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Abstract: Due to the relevant penetration of solar PV power plants, an accurate power generation
forecasting of these installations is crucial to provide both reliability and stability of current grids. At
the same time, PV monitoring requirements are more and more demanded by different agents to pro-
vide reliable information regarding performances, efficiencies, and possible predictive maintenance
tasks. Under this framework, this paper proposes a methodology to evaluate different LoRa-based PV
monitoring architectures and node layouts in terms of short-term solar power generation forecasting.
A random forest model is proposed as forecasting method, simplifying the forecasting problem
especially when the time series exhibits heteroscedasticity, nonstationarity, and multiple seasonal
cycles. This approach provides a sensitive analysis of LoRa parameters in terms of node layout,
loss of data, spreading factor and short time intervals to evaluate their influence on PV forecasting
accuracy. A case example located in the southeast of Spain is included in the paper to evaluate the
proposed analysis. This methodology is applicable to other locations, as well as different LoRa config-
urations, parameters, and networks structures; providing detailed analysis regarding PV monitoring
performances and short-term PV generation forecasting discrepancies.

Keywords: LoRa technology; PV monitoring; sensitive parameter analysis

1. Introduction

The high integration of variable renewable energy sources (vRES) into current power
systems, mainly wind and solar photovoltaic (PV) power plants, can be a key component
of the resulting low-carbon power systems. However, their intermittency requires more
flexibility from the rest of the power system to maintain certain grid stability and reliability
levels [1]. Consequently, the increase in demand variability created by such intermittent
sources presents new challenges to provide relevant system flexibility [2]. In addition to
these challenges, accurate forecasting of renewable generation is also required by both
transmission and distribution system operators in order to mitigate the negative impact
on the grids of such variable and noncontrollable resources. According to Daliento et al.,
similar models are usually adopted for power forecasting for PV fields, which is important
for both monitoring purposes and the management of the utility grid [3]. With this aim,
different solar PV power generation forecasting solutions can be found in the specific litera-
ture [4]. The forecasting timeframe, also called horizon, is firstly defined according to the
grid operation and under both spatial and temporal resolutions. Different forecast horizons
can be then defined, varying from seconds to days or weeks ahead. Regarding spatial
horizons, they can also be spanned from single site to regional forecasts [5]. In [6], a new
model based on hourly measurements is proposed and evaluated. In [7], the application
of neural networks for photovoltaic power generation forecasting purposes is explored
by Oudjana et al. Other forecasting neural network-based solutions can be found in the
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specific literature [8–12]. Naveed Akhter et al. [13] present a critical and systematic review
of photovoltaic (PV) power forecasting methods, mostly focused on machine learning and
metaheuristic based-solutions. An extreme learning machine technique is used for PV
power forecasting of a real time model [14]. A revision of solar irradiance and PV power
forecasting, both topics combined as “solar forecasting”, using text mining is discussed
in [15]. Barbieri et al. [16] conclude that cell/module temperature and irradiance can be
considered as the best approaches for an accurate PV power forecasting; mainly under
cloudy conditions with hardly predictable power generation fluctuations. A probabilis-
tic forecast review focused on inherently erroneous of different forecasting strategies is
discussed and quantified in [17]. Short-term photovoltaic power generation forecasting is
also an important task in renewable energy power system planning and operating. In fact,
Kaur et al. [18] affirm that short-term electricity trading to balance demand and generation
offers a remarkable economic opportunity to integrate larger shares of vRES into future
power grids. A novel multi-timescale data-driven forecast model to improve the accuracy
of short-term PV power production is proposed by Yang et al. [19]. Dambreville et al. [20]
propose a new approach of global horizontal irradiance (GHI) forecasting for very short
term by using a spatio–temporal autoregressive model.

From the specific literature, observed weather data are commonly applied on the
solar PV generation forecasting model [21]. Subsequently, the solar PV forecasting model
performance is then evaluated by quantifying discrepancies between such forecasts and
the weather measurements through the use of traditional statistical error metrics, such
as the mean bias error or the root mean square error (RMSE) [22]. For example, the
mean absolute percentage error (MAPE), and mean absolute error (MAE) indicators are
used in [23] to evaluate the performance of day-ahead photovoltaic power forecasting
models based on deep learning neural network. Normalized root mean square error
(nRMSE) is used in [24] to evaluate the forecasting errors. In a similar way, Huang et al.
describe a comparative study of solar PV power forecasting methods based on nRMSE [25].
An extensive comparison of simple forecasting methodologies with more sophisticated
solutions over 32 photovoltaic (PV) plants of different sizes and technology over a whole
year is carried out by Gigoni et al. [26]. However, there is a lack of contributions focused
on evaluating possible forecasting errors and minor accurate results derived from the
inherent communication network failures: packet losses, possible packet collisions, etc.,
as well as the short time period influence of such GHI forecasting accuracy. Indeed,
possible communication failure can significantly affect both gathering data and forecasting
results [27]. Subsequently, and by considering such missed contributions in the specific
literature about this issue, the present paper analyzes the influence of the LoRa solution—
identified by the literature as a promise and suitable technology—on the GHI short-term
forecasting accuracy, by considering real communication architecture/layout and specific
LoRa performance characteristics. In addition, current datasets available from satellite-
based installations, ground-based installations, and solar PV power plants connected to the
grid are also considered for evaluation. In this way, a case example located in the southeast
of Spain is included in the paper to assess the suitability of the proposed methodology.
The main contributions of this paper can be summarized as (i) a methodology to evaluate
GHI short-term forecasting accuracy for different node layouts and LoRa parameters based
on a random forest prediction model; (ii) a sensitive analysis of LoRa parameters and
short-term intervals on the GHI forecasting values based on a variety of metrics; and (iii) a
case study from 2019 GHI data (one-minute sample time), 400 km2 area, 289 potential nodes
under consideration, and a total of 13,140 simulations. This methodology thus provides a
preliminary extensive analysis of potential LoRa network characteristics and node layout
in terms of data accuracy, packets, and GHI forecasting possibilities before the installation
was completed.

The rest of the paper is structured as follows. Section 2 discusses PV power plant
monitoring and the use of LoRa technology as a solution to be implemented in such
installations. Section 3 describes the proposed methodology. A case example is presented
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in Section 4. Results and discussion are provided in Section 5. Finally, conclusions are given
in Section 6.

2. Pv Monitoring: LoRa Communication Technology
2.1. General Overview

A variety of PV monitoring strategies based on the output PV power plants and
their nature have been proposed in the literature; being performed remotely or locally on
site. New advanced monitoring techniques are continuously under investigation; mainly
due to the evolution and relevant integration of PV installations into power systems. A
recent PV monitoring review is analyzed by Triki-Lahiani et al. [28]; discussing their
differences, advantages, and limits. An impedance-based monitoring method for detection
of distribution system current behavior is presented in [29]. This monitoring technique can
be used for small variation of PV penetration level, and for some fast transient detection,
such as the effect of cloud movement on a PV system.

2.2. Lora-Based Communication System

Although different wireless technologies—such as Bluetooth, Zigbee, Wi-Fi, GSM,
Sigfox, or LoRa—have been evaluated for PV solar monitoring through wireless sensors
networks, LoRa technology has been chosen as the wireless technology due to its long
range and low power consumption [30]. Moreover, this technology has received significant
attention in recent years from network operators and solution providers [31–34]. An
impartial and fair overview regarding the capabilities and the limitations of LoRaWAN
is discussed by Adelantado et al. [35] to clarify its comprehension and avoid inflated
expectations. LoRa uses six spreading factors (SF07 to SF12) to adapt the data rate and
range trade-off. It can be affirmed that a higher spreading factor (SF) allows longer range at
the expense of lower data rate [36]. The LoRa data rate depends on the channel bandwidth
and the SF, ranging from 0.3 kbps to 27 kbps [37]. According to Mikhaylov et al. [38],
messages transmitted with different SFs can be received simultaneously by LoRa base
stations, 243 bytes being the maximum payload length for each message.

A collision behavior model, C(x, y), for LoRa network between node x and node y
is proposed by Bor et al. [39]. A collision rate analysis with a single LoRa gateway was
reported by Alenezi et al. [40]—depending on the number of nodes and the SF for one
(20 byte) packet each hour for 24 h (125 kHz bandwidth). In [41], Zhang et al. propose an
alternative low-power wide area network information monitoring approach based on LoRa
and NB-IoT. In this case, the communication distance in a complex environment was up to
1.6 km, with a system communication packet loss rate of around 3%. Silva et al. [42] test
LoRa (long range) technology and LoRaWAN protocol in a precision viticulture scenario
using low-power data acquisition devices, distanced 400 m away from the nearest gateway.
With regard to the communication area parameter, Liu et al. [43] present a low-power,
real-time air quality monitoring system also based on the LoRa technology being able
to reach to approximately 2 km. A range of 9.27 km was achieved with SF12 and a
bandwidth of 125 kHz in [44], for module-level monitoring of solar PV plants. The LoRa
communication usefulness for monitoring the climate information of PV power plants was
tested by Jeong et al. [45]. From the test results, it can be affirmed that the communication
range for the PV climate information transmission reaches 1.3 km. In general, it can be
assumed that LoRa radio chipsets use a maximum of 100 mW when transmitting, with a
range of 10 to 30 km in suburban areas. In [46], it is affirmed that LoRa performs much
better in comparison to FSK in most scenarios. It also highlights the successful transmission
ranges within suburban scenarios up to 10 km.

3. Methodology
3.1. Lora Parameter Modeling

In the specific literature, a review of LoRa simulation environments can be found
in [47], where aspects such as the selection of LoRa parameters or the device energy
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consumption were revised and compared. For example, LoRaSim was described as a
well-known custom-built discrete-event simulator implemented with SimPy [39]. It allows
us to place a group of N LoRa-nodes and M LoRa-stations in a bidimensional space. A
directional antennae is also considered for simulation purposes and identification of LoRa
parameters. In this way, a comparison between the use of directional antennae facing
multiple base stations as methods of dealing with LoRa internetwork interference is carried
out in [48]. However, these solutions do not analyze the influence and sensitive of LoRa
nodes on the PV forecasting accuracy, under different communication errors/discrepancies
and a diversity of LoRa node layouts.

The transmission parameters define the LoRa node communication characteristics.
As discussed in Section 2.1, LoRa provides three bandwidth (BW) settings—125, 250, or
500 kHz, and six different spreading factor (SF) values. According to Croce et al. [49], a
larger bandwidth translates to a data rate increase and a receiver sensitivity deterioration.
Conversely, higher SFs can be used to improve the link robustness at the cost of lower
data rates. LoRa modulation is derived from chirp spread spectrum (CSS). LoRa CSS
modulations with BW of 125 kHz are assumed in this work, 1% duty cycle, and a default
radiated transmit power of 14 dBm. Croce et al. [50] identified six different SFs: from SF07
to SF12. In Europe, both 868 MHz and 433 MHz bands are allowed to be used. Transmitted
power is limited to 14 dBm effective isotropic radiated power (EIRP), with a 1% duty
cycle limit of on-air time, and the transmitted power limited to 14 dBm effective isotropic
radiated power (EIRP). Table 1 summarizes the LoRa/LoRaWAN main characteristics [51].
According to the specific literature, there is pseudo orthogonality among SFs, having the
advantage that multiple signal reception is possible [52]. Table 2 shows the estimated range
for different SFs (from SF07 to SF10) that can be used for uplink messages on a 125 kHz
channel depending on the terrain: longer distances can be achieved in a rural environment
than in an urban environment [53].

Table 1. LoRa/LoRaWAN main characteristics based on the EU 863–870 MHz data rates.

0 SF12/125 kHz 250
1 SF11/125 kHz 440
2 SF10/125 kHz 980
3 SF09/125 kHz 1760
4 SF08/125 kHz 3125
5 SF07/125 kHz 5470
6 SF06/250 kHz 11,000
7 FSK: 50 kbps 440 50,000

Table 2. LoRa spreading factor (SF).

Spreading Factor (SF) Range (Depending on the Terrain)

SF10 8 km
SF09 6 km
SF08 4 km
SF07 4 km

For a specific SF, the narrower the bandwidth, the higher the receiver sensitivity [54].
Consequently, the data rate selection is then considered as a trade-off between message
duration and communication range. Different tools allow us to estimate time on air and
optimum bandwidth. For the present proposal, the time interval on air for a 51-byte payload
for each specific SF is considered. The payload size is defined as the maximum payload
length. For each transmission, the payload can range from 2 to 255 octets, reaching the
data rate up to 50 kbps when channel aggregation is used [55] under the assumption that
any packet arrivals follow a Poisson law—thus, considering a uniform distribution of the
payloads, their lengths are between 1 and 51 bytes [56]. According to Centenaro et al. [57],
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it can be assumed that the data transmission in a LoRaWAN presents a typical 1% duty-
cycle constraint; from the nodes to their corresponding gateways in a single hop allocated
on different sub-bands. Indeed, the European regulations currently ask for adherence to
1% duty cycle per sub-band or applying any mechanism based on “listen-before-talk and
adaptive frequency agility” [58]. Table 3 summarizes the corresponding time intervals
between subsequent starting packets (s) for a 1% duty-cycle.

Table 3. Time interval between subsequent packets (1% duty-cycle).

Spreading Factor (SF)

SF12 SF11 SF10 SF09 SF08 SF07 SF06

Time Interval between Subsequent Packets (s)

214 115 62 33 18.5 10 6

As previously described, LoRaWAN is built as a star-of-stars topology, where the
devices located in the defined grid are able to send packets to a gateway which is then
responsible for forwarding those packages to a network server [59]. It is assumed that each
end-device selects a specific SF based on the data rate and the distance to the gateway. A
radial equidistant distribution with homogeneous end-device density is thus considered,
being the energy consumption of j-radial annulus proportional to the airtime. In order to
give a more realistic simulation, the study of LPWAN modeling proposed by Georgiou
and Raza [60] is used to analyze the capability of this technology to scale. This study
also includes an outage probability model which occurs at the gateway, called outage
condition [61]. Table 4 gives the outage of a desired signal in the uplink that can occur at
the gateway, if the received signal to noise ratio (SNR) is below the SF specific threshold.

Table 4. Signal to noise ratio (SNR) limits.

Spreading Factor (SF) Signal to Noise Ratio (SNR) Limit q(j)

SF07 −7.5 dB
SF08 −10.0 dB
SF09 −12.5 dB
SF10 −15.0 dB
SF 11 −17.5 dB
SF 12 −20.0 dB

It can be then determined the packet delivery ratio, defined as the ratio between
the client of packages originated by the “application layer” and the number of packages
received by the sink at the final destination [62]. From this parameter, we obtain the
probability function that any packet should be lost. We consider a Rayleigh channel, in
line with Duda and Heusse [63]. The received signal power is affected by a multiplicative
random variable with an exponential distribution of unit mean (and standard deviation).
Consequently, the signal power depends on the Rayleigh fading gain and the distance,
keeping the noise power constant for a 125 kHz wide band (N = −123 dBm). A maxi-
mum transmission power of P = 14 dBm is considered for simulations; the successful
transmission probability being with data rate DRj and at distance lj:

H(lj) = exp

(
N · qj

P · g(lj)

)
, (1)

where g(lj) is the average channel gain at distance lj, P is the transmission power (in dBm),
qj is the signal to noise ratio (SNR) threshold for DRj, and N is the wide band (in dBm).
The path loss attenuation is estimated by using the Radio Mobile software package [64].
It uses the terrain information and the mathematical model to calculate the coverage area
from the fixed radiation point taken as mobile reference point [65]. The irregular terrain
model (ITM) is used as a propagation model. It estimates radio propagation losses over
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irregular terrain in the range 0.020 to 20 GHz frequencies as a function of space and distance
and the variability of signal in time [66]. The Okumura–Hata model [67] has also been
recently proposed and assessed for path loss attenuation, mostly focused on comparing the
performance LoRaWAN analysis in urban scenarios.

In the simulations, it is assumed that all transmitters (i) send packets with the same
payload length; (ii) do not switch the SF from one packet to another during the same simu-
lation test—despite that the adaptive data rate is one of the main strengths of LoRa [68];
(iii) do not change the transmit power from one packet to another during the same simu-
lation test; and (iv) all of the transmitters have the same number of packets to send. An
example of maximum communication ranges on ground (15 km) and on water (30 km)
can be found in [69], including packet loss ratio, depending on the distance and assuming
maximum signal SF—868 MHz ISM band using 14 dBm transmit power.

3.2. Spatio–Temporal PV Forecasting

As discussed in Section 1, different probabilistic models for spatio–temporal PV fore-
casting can be found in the specific literature. However, only a few spatio–temporal models
for short-term probabilistic forecasting can be identified [70], which are based on regres-
sion trees [71], the vectorial autoregressive model and gradient boosting combination [72],
the kNN method [73], multivariate predictive distributions [74], and Gaussian random
fields [75]. A least absolute shrinkage and selection operator (LASSO) regression method
was also presented by Yang et al. [76] for sub–5–min solar irradiance forecasting. A flexible
spatio–temporal model to estimate PV production forecasts was recently proposed by
Agoua et al. [77] for horizons up to 6 h ahead, evaluating the effect of different spatial and
temporal data sources on the accuracy of the forecasts. According to Muhammad et al. [78],
the ARX model is the simplest black box linear model, based on a structure that is known as
the most common input–output model. In this work, the author selected the random forest
(RF) approach, mainly due to its simplicity to deploy, low computational cost, and ease
in interpreting the input interactions. The RF algorithm is then used to find an adequate
predictor function f . The RF algorithm is an ensemble learner, proposing a set of decision
trees that vote on a final result. Dudek [79] affirms that this model operates on patterns of
the time series seasonal cycles, considerably simplifying the forecasting problem—mainly
when a time series exhibits heteroscedasticity, trend, nonstationarity, and multiple seasonal
cycles. To train and test the RF algorithm, different partitions of the data are used accord-
ingly. Firstly, the parameter-tuning process of the RF learning is carried out through the
training set. Subsequently, the test set is used to estimated the final metrics. An R package
ranger to be used as a fast RF implementation for high-dimensional data is used in this
work [80].

By considering the aim of this paper, a smart persistence and RF model is proposed
for spatio–temporal PV forecasting, from the general expression given for time series [81],

Ŷk(t + h) = f (Yk(t), Yk(t − 1), Yk(t − 2), . . . , Yk(t − d)), (2)

where Ŷk(t+ h) is the kth sensor forecasting and time step t+ h, h is the horizon (in minutes)
for which the prediction is being made, Yk(t − l) is the data past collected at the lth lag,
l = 0, . . . , d. This general expression can be generalized and further extended to include
other relevant information about radiation, weather, statistical measures, etc.

Ŷk(t + h) = f (Y1(t), Y1(t − 1), Y1(t − 2), . . . , Y1(t − d),

Y2(t), Y2(t − 1), Y2(t − 2), . . . , Y2(t − d),

. . . ,

Ym(t), Ym(t − 1), Ym(t − 2), . . . , Ym(t − d)),

(3)

being Yj, for j = 1, . . . , m, the predictors to be used and Yj(t − l) a single predictor (see
Figure 1), and h the prediction horizon. This extended expression allows us to use additional
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information aside from the PV production data. Different measurement scenarios are
then proposed and evaluated for GHI forecasting comparison purposes, as described in
Section 3.3. GHI estimated data are thus forecast on short time horizons from 15 to 45 min.
The time steps are set as 1 min, and d = 15 min. It means that, to forecast Ŷk(t + h), as can be
seen in Figure 1, the time interval data from t to t − 15 is considered as input for prediction.
The d parameter can be modified depending on the time step and the number of nodes
(from 1 to m) included in each case study. The parameters are estimated according to the
prediction training strategy depicted in Figure 2. The clear sky index Kt(t) is used in the
forecasting model. Assuming to be stationary enough, it is defined as follows:

Kt(t) =
GHI(t)

GHIsc(t)
, (4)

being, thus, the ratio of the measured GHI to GHI under clear sky conditions (GHIsc).
The training and forecasting processes are summarized in Figure 3, in line with recent
studies also focused on machine learning forecast model analysis applied to solar power
forecasting [82].

Yk(t-2)
(t)

Yk(t-1)
(t-1)

(t-d)

Yk(t+h)(t+h)

Y1(t)
Ym(t)

Y2(t-1)

2(t)Y

(t-d)

Y1(t-d)

2Y

Ym(t-d)

Yk(t-d)

Yk(t)

Figure 1. Smart persistence and RF model proposed for spatio–temporal forecasting.

[t ,t ]0 i

[t ,t   ]1 i+1

[t ,t   ]p i+p

Y(t +h)^
k i

Y(t  +h)^
k i+1

Y(t  +h)^
k i+p

Figure 2. Forecast training strategy for a prediction horizon (h).

Data collecting

Data filtering

    simulation

Data completeness

Training process Trained model

Forecasting process Postprocessing Forecasted data

GHI

Kt

Kt Kt GHI

Kt

Figure 3. Training and forecast processes from collected data by using the clear sky index (Kt).

3.3. Proposed Global Methodology

This work aims to evaluate the influence of LoRa performance characteristics and
its architecture/layout on the short-term PV forecasting, by considering the RF model
described in Section 3.2. Firstly, a node selection and distribution based on LoRaWAN
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technology is carried out according to a predefined forecasting point of interest and a
possible group of potential on-ground sites or satellite based-installations. From these
specifications, a one-minute sample time database is defined on each node, as well as
the forecasting point of interest. The RF algorithm is used to find a suitable predictor
function f and, then, to forecast short-term solar values on such location by considering
different forecasting time intervals—from 15 to 45 min. These predictions are estimated
under a variety of scenarios: (i) assuming SF = SF09 for all nodes and 0% loss of data;
(ii) assuming SF from SF09 to SF12 on each node and 0% loss of data; and (iii) assuming
SF from SF09 to SF12 on each node and loss of data from 0% to 50%. Subsequently,
the solar forecasting values corresponding to the different scenarios are then compared.
Discrepancies and similarities are calculated, discussing the influence of the different
realistic LoRa parameters on the solar forecasting process. As previously analyzed by
the authors in [83], different metrics can be found in the specific literature to determine
discrepancies. From this classification, normalized root mean square error (nRMSE), mean
absolute percentage error (MAPE), and dynamic time warping (DTW) are determined to
provide complementary information and characterize convenient discrepancies among
the PV short-term forecasting data by considering SF09 and 0% loss of data and the rest
of scenarios. Figure 4 summarizes the proposed methodology. In addition, a sensitive
analysis based on SF parameter and loss of data variability is also included, determining
the differences among discrepancies with respect to the forecasting PV values with SF09
and 0% loss of data. The methodology and simulations were implemented in the R–
environment [84]. Different contribution software packages were used for methodology
implementation purposes. In this case, data.table for fast and memory efficient data
manipulation [85], ranger for a fast RF implementation [80], and dtw and dtwclust for the
DTW metric estimation [86].

Node selection and distribution

GHI Base-data
(1 minute sample-time)

Scenario 2.
SF from SF09 to SF12

0% loss of data

Scenario 3.
SF from SF09 to SF12

Loss of data from 0% to 50%

Scenario 1. 
SF=SF09

0% loss of data

Spatio-temporal solar forecasting 
(training and estimation)

Solar forecasting comparison
Discrepancies characterization

Forecasting-point identification

Scenario 1. 
Solar Forecasting 
Results

Scenario 2. 
Solar Forecasting 
Results

Scenario 3. 
Solar Forecasting 
Results

Figure 4. Proposed methodology: general scheme.
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4. Case Example: Datasets Used

Nonnenmacher et al. [87] affirm that satellite images based on prediction methods
are mostly used for intraday forecasts lower than four hours. Based on this assumption,
a total area of 400 km2 located in the Region of Murcia (11,300 km2, southeast of Spain)
is selected as a case example. This region is a promising area to integrate solar PV power
plants, with 5.2 kWh/m2· day as averaged annual global irradiation [88]. Figure 5 shows
a general overview of this area, covering a 17 × 17 grid portion with a total of 289 points
under consideration and a forecasting point identified in the center of this grid that is
selected for GHI estimated data—corresponding to Ŷk(t + h) according to expression (2).
The considered spacing between all pairs of grid points is assumed as 2.5 km. Day-ahead
GHI estimated data are downloaded from the Copernicus European Project servers [89]—
from January to December 2019. In addition, ground data are also available based on
the Network of the Agricultural Information System of the Region of Murcia (SIAM),
giving additional ground-based GHI data. The SIAM network consists of 49 ground-based
automatic stations geographically distributed; 32 stations are from the Regional Murcia
Institute of Agricultural and Food Research and Development (IMIDA), 15 stations are
from the Spanish Ministry of Agriculture, Food and Environment, one station is from
the Universidad Politécnica de Cartagena (Murcia, Spain), and one more is from the
City Council of Mazarrón (Murcia, Spain). These ground-based stations are financially
supported by several European fund projects [90], see Figure 6. A ground-based station
located in the center of the grid corresponds to the forecasting point considered for this
GHI forecasting analysis.

Figure 5. Case example: general overview and datasets (Region of Murcia, Spain).
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Sistema de Información Agraria de Murcia (SIAM)

Municipios

L. Municipales MTRM 1:5000

interior

exterior

costa

Estaciones

Horas frío (menor 7ºC) Modelo1

0 - 300

300 - 450

450 - 600

600 - 750

750 - 900

900 - 1.050

1.050 - 1.200

1.200 - 1.350

1.350 - 1.500

1.500 - 1.650

1.650 - 1.800

1.800 - 1.950

1.950 - 2.100

2.100 - 2.250

2.250 - 2.400

2.400 - 2.550

2.550 - 2.700

14/2/2022 19:12:46 0 20 4010 mi

0 30 6015 km

1:1,155,581

http://siam.imida.es

IMIDA - CARM

Figure 6. Case example: ground-based data available online (Region of Murcia, Spain) [90].

According to the proposed methodology described in Section 3.3, the LoRa node
distribution is then selected by considering the initial grid depicted in Figure 5. With this
aim, Figure 7 gives a general overview of the distribution of potential nodes, including
UTM coordinates. Duda and Heusse [63] affirm that a more realistic assumption is to
consider that the node density decreases with the inverse square of the gateway distance:
a specific intensity of physical quantity is inversely proportional to the distance square
from the source. Nevertheless, one node by each circular crown is considered and, thus,
a homogeneous and minimum density distribution is considered to be evaluated and
compared for short-term PV forecasting purposes. With regard to the LoRa parameters,
and as can be found in the specific literature, the lowest transfer rate ensures the highest
level of collisions [91]. Indeed, this configuration is the most used one, as it ensures the
largest communication range by using a high SF (e.g., SF = 12). Therefore, a trade-off is
then determined between increasing the communication range and reducing the transfer
rate. As described in Section 3.1, different SF values are also considered in the different
conditions. Therefore, different scenarios are considered for each day from the initial grid
depicted in Figure 7, with forecast horizons ranging from 15 to 45 min with one-minute
time resolution, and under a variety of SF LoRa parameters and loss of data values (see
Figure 4). A general comparison of GHI prediction results for the case study is following
discussed in Section 5.
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Figure 7. Case example: distribution of datasets (UTM coordinates).

5. Results

From the data corresponding to 2019, with one-minute time resolution, and as de-
scribed in Section 4, different short-term PV solar forecasting periods were considered
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for simulations. More specifically, three different time horizons were defined: 15, 30, and
45 min. Each day was then simulated by considering such different time horizons for
forecasting purposes. In addition, and with the aim to compare the impact of both loss of
data and the selected SF, simulations were carried out under such conditions: 0%, 25%, and
50% loss of data; as well as from SF12 to SF09. Indeed, and according to the discussion
given in Section 3.1—see Tables 2 and 3, the selected SF considerably affects the robustness
at the cost of lower data rates. These results allow us to evaluate the impact of each pa-
rameter and give a preliminary analysis of the influence of these conditions and situations
before implementing a real communication and sensoring network. Therefore, each day is
simulated through a 3 × 4 × 3 matrix of possible loss of data, foresting time intervals and
selected SF, as schematically depicted in Figure 8. Subsequently, 36 different conditions are
considered for each day, including three different losses of data percentages, four different
SF parameters, and three different forecasting time intervals. In line with the case example
shown in Figure 5 and the initial node layout based on UTM coordinates and depicted in
Figure 7, an arbitrary node site location is selected and given in Figure 9, including the
distribution of selected points for the analysis and the distance to the forecasting point.
Subsequently, and as previously discussed, one node is selected on each circular crown with
the aim of forecasting GHI data in the center of the grid, corresponding to the Ŷ(t + h)—see
expression (3). The selected nodes are labeled as 119, 170, 115, 60, and 254, respectively.
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Figure 8. Case example: simulation general scheme.
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color (UTM coordinates).
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By considering the 2019 data for the methodology evaluation, the corresponding
daily GHI curves are then forecast according to the preliminary selection of possible nodes
and the different conditions. In summary, a global of 13,140 simulations were carried
out by the authors. These estimated data allow us to analyze in detail the influence of
each variable on the short-term forecasting accuracy and the different possibilities to
implement a real sensoring network in terms of data gathering accuracy and reliability
for forecasting purposes. As an example of the forecast curves for each day, Figure 10
shows the irradiance data corresponding to two arbitrary days—labeled as day 108 and
144, respectively, including clear sky GHI data—see dashed line. As can be seen, data
corresponding to the selected nodes given in Figure 9 are plotted, as well as the forecasting
point marked in black color being the GHI observed data—corresponding to Yk(t + h).
From these initial data, Figure 11 compares the measured and forecast irradiance values for
the two previous days—labeled as day 108 and 144—and considers the selected different
conditions for each day: loss of data percentages, different SF parameters, and different
forecasting time intervals. Subsequently, 36 different forecasting GHI results are determined
for each day. In addition, as a complementary result, Figure 12 compares these curves,
including the expected clear sky GHI values. These forecasting data are thus determined for
15, 30, and 45 min time horizons, varying the SF parameter from 09 to 12 and considering
0%, 25%, and 50% loss of data scenarios.
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Figure 10. Example of irradiance data for two days: curves used for short-term forecasting purposes—
clear sky GHI data included in dashed line. Curve in the forecasting point is marked in black color.
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Figure 11. Comparison of estimated and monitored GHI data for different time horizon, SF, and loss
of data scenarios.
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Figure 12. Comparison of estimated, monitored, and clear sky GHI data for different time horizon,
SF, and loss of data scenarios.

With the aim of estimating the influence of each parameters by considering all simula-
tions along the 2019 data, a sensitive analysis was carried out determining discrepancies
between the estimated daily GHI values for the selected node and the corresponding daily
measured GHI values. Firstly, Figure 13 shows the global histograms and the truncated
histograms of such discrepancies based on normalized root mean square error (nRMSE)
among the measured GHI data and the forecasting GHI values for the selected node and by
considering the different time horizon, SF, and loss of data scenarios. Therefore, 36 global
and truncated histograms were determined from the 13,140 simulations. As can be seen,
the truncated histograms retain more than 90% of such discrepancies and are considered
suitable enough for this sensitive analysis. Secondly, and according to the variety of errors
and differences available in the specific literature, as well as the comparison conducted
by the authors in [83], the mean absolute percentage error (MAPE) and dynamic time
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warping (DTW) were also selected as metric estimations—see Section 3.3. Indeed, and as
can be found in [92], DTW is considered as an appropriate technique to estimate and find
an optimal alignment between two time-dependent sequences under a set of restrictions.
DTW was initially used to compare different speech patterns, and also successfully applied
in other fields, such as information retrieval and data mining. Additionally, DTW can be
applied to detect and cope with different speeds and time deformations associated with
time-dependent data. Recently, the R package IncDTW based on the DTW improved the
possibilities to classify time series or clusters [93]. To analyze in detail the influence of each
variable, Figure 14 shows the truncated histogram for these simulations using discrepancies
based on MAPE and DTW metrics. As can be seen from these discrepancies, a higher loss
of data range involves more relevant discrepancies, and these values present a secondary
peak from 20% to 30% values. In terms of SF parameter, the vast values of discrepancies
slightly shift from the [0, 10] interval (for SF09) to [10, 20] interval (for SF12). Therefore, a
longer time interval between subsequent packets—see Table 3—implies higher discrepancy
errors. These results are similar for the other analyzed forecasting short time intervals—30
and 45 min, respectively, as summarized in Figure 14.
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Figure 13. Summary of discrepancies for forecasting and monitoring data based on nRMSE. His-
togram (left) and truncated histogram (right).
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Figure 14. Summary of discrepancies for forecasting and monitoring data based on MAPE and DTW.
Truncated histograms.

As an alternative sensitive analysis, Figure 15 shows a boxplot diagram of the discrep-
ancies based on nRMSE, MAPE, and DTW metrics classified according to different clear sky
GHI ratio Kt: [0, 0.65], (0.65, 0.85], and (0.85, 1], respectively. All simulations corresponding
to 2019 data are considered to determine these global metrics; thus, 36 different conditions
are assumed for each day depending on the defined 3 × 4 × 3 matrix of possible loss of data,
SF parameter, and short time period values selected for this case study. From the results,
larger time horizons address less-accurate GHI estimations, and higher clear sky GHI ratio
values imply more accurate GHI estimations. Moreover, high Kt GHI ratio days should
be not considered for LoRa network performance evaluation, as they are not sensitive
to loss of data nor SF parameter values. Subsequently, low Kt GHI ratio days should be
considered for estimating discrepancies and GHI forecasting accuracy, as well as potential
errors allowed for short-term forecasting purposes depending on the corresponding loss of
data, short time periods, and SF parameters.
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Figure 15. Boxplot of the discrepancies based on nRMSE, MAPE, and DTW.

Finally, an additional metric analysis is also provided to compare the difference
evolution of SF09, 0% loss of data (corresponding to “Scenario 1” in Figure 4), and for each
short time interval to the rest of the other daily possible conditions and under nRMSE,
MAPE, and DTW metric estimations. With this aim, Figure 16 summarizes the boxplot
results of differences among “Scenario 1” (for each short time interval) and the other
daily conditions (SF values, loss of data, and short-term time intervals). As can be seen,
differences are higher with larger loss of data for any metric—see boxplots for the same
row and short time interval. In addition, discrepancies are increasing from SF09 to SF12,
when loss of data and short time interval variables are kept constant. The results under
different daily conditions are divided by considering clear sky GHI ratio intervals Kt—[0,
0.65], (0.65, 0.85], and (0.85, 1]. The corresponding boxplot differences for SF09, 0% loss
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of data, and for each short time interval in comparison to the rest of daily conditions
and for all metrics are determined and depicted in Figure 17. In general, differences are
higher for lower Kt values and, as previously affirmed, low Kt GHI ratio days should be
considered for evaluating GHI forecasting accuracy approaches and suitable node layouts.
Consequently, and depending on the discrepancies range allowed in each case by the
specific application, this methodology gives a preliminary analysis for the LoRa-based PV
monitoring architectures and potential node layouts. Additionally, it gives an estimation of
forecasting GHI estimations and the influence of SF and loss of data variables on the GHI
value accuracy. Therefore, both reliability and robustness of the collected data to be used
for forecasting purposes are able to be analyzed and evaluated.
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Figure 16. Boxplot of differences based on SF09 and 0% loss of data: nRMSE, MAPE, and DTW metrics.
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Figure 17. Boxplot of differences based on SF09 and 0% loss of data: nRMSE, MAPE, and DTW
metrics for different Kt clear sky GHI ratios.

6. Conclusions

A methodology to evaluate different LoRa-based PV monitoring configurations in
terms of short-term GHI forecasting characterization of metrics is described and assessed.
A location analysis of nodes based on potential loss of data, short-term time intervals, and
SF ranges are considered to analyze their influence on such short-term GHI forecasting
purposes. The methodology also allows us to evaluate different node layouts and forecast-
ing approaches. A random forest model is proposed in this work as suitable forecasting
method under nonstationary and multiple seasonal cycle data. A case study located in
the southeast of Spain is included to evaluate the methodology. Satellite-based GHI data
collected for 2019 covering a 17 × 17 grid portion with a total of 289 points under consider-
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ation are considered, with one-minute sample time data. The short-term GHI forecasting
simulations for each day included different loss of data ranges, forecasting time intervals
(15, 30, and 45 min), and SF values (from SF09 to SF12). A total of 36 different conditions
for each were considered, running 13,140 simulations for the corresponding global 2019
GHI data. The results allow us to explore the influence of loss of data, SF values, and
short-term time intervals on the corresponding GHI forecasting accuracy. In addition,
different LoRa node layouts can be also evaluated in terms of data accuracy and GHI
forecasting estimations. In general, higher clear sky GHI ratio values imply more accurate
GHI estimations, being less sensitive to loss of data or SF parameter values. Subsequently,
low Kt GHI ratio days should be considered for estimating potential errors allowed for
short-term forecasting purposes depending on the corresponding loss of data, short time
periods, and SF parameters. A sensitive analysis is included in the work from comple-
mentary metrics: nRMSE, MAPE, and DTW. These results give additional information to
characterize discrepancies among collected and forecast GHI data as a consequence of LoRa
parameters and/or node layout. This methodology thus provides a preliminary analysis of
potential LoRa network characteristics and sensoring in terms of data accuracy, packets,
and GHI forecasting possibilities.
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