objects. 
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rtia module, a region-of-interest extractor, and an attention mech- 

nism; and a comparison head (CH) composed of a region proposal 

etwork and a multi-object penalization module. The main novel- 

ies of our proposal are summarized as follows: 

• The feature extraction is performed through a feature pyramid 

network (FPN) that allows to obtain meaningful features for 

all object sizes. Search areas are extracted from these features 

using an inertia module that takes into account the previous 

positions of each object. To the best of our knowledge, this 

is the first time these methods are employed in a detection- 

independent visual object tracker. 
• A lightweight attention mechanism is employed to enhance the 

features most closely related to the objects of interest. This, to- 

gether with a pairwise-depthwise region proposal network (PD- 

RPN), allows the prediction of accurate bounding-boxes in real- 

time. 
• A novel multi-object penalization module is used to suppress 

distractors and outliers by taking into account all objects of in- 

terest in the scene. It models interactions between targets and 

applies 4 different types of penalizations, each one devoted to 

addressing a specific type of tracking error. 
• We validate our proposal on five public datasets using VOT- 

RT metrics [6] , achieving leading performance against current 

state-of-the-art trackers. 

. Related work 

.1. Motion estimation 

Traditional multi-object tracking systems depend heavily on the 

uality of the detector employed, requiring accurate —and there- 

ore costly— detectors to reach their full potential [7] . This poses a 

roblem when there are real-time or hardware constraints, as it is 

ot feasible to obtain detections for every frame. In this paper, we 

ropose a novel multiple visual object tracker (MVOT) architecture 

o address this limitation. Such models can be integrated into full 

racking systems, being able to estimate the motion of objects for 

hose frames with no detections. 

Initially, the preferred approach for estimating the motion of 

ultiple targets between detections was through Bayesian fil- 

ers [8] . However, current MVOT methods nowadays perform mo- 

ion estimation through visual single-object tracking methods [5] . 

he most straightforward approach consists in instantiating a new 

ndividual tracker for each object that appeared in the scene. This 
2

an be carried out either by including the tracker as an indepen- 

ent component [9] or by embedding it into the architecture [10] . 

owever, the caveat is that these methods cause the system to 

low down with each additional object, so they are only suitable 

hen the number of targets is small. 

In order to allow the tracking of several dozens of objects and 

lleviate the problems mentioned above, [4] emerges. This tracker 

ims to share the most expensive operations of the architecture 

etween the objects, reusing feature computations. This, combined 

ith the new operators it introduces, results in most of the net- 

ork having a constant computational cost, regardless of the num- 

er of objects. Thus, while [10] runs at 5 fps for an FHD video with

1 objects, [4] is capable of handling 100 objects at 25 fps. How- 

ver, these approaches still present some problems and do not cur- 

ently benefit from the latest advances in single-object tracking. 

.2. Visual object tracking 

Motion estimation between detections is mainly performed us- 

ng single-object online trackers. They comprise an initialization 

tep, in which they receive the exemplar appearance of the object 

n order to integrate it into a similarity function. Then, for each 

ew frame, this similarity function looks for the object of inter- 

st, reporting its new bounding box. Originally, this task was car- 

ied out using Discriminative Correlation Filters (DCF) which, by 

epresenting the object with a single filter, were able to distin- 

uish the background from the target [11] . These approaches be- 

ame increasingly sophisticated, modeling these filters as convolu- 

ional layers [12] and applying optimization frameworks to speed 

p the learning process [13] . 

However, the state of the art in tracking is currently driven by 

eep learning approaches. These trackers implement their similar- 

ty function through deep convolutional neural networks. Given the 

eed to compare an exemplar image with a search area defined in 

he frame, Siamese neural networks emerge as the most natural 

hoice, with [14] being the precursor of the current state of the 

rt. To further enhance this architecture, contributions from other 

elds of computer vision were gradually incorporated. Thus, there 

re trackers allowing changes in the aspect ratio of the bound- 

ng box —using a Region Proposal Network (RPN) [15] or anchor- 

ree [16] —, employing more sophisticated backbones [17] , featur- 

ng attention modules [18] , with segmentation information [19] , or 

ncluding branches for estimating the proposal quality [20] . 

Within the CNN approaches, some trackers somewhat devi- 

te from the traditional Siamese formula of [14] . For example, 

21] presents an architecture with dedicated components for object 

lassification and estimation. The classification module specializes 

n discriminating between distractors, while the estimator compo- 

ent tries to predict the overlap between the prediction and the 

bject. These types of networks are nondeterministic and thus are 

trongly affected by the initialization of the exemplar. This is why 

here have been efforts to incorporate modules capable of predict- 

ng the quality of such initializations [22] . The accuracy they of- 

er is good, but as they iteratively refine the bounding box, these 

ethods are computationally expensive and very sensitive to hy- 

erparameters, which discourages their use as MVOT solutions. 

. SiamMOTION Network architecture 

As shown in Fig. 2 SiamMOTION’s architecture comprises: a 

ackbone for feature extraction, a proposal engine (PE) that em- 

eds a Feature Pyramid Network-based region-of-interest extractor, 

n inertia module for the definition of search areas, and an atten- 

ion module; and a comparison head (CH) consisting of a region 

roposal subnetwork for classification and regression, and a multi- 
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Fig. 2. SiamMOTION’s architecture. First, it extracts the global features of the input frame. Then, it obtains the search area features of each object through the RoI Extractor, 

using the locations provided by the Inertia Module. The exemplar features are computed analogously at the beginning of the sequence and are reused throughout the rest of 

the video. Next, the attention mechanism is applied over these tensors and the previously extracted exemplars, before comparing them using the Pairwise-Depthwise RPN. 

Finally, the RPN output is fed through the Multi-Object Penalization Module to obtain refined bounding boxes for each object. 
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bject penalization module. All these components are addressed in 

he following subsections. 

.1. Feature extractor 

Feature extractors transform an image from an (usually) RGB 

olor space to a semantic embedding space, in which the vari- 

us channels encode more meaningful information about the ob- 

ects in the scene. Backbones that lack padding dilute the infor- 

ation at the edges of the image ( Fig. 3 ), but this does not pose

 problem for single-object trackers since they define their ex- 

mplar and search area images with some margin. However, as 

iamMOTION extracts the features of the whole frame, relying on 

 backbone without padding would result in poorer tracking qual- 

ty for the targets close to the boundaries. This is a major problem 

onsidering that, in multi-object scenarios, targets enter and exit 

he scene mostly through the edges of the image. For this reason, 

iamMOTION adopts a padded backbone based on ResNet [23] . 

et, unlike other Siamese trackers that employ deep padded back- 

ones [16,17] , we keep the last convolutional blocks with their 
tandard stride of 2. 

ig. 3. Features extracted with (a) a backbone with padding and (b) a backbone 

ithout it. The absence of padding results in a blind area —outside the red-dotted 

egion— at the edges of the frame, which produces low-quality features for the 

ighlighted objects. (For interpretation of the references to colour in this figure leg- 

nd, the reader is referred to the web version of this article.) 
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.2. Proposal engine 

Visual object trackers generate feature tensors for each 

earch area, which will eventually be compared with the ex- 

mplars to locate each object in the scene. Approaches such as 

iamRPN ++ [17] or SiamAttn [18] clip fragments of the input frame 

nd then extract their features, which produces accurate results 

ut deems very slow for several objects. SiamMT [4] generates 

he search areas by cropping the frame features with a modified 

oI Align [24] , which improves the efficiency but produces low- 

uality tensors. The proposal engine (PE) presented in this paper 

fficiently generates high-quality features that properly fit the ob- 

ects and capture their details with adequate resolution. It inte- 

rates an inertia module, a region-of-interest (RoI) extractor, and 

n attention mechanism. 

.2.1. Region-of-interest extractor 

As previously stated, single-object trackers define a search area 

n the frame. This area is cropped and resized to a fixed size 

usually 255 px 2 or 271 px 2 — before feeding it to the neural 

etwork. As a result, the target is displayed with a nearly con- 

tant size, which is the reason why [15] and its evolutions do not 

eed to take into account different anchor sizes. However, since 

iamMOTION extracts the features of the whole frame for several 

imultaneous objects, it cannot take advantage of this property. 

n [4] a new operator is proposed for the creation of search ar- 

as in the aforementioned conditions, yet it does not perform well 

ith very small or very large objects, sometimes making it neces- 

ary to rescale the entire frame. 

In order to obtain meaningful features for all search area sizes, 

e implement the region-of-interest (RoI) crop-and-resize opera- 

ion through a feature pyramid network (FPN). Thus, instead of re- 

ying just on the final layer of the backbone, some of its interme- 

iate layers also serve as inputs, capturing the scene at different 

esolutions. However, as higher-resolution layers contain poorer se- 

antic information, we integrate them into a feature pyramid net- 

ork to produce rich multi-scale representations. To the best of 

ur knowledge, this is the first time such an approach is employed 

n a detection-independent object tracker. 

Our RoI extraction mechanism has several similarities with 

hose found in object detectors [25] . However, it presents a num- 

er of important differences: 

• The input coordinates for the RoI extractor are not provided by 

a proposal generator based on the frame features, but by an 
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Fig. 4. SiamMOTION’s inertia module. Using a multilayer perceptron (MLP), it is 

able to make a coarse prediction of the object’s future position based only on its 

previous coordinates. 
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inertia module that predicts the positions of objects based on 

their motion ( Section 3.2.2 ). 
• The regions covered by the RoI extractor are always square. This 

ensures that the objects are always depicted with the same as- 

pect ratio relative to the frame (1:1), which improves the learn- 

ing of the similarity function. 
• The choice of the pyramid level k from which to extract the 

features is calculated as: 

k = 

⌊ 

k 0 + log 2 

( √ 

A w 

A h 

8 � 255 / 8 � 

) ⌋ 

(1) 

Here 255 and 8 are the canonical sizes of the search area and 

network stride in SiamFC-based trackers, respectively, k 0 is the 

FPN level with a resolution of 1 / 8 (i.e., level 3), and A w 

and

A h are the area’s dimensions. In our architecture we consider 

values of k in the range [1, 4]. 
• The cropping and resizing of the region is performed using RoI 

Align [24] with one sampling point per bin, for better computa- 

tional efficiency. Following this operation, a 1 × 1 convolution is 

applied to transform the maps to a comparable representation, 

regardless of their original resolution. 

The proposed RoI extractor yields tensors that will always de- 

ict the targets with an approximately constant size. This, along 

ith the fact that the FPN provides a good feature hierarchy, 

eans that tensors generated at different levels will have rich se- 

antic information and will be comparable with each other. There- 

ore, it allows the rest of the network architecture to be indepen- 

ent of the level k from which each search area has been extracted 

as object detectors that rely on a single shared class/box predic- 

ion head for all resolution levels do—, requiring fewer learned pa- 

ameters and simplifying the convergence of the algorithm. This fi- 

al remark is particularly relevant, as it makes our approach the 

rst object tracker that compares features extracted at different 

esolutions, since other systems that apply multi-layer similarities 

e.g., SiamCAR [16] or SiamRPN ++ [17] — adapt their backbones so 

hat the considered layers have the same spatial resolution. 

.2.2. Inertia module 

For every new frame, single object trackers define an area to 

earch for the object. The reason is twofold: 

i) to keep the object constant in size —we address this with more 

detail in the next section—; 

ii) and to avoid scanning the entire frame, as this would be com- 

putationally very expensive. 

Since its introduction in [14] , following networks have adopted 

he same naïve approach for the definition of this area, centering 

t on the last known position of the object. This method provides 

ood results but presents problems when the target moves fast or 

s very small —[15] alleviates it by making the search area larger 

hen these cases show up, but carries a higher cost. To solve this 

roblem, we propose the use of an inertia module that smartly ad- 

usts the placement of the search area. 

The inertia module makes a coarse prediction of the object’s lo- 

ation and size at timestamp t —i.e., B t = { (B t x , B 
t 
y , B 

t 
w 

, B t 
h 
) } — solely

rom its coordinates in the previous frames, without resorting to 

isual information. Thus, it is fed by the predictions of the multi- 

bject penalization module to roughly estimate the position of the 

bject in the future. The inertia module is implemented through a 

ultilayer perceptron (MLP) that receives the differences between 

onsecutive coordinates dB for the last g video frames ( Fig. 4 ). 

hese differences between pairs of coordinates are computed as 

ouding-box regressions, considering the previous instant as the 
4 
nchor: 

B 

t−i 
x = 

B t−i 
x −B t−i −1 

x 

B t−i −1 
w 

, dB 

t−i 
y = 

B t−i 
y −B t−i −1 

y 

B t−i −1 
h 

B 

t−i 
w 

= log e 

(
B t−i 

w 

B t−i −1 
w 

)
, dB 

t−i 
h 

= log e 

(
B t−i 

h 

B t−i −1 
h 

) (2) 

here i ∈ [1 , g) . These parameterizations ensure scale-invariant lo- 

ations and positive-sized bounding boxes. 

Using a neural network provides an advantage over other clas- 

ical models, as it is able to deal with noise in the input and easily

dapt to the tracker’s particular behavior. Moreover, as it is fast 

nd lightweight, its predictions can be used as a fallback mecha- 

ism if the tracker returns low-confidence outputs or struggles to 

eep the real-time performance. This module is trained on video 

equences —it cannot exploit detection-only data as in [26] — and 

ts weights are adjusted alternatingly with the rest of the tracker, 

s the the MLP inputs must come from the RPN proposals. 

.2.3. Attention module 

The similarity operator ( Section 3.3.1 ) performs a sliding- 

indow comparison between the exemplar features of each object 

nd the tensor containing its search area. This very simple process 

s prone to problems, as the tracker has no way of knowing which 

eatures of the exemplar are truly relevant and tends to weigh ev- 

rything equally. Thus, it is common to experience a degradation 

n tracking quality when the background is complex or contains 

istractors. To solve these problems, SiamMOTION integrates into 

ts architecture an attention module with the objective of mitigat- 

ng drifting and enhancing the features it relies on. This module is 

ased on [18] , but we have adapted it for multiple objects, sup- 

ressing the most expensive operations, and incorporating some 

ptimizations. 

Most of the attention mechanisms currently employed are 

ased on the self-attention operation introduced in [27] for nat- 

ral language processing. In short, this operation takes a tensor X

s input and projects it into three different spaces, yielding three 

ensors denoted Query ( X Q ), Key ( X K ) and Value ( X V ) —as in infor-

ation retrieval, we can think of Query as the search term, Key 

s the information that defines each of the candidates, and Value 

s the content of those candidates. Next, it computes the cosine 

imilarity between Query and Key, resulting in an interrelationship 

atrix ( A ) with high values for those features of X that are re-
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Fig. 5. SiamMOTION’s attention module has one branch for the exemplar and an- 

other one for the search area . Within each branch, channel-wise self-attention and 

cross-attention features are computed, which are then merged to obtain the exem- 

plar and search area enhanced features. The above operations are performed con- 

currently for each target. 
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ated and relevant to the current problem, and low values other- 

ise. This attention mask then is applied over Value, generating a 

ltered tensor ( ̄X ) in which unnecessary details are suppressed and 

mportant information has been highlighted. 

To apply this concept to visual object tracking, it is necessary 

o adapt the aforementioned operation. In [18] it is proposed a de- 

ormable subnetwork comprising 3 complementary mechanisms: 

 channel-wise self-attention, a spatial-wise self-attention, and a 

hannel-wise cross-attention. According to our experiments, each 

f these components has a very different im pact on system perfor- 

ance when dealing with several dozens of targets. Most notably, 

patial-wise self-attention requires several additional convolutions 

nd reshapes that culminate in the resource-expensive multiplica- 

ion of two (W ∗ H) × (W ∗ H) matrices —for an input tensor X of 

ize W × H × C—, which diminishes the speed of the entire tracker 

y as much as 20% . For this reason, SiamMOTION bases its atten- 

ion module solely on the channel-wise self-attention and cross- 

ttention operations, and customizes their architecture for a more 

fficient performance ( Fig. 5 ). 

SiamMOTION applies its attention module in parallel for all N 

airs of tensors obtained through the RoI extractor. However, for 

he sake of simplicity, we will focus the explanation on the compu- 

ations involved for a single object. Thus, the attention module re- 

eives as inputs the exemplar ( X 
E 

) and search area ( X 
S 
) features of

n object. For the self-attention computation —whose tensors are 

enoted with the superscript s —, 3 tensors are built in each branch 

Q 

s 
E 

, K 

s 
E 

, and V s 
E 

for the exemplar; and Q 

s 
S 
, K 

s 
S 
, and V s 

S 
for the search

rea—, which have the same dimensions as X 
E 

and X 
S 
, respectively. 

ext, the cosine similarity between Query and Key is computed 

this is obtained via the dot product of the tensors scaled by 

heir magnitude—, and then a SoftMax is applied, restricting the 

alues to the interval [0 , 1] , thus creating the attention masks A E 
nd A 

S 
. Lastly, A 

E 
is multiplied with V s 

E 
, and A 

S 
with V s 

S 
, yielding
5

he self-attention features for the exemplar ( ̄X s 
E 

) and the search 

rea ( ̄X s 
S 
). 

Regarding the cross-attention computation —whose tensors are 

enoted with the superscript c—, Value tensors for the exemplar 

 V c 
E 

) and the search area ( V c 
S 

) branches are generated from the in-

ut features. The latter are simply multiplied with the attention 

asks of the opposite branch, resulting in the cross-attention fea- 

ures of exemplar ( ̄X c 
E 

) and search area ( ̄X c 
S 

). Finally, the attention 

eatures of each branch are combined with the original tensors 

hrough a weighted sum, producing the final enhanced features 

 ̄X 
E 

) and X̄ 
S 
, whose sizes are the same as X 

E 
and X 

S 
, respectively. 

To improve the performance and speed up the learning, 

iamMOTION relies on standard 2D convolutions, as the accuracy 

ain that deformable convolutions offer does not compensate for 

he drop in throughput when dealing with several dozens of ob- 

ects. In addition to this, the aggregation of X with X̄ s and X̄ c is 

erformed in a single step, maximizing the use of computing re- 

ources. Regarding the exemplar branch, in SiamMOTION, exemplar 

eatures ( X E ) are extracted once and reused throughout the whole 

racking process. Hence, it is possible to cache the tensors X E , X̄ s 
E 

, 

 

c 
E 

, and A E to speed up the computations of X̄ E and X̄ c 
S 

for the sub-

equent frames of the sequence. The latter, although it implies a 

igher memory consumption per object, results in a significant in- 

rease in tracking speed. 

.3. Comparison head 

Once the features of the search areas are available, it is nec- 

ssary to compare them with those of the exemplars in order 

o know the new coordinates of the objects. Networks such as 

iamMT [4] or SiamFC [14] employ a simple cross-correlation for 

etermining the location of the targets and rely on multi-scale 

esting for determining their size, which is fairly straightforward, 

ut does not allow detecting changes in aspect ratio. Approaches 

uch as SiamRPN [15] or SiamFC ++ [20] employ more sophisticated 

egion proposal networks, but perform slowly for multiple objects 

nd tend to produce noisy outputs when distractors are present. 

e propose a comparison head (CH) that efficiently compares 

ultiple pairs of exemplars and search areas, generating qual- 

ty predictions in multiple object scenarios. The head comprises 

 Pairwise Depthwise Region Proposal Network (PD-RPN) and a 

ulti-object penalization module. 

.3.1. Similarity operation 

SiamMOTION requires a fast and accurate similarity operator, 

apable of comparing dozens of tensors in real time. Previous 

orks [4,14] computed the similarity between the search area and 

he exemplar straight up through a cross-correlation, obtaining 

 two-dimensional score map stating the probability of the ob- 

ect being in each region of the search area. This can only iden- 

ify translations, so multi-scale testings are carried out to detect 

hanges in size. The method is far from optimal, as it cannot de- 

ect aspect ratio variations and requires to compare S ∗ N feature 

aps, where S and N are the number of considered scales and 

bjects, respectively. 

To deal with changes in ratio and scale in a natural way, 

ther methods such as [15] employ a region proposal subnetwork. 

hey first transform the input features according to the number 

f considered anchors K and then cross-correlate them, directly 

ielding the objects’ classification and regression information. The 

ownside of this approach is that it requires 6 KN comparisons —

 KN for the objectness classification plus 4 KN for the bounding 

ox regression—, which greatly increases the computational cost 

hen there are many targets involved. To address the aforemen- 

ioned problems, [17] proposes a depthwise-RPN, which first cross- 

orrelates the feature maps, to then apply the anchor-dependent 
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Fig. 6. Pairwise-Depthwise-RPN. The input features pass through 3 × 3 convolutions that specialize them for each branch. After this, they are reshaped to then perform a 

pairwise-depthwise-cross-correlation using ̃  ∗. Finally, the features are reshaped a second time and 1 × 1 filters are applied to obtain 2 K or 4 K values per location —depending 

on the branch—, yielding the classification and regression information of the different anchors. 
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Fig. 7. SiamMOTION’s multi-object penalization module. The left side of the im- 

age depicts the output of the RPN classification branch with some of its associated 

bounding boxes, while the right contains the penalized score resulting from apply- 

ing the four proposed penalties. 
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ransformations to their outputs. This has the advantage of involv- 

ng just 2 N comparisons, requiring an order of magnitude fewer 

arameters, and making the different channels more discrimina- 

ive. 

Owing to these benefits, SiamMOTION implements its similar- 

ty operation based on the one introduced in [17] . However, as 

his operator is designed for single-object trackers, it is necessary 

o modify it as depicted in Fig. 6 in order to enable it to process

ozens of targets in real-time. To achieve this, SiamMOTION relies 

n the pairwise cross-correlation operator ( ̃ ∗) described in [4] as 

he core of this Pairwise-Depthwise-RPN, which enables the com- 

utation of all objects and sub-windows in a single evaluation. In 

rder to perform these correlations in a depthwhise manner, it is 

owever necessary to reshape the inputs and outputs of ˜ ∗. Lastly, 

ince the search areas are extracted through multi-level regions of 

nterest, SiamMOTION does not need an ensemble of heads at dif- 

erent stages of the backbone —as [17] does—, which greatly im- 

roves the efficiency of the algorithm. 

.3.2. Multi-object penalization module 

During inference, most single-object trackers [14–16,20,22] re- 

ne their predictions using some form of heuristic knowledge. The 

ost commonly adopted methods are spatial and shape penaliza- 

ions. However, since SiamMOTION is an MVOT and will consider 

everal objects at once, it can exploit this information and develop 

 more sophisticated and powerful penalization module. Thus, as 

hown in Fig. 7 , SiamMOTION applies two new types of penalties 

distractor-aware and morphological—, resulting in a multi-object 

enalization module with four different types of refinements. Ad- 

itionally, the predictions produced by this component are fed to 

he inertia module, which uses them to roughly forecast the posi- 

ion of objects in future frames. 

Spatial penalization. Object velocities are usually moderate and 

ituations in which a target undergoes a sudden large accelera- 

ion are extremely rare. Thus, with a high probability, the object 

ill remain in the central portions of the search area. To model 

his knowledge, we follow the approach in [14] and apply a two- 

imensional Hanning window to the output of the classification 

ranch in order to penalize large spatial displacements. With this 

ethod, we are boosting proposals such as the blue, pink, and 

reen found in Fig. 7 . 
6 
Shape penalization. Whether it is due to changes in perspec- 

ive or deformations, the objects in the scene change shape gradu- 

lly in most cases. Thus, to avoid accepting proposals with too dif- 

erent sizes or aspect ratios, we adopt a slightly modified version 

f the penalty described in [15] : 

enalty = e 
−β∗

(
max 

(
r 
r ′ , 

r ′ 
r 

)
∗max 

(
s 
s ′ , 

s ′ 
s 

)
−1 

)
(3) 

here β is the hyper-parameter that adjusts the strength of the 

enalty, r and r ′ are the aspect ratios of the proposal and the ob- 

ect in the last frame, and s and s ′ are their overall scales, respec-

ively. This penalty, which is computed based on the regression 

ranch and applied to the output of the classification branch, al- 

ows to suppress proposals which have a high objectness score but 

re linked to a poorly adjusted bounding box, such as the pink one 

n Fig. 7 . 

Distractor-aware penalization. As SiamMOTION is an MVOT, it 

s aware of all the tracked objects that might potentially be similar 

o each other. The proposed architecture takes advantage of this 

nformation and defines a novel distractor-aware penalization mask 

hat minimizes identity-switches. Thus, unlike other methods that 
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andle each target independently, SiamMOTION employs a simple- 

et-effective approach to model interactions between objects. 

The existence of distractors is modeled by a global penaliza- 

ion window G W ×H×N . This is a tensor whose N channels contain 

he contribution of each object to the distractor model, centered 

n their location and proportional to their size. The window has a 

ize of (W, H) = 

⌈
M∗F 

S 

⌉
— where M, F , and S are the sizes of the

PN output classification map, the input frame, and the canonical 

earch area size employed in Siamese trackers [14] , respectively—, 

nd the value of each element is computed as: 
 

1 −
(

sin 

(
π

A x p −0 . 5 A w p −i 

A w p −1 

)
sin 

(
π

A y p −0 . 5 A h p − j 

A y p −1 

))2 

, if i ∈ A x p ±
A w p 

2 
and j ∈ A y p ± A h p 

2 

1 , otherwise 
(4) 

here i ∈ [0 , W ) , j ∈ [0 , H) , p ∈ [0 , N ) , and A 4 ×N =
(A 

x 
p , A 

y 
p , A 

w 

p , A 

h 
p ) 

}
p∈ [0 , N ) 

is the objects’ search area coordinates 

apped over the penalization window. 

From the model provided by G W ×H×N , it is possible to estimate 

ow the distractors will influence the model predictions. Thus, to 

itigate their influence, a window R p of size M is computed for 

ach object p as follows: 

 p = min 

d∈D 
κM 

( G d , A p ) (5) 

here D := { ∀ d ∈ [0 , N ) , d � = p } and κM 

is the preferred crop- 

nd-resize operator with an output of size M —in our case, RoI 

lign [24] . This yields a mask that can be applied to the proba-

ilities of the classification branch, suppressing proposals such as 

he green and dark blue ones found in Fig. 7 . This novel approach

or modeling interactions between objects proves itself to be effec- 

ive and has a low computational cost, which makes it ideal for 

nvironments with dozens of targets. 

Morphological penalization. When computing the similarity 

etween two feature maps, there are some situations in which out- 

iers appear. These are characterized by being isolated false posi- 

ives —unlike correct matches, which are spread over a wide area—

nd having a high score. To suppress these points, we propose 

 novel penalization based on morphological operations. Specifi- 

ally, we rely on erosion, whose main goal is to shrink the shapes 

ontained in grayscale images. Thus, we slide a 3 × 3 erosion ker- 

el, which removes isolated peaks —such as the red proposal in 

ig. 7 — and has the added benefit of reducing the area of the cor- 

ect matches, as very wide boundaries can lead to problems in 

rowded scenarios. We apply said window independently on each 

f the score map channels, as the activations for different anchor 

hapes are weakly related. 

. Experiments 

In this section, we assess the performance of SiamMOTION 

nder different scenarios. The experiments were conducted on a 

omputer with an Intel Core i7-9700K, 16 GB of DDR4 RAM and an 

VIDIA TITAN Xp. The chosen deep learning framework was Ten- 

orFlow. 

.1. Implementation details 

Feature extractor. We opted for ResNet [23] as it offers good 

esults with low resource requirements, something to consider 

hen including level 1 of the FPN, which has a large memory 

ootprint. Regarding the specific network configuration, we chose 

esNet-18, as it offers a good tradeoff between accuracy and speed. 

t might seem that we can grow the backbone further without 

uch impact on the throughput of the network since the follow- 

ng ResNet levels hardly increase the number of parameters. How- 

ver, according to our observations, FLOPS do not translate well to 
7 
ps, thus using more complex backbones would make SiamMOTION 

ose the ability to operate in real time. 

Inertia module. The inertia module receives the information 

elative to the last 6 known positions of the objects, since accord- 

ng to our experiments they are enough to generate reasonable 

redictions. It comprises 2 hidden fully-connected layers with hy- 

erbolic tangent activations and ends in 4 neurons with linear ac- 

ivations. At the beginning of a sequence, the inputs of the MLP 

etwork are initialized to 0 —as the module receives differences 

etween coordinates, it simply assumes that the objects were sta- 

ionary up to this point in time. Regarding the training of the MLP, 

tandard smooth L 1 loss is used for each component of dB t . 

Exemplar and search area sizes. The sizes of the exemplar and 

he search area influence many architecture decisions and, thus, 

eserve careful consideration. Depending on their size, the output 

ensors will have a different granularity, which will directly impact 

he accuracy and speed of the network. As proposed in [17] , an 

utput of size 25 × 25 obtained from the comparison of exemplar 

nd search area features of sizes 7 × 7 and 31 × 31 , respectively, 

ffers a good balance. 

These tensors are created from the frame features for each ob- 

ect, using the RoI extractor. Specifically, for a target with dimen- 

ions ( w , h ), its exemplar will cover an area of: 

 

2 = ( w + ζ ( w + h ) ) × ( h + ζ ( w + h ) ) (6) 

here ζ = 0 . 5 is the context factor. This area will be mapped to

5 × 15 bins. However, since the cropping is performed on features, 

here is no need for extra context to accommodate for further con- 

olution operations, so only the central 7 × 7 region is kept. For the 

earch area, a region of size 
(

31 A 
15 

)2 
is cropped, which provides the 

ame resolution as the exemplar. 

Training process. SiamMOTION is trained on a single GPU us- 

ng the classification and regression losses defined in [15] and em- 

loying an Adam optimizer [28] , starting from a learning rate of 

 × 10 −5 that is exponentially decayed to 3 × 10 −7 with a batch 

ize of 16. We build on a backbone pre-trained on ImageNet, which 

e freeze for the first 15 epochs during the warmup stage. Follow- 

ng this, we train the network end-to-end for 30 epochs, applying a 

.1 correction factor to the backbone gradients. Lastly, we perform 

 fine-tune for 15 epochs in which we favor samples drawn from 

ideo sequences and intra-class discrimination, and during which 

he inertia module is alternatingly trained with a dropout rate of 

0% . We maintain moving averages of the trained parameters with 

n exponential decay of 0.9998, and add a weight decay of 5 e − 5

o the loss function. 

The system is trained on COCO [29] , ILSVRC [30] , YT-BB [31] ,

nd GOT-10k [32] , which comprise approximately 250K sequences 

nd 1.5M images, for a total of roughly 11M bounding-boxes. It re- 

eives pairs of images that will serve as exemplars and search ar- 

as, updating the weights of the network as it learns —the feature 

xtractor, RoI extractor, and attention module share their parame- 

ers for both exemplar and search area branches in a Siamese man- 

er. To speed up the training, the network is not fed with pairs 

f full frames, but with only those portions that contain objects. 

hese images undergo a data augmentation process that ensures 

heir correct distribution into one of the levels of the FPN. Another 

onsideration to keep in mind is that the performance of the net- 

ork will be severely harmed if the RoI Extractor is fed directly 

ith the ground truth coordinates in those cases where the inertia 

odule is not queried. Therefore, it is very important to introduce 

oise in such circumstances, in addition to applying the spatial- 

ware sampling strategy described in [17] . 

Inference process. In order to be as efficient as possible, the 

xemplar features are extracted only once and reused throughout 

he rest of the inference process. There is no need to update them, 

ince they are already implicitly adapted for each frame thanks 
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Table 1 

Ablation study with VOT-RT metrics @20 fps. A version of SiamMT with a ResNet-18 as backbone is the 

baseline (B). F: Feature-Pyramid-based RoI extractor. R: PD-RPN similarity operation. A: Attention module 

—superscripts s and c indicate self-attention or cross-attention only, respectively. P: Multi-object penalization. 

I: Inertia module. The number of parameters is shown together with the name of each configuration. 

MOT-17 MOT-20 UAVDT VisDrone JTA 

Acc. Rob. Acc. Rob. Acc. Rob. Acc. Rob. Acc. Rob. 

Baseline (13.9M) 50.1 74.6 47.9 82.1 42.0 75.8 42.8 50.2 45.3 62.1 

B + F (15.2M) 55.4 76.8 48.1 82.3 51.0 92.5 46.3 56.0 48.0 66.1 

B + F+R (16.4M) 57.3 76.6 51.2 83.0 56.5 93.2 48.7 57.0 49.8 67.1 

B + F+R+A s (17.0M) 57.4 76.5 50.8 83.3 56.6 93.1 48.9 57.2 49.9 67.1 

B + F+R+A c (17.0M) 57.2 76.7 51.8 83.2 57.2 93.2 48.7 57.1 49.8 67.1 

B + F+R+A (17.0M) 57.3 76.6 51.4 83.2 57.0 93.2 48.9 57.1 50.0 67.2 

B + F+R+A+P (17.0M) 58.0 77.5 51.5 82.7 57.8 93.2 50.8 59.3 51.0 66.2 

B + F+R+A+P+I (17.0M) 57.9 77.2 52.7 82.2 57.8 93.3 50.9 59.8 51.0 66.3 
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o the cross-attention mechanism. The component of the network 

hat is continuously updated is the inertia module, which is fed 

ith the outputs of the predictor. However, since it does not make 

se of visual information, it does not have a noticeable impact on 

he speed of the architecture. Lastly, we apply non-maximum sup- 

ression and bounding box voting with an IoU of 80% on the final 

utput maps for a more precise localization. 

.2. Ablation study 

SiamMOTION is an MVOT, which implies that it receives the ini- 

ial position of each object and provides their locations in the fol- 

owing frames, with no further feedback from the detector. These 

lgorithms are mostly used in scenarios where time is a critical re- 

ource, so it must be taken into account when evaluating their per- 

ormance. As such, we evaluate the performance of SiamMOTION 

hrough VOTChallenge’s VOT-RT metrics [6] adapting it for se- 

uences containing multiple targets. Thus, for a throughput thresh- 

ld —i.e., 20 fps or 25 fps— we obtain the accuracy —average over- 

ap between predictions and ground truths— and the robustness 

ratio of frames where the tracker did not lose the object, with an 

xponential sensitivity of γ = 30 — of each algorithm. 

In order to analyze the impact of each component of SiamMO- 

ION, we have conducted an ablation study on several scenarios in 

hich motion estimation systems are commonly used. Specifically, 

e have selected the multi-object public datasets: MOT-2017 [33] , 

OT-2020 [2] , UAVDT [34] , VisDrone [35] , and JTA [36] . The results

re shown in Table 1 . 

As the baseline (B) for our study, we build on an architecture 

ery similar to Vaquero et al. [4] , but with a backbone based on

esNet-18 [23] and without dynamically adjusting the input frame 

ize. The results are fairly good, but the performance is especially 

oor in videos with very small or very large objects, like the ones 

ound in UAVDT, as the learned filters are not able to extract mean- 

ngful information. 

The addition of the RoI extractor embedding a feature pyra- 

id network (F) is a very significant change, increasing the ac- 

uracy and the robustness in all the datasets listed in Table 1 by 

n average of +4 . 1 and +5 . 8 points, respectively. The most sub-

tantial gain is found in UAVDT —increase of +9 . 0 points in accu-

acy and +16 . 7 points in robustness—, as the network is now able

o generate meaningful features at different resolutions and, there- 

ore, handle small objects, which are very abundant in this dataset. 

The similarity operator also has a major impact on network per- 

ormance, as the change from a pairwise cross-correlation to our 

airwise-depthwise-RPN (R) results in an average increase of +2 . 9 

oints in accuracy. This is mainly due to the fact that the system 

s now able to detect changes in the aspect ratio of objects, all 

hile keeping the real-time performance. The average increase in 

obustness is also significant ( +0 . 6 points), since the output of the
8 
airwise-depthwise-RPN objectness branch is very similar to that 

f pairwise cross-correlation, with both focusing on locating the 

enter of the targets. 

The integration of the attention module (A) results in an av- 

rage increase of +0 . 2 points in accuracy and +0 . 1 points in ro-

ustness. As many scenes contain multiple objects with a high 

egree of overlap —which makes the center of the objects dif- 

cult to identify— the attention mechanism focuses on produc- 

ng richer features capable of better delimiting the boundaries of 

ach object. There are certain datasets in which one attention 

echanism performs better than the combination of both. How- 

ver, the best overall results are obtained through the use of both 

pproaches. 

The addition of the multi-object penalization module (P) also 

rovides a significant improvement in the performance of the net- 

ork. The suppression of distractors and outliers as well as the re- 

uction of the activation area of detections provides clean results 

or the bounding box voting, which results in an average increase 

f +0 . 9 points in accuracy and +0 . 3 points in robustness. 

Finally, the inclusion of the inertia module (I) also provides 

n improvement in the performance of the network, increasing 

he accuracy in +1 . 2 points and the robustness in +0 . 5 points for

OT-2020 and VisDrone, respectively. Specifically, as the inertia 

odule is able to roughly predict the future coordinates of ob- 

ects, it allows a better placement of the search areas, which pre- 

ents faster targets from leaving the network’s field of view from 

ne frame to the next. On the other hand, in environments with 

 high density of objects where the visual information cannot be 

ully trusted due to continuous occlusions, the inertia module plays 

 major role in enhancing those RPN predictions that present low 

onfidence. Although the other datasets do not feature these char- 

cteristics, VisDrone has many fast targets and MOT-2020 presents 

 large number of overlaps between objects ( Fig. 8 ), so the intro- 

uction of the inertia module in these cases offers a great advan- 

age. 

Overall, the proposed components improve the baseline by an 

verage of +8 . 4 points in accuracy and +6 . 8 points in robust-

ess. The components that comprise the proposal engine add +4 . 6 

oints in accuracy and +5 . 8 points in robustness. The comparison 

ead is responsible for the increase of +3 . 8 and +1 . 0 points in ac-

uracy and robustness, respectively. 

These contributions not only improve the tracking quality, but 

hey also preserve the efficiency of the algorithm. The computa- 

ional complexity of SiamMOTION is of O(W H) for the feature 

xtractor, O(W H + N ) for the RoI extractor, O(N ) for the inertia

odule, O(N ) for the attention module, O(KN ) for the pairwise- 

epthwise-RPN, and O(N 

2 ) for the multi-object penalization. All 

his yields a computational complexity of O(W H + KN + N 

2 ) for

he end-to-end network. If we take into account that W 	 H 
 N ,

hen the complexity is dominated by the size of the input frame. 
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Fig. 8. Box plot of the amount of overlap per object for the analyzed databases. An 

object in a frame is regarded as overlapped if more than 50% of its area is shared 

with other bounding boxes. 
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Lastly, although the proposed architecture is already quite 

ightweight, it can be further simplified for deployment in indus- 

rial environments with constrained resources. The core of the pro- 

osal engine is the region-of-interest extractor (F) , which lever- 

ges a feature pyramid network to yield features with richer se- 

antic information. On the other hand, the main component of 

he comparison head is the similarity operator (R) , which exploits 

 pairwise cross-correlation to fuse the exemplar and search area 

ensors while scaling seamlessly with the number of targets. This 

onfiguration ( Table 1 , row “B+F+R ”), while simple, still outper- 

orms the state of the art in all of the tested benchmarks but MOT- 

020 [2] by an average of +2 . 7 points in accuracy and +2 . 9 points

n robustness. Nonetheless, the additional methods introduced in 

he paper are still beneficial for achieving superior performance, 

specially in crowded environments such as MOT-2020. 

.3. Comparison with the state of the art 

Since SiamMOTION is an MVOT, it constitutes a dedicated com- 

onent that performs a specific task within the MOT framework —

otion estimation when there are no detections available. There- 

ore, in this section, we compare it with current MVOT solutions 

n the previously discussed databases, employing VOTChallenge’s 

OT-RT metric @20fps and @25fps [6] . Specifically, this compar- 

son covers SiamFC [14] —used in UMA [10] —, SiamRPN [15] —

sed in DeepMOT [37] and DAMOT [9] —, and SiamRPN ++ [17] —

sed in SiamMOT [38] —, as well as SiamMT [4] and current state- 

f-the-art single-object trackers that can be tailored for MVOT 

DaSiamRPN [26] , SiamCAR [16] , SiamFC ++ [20] , SiamAttn [18] , 

TMTrack [39] , and SiamBAN [40] . The results for each algorithm 

re shown in Table 2 . All of these MVOTs have been run on

ultiple-object environments —as the aforementioned papers do—

nd maximizing GPU usage. Column #ob shows the maximum 

umber of targets that can be instantiated before GPU memory 

versubscription. 

According to the experimental results, SiamMOTION outper- 

orms previous state-of-the-art MVOT approaches. These improve- 

ents are in both accuracy and robustness, resulting in fewer iden- 

ity switches and better delimiting the tracked objects. Some ap- 

roaches such as SiamFC ++ are able to fit the bounding boxes to 

he objects very tightly, but have problems maintaining their iden- 

ities for several frames —i.e. high accuracy but low robustness. 

onversely, other approaches such as DaSiamRPN exhibit the op- 

osite behavior. These, while correctly identifying the center of the 

argets, report a bounding box with an incorrect size often vaguely 

elated with the objects —i.e. high robustness, but low accuracy. 
9
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he latter, while certainly not ideal, may be acceptable in those 

cenarios in which the boundaries of the objects are not a critical 

actor, but the main objective is to maintain their identities. 

Owing to the global frame features extraction and the use of 

 specialized similarity operator ( ̃ ∗), SiamMT fares better than its 

redecessors. Consequently, our approach SiamMOTION exploits 

hese breakthroughs and builds on them to create a novel ar- 

hitecture. Thus, the global features extraction allows to share 

he backbone computations —the most expensive operation in the 

etwork—, and we incorporate the ˜ ∗ operator as the core of our 

airwise-depthwise-RPN. This, together with the enhanced RoI ex- 

ractor, the multi-object penalization module, and the inertia sys- 

em, gives SiamMOTION advantages of up to +5 . 2 points of accu- 

acy and +7 . 6 points of robustness compared to its predecessor. 

hen compared to the second best state-of-the-art architecture, 

hese differences can become as large as +23 . 2 and +25 . 1 points,

espectively. 

One of the datasets in which SiamMOTION best performs is 

AVDT —improvement of +3 . 2 points in accuracy and +1 . 0 points

n robustness @20 fps. This is because it contains a large num- 

er of small moving vehicles, for which the inertia module and 

he inclusion of the FPN in the RoI extractor are ideal. The inertia 

odule allows for better placement of the search area when there 

re fast movements —this is critical for small objects, as the field- 

f-view of the network is smaller for them ( Eq. (6) )—, while the

PN provides meaningful features for small objects, which would 

ormally be washed-out at deeper levels of the backbone. Other 

atasets in which SiamMOTION excels are VisDrone —improvement 

f +5 . 2 points in accuracy and +7 . 6 points in robustness @20 fps—

nd JTA —improvement of +4 . 1 points in accuracy and +4 . 8 points

n robustness @20 fps. The large number of objects they contain 

nd the fact that the sequences are captured with a moving cam- 

ra mean that the bounding boxes of the targets will continuously 

hange in aspect ratio. Thanks to SiamMOTION’s built-in PD-RPN, 

e are able to detect these changes in an efficient and effective 

anner. 

On the most challenging dataset, MOT-2020, SiamMOTION 

chieves the highest difference in accuracy and robustness with 

he state of the art but SiamMT, surpassing them by over +21 . 5

oints in accuracy and +9 . 2 points in robustness @20 fps. This 

ataset is quite complex due to the large amount of overlap be- 

ween objects and erratic movements it contains, making it com- 

letely different from the rest of the benchmarks —the initializa- 

ions themselves often contain parts of other tracked objects. In 

act, Fig. 8 shows how half of the objects in MOT-2020 present 

verlaps in 70% or more of their detections. This statistic is very 

ifferent from the rest of the databases, in which most of their 

bjects are overlapped in less than 25% of their detections. An ex- 

reme example of this is UAVDT, where 90% of its objects have an 

verlap below 3% , since it consists of zenithal recordings of vehi- 

les. 

. Conclusions and future work 

We have presented SiamMOTION, an MVOT (multiple visual 

bject tracker) capable of tracking several dozens of objects in real- 

ime with high accuracy and robustness, regardless of their cat- 

gory and size. This is made possible thanks to a proposal en- 

ine that generates quality features —well-framed, with the cor- 

ect resolution, and highlighting the most relevant channels for 

ach object— and a comparison head that efficiently outputs qual- 

ty predictions —detecting changes in aspect ratio and suppressing 

he effect of distractors, all without resorting to multi-scale testing. 

SiamMOTION has been evaluated on various video databases, 

chieving a real-time performance that surpasses the current state 

f the art —increase of +2 . 9 points in both average accuracy and
10 
verage robustness when compared to the best performing coun- 

erpart at 25 fps, and differences of more than +11 . 6 points when

ompared to the rest. Furthermore, an exhaustive ablation study 

as carried out on all the tested databases, analyzing the contribu- 

ion of each new component. This showed that the parts compris- 

ng the proposal engine —inertia module, RoI extractor, and atten- 

ion mechanism— are responsible for the 68% of the improvement 

rought by the architecture —+4 . 6 points in accuracy and +5 . 8

oints in robustness over the baseline—, while the components 

hat make up the comparison head —Pairwise Depthwise RPN 

nd multi-object penalization module— contribute the remaining 

2% —+3 . 8 and +1 . 0 points in accuracy and robustness, respec-

ively. 

As SiamMOTION is an MVOT and not a fully-fledged MOT sys- 

em, it solves a specific task within the MOT framework —motion 

stimation when there are no detections available. It is therefore 

ot responsible for carrying out other tasks such as track initial- 

zation and termination, or drift detection. This is why as future 

ork it would be interesting to develop a complete MOT sys- 

em integrating SiamMOTION as well as an object detector, an 

ffinity estimator, and an association mechanism; making it fully 

ntegrated and end-to-end trainable. This would most likely al- 

ow for better learning for all components, as well as ease its 

eployment in resource-constrained environments. It would also 

e interesting to transform SiamMOTION to produce more thor- 

ugh outputs, enabling rotated bounding boxes or per-pixel iden- 

ification —segmentation. This would allow for more refined pre- 

ictions, making tracking more valuable in those situations where 

bjects have unusual shapes or appear in large crowds. However, 

his is not straightforward, as such methods usually have a severe 

mpact on the speed of the system, preventing it from running in 

eal-time. 
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L. Čehovin Zajc, O. Drbohlav, A. Lukezic, A. Berg, A. Eldesokey, J. Käpylä, G. Fer-

nández, L. Zheng, L. Rout, L.V. Gool, L. Bertinetto, M. Danelljan, M. Dunnhofer, 
M. Ni, M.Y. Kim, M. Tang, M. Yang, N. Paluru, N. Martinel, P. Xu, P. Zhang,

P. Zheng, P. Zhang, P.H.S. Torr, Q. Zhang, Q. Wang, Q. Guo, R. Timofte, 
R.K.S.S. Gorthi, R.M. Everson, R. Han, R. Zhang, S. You, S. Zhao, S. Zhao, S. Li,

S. Li, S. Ge, S. Bai, S. Guan, T. Xing, T. Xu, T. Yang, T. Zhang, T. Vojír, W. Feng,
W. Hu, W. Wang, A. Gonzalez-Garcia, W. Tang, W. Zeng, W. Liu, X. Chen, 

X. Qiu, X. Bai, X. Wu, X. Yang, X. Chen, X. Li, A. Memarmoghadam, X. Sun,

X. Chen, X. Tian, X. Tang, X. Zhu, Y. Huang, Y. Chen, Y. Lian, Y. Gu, Y. Liu, A. Lu,
Y. Chen, Y. Zhang, Y. Xu, Y. Wang, Y. Li, Y. Zhou, Y. Dong, Y. Xu, Y. Zhang, Y. Li,

A. He, Z.W.Z. Luo, Z. Zhang, Z. Feng, Z. He, Z. Song, Z. Chen, Z. Zhang, Z. Wu,
Z. Xiong, Z. Huang, A. Varfolomieiev, Z. Teng, Z. Ni, A.B. Chan, A.S. Tripathi, 

A.W.M. Smeulders, B.S. Pedasingu, B.X. Chen, B. Zhang, B. Wu, B. Li, B. He,
B. Yan, B. Bai, B. Li, B. Li, B.H. Kim, C. Ma, C. Fang, C. Qian, C. Chen, C. Li,

C. Zhang, C. Tsai, C. Luo, C. Micheloni, C. Zhang, D. Tao, D. Gupta, D. Song,

D. Wang, E. Gavves, E. Yi, F.S. Khan, F. Zhang, F. Wang, F. Zhao, G. De Ath,
G. Bhat, G. Chen, G. Wang, G. Li, H. Cevikalp, H. Du, H. Zhao, H. Saribas,

H.M. Jung, H. Bai, H. Yu, H. Peng, H. Lu, H. Li, J. Li, J. Li, J. Fu, J. Chen, J. Gao,
J. Zhao, J. Tang, J. Li, J. Wu, J. Liu, J. Wang, J. Qi, J. Zhang, J.K. Tsotsos, J.H. Lee,

J. van de Weijer, J. Kittler, J.H. Lee, J. Zhuang, K. Zhang, K. Wang, K. Dai, L. Chen,
L. Liu, L. Guo, L. Zhang, L. Wang, L. Wang, L. Zhang, L. Wang, L. Zhou, The sev-

enth visual object tracking VOT2019 challenge results, in: IEEE Int. Conf. Com- 

put. Vis. (ICCV) Workshops, 2019, pp. 2206–2241 . 
[7] M. Fernández-Sanjurjo, M. Mucientes, V. Brea, Real-time multiple object vi- 

sual tracking for embedded GPU systems, IEEE Internet Things J. 8 (2021) 
9177–9188 . 

[8] A. Bewley, Z. Ge, L. Ott, F.T. Ramos, B. Upcroft, Simple online and realtime
tracking, in: IEEE Int. Conf. Image Process. (ICIP), 2016, pp. 3464–3468 . 

[9] Z. Zhou, W. Luo, Q. Wang, J. Xing, W. Hu, Distractor-aware discrimination 

learning for online multiple object tracking, Pattern Recognit. 107 (2020) 
107512 . 

[10] J. Yin, W. Wang, Q. Meng, R. Yang, J. Shen, A unified object motion and affin-
ity model for online multi-object tracking, in: IEEE Conf. Comput. Vis. Pattern 

Recognit. (CVPR), 2020, pp. 6767–6776 . 
[11] D.S. Bolme, J.R. Beveridge, B.A. Draper, Y.M. Lui, Visual object tracking us- 

ing adaptive correlation filters, in: IEEE Conf. Comput. Vis. Pattern Recognit. 

(CVPR), 2010, pp. 2544–2550 . 
12] D. Yuan, X. Li, Z. He, Q. Liu, S. Lu, Visual object tracking with adaptive struc-

tural convolutional network, Knowl. Based Syst. 194 (2020) 105554 . 
[13] T. Xu, Z. Feng, X. Wu, J. Kittler, An accelerated correlation filter tracker, Pattern 

Recognit. 102 (2020) 107172 . 
[14] L. Bertinetto, J. Valmadre, J.F. Henriques, A. Vedaldi, P.H.S. Torr, Fully-convolu- 

tional siamese networks for object tracking, in: European Conf. Comput. Vis. 
(ECCV) Workshops, 2016, pp. 850–865 . 

[15] B. Li, J. Yan, W. Wu, Z. Zhu, X. Hu, High performance visual tracking with

siamese region proposal network, in: IEEE Conf. Comput. Vis. Pattern Recog- 
nit. (CVPR), 2018, pp. 8971–8980 . 

[16] D. Guo, J. Wang, Y. Cui, Z. Wang, S. Chen, SiamCAR: siamese fully convolu-
tional classification and regression for visual tracking, in: IEEE Conf. Comput. 

Vis. Pattern Recognit. (CVPR), 2020, pp. 6268–6276 . 
[17] B. Li, W. Wu, Q. Wang, F. Zhang, J. Xing, J. Yan, SiamRPN++: evolution of

siamese visual tracking with very deep networks, in: IEEE Conf. Comput. Vis. 

Pattern Recognit. (CVPR), 2019, pp. 4282–4291 . 
[18] Y. Yu, Y. Xiong, W. Huang, M.R. Scott, Deformable siamese attention networks 

for visual object tracking, in: IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR), 
2020, pp. 6727–6736 . 

[19] Y. Yin, D. Xu, X. Wang, L. Zhang, AGUnet: annotation-guided U-net for fast 
one-shot video object segmentation, Pattern Recognit. 110 (2021) 107580 . 

20] Y. Xu, Z. Wang, Z. Li, Y. Ye, G. Yu, SiamFC++: towards robust and accurate visual

tracking with target estimation guidelines, in: AAAI Conf. Artif. Intell. (AAAI), 
2020, pp. 12549–12556 . 

21] M. Danelljan, G. Bhat, F.S. Khan, M. Felsberg, ATOM: accurate tracking by over- 
lap maximization, in: IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR), 2019, 

pp. 4660–4669 . 
22] G. Bhat, M. Danelljan, L.V. Gool, R. Timofte, Learning discriminative model 

prediction for tracking, in: IEEE Int. Conf. Comput. Vis. (ICCV), 2019, 

pp. 6181–6190 . 
23] K. He, X. Zhang, S. Ren, J. Sun, Deep residual learning for image recognition, 

in: IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR), 2016, pp. 770–778 . 
24] K. He, G. Gkioxari, P. Dollár, R.B. Girshick, Mask R-CNN, in: IEEE Int. Conf. Com-

put. Vis. (ICCV), 2017, pp. 2980–2988 . 
25] T. Lin, P. Dollár, R.B. Girshick, K. He, B. Hariharan, S.J. Belongie, Feature pyramid

networks for object detection, in: IEEE Conf. Comput. Vis. Pattern Recognit. 

(CVPR), 2017, pp. 936–944 . 
11
26] Z. Zhu, Q. Wang, B. Li, W. Wu, J. Yan, W. Hu, Distractor-aware siamese net-
works for visual object tracking, in: European Conf. Comput. Vis. (ECCV), 2018, 

pp. 103–119 . 
27] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A.N. Gomez, L. Kaiser, 

I. Polosukhin, Attention is all you need, in: Adv. Neural Inf. Process. Syst. 
(NIPS), 2017, pp. 5998–6008 . 

28] D.P. Kingma, J. Ba, Adam: a method for stochastic optimization, in: Int. Conf. 
Learn. Repr. (ICLR), 2015, pp. 1–15 . 

29] T. Lin, M. Maire, S.J. Belongie, J. Hays, P. Perona, D. Ramanan, P. Dollár, C.L. Zit-

nick, Microsoft COCO: common objects in context, in: European Conf. Comput. 
Vis. (ECCV) Workshops, 2014, pp. 740–755 . 

30] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang, A. Karpa-
thy, A. Khosla, M.S. Bernstein, A.C. Berg, F. Li, ImageNet large scale visual recog- 

nition challenge, Int. J. Comput. Vision 115 (3) (2015) 211–252 . 
31] E. Real, J. Shlens, S. Mazzocchi, X. Pan, V. Vanhoucke, YouTube-BoundingBoxes: 

a large high-precision human-annotated data set for object detection in video, 

in: IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR), 2017, pp. 7464–7473 . 
32] L. Huang, X. Zhao, K. Huang, GOT-10k: a large high-diversity benchmark for 

generic object tracking in the wild, IEEE Trans. Pattern Anal. Mach. Intell. 
(2019) . 1–1 

33] A. Milan, L. Leal-Taixé, I.D. Reid, S. Roth, K. Schindler, MOT16: a benchmark for 
multi-object tracking, CoRR (2016) abs/1603.00831 . 

34] H. Yu, G. Li, W. Zhang, Q. Huang, D. Du, Q. Tian, N. Sebe, The unmanned aerial

vehicle benchmark: object detection, tracking and baseline, Int. J. Comput. Vis. 
128 (5) (2020) 1141–1159 . 

35] P. Zhu, L. Wen, D. Du, X. Bian, Q. Hu, H. Ling, Vision meets drones: past,
present and future, CoRR (2020) abs/2001.06303 . 

36] M. Fabbri, F. Lanzi, S. Calderara, A. Palazzi, R. Vezzani, R. Cucchiara, Learning 
to detect and track visible and occluded body joints in a virtual world, in: 

European Conf. Comput. Vis. (ECCV), 2018, pp. 450–466 . 

37] Y. Xu, A. Osep, Y. Ban, R. Horaud, L. Leal-Taixé, X. Alameda-Pineda, How to train
your deep multi-object tracker, in: IEEE Conf. Comput. Vis. Pattern Recognit. 

(CVPR), 2020, pp. 6786–6795 . 
38] B. Shuai, A.G. Berneshawi, X. Li, D. Modolo, J. Tighe, SiamMOT: siamese mul- 

ti-object tracking, in: IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR), 2021, 
pp. 12372–12382 . 

39] Z. Fu, Q. Liu, Z. Fu, Y. Wang, STMTrack: template-free visual tracking with 

space-time memory networks, in: IEEE Conf. Comput. Vis. Pattern Recognit. 
(CVPR), 2021, pp. 13774–13783 . 

40] Z. Chen, B. Zhong, G. Li, S. Zhang, R. Ji, Z. Tang, X. Li, SiamBAN: target-aware
tracking with siamese box adaptive network, IEEE Trans. Pattern Anal. Mach. 

Intell. (2022) 1–17 . 

Lorenzo Vaquero is a Ph.D. student at the CiTIUS of the 
University of Santiago de Compostela, Spain. He received 

the B.S. degree in Computer Science in 2018 and the M.S. 
degree in Big Data in 2019. His research interests are vi- 

sual object tracking and deep learning for autonomous 
vehicles. 

Víctor M. Brea is an Associate Professor at CiTIUS, Univer- 
sity of Santiago de Compostela, Spain. His main research 

interest lies in Computer Vision, both on deep learning al- 
gorithms, and on the design of efficient architectures and 

CMOS solutions. He has authored more than 100 scientific 

papers in these fields of research. 

Manuel Mucientes is an Associate Professor at the CiTIUS 

of the University of Santiago de Compostela, Spain. His 
main research interest is artificial intelligence applied to 

the following areas: computer vision for object detection 

and tracking; machine learning; process mining. He has 
authored more than 100 scientific papers in these fields 

of research. 

http://refhub.elsevier.com/S0031-3203(22)00621-5/sbref0003
http://refhub.elsevier.com/S0031-3203(22)00621-5/sbref0004
http://refhub.elsevier.com/S0031-3203(22)00621-5/sbref0005
http://refhub.elsevier.com/S0031-3203(22)00621-5/sbref0006
http://refhub.elsevier.com/S0031-3203(22)00621-5/sbref0007
http://refhub.elsevier.com/S0031-3203(22)00621-5/sbref0008
http://refhub.elsevier.com/S0031-3203(22)00621-5/sbref0009
http://refhub.elsevier.com/S0031-3203(22)00621-5/sbref0010
http://refhub.elsevier.com/S0031-3203(22)00621-5/sbref0011
http://refhub.elsevier.com/S0031-3203(22)00621-5/sbref0012
http://refhub.elsevier.com/S0031-3203(22)00621-5/sbref0013
http://refhub.elsevier.com/S0031-3203(22)00621-5/sbref0014
http://refhub.elsevier.com/S0031-3203(22)00621-5/sbref0015
http://refhub.elsevier.com/S0031-3203(22)00621-5/sbref0016
http://refhub.elsevier.com/S0031-3203(22)00621-5/sbref0017
http://refhub.elsevier.com/S0031-3203(22)00621-5/sbref0018
http://refhub.elsevier.com/S0031-3203(22)00621-5/sbref0019
http://refhub.elsevier.com/S0031-3203(22)00621-5/sbref0020
http://refhub.elsevier.com/S0031-3203(22)00621-5/sbref0021
http://refhub.elsevier.com/S0031-3203(22)00621-5/sbref0022
http://refhub.elsevier.com/S0031-3203(22)00621-5/sbref0023
http://refhub.elsevier.com/S0031-3203(22)00621-5/sbref0024
http://refhub.elsevier.com/S0031-3203(22)00621-5/sbref0025
http://refhub.elsevier.com/S0031-3203(22)00621-5/sbref0026
http://refhub.elsevier.com/S0031-3203(22)00621-5/sbref0027
http://refhub.elsevier.com/S0031-3203(22)00621-5/sbref0028
http://refhub.elsevier.com/S0031-3203(22)00621-5/sbref0029
http://refhub.elsevier.com/S0031-3203(22)00621-5/sbref0030
http://refhub.elsevier.com/S0031-3203(22)00621-5/sbref0031
http://refhub.elsevier.com/S0031-3203(22)00621-5/sbref0032
http://refhub.elsevier.com/S0031-3203(22)00621-5/sbref0032
http://arxiv.org/abs/1603.00831
http://refhub.elsevier.com/S0031-3203(22)00621-5/sbref0034
http://arxiv.org/abs/2001.06303
http://refhub.elsevier.com/S0031-3203(22)00621-5/sbref0036
http://refhub.elsevier.com/S0031-3203(22)00621-5/sbref0037
http://refhub.elsevier.com/S0031-3203(22)00621-5/sbref0038
http://refhub.elsevier.com/S0031-3203(22)00621-5/sbref0039
http://refhub.elsevier.com/S0031-3203(22)00621-5/sbref0040

	Real-time siamese multiple object tracker with enhanced proposals
	1 Introduction
	2 Related work
	2.1 Motion estimation
	2.2 Visual object tracking

	3 SiamMOTION Network architecture
	3.1 Feature extractor
	3.2 Proposal engine
	3.2.1 Region-of-interest extractor
	3.2.2 Inertia module
	3.2.3 Attention module

	3.3 Comparison head
	3.3.1 Similarity operation
	3.3.2 Multi-object penalization module


	4 Experiments
	4.1 Implementation details
	4.2 Ablation study
	4.3 Comparison with the state of the art

	5 Conclusions and future work
	Declaration of Competing Interest
	Acknowledgment
	Supplementary material
	References


