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Abstract

The non-fungible tokens have been widely used to prove ownership of art and gaming col-
lectibles and used as utility tokens. The use of this tokens in this work is to represent the
ownership of the internet of things devices from the manufacturing phase, in the distributed
and decentralized public ledger. This physical devices will have attached a token that repre-
sent them in the blockchain and the possession of an owner by an unique identifier. Hence,
the devices are identified by their public blockchain address and their token that associates
them to their owner. Besides, this address allow the Internet of Things devices to participate
in the network and establish a shared secret between owner and device. This work, proposes
to use the physical unclonable functions to establish a noose between the physical world
and the blockchain by deriving the private key of the blockchain address from the physical
unclonable functions response. This link is difficult to tamper and can be traced during the
lifetime of the token. Moreover, there is no need of using a security module or similar to
store the key since the physical unclonable functions response is generated each the private
key is needed so that it not stored in a non volatile memory. Once we have the shared secret
this are used to cipher the certificates that will be deployed by the owner of the devices on
a decentralized storage blockchain like FileCoin or the InterPlanetary File System. This cer-
tificates are used to communicate with other devices using standard protocols like Transport
Layer Security or Datagram Transport Layer Security. An API called Powergate, is part of the
infrastructure of certification of the Internet of Things elements, providing communication
with the decentralized storage blockchains.



Resumo

Os tokens non funxibles utlízanse amplamente para demostrar a propiedade de obxectos
de colección de arte e xogos e utilizanse como ”utility tokens”. O uso destes tokens neste tra-
ballo é para representar na rede distribuído e descentralizado que é a blockchain, a propiedade
dos dispositivos Internet of Things desde o mesmo momento da súa creación, é dicir. durante
o proceso de manufactura. A estes dispositivos físicos achégaselles un token que os identifi-
ca na blockchain e permite representar a posesión dun propietario mediante un identificador
único. Polo tanto, os dispositivos identifícanse pola súa dirección pública na cadea de blo-
ques e o seu token é o que os asocia ao seu propietario. Ademais, esta dirección permite aos
dispositivos da Internet of Things participar na rede e establecer un secreto compartido entre
propietario e dispositivo. Este traballo, propón utilizar as funcións físicas non clonables para
establecer un lazo entre o mundo físico e a blockchain derivando a clave privada da dirección
do blockchain a partir da resposta das funcións físicas non clonables. Este vínculo é difícil de
manipular e pode ser rastrexado durante a vida do token. Ademais, non é necesario utilizar
un módulo de seguridade ou similar para almacenar a clave, xa que a resposta da función
física non clonable é xerada durante o proceso de arranque e é guardada nunha memoria non
volátil. Unha vez que teñamos o secreto compartido, este utilizarase para cifrar os certificados
que serán despregados polo propietario dos dispositivos nunha blockchain de almacenamento
descentralizado como FileCoin ou InterPlanetary File System. Estes certificados utilizaranse
para comunicarse con outros dispositivos utilizando protocolos estándar como son Datagram
Transport Layer Security y Transport Layer Security. Unha API compoñerá a infraestrutu-
ra de certificación dos elementos do Internet of Things proporcionando comunicación coas
blockchains de almacenamento descentralizadas.
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Chapter 1

Introduction

OveR the past decade, the Internet of Things (IoT) has grown from an emerging technol-
ogy to an absolute technological phenomenon that is transforming businesses across

continents and industries. As more enterprises integrate IoT devices into their infrastructure,
concerns about IoT network security are becoming more prevalent. From January to June
2021, there have been more than 1.5 trillion IoT security breaches, and this number will only
increase as it is expected to reach more than 40 billion connected devices. For this reason, it
is important to provide these devices a high degree of security. An important part of this pro-
cess is to provide certificates to the IoT devices. The certificates provide to them identification,
confidentiality and integrity of the data.

The key part of identification in certificates is linking the certificate to the real identity
that is representing. These capabilities have been provided in part by certificates managed
by Certification Authorities (CA). However, these are not free from failures, they represent a
single point of failure as they are centralized entities, all the trust placed in them. In addition,
problems arise when these root certificates expire, leaving devices unsecured since their cer-
tificates are linked to a no longer valid root certificate. Besides, most of the certificates have
not free and having many of them to secure each individual device can be a considerable
overprice.

This work proposes a new Root of Trust (RoT) scheme that does not rely of the traditional
Certification Authorities. This entities are shifted and the trust is attach to the device during
the manufacturing process. The way it is linked is by using the hardware particularities of
each device. Besides, this link is validated and traced on the blockchain.

Blockchain technologies are becoming increasingly popular for usewith Internet ofThings
(IoT) , as they provide a secure and tamper-proof data trail that can guarantee ownership of
data and user privacy[1]. However, this solutions imply that our device is constantly active
in the blockchain which may be not desirable or possible for some devices. Every block in
the global immutable data structure that is the blockchain is connected to their siblings and
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CHAPTER 1. INTRODUCTION

parents using a cryptography hash function. Miners, the key actors in the protocol, add new
blocks to the chain by a process called mining. The lucky miner that founds a candidate block,
broadcast it through the network and if most of the miners agree on the veracity of it, a new
block is created. Proof of Work (PoW) consensus algorithm is [2] currently used in Bitcoin
(BTC) [3] and Ethereum (ETH) [4] though Proof of Stake (PoS) is going to be the standard for
the latter [5].

This technologies are tamper-proof so that a malicious user wanted to change the block,
the hash representing it will change and therefore the block will not be accepted. In other
to change an already mined block, the attacker would have to change the current and all the
previous blocks until reaching to the targeted one, a quite computationally expensive task [6]

This work uses this property to store the data used to establish a secure channel and the
certificate’s digest. You may be wondering why we are storing the hash and not some other
data like an HMAC or a signature that is more secure. Well, the truth is that the data is added
to the contract through a transaction that is signed and later an access control mechanisms
verifies that the sender of the data is the owner of the device, so that authentication is provided
and there is no need for a signature or similar. Moreover, the hash perfectly fits of a uint256
variable, thus reducing the gas cost of the operations.

Afterwards, there the data is interpreted by the Ethereum Virtual Machine (EVM) [7]
and formalized and manipulated using the scripts in the network. This scripts are called
smart contracts and once they are validated on-chain, they cannot be changed, It is as if they
were set into a One-Time-Programmable Memory (OTP). The same thing happens to the data
registered in the blockchain, it cannot be changed as well, whenever something is deployed
in the network is there for the lifetime of the blockchain.

This property is really desirable for our infrastructure so that all the data that is shared
between the participants cannot be tampered by an attacker. Besides, the network provides
transparency because anyone in the blockchain can consult the data of a transaction, includ-
ing the smart contract code. Therefore, encryption must be used to protect sensitive data
pushed to the network. The properties that the blockchain offers guarantee that both the
data and the originator of it can be trusted without the necessity of any third party.

The Ethereum network along with Ethereum Improvement Proposals (EIPs), EIP-721[8],
introduces the concept of ownership of non fungible tokens, that is non interchangeable to-
kens. This ownership can represent the provenance of a physical or digital asset. This can
allow us to represent the ownership of our devices in the blockchain making it impossible to
tamper and be traced during the lifetime of the device. Operations like changing of owner or
assigning it to a new user are registered in the ledger.

The EIP-721 is really useful for representing the ownership of physical devices like IoT
although it does not come with no drawbacks. Problems arise when trying to associate a

2



CHAPTER 1. INTRODUCTION

token to physical device, like is the person in charge of assigning that ownership reliable?
Can we trust that the device behind that Blockchain Address (BCA) is the device that we want
to communicate with? That will get us on realying on Certification Authorities (CA), back
to a central authority scenario. However, the use of PUF [9] [10] can physically identify the
device and NFT tokens can be used to link the device to an owner. The use of this Physical
Unclonable Functions (PUF) to physically identify the devices and to link it to an NFT as
already being proposed in [11]. However, we want to go further in this work.

Physical Unclonable Functions (PUF) are like the genome sequence of the silicon chip of a
device. This kind of functions use the variations on the integrated circuit during the manufac-
turing process of the chip to uniquely identify it. Even if, the whole process was consistently
motorized, random differences are introduced somehow so that each chip is unique. This
way the device is identified by its physical characteristics and not by a third entity. It is like
identifying a person by its face.

Once we have identified the device and associated to a blockchain address. AnNFT is used
to represent the ownership of the device that it is bound to a token. The device is also linked
to a x509 certificate, that is currently used in most of the secure communication protocols and
in access control mechanisms in layer two like IEEE 802.1X. [12]

The novelty introduced in this work, is the design of web interfaces to control the work-
flow of operations introduced in [11], integrate it with the existing secure communication
protocols as Transport Layer Security (TLS) and Datagram Transport Layer Security (DTLS)
to provide support to legacy devices. Besides, a infrastructure of managing the certificates
proposed, some of the roles defined are also removed and the necessity of the device to par-
ticipate actively in the blockchain is also suppressed.

In an effort to increase the decentralized properties of the infrastructure, decentralized
based storage system is use to store the certificates of the devices of the infrastructure. Net-
works like IPFS [13] and FileCoin [14] [15] are used in this work.

This document starts making an overview of the concepts of the resources used, the first
chapters of this document, introduces the basis concepts for the proposal introduced. The
first chapter will touch the Bitcoin blockchain, its components and how this components
contribute to the functioning of the network. The second chapter introduces the Ethereum
network which can be considered an expansion of the Bitcoin network in the sense that the
functioning of the network is similar and the possibility of writing code in the protocol is
added through smart contracts. Concepts of ownership and tokens are also part of the net-
work and they are used intensively in this work.

Chapter number four, introduces the concept of decentralized storage and explains the
mechanisms used in the proposal to store the certificates. The fifth chapter, talk about the
PUF, the cryptography anchors that tie the physical world and the blockchain addresses of the
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CHAPTER 1. INTRODUCTION

devices. Last chapter will be devoted to describe in detail the infrastructure and mechanism
used to certify our IoT devices.
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Chapter 2

The breakout of the Blockchain

The first implementation of a public blockchain was released in January of 2009 by an
anonymous author called Satoshi Nakamoto. The identity of this person or group of

persons remains secret although is it though that the real identity of this nickname could
be around four guys: Dorian Nakamoto, Craig Wright, Nick Szabo and Half Finney. Basic
knowledge about hashing algorithms, public cryptography and encryption algoritms is as-
sumed.

2.1 Bitcoin Wallets

The Bitcoin wallet is secured through digital keys, bitcoin addresses, and digital signatures.
Bitcoin uses public key infrastructure to authorize the transactions and each wallet has a pair
composed by a private and a public key. The private key’s used to sign the transactions and
the public key is like the unique identifier of the bank account, it is used to receive BTC.
The private key is generated by a user of the chain and the public key is derived from it.
The private can also referred as the signing key, it creates message signatures that can be
verified using our public the verifying key, thus linking both keys. The great thing about this
is that we do not need to disclose the private key to prove the validity of the signature. So
to spend bitcoins, the current bitcoin owner must include both their public key and a unique
signature—produced using their private key each time—in the transaction. Everyone on the
bitcoin network may validate the transaction’s authenticity and that the individual sending
the bitcoins actually possessed them at the moment of the transfer by displaying the public
key and signature. Therefore, if a user exposes his key pair, he will lose control of his key pair
and he will probably end up loosing all the funds of the wallet.

Bitcoin uses the Elliptic Curve Digital Signature Algorithm (ECDSA) algorithm [16] to
generate the private key. Then, the bitcoin address is made through double hashing. A hash-
ing algorithm may be a non-invertible function that creates a hash or summary of data of
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any size. This kind of algorithms are deterministic, meaning that they always create the same
output given the same input. In bitcoin, cryptography hash functions are widely utilized in
bitcoin addresses, script addresses, and is it applied multiple times in the ”Proof-of-Work”
method for mining.

SHA256 and RIPEMD160, are the algorithmswont to create a bitcoin address from a public
key. Within the process of generating the wallet address, we compute the RIPEMD160 hash
of the output, which yields a 160 bit (20 byte) number, starting with the general public key K,
then compute the SHA-256 hash of the result.

We take the public key P and compute the SHA-256 hash and the RIPEMD160 hash of the
256-hash, obtaining a 160 bit number:

W = RIPEMD160(SHA256(P ))1.

After this process, most all the wallets are codified using BASE58Check to provide a more
human readable way.

2.1.1 Types of wallets

We can make two clusters of types of wallets depending on the generation of the key and the
storage of the key. Depending on the generation of the key we have two types of wallets:

• Non-Deterministic Wallets: This wallet is made up of randomly generated numbers
that compose one private key. This type of wallet is called a Type-0 Non-Deterministic
Wallets. Because they are difficult to manage, backup, and import, this sort of wallet
is also known as ”Just a Bunch of Keys,” or JBOK. Deterministic wallets are replacing
such wallets.

Random keys have the drawback that if you produce a lot of them, you have to retain
copies of every single one, necessitating regular wallet backups. If the wallet cannot
be accessed, it happens that the irrevocable loss of the cash it controls. However, by
utilizing each bitcoin address for a single transaction, we are avoiding address reuse.
Because several transactions and addresses are linked together, address reuse lowers
privacy. If you wish to minimize address re-use as much as possible, the use of Type-0
non-deterministic wallet can help.

• Deterministic Wallets: They are wallets that employ a one-way hash algorithm to gen-
erate private keys for each wallet that are all obtained from a single seed. The private
keys are derived from the seed, which is a randomly generated integer. The seed can

1 where P is the public key and W the wallet address
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be composed with other information like the code of the chain 2 (number one is for the
main network of ETH) and other like index number. This wallets only require a single
backup at creation time since the seed is enough to retrieve all of the generated keys
reducing all the overhead of type-0 wallets. The user’s keys may be easily transferred
across other wallet implementations thanks to the seed’s sufficiency for exporting or
importing wallets.

The other type of wallets that are classified by the storage of the private key, are the following:

• Cold Wallets: The private keys are generated and kept offline. They are usually com-
posed of a hardware security module that stores and constructs the transactions offline
so that the private secrets are never exposed to the Internet.

• CloudWallets: This types of wallets are the ones used by the exchanges such of Binance,
KuCoin, etc, who are the true owner of the private keys. This kind of wallets are not
recommend, you are not the true owner of the funds, ”not your keys not your money”,
it basically breaks the decentralized principle of the blockchain technology.

• Desktop/Smartphone wallets: The private keys are kept in a device that is connected to
the Internet such as a laptop or a mobile phone or any other device. The compromise
of the device can led to lose of ownership of the private key.

2.1.2 Transactions

A transaction starts with the creation also known as origination, where the parameters of the
transactions are filled with the correct data. It is followed by a process of signature by the
owner or owners (multi signature wallet) that originated the transaction. The signed transac-
tion is then broadcast across the bitcoin network, where each node (participant) verifies and
spreads the transaction until it reaches (nearly) every node in the network. The transaction is
then added to a block of transactions that are stored on the blockchain after being validated
by a mining node. The data contained in a transaction is the one specified in the Figure 2.1,
the block head, the transaction count and the transaction pool.

2.2 Creation of Bitcoin

We have had a brief introduction about the basis on the protocol, so let us make a rest from
the theoretical concepts and introduce a little bit of history about this technology.

2 The chain ID is a property of the blockchain that is managed by the nodes, it identifies the different networks.
This mechanism is used to prevent double-spending of digital assets by ensuring that each transaction can only
be spent once.

7



CHAPTER 2. THE BREAKOUT OF THE BLOCKCHAIN

On August 18, 2008, The domain name bitcoin.org was registered on the 18th of August
of 2008. Two months and ten days later the October 28, the anonymous author released the
official white-paper and by the beginning of the year Nakamoto mined the genesis block—
the first block in the chain—on January 3, 2009, the bitcoin network was born. The sentence
”The Times 03/Jan/2009 Chancellor on brink of second bailout for banks” was inscribed on the
coinbase of this block. This has been seen as both a timestamp and a critique of the instability
brought on by fractional-reserve banking.

Hal Finney, the person who in 2004 developed the first reusable proof-of-work system
(RPoW) and one of the guys that is thought to be behind BTC, was the recipient of the first
bitcoin transaction. The day it was released, Finney downloaded it, and on January 12, 2009,
Nakamoto sent him 10 bitcoins. Wei Dai, the originator of b-money, and Nick Szabo, the
creator of bit gold, were both early proponents of cypherpunk. The first commercial buy was
made in 2010 when programmer Laszlo Hanyecz paid Jeremy Sturdivant 10k BTC for two
Papa John’s pizzas.

Before vanishing in 2010 and giving Gavin Andresen control of the code repository and
the network alert key, according to blockchain researchers, Nakamoto had mined around one
million bitcoins. Andresen eventually rose to the position of lead developer at the Bitcoin

2.3 How it works?

TheBitcoin protocol is peer-to-peer fully-distributed system inwhich there is no central entity
or server that owns or controls the protocol. By an economic perspective, it is decentralized
digital currency that you can trade directly, without an third party like a bank. The words
”decentralized” and ”fully-distributed” here mean that no intermediary is needed to make the
transactions so there is no single point of failure on the network. New Bitcoin is constantly
added to the network each time new transactions are confirmed through a process called
mining. Thus making the Bitocoin an inflationary currency, the more the more inflation you
have.

An ordered collection of blocks of transactions with back-links makes up the blockchain
data structure. This data structure can be stored in a straightforward database or as a flat file.
Each block in this distributed database is tied back to its parent by a cryptographic link.

The header of each block in the blockchain contains a hash that was created using the
SHA-256 cryptographic hash technique. The ”previous block hash” element in the block
header of each block also serves as a reference to a preceding block, sometimes referred to as
the parent block. In other words, each block has a header that includes the hash of its parent.
A chain leading back to the genesis block, the first block in the blockchain is formed by the
series of hashes connecting each block to its parent. All of this can seen a bit confusing at a
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first glance and sometimes, it is more illustrative to have an image to see the structure so let
us take a look at the following image:

Figure 2.1: Structure of the blockchain

In figure 2.1, we can observe that the block header of the previous block link to the next
one and each of it has the previous block hash field that we talked about, keeping the 256-
bit hash of the previous block header. Although, each block can only have one parent, a
brand new fresh block can have multiple siblings, but how is that possible? That can happens
because of the way the consensus algorithm works. When distinct blocks are found, almost
simultaneously by various miners or if a malicious miner tries to include a faulty block, a
transitory condition known as a ”fork” in the blockchain occurs, resulting in several offspring,
this kwon as a fork. The ”fork” is eventually resolved when only one kid block remains and
joins the blockchain. Despite the fact that a block may have several children, each block can
only have one parent. This is due to a block only having one ”previous block hash” field that
points to its only parent.

2.3.1 Structure of the block

The block header is composed of four sets of data. The first set contains the information
related to the mining process, namely the difficulty, timestamp and nonce, this operation
is further explained in the mining section. The second set, reference to the previous block
hash, the ”previous block hash” field, which connects the current block to the previous in the
chain of block. The third group of information contains the Merkle Root field which holds
the summary of all of the transactions of the current block. The last set is used by miners
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for readiness signaling and protocol upgrade support. The following Table 2.1 exemplifies the
structure of the block.

Field name Size Description

Version 4 bytes Version of the protocol to track updates

Previous Hash Block 32 bytes Hash of the previous block in blockchain

Merkle Tree 32 bytes Hash of the Merkle tree of the current block

Timestamp 4 bytes The approximate time of creation of the block

Difficulty Index 4 bytes The difficulty of current block

Nonce 4 bytes The number used to solve the hashing challenge

Table 2.1: Specification of the block

2.3.2 The Merkle tree

The merkle tree used in the bitcoin blockchain is used to summarize each block’s transac-
tions. A merkle tree is a data structure that helps keep track of the location of data items
in a database. Its structure is used for quickly condensing and confirming the accuracy of
enormous data sets. Binary trees called Merkle trees are used to store cryptographic hashes.
In computer science, branching data structures are called ”trees”, but these graphs are usu-
ally upside-down, with the ”root” at the top and the ”leaf” at the bottom, as you’ll see in the
examples next.

Figure 2.2: Merkle Tree
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The summarization of all the transactions in a block using merge trees in bitcoin results in
a comprehensive digital fingerprint of the entire group of transactions, making it very quick
and easy to check whether a transaction is part of a block. Recursively hashing node pairs
creates a Merkle tree, which is then built from the root (also known as the merkle root) of the
tree. Double-SHA256, often known as double-SHA256, is the cryptographic hashing method
used in the merkle trees of bitcoin.

This is an extremely effective data structure since it only requires at most 2*log2(N) com-
putations to determine if any one data element is present in the tree once N data items have
been hashed and compiled into it.

Besides another type of tree, Fast Merkle Trees, is devoted to reduce the overuse of the
compression step in Satoshi Nakamoto’s original Merkle tree implementation for the Bitcoin
network.

2.4 Mining

Approximately, every 10 minutes a new block is mined and a new bitcoin reward is issued
to a lucky miner that found the answer to the cryptographic puzzle. The transactions that
are contained in that mined block are considered have one confirmation and the more mined
blocks on top of it the more confirmations the transactions have. The protocol works more
or less as a Sudoku contest where you have to pay a entry fee to solve a Sudoku and you get
rewarded whenever you are the first participant to solve it, afterwards the winner broadcast
the result to all the participants who check the result. In the Bitcoin protocol the entry fee
is the electricity cost spent trying to solve the cryptography puzzle, finding a hash that is
less than the target. This puzzle is very difficult to solve, but once found, it is easy to verify
by others. This property is key so that participants can verify that the output hash comply
with the established conditions in the chain. PoW [5] is name of the consensus algorithm of
the network, that makes sure that blocks are only considered valid if they require a certain
amount of processing power to be created. [2]

The miners who are in charge of creating new blocks, use a nuncio to repeatedly conduct
the mathematical operations until they discover a valid output hash. This, depending on the
circumstance, is a random integer, nonce field, that is repeatedly utilized and altered until a
suitable exit signature or hash is discovered. Therefore, the mining operation can be reduced
to repeatedly changing the nonce field and computing the hash of the block header until a
hash less than the target is found.

This operation is computationally expensive so that the more blocks mined on top of a
block themore expensive becomes to revert ormodify the previous transactions. If amalicious
miner wanted to corrupt a newly mined block, he/she would be required to have at least 51%
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of all the computational power of the network in order to set its ”own consensus”, also known
as the 51% Attack on the Blockchain. The hash rate needed to perform the attack at the time
of writing, 5th of august, is arround:

210M ∗ 0.51 = 107, 1Terahashes/second,

which is an huge computational power. However, let us imagine that we are able to get 51%
of the total amount of hashing rate, even if we successfully tamper the first new mined block,
the propability for us mining the next and the following ones drops exponentially by time as
stated in the calculations section of [3]

2.4.1 How a candidate block is found

The target is derived from the difficulty field found in every block header of Bitcoin. This
value is calculated using the following formula:

target = targetmax/difficulty

where targetmax = 00000000ffff0000000000000000000000000000000000000000000000000000 in hex-
adecimal.

Let us say that our current difficulty is:

TMax10 = 26959535291011309493156476344723991336010898738574164086137773096960;

Target10 = TMax10/Difficulty750,60510 =

= 950899733299872436965338707642045189129538301706690407.48;

Target16 = 00000000000000000009ed87ffffffe9b188b008b03acea781a2fc2ddafcdf67;

(2.1)

Being, the superscript of the difficulty variable, the block number and the subscript, the
base of the number; we have that the target of the block 750,605 would be the variable Tar-
get16. Therefore, we have to find an output hash less than target16 by computing over and
over the different hashes that result from changing the nonce each iteration. All the informa-
tion about the process of calculating the target is further explained in [17] & [18]

This chapter was a little scoop of the Bitcoin blockchain, how it works and its properties
that arise from the blockchain. The next chapter will be devoted to an special block which is,
in my opinion, the most important blockchain at the time of writing.
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2.5 Limitations of Bitcoin

The Bitcoin blockchain supposed a revolution in the IT and banking industry introducing a
new type of decentralized database that store transactions that hold money and that are sent
through a network of unknown actors. That isn’t crazy? However, this network comes with
limitations as the Bitcoin Scripting language which reduces the options and increases the
complexity for developers that want to deploy scripts or programs that run in this network.
From this idea, a new blockchain network was born by a young programmer in 2015 which
we introduce in the next section.
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Ethereum

EtheReum shares numerous common factors with other open blockchains like Bitcoin a
peer- to- peer network connecting actors, a intricate fault-tolerant agreement algorithm

for coinciding state updates( a evidence- of- work blockchain), though PoS [5] is currently
released, the use of cryptographic primitives like digital signatures and hashes, and a digital
currency.

Although, Ethereum is different than other open blockchains, in that it has a specific
purpose and construction different from blockchain like Bitcoin. Ethereum’s primary purpose
is not to be a payment network, but to serve as a foundation for decentralized applications. It
is a more ambitious project that has the potential to revolutionize the way we interact with
the internet. Ether is both essential to the operation of Ethereum and a means of payment
for using the Ethereum platform as a world computer, the latter is the most important role of
this currency.

Ethereumwas designed to be a decentralizedmachine that runs a virtual machinewith the
ability to run programs of any complexity and to be programmed in a general-purpose pro-
gramming language. Bitcoin’s simple scripting language is perfect for accurately monitoring
spending conditions, while Ethereum’s more versatile Turing-complete language is perfect
for performing general tasks. Due to its, simplicity in outputs when it comes to validating a
transaction, the Bitcoin programming language is restricted to true/false evaluations.

Unlike Bitcoin, the Ethereum Client network does not have a reference implementation,
it has a reference specification where a variety of clients are built from. This reference is
composed by a Yellow Paper [4]

In this chapter, we would not get into the details of the blockchain, we will just focus
on the high level functionalities that Ethereum offer to us. This work uses one of the test
networks called Goerli as part of its infrastructure, so a small section will be dedicated to this
topic.
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3.1 Genesis of Ethereum

Themotivation for this new blockchain came from the developers’ dilemma of having to write
code in existing blockchains. This would have forced them to work on an environment with
various limitations like scarce storage sizes and data types with limit the types of application
that could run on Bitcoin. This meant that either they write their code in a restricted, non-
Turing complete Bitcoin Script language, or they create a new blockchain, the latter of which
was chosen and Ethereum was created.

The Ethereum network began with the release of its whitepaper [19] in 2013 by a pro-
grammer Vitalik Buterin where he proposed a Turing-complete, general-purpose blockchain.
The authors of one of the reference [20], were most of the concepts were taken from, were
curious about the propose of Vitalik and intrigued by the idea and asked Vitalik about design
a completely independent blokchain network to create their own consensus rules that will
be used by smarts contracts upon execution. Dr.Gavin Wood was one of the first people to
offer Vitalik an opportunity as an C++ programmer. Gavin is now one of the founders of
Ethereum, Code Signer and CTO of Ethereum.

The day the first Ethereum blockwasmined, 30 of July of 2015, a newworld level computer
started functioning non-stop and on a global scale. This set the beginning of the Ethereum
network.

3.1.1 The four stages of Ethereum

Ethereum had four main stages during its development and by the time of release they are
ordered in the following way: Frontier, Homestead, Metropolis, and Serenity. The Frontier
was the initial state of Ethereum, the state from block 0 till block 200,000 in March 2016. On
that block, the difficulty of mining increased exponentially which the Ice Age hard-fork to
promote the change to a PoS network. At block 1,150,000, the Homestead stage, the second

stage that introduced changes for the protocol and network detailed in three different EIP’s
(Ethereum Improvement Proposal), the EIP-2, EIP-7 and EIP-8. It was launched inMarch 2016.

The DAO was one of first decentralized autonomous organization and it was deployed
on the Ethereum main network. This makes the code of the contract public and verifiable to
everyone that can understand Solidity programs and this making it more trustfully. However,
it comes with a drawback, anyone could find a bug an exploit a vulnerability on your code
and that is what happen to DAO. The DAO held $150 million on its hands worth of ether
after a crowdsale in April 2016. This was one the leading projects at that time and it was a
milestone as one of the most financed at the time. However, not even three months went by
and the project was hacked. A bug that was found in the project’s code caused $60 million
to be stolen, an exploit that costed $60M. Although, the funds were taken back to investors
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after fork that was proposed in the main network .After this event, the Ethereum network
was forked in two different blockchains, Ethereum Classic and Ethereum, the latter was the
one tat restore the funds.

A hard fork was introduced in block 2,463,000, the Tangerine Whistle its purpose was
to modify the calculation of the gas price for certain I/OHheavy operations and clean up
accumulated wealth from a Denial of Service (DoS) attack which used the low cost of the
operations to perform the attacks.

Although, the TangerineWhistle tried to solve DoS attacks, another hard-fork was needed
to be introduced. The Spurious Dragon hard fork (EIP-607)[21], came up in block 2,675,000
in response to a second round of attacks in September and October of the previous year of
publication of the proposal. The hard fork proposed, addresses important but less important
problems that will help improve the security of the network.

The third stage implements a number of updates within the Ethereum blockchain, includ-
ing the inclusion of the ”REVERT” opcode, which enables error checking without consuming
all gas, added support for modular exponentiation of large integers, support for variable-
length return values, and changes to Difficulty Adjustment Formula. Some of the most con-
troversial inclusions include the addition of completely anonymous zero-zero knowledge tests
(ZK-Snarks) and the delay of the difficulty bomb (nicknamed the Ice Age) by one year, as well
as the reduction of the block creation reward from five to three ethers. This changes were ap-
plied in block 4,370,000.

The fork that was considered in [20] as the last stage of Ethereum in this book written by
creators but the truth is that is one many improvements introduced in the chain. This fork
paved the way to the future consensus algorithm PoS so that the blockchain do not freeze
before implementing it, some certain opcodes suffer a price adjustment and the ability to
interact with addresses that don’t exist yet was introduced.

The rest of the forks are included in the appendix.

3.2 Test Networks

Besides the core network, the main network, there are public test networks. These networks
are used by developers to test protocol updates and potential smart contracts in a simulated
environment before deploying them on the core network. Production servers are typically
used to generate and process data, whereas storage servers are used to store data. In most
cases, it is important to deploy and try your code and search for different errors on a test
network before allowing other people allow people other than you to discover the bugs on
the main network. If you are building a decentralized app that talk with already deployed
smart contracts, you may be able to access copies of the project on test networks.
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Most test networks use a proof-of-stake consensus mechanism. That is, a small number
of nodes are chosen to validate transactions and create new blocks by staking their identities
in the process.

Incentivizing mining in a proof-of-stake network with proof-of-work is difficult because
it can lead to vulnerabilities. ETH has no real value in a PoS network. Therefore, there is no
market for ETH in proof-of-stake networks. Most web applications that allow users to send
Ethereum to other users use addresses as input.

• Main Ethereum Network (Chain ID = 1): This is the real network, where the real con-
sensus is achieved and the real decentralized applications are built.

• Ropsten Test Network (Chain ID = 3): It was the main test network by default but now
is deprecated and it is increasingly out of use. It was launched in November 2016, with
the same consensus algorithm as the main network proof of work conseus algorithm.
The one used in the most used blockchain Bitcoin.

• Rinkeby Test Network (Chain ID = 4): This is one of test networks available on Ethereum.
It uses a modified version of PoS algorithm, the Proof of Authority consensus algorithm
is used. This network was created in 2017 but is deprecated and it will soon be replaced
by the Goerli network.

• Goerli Test Network (Chain ID = 5): It is the first cross-client Proof of Authority (PoA)
testnet is syncing Parity Ethereum, Geth, Nethermind, Hyperledger Besu (formerly
Pantheon), and EthereumJS. This testnet is a community-based project that is open-
source and does not require a natural environment.The Ethereum community launched
an open-source project in September 2018 called ETHBerlin that has been gaining pop-
ularity and attracting more contributors ever since.

• Sepolia Test Network (Chain ID = 11155111) is proof-of-work a test netwrok created by
the Ethereum Core developers and it was released in October 2021 that will be main-
tained until it transitions to proof-of-stake in June 2022. After that, Sepolia and the
Goerli testnet will move from proof-of-work to proof-of-stake to mimic the Ethereum
mainnet.According to Ethereum core developer Tim Beiko, the development team will
be able to finalize the date to complete the Ethereum Merge once Ropsten, Goerli and
Sepolia have forked and stabilized.

• LocalHost 8545: This is reserved for Ethereum blockchains implemented on a local
network like Ganache.

• Custom RPC: The providers like Metamask get in this category.
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Note that the most important property of the block chain networks, the decentralized
consensus comes with the scale of the network, the more people they use it the more reliable
it is. That is why the more miners join the more difficult it is to mine a block and the more
robust the network become. The %51 attack is less probable with more users on the network.

This work will use the Goerli test network which one of the easiest test network from
which a decent ammount of Ether can be obtained through faucets. This networks do not
have the same computational power as the main network so it is not difficult to get some ether
by just mining. For this work, this current Goerli faucet was used to obtain GoerliEther.[22]

3.3 Account

As we saw in last chapter, the wallet address is generally composed by two variables, a public
key which derives the public blockchain address and a private key, used to prove ownership
of a wallet address without disclosing it.

The public key used in Ethereum is composed by two points x and y in the curve that
satisfy its equation. The curve used in Ethereum is the named curve secp256k1, the same one
as Bitcoin. [23]

In simpler terms, the public key is the combination of the two coordinates. These points
are produced from the private key using a one way function which makes easy to verify the
public key but almost impossible to revert it. This is due to the discrete logarithm problem
(DLP) whose solution is to try all the possible combinations until the correct one is found.

Using the elliptic curve multiplication, the public key is calculated : K = k * G
The private key k is used in conjunction with the generator point G to calculate the public

key K.The public key K can then be usedwith the special elliptic curvemultiplication operator
* to perform various operations. The inverse of this formula is what is know the discrete
logarithm problem and it difficulty to be inverted supports the cryptography of the network.

The most common type of addresses are the Externally Owned Account (EOA) that are
used to send and receive Ethereum, they are of the same types of the ones in Bitcoin. The
smart contracts addresses are the created when the smart contract is deployed, on creation of
a smart contract, a unique Ethereum address is returned. This type of wallets, as opposed to
the externally owner, do contain smart contract code that the others simply cannot.

The smart contract address can also send and receive Ether, however they should be pro-
grammed to allow that kind of operations. In the case, of sending Ethereum to a contract that
cannot be triggered by us or that do not have any logic or statement that allow to make relief
funds from it, all the funds sent to that contract address will be lost forever. Therefore, we
should be really careful when sending funds to a smart contract address.

Note that all the logic of the address is controlled by the smart contracts and that they
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cannot instantiate by themselves new transactions but react to them. The transaction along
with the transaction data can trigger a trigger a specific function in the smart contract to run.

The changes introduced in Ethereum not only affect the types of account in the network,
also the transaction structure and data types contained in it that we will see in next section.

3.4 Transaction

In the last chapter, an overview of the structure and the operation of the transactions in the
Bitcoin network. The transactions in Ethereum are quite similar to Bitcoin’s so this section is
not devoted to explain all the details of the structure and some of the components are referred
to the previous chapter. This figure illustrates how the Ethereum network is designed:

Figure 3.1: Structure of the Ethereum blockchain

Each block in this network, is composed by the following elements:

• Nonce: This field prevents message replay, it works as a sequence number.

• Gas price: The price in wei that the issuer of the transaction is willing to pay.

• Gas limit: The maximum amount of gas that the sender is willing to use for this trans-
action1.

1 Executing code requires making a transaction, therefore sender, issuers, the one in charge of deployment can
be referred as similar concepts
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• Recipient: The destination address of the transaction, they can be either a contract
or another user. The representation of both it is the same, a public Ethereum wallet
address.

• Value: The amount in ETH that is included in the transaction.

• Data: The data payload. This field is not fixed although is limited.

• v,r,s: This three variables compose the ECDSA digital signature of the sender EOA.

The Structure of the Transaction Message is Serialized using the RLP Encoding Scheme,
Designed Specifically for Byte-Perfect Data Serialization in Ethereum. Ethereum numbers
always occupy multiples of 8 bits and use the big-endian order of bytes to store the integers.

There is an important change in the Ethereum transaction scheme and it is that the field
”from” that identifies the originator EOA, is present in BTC but not here. That is because the
public key associated to the account can be built from the v,r,s field of the transaction thus
recovering the ECDSA signature. The public key can be used to derive the address. When
you see a transaction displaying the From field, it is just created by the program for increasing
clarity in the visualization . The transaction frequently includes other metadata included by
the client software: the transaction ID (computed hash) and the block number (once it is
mined and embedded in the blockchain). This data is based on the transaction itself, and is
not included in the transaction message itself.

3.4.1 The Nonce

The nonce is used to avoid message replay and counts the number of confirmed transactions
done by a current originating account. This integer is not stored explicitly and it is not part of
the account state. Due to that, this number is calculated dynamically each time a user wants
to make a transaction. This attribute belongs to the sender and only has a meaning in this
context. In the definition of the yellow paper [4], we can read:

nonce: A scalar value equal to the number of transactions sent from this address or, in the

case of accounts with associated code, the number of contract-creations made by this account.

This number is crucial and avoids the following scenarios to happen:

• Let us image that we are out for dinner with friends and one of our friends payed
for the whole dinner in cash and the payment is split between all of the presents and
reimbursed in Ethereum to his account. We make the calculation and each of us have to
make a payment to our friend of 0.1 ETH. Each one take, their phone wallet and create
a payment of 0.1 ETH to our friend, great. However, we forgot to add drinks that we
took before the dinner and that were in another bill so no we should reimburse him
0.15 ETH. So, we quickly take our account and make him another transaction while the
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other one was not confirmed, believing that other one will be reverted and the later
will be accepted. However, that is not the case, since the nonce is present, the first
transaction of 0.1 ETH has a nonce of n and the second of 0.15 ETH has a nonce of
n+1. Since the transaction with nonce n is not processed and confirmed yet, the next
transactions including the one with nonce n+1 will be discarded.

• Let us suppose that we have 50 ETH in our account. There is some crypto art that we
want to buy that cost 5 ETH. So, we make a transaction that is worth 5 ETH, get our
current nonce for our account, sign the transaction and broadcast through the network.
One random node, receives the transaction and it just so happens that this one is the
seller so it tries to trick the blockchain. The seller, clones the transaction and sets the
nonce to null and broadcast the transaction. However, every transaction is unique,
ensuring that each one is secure and reliable. With the increasing nonce, the duplicate
payment problem, also known as double spending has gone.

3.5 The Ethereum Virtual Machine

The Ethereum Virtual Machine is part of Ethereum and it is in charge of execution and de-
ployment of smart contracts in the network. It executes as a stack based machine with 1024
elements in depth and a word size of this machine is 256-bit which the same size as the out-
put of the Keccak-256 hashes or secp256k1 signatures so that it is easier to use [7]. It has the
following data components:

• An immutable program code ROM, where the bytecode to be executed is loaded

• A volatile memory, initialized to zero at the beginning of execution

• The Ethereum state includes a permanent storage area that is zero-initialized.

A transient memory is kept during execution, when it is finished the memory is flushed
(memory used on execution does not persist between transactions) and the output is kept in
the global state of the Ethereum Virtual Machine (EVM). (Figure 3.2)

This global state is a huge data structure called a modified Merkle Patricia Trie. It keeps all
accounts linked by hashes and can be reduced to a single root hash stored on the blockchain.

The output of the compilation of smart contracts result in bytecode, more or less like Java.
This bytecode executes as a number of EVMopcodes which perform standard stack operations
and also serve as a measure for the gas. Each opcode has a certain gas cost and it allow us to
calculate how much gas we need to execute certain stream of code prior execution. The gas
is a new concept introduced in Ethereum so that the EVM is a quasi–Turing complete state
machine and determines the halting by the gas that the user has provided prior execution.
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Figure 3.2: Ethereum storage scheme

3.6 Gas

Ethereum uses gas to measure how much computational and storage resources are needed to
carry out actions on the Ethereum blockchain. In contrast to Bitcoin, where the transaction
fee only takes into account the size of the transaction in kilobytes, Ethereum has to take into
account every computational step performed by the transaction and execution of the smart
contract code. Each operation performed by the tract requires a certain amount of gas. Some
of the examples of operations that require gas are multiplication (MUL) consumes 5 gas, a
division (DIV) consumes 5, (ADD) consumes 3 and the SHA3BASE operation which is the
calculation of the Keccak-256 hash is 30 of gas and 6 of gas for any additional 256 bits being
hashed.

Gas is important for both ensuring that Ethereum’s price remains stable and protected
from attackers. It costs a certain amount of gas to do various things, and it’s important to
use enough gas to do the task at hand without running out. The gas is also used to prevent
situations were the execution of the program gets stuck and so the Ethereum virtual machine,
measures have been taken in the design to prevent infinite loops. Each transaction requires a
set limit on how much computation the initiator is willing to pay for. By using a gas system,
attacks like malicious or spam transactions are not even worth a try to attackers, as they must
pay for the resources they consume in a proportional manner.

3.6.1 How the gas in consumed during execution

For each opcode present in the EVM, there is a gas cost associated to it and during the exe-
cution of the program, the gas is decreasing depending of its cost. Before each operation, the
EVM checks to see if there is enough gas to pay for the operation. If there is not enough gas,
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execution is suspended and the transaction is aborted.If the EVM finishes executing success-
fully, without running out of gas, the gas cost used is paid to the miner as a transaction fee,
the gas price specified in the transaction determines the amount of ether that is converted:

fee = gascost ∗ gasprice

The gas that is not used in the execution is refunded to the originating address in the form
of ether, which is calculated based on the gas price specified in the transaction:

unspentgas = gaslimit− gascost refund(ETH) = remaininggas ∗ gasprice

It can happen that the transaction originating an execution did not have enough gas to run
through the whole operations and so it happens that an exception ”out of gas” is raised, we
have had ”run out of gas”. In this case, the transaction is reverted, no change is made to chain
and no refund is made to the sender. That is why we should carefully estimate the gas before
execution and include an extra Ether that will be reimbursed at the end of the execution.

3.7 Smart Contracts

The first time the concept of smart contract was mentioned was in 1990 by a cryptographer
called Nick Szabo[24]. He defined the smart contracts as the following: ”Smart Contracts com-

bine protocols with user interfaces to formalize and secure relationships over computer networks.”

From that, the smart contracts have evolved with the introduction of decentralized consensus
networks like Bitcoin.

The Ethereum network posed a revolution on this matter, it allowed to run immutable
computer code that run deterministically in a decentralized computer, the EVM. However,
the term smart contract can be a bit misleading since the code is not smart, it should be coded
as if we were using other general purpose programming language, nor a legal contract.

Most of smart contracts are written in Solidity, a general purpose programming lan-
guage. After the code is written, the code is compiled to a low-level bytecode that runs in
the Ethereum Virtual machine. Once we have the opcodes, we include it in a transaction,
sign it with our private key and send it to a special address with is the NULL address, the 0x0
address. After deployment, a contract address is returned, which is generated from the orig-
inating account and nonce associated with the contract’s creation transaction. An Ethereum
contract’s address can be used to send it funds or as the recipient of a function call. It is
important to note that, unlike with regular accounts, no keys are associated with a smart
contract address. It is worth noticing that as the content creator you are not granted with
special permissions, as the creator you should specify the permissions on the smart contract
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logic. There is no restriction on the permissions that can be set in the contract, they should
only be coded into it. The contract account does not have an owner, as it owns itself. As
opposite to externally owner accounts, there are no private keys for this accounts.

Figure 3.3: Deployment of a contract

Contracts can only be executed if they are triggered by a transaction. Since, they cannot
initiate a transaction by themselves, an EOA should make the transaction that triggers the
execution.

There exists the possibility of a contract triggering the execution of another contract, a
contract can call another contract, and so on. Although, the root transaction the transactions
path was an externally owned account. Contracts do not automatically execute; rather, they
must be manually triggered by a transaction. Transactions can trigger contract execution
directly, or indirectly as part of a series of contract calls. It is important to note that smart
contracts are not executed in parallel, but rather one after the other in a linear fashion. Instead,
they are executed sequentially on the Ethereum virtual machine, which can be considered a
single-threaded machine.

Transactions are atomic, meaning they cannot be divided into smaller parts. This is true
regardless of how many contracts are called during the transaction, or what those contracts
do when they are called. The transaction is fully executed, any changes to the global state
(contract, account, etc.) Only if all execution terminates successfully will it be recorded. Suc-
cessful completion means that the program ran without errors and reached the end of execu-
tion. If the execution fails due to an error, all its effects and changes to state of the network
are reverted. The failed transaction is still registered as an attempt. The gas is never refunded
since the computations have been made and the cost associated them, the ether spent on this
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transaction is removed from the account. However, the failed transaction does not affect the
state of the contract or account in any other way. It is important to remember that the code
for a contract cannot be changed once it has been created. The only changes permitted to the
structure of the contract is the deletion.

3.7.1 Contract deletion

A contract can be deleted leaving the associated address as a blank account. Any funds sent
to that address will be lost and no code execution will occur, it will be the same as sending
funds to a randomly-chosen address. To delete the contract, the opcode SELFDESTRUCT is
issued. The operation of deleting stored state results in a gas refund, negative gas cost, which
incentives clients to release resources from the network. Deleting a contract will not erase
its transaction history, as the blockchain is immutable. This capability of contract deletion
is only available if the designer of the contract decided to implement this option. The smart
contract can only be deleted if the code includes a SELFDESTRUCT opcode, and if the code
is accessible.

3.7.2 EVM programming languages

The Ethereum Virtual Machine runs a code that is similar to assembly named EVM bytecode.
It can be compared to the machine like operations run by a CPU. It is possible to program
smart contracts in bytecode, but it is much easier to read and understand if it is written in a
higher-level language. Most blockchain developers use high-level programming languages,
the same as for normal programs, almost no one writes a complex application in assembly
code.

It would be very difficult to adapt an existing programming language to work with the
code of Ethereum’s virtual machine, and this would probably cause a lot of confusion. The
environment where the smart contracts execute is restricted and strained so that security and
reliability are easier to preserve. It is easier to create a smart contract language specifically
designed for that purpose, rather than taking another existing programming language and
adapt it to the new requirements and characteristics of the new infrastructure. Ethereum
has several programming languages that can be used to compile bytecode for the EVM. The
programming languages can be divided into two different clusters: declarative and imper-
ative. Declarative programming focuses on what the program should do, while imperative
programming focuses on how the program should do it.

In declarative programming, we write functions that express the logic of a program with-
out dictating the program’s flow. This type of programming is useful for creating programs
without side effects, meaning that there are no changes to state outside of a function. Declar-
ative programming languages are those that allow programmers to specify what they want
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the program to do, without having to specify how the program should do it, specify what to
do not how to do it. Examples of declarative languages include Haskell and Prolog.

In imperative programming, a programmer writes a set of procedures that combine the
logic and flow of a program. Examples of these type of programming languages are Java, C
and C++. There exists also a ”hybrid” version which sets at a middle point between these
two types, it is also referred as multi-paradigm programming languages. Some examples of
hybrid programming languages are OCaml, JavaScript, and Python. It is generally possible
to write code in a declarative style using any imperative language, though the resulting code
is often less elegant than code written in a pure declarative language. In purely declarative
languages, there are no ”variables”.

The most common type of programming language is the imperative programming. When
different parts of a program can change the state of other parts, it becomes difficult to un-
derstand how the program will execute. This also creates more opportunities for errors. The
declarative programming as opposite is a style of coding that makes programs easier to un-
derstand by removing unexpected effects. This means that each part of the code can be un-
derstood independently, without affecting other parts of the program.

The bugs are know to be a problem for most project written in imperative like languages
and it aggravates in Solidity. The smart contracts handle real money so any bug as the one
stated at the beginning of this section, can end up in loosing all the funds.

The most used languages order by importance right now:

• Solidity: A imperative programming languagewith similar syntax to C++, Java, JavaScript.
Solidity’s market adoption is due to its status as the first smart contract programming
language, and it is being used to build many decentralized applications.

• Rust is memory efficient and fast programming language that is statically-typed. It en-
forcesmemory safety and assumes that youwant to follow best design and development
practices, but you can change them if you want. Rust is a language that doesn’t rely
on a garbage collector, meaning that there would be no unexpected incidents during
runtime.

• JavaScript: It is a programming language that was designed by its creator in a week. It
is a multi-paradigm and dynamically typed programming language. It has been used
for web development and it has made a niche in the blockchain world since websites
are evolving to Web3.0 and with the design of DApps.

• Vyper: It includes features that are specific to the contract, such as event notifiers that
allow listeners to be notified of events, custom global variables, and global constants.
Vyper was designed to improve security in Solidity by addressing common security
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issues. It was developed to supplement Solidity, not to replace it. Vyper was designed
to have fewer features than Solidity in order to make contracts more secure and easier
to audit. As a result, Vyper does not support modifiers, inheritance, inline assembly,
function and operator overloading, recursive calling, infinite-length loops, and binary
fixed points.

• Yul: Yul is an intermediate programming language designed to be compiled to bytecode
for use with different backends. Yul can be used either as a stand-alone language or for
inline assembly inside Solidity. Yul is designed to be a common denominator that is us-
able on both EVM and ewasm platforms.Yul is an ideal target for high-level optimization
stages that can improve the performance of both EVM and ewasm platforms.

As we can see we have a wide variety of choices of programming languages to develop
our smart contracts and DApps and to even integrate our centralized solutions with the de-
centralized world.

3.7.3 Security of smart contracts

Most of the problems and vulnerabilities with smart contracts[25], can be simplified to, three
situations:

• Greedy contracts: Contracts that get into a state where they cannot release Ether.

• Suicidal contracts: Contracts that have the SELDESTRUCT option enable and have no
access control to that operation. Therefore, anyone can call the deletion of the contract.

• Prodigal contracts: This kind of contracts do not have correctly implemented access
control to their functionality of releasing Ether and any address can make the contract
to send Ether to some arbitrary address.

As we can see most of the problems are related to a lack and/or misconstrued access
control mechanism. However, this is not just the absence of certain condition that check
some address, it can come from other type of errors.

3.7.4 Modifiers

Modifiers in Solidity are a key functionality. They enforce rules on a function before execut-
ing the function code. They work as a pre-check on the functions where it is included. For
example, we can declare a modifier like this:

1 modifier requireOwner(address _blockchainAddress)
2 {
3 require(msg.sender == _account);
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4 _;
5 }

This modifier requires the function in which it is included to comply with the condition
stated above. For example, we can include it in the following function:
1 function sendFunds(address _receiver)
2 payable
3 requireOwner(owner)
4 {
5 require(balances[msg.sender] >= amount, "Insufficient funds");
6 emit Transfer(msg.sender, _receiver, amount);
7 balances[msg.sender] -= amount;
8 balances[receiver] += amount;
9 }

Although, the modifiers are not single use, they can be used for more functions than
enforcing a condition. They can for example, add to an integer variable a certain amount
each time the function is executed or whatever other code comes to our mind.

3.7.5 Decorators

Another way to control the permissions of our functions in our code is through the use of
decorators. They may be used at the start of the function. Solidity provides the following:

• @private: If this decorator is used, the function can only be called inside of the contract.

• @public: If this decorator is used, the function is public and can be called from outside
of the contract. This is the decorator by default when no decorator is specified. The
functions that have this decorator in the contract are exposed to the outside.

• @constant: If this decorator is used, the function will not be able to change the state.
It will fail to compile if there is some statement inside of the function tries to change
the state.

• @payable: If this decorator is included in a function’s contract, the function can transfer
value.

3.7.6 Most common vulnerabilities

The focus on security sometimes have been relegated to a second perspective but in the
blockchain development it must be taken into account. The smart contracts are visible to any-
one and they handle real money, meaning that the consequences can cost a decent amount of
money. This section will expose the most common vulnerabilities during blockchain devel-
opment:
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• Integer underflow and overflow: This vulnerability is probably the easiest to exploit and
the easiest to forget.[26] Solidity has various integer sizes, uint8, uint16, uint32, etc. Let
us take for example uint16, the maximum value for this variable is:

uint16 = 16bits = 216 − 1 = 65.536

If we reach this maximum value and add one to this variable, an overflow will be pro-
duced and the value of the variable will be zero. If we exceed the maximum value the
variable will reset as if we were adding modulo maximum value. This happen because
of the way we have to represent integers in binary.

The opposite can happen also if we subtract one unit to an unsigned integer whose
value is zero, we will reach the lower bound of our variable and the value that is next
is the maximum value. It is the same as we were subtracting modulo maximum value.
Solidity after a couple of releases fixed this bug in version 0.8. If a lower version have
to be used, it is recommended to use the SafeMath library from OpenZeppelin or make
the correspondent checks by ourselves.

• Uncheked call return variables: Contracts can invoke other contracts, and some of these
contracts can come from a third party source that we think that can be trusted. But
the execution of this third party contract, can be deleted or might fail or return an
unexpected result, thus making our contract logic inconsistent. Therefore, we should
always deploy the contracts that our contracts call or use trusted party smart contracts.
It is a good practice to check the the returned values after continuing with the logic of
our program.

• Re-entrancy attacks: An attacker contract call a victim contract function so that during
execution the victim calls the contract again in a recursive way. This attack may be
skipping some of the checks present in the programming logic and/or avoiding the part
where the balance update is made. This can be fixed using the ”Non reentracy” pattern
and applyingmeasures likemutex andmaking the critical operations first, like updating
the balance. [27] (Figure 3.4)

• Denial of Services attacks: Let us say that you deployed a contract that makes some logic
at the beginning of the execution and calls an external contract, returns the information
from it and continues the execution based on the returned value. If the external code
runs with no errors, the program will always run until the end of the contract however
if an attacker intentionally makes the external contract that he/she owns, to fail in a
certain point, this external call acts as a breaking point in our contract. Thus causing a
denial of service.
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Figure 3.4: Reentrancy attack

It is always best to assume that calls made to external sources can fail, in order to
avoid potential disappointment or frustration. If it is possible, please implement a ”pull”
pattern instead of a ”push” one. When using a ”push” pattern, your contract will invoke
a function that will in turn invoke a third-party contract.This approach is elegant and
persuasive, as it allows you to take advantage of the functionality of the third-party
contract while still maintaining control over your own contract. If a malicious contract
could block other users, that would be a serious problem. The ”pull” pattern of contract
invocation ensures that your function can only be called by another contract, and not
directly by users.This protects against Denial of Service (DoS) attacks, as a malicious
developer would only be able to block their own contract, and not yours.

• Front Running attacks: Transactions are not immediately added to the blockchain’s dis-
tributed ledger. The ledger only contains entries that are part of a block. Blocks are
collections of entries that are added to the ledger together. In order for a transaction to
be added to a block, the nodes in the blockchain network need to be aware of it. Since
blockchain transaction creation is decentralized, the entire blockchain network needs
to be informed of these transactions. A blockchain user creates a transaction and then
broadcasts it to all the other users on the network. Nodes receive copies of transactions
and add them to a pool of unconfirmed transactions.When a new block is created, the
block creator draws from the current pool of unused transactions. The order of the
transactions being added into the blocks is usually based on the transaction fees. While
some blockchains may have a minimum fee, users are generally able to set their own
fees. This means that a user can increase the priority of a particular transaction by pay-
ing a higher fee.The block creator will add transactions to blocks based on fees in order
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to increase their profits.

Front-running attacks exploit the process of adding transactions to blocks based on
transaction fees. This results in unfairness and undermines the integrity of the sys-
tem. An attacker can prioritize their transaction by including a higher transaction fee,
ensuring that it is processed before any other transaction.

• Unexpected ether balance: A contract can have no functions with the payable decorator
and still receive Ether to its account. The following situations may arise:

– The result of ”self-destruct” operation of other smart contract. When a contract
is deleted, it can decide to which account reimburse the Ether from the deletion
operation.

– The contract address can receive Ether from a newly mined block. Every time a
miner finds a block candidate and adds it to the blockchain, it is rewarded with
Ether and it decides to whom it can send the reward.

It is a good practice that you never assume an static amount of Ether in your account.

• Replay signatures attacks: Signatures are used to prove ownership of the blockchain
accounts. The allows to sign our transactions and make them valid to the network.
The owner of the privates keys, the ”original” account will sign a message. The sender
account will then send the message to a smart contract. In this way, it is the delivery
account that pays for the transaction fees, rather than the original account. That is why
smart contracts should have the ability to to verify signatures and perform required
tasks. When considering the use of signed messages in smart contracts, it is important
to be aware that if the message is valid, anyone with access to it could send it multiple
times. If your smart contract code is executed multiple times, it may not be what the
account holder originally intended.

The solution for this attack is already solve in the Ethereum network by including a
nonce on every transaction. Our smart contract, should be able to increment a vari-
able each time an accounts signs a message. Messages with the same nonce and same
originating address should then be discarded.

• Function default visibility: By default, if no decorator is stated in the function declara-
tion, the public decorator is set. If you set to public a internal function that should no
be, you might break the access control of your smart contract. The solution to his issue
is to define the visibility for each function, never use the default.

• Floating pragma: Unexpected behaviours can happen if a floating pragma Solidity ver-
sion is left. (pragma solidity >= 0.6.5 < 0.8.15). The version should be specified before
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deployment.

• Loop through long arrays: In other programming languages we are accustomed to using
without regard arrays and loop through them. However, in Ethereum, each iteration
over the array costs gas so if we are iterating over a long array we may end up running
out of gas. The solution is to use mappings whenever we can instead of using arrays.

• Wrong inheritance: Solidity supports multiple inheritances, which can introduce ambi-
guity (known as the ”Diamond Problem”). This may be the case where multiple parent
contracts implement the same function, in that case, which function will be inherited
by our contract?

Solidity uses C3 Linearization to establish priorities among parent contracts. We must
keep an eye on this, to avoid unexpected behaviours. As a rule of thumb, the contracts
should go from the most generic to the most specific to avoid problems.

• Saving data using weak or no encryption: The data in the blockchain is PUBLIC meaning
that it can be read by anyone and therefore all the secrets or compromised data should
be cipherwith a level of security comparable to AES-128 bits. Use always stream ciphers
that pseudo-randomize the output, not block ciphers.

• Access outside array limits: Dynamic array lengths could be changed in early versions of
Solidity. The problem is that anyone can edit the size of arrays and potentially change
any storage space in the contract. Early versions should not be used to avoid this issue.

• Delegate calls to untrusted sources: The ”delegate calls” should be used carefully since
they use the context of your smart contract on the call of another contract. That is, the
execution context is your contract’s context when using delegate call. Therefore, the
called contract has full access to your contract variables.

• Calls to untrusted sources: The external contracts are out of the scope of our contracts
and thereforewe should take carewhen using them. They can return unexpected results
and block the logic of our contracts.

• Insecure randomness: Smart contracts and the EVM is deterministic by design. There is
no true source of randomness on the network and therefore the sources of randomness
cannot be used to support our operations; for example, cryptography. An oracle should
be used as a source of randomness.

• Block Timestamp manipulation: Miners decide the timestamp of the block and they can
use that ability to trick smart contracts. Contracts in Solidity should tolerable at least
a 15 seconds variation; the time that takes to mine a block.
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• Uninitialized storage pointers: The default empty values could lead to unexpected be-
haviours, so it is a good practice to initialize variables. From Solidity version 0.5.0 on,
storage pointer should be initialized.

• Non upgradable smart contracts: Smart contracts are by definition immutable, meaning
that they cannot be modified once they are deployed. This also means that if a smart
contract is deployed with a bug, it cannot be fixed. Solution: Always use upgrade-
able patterns for your smart contracts (transparent agents, responsible agents, beacon
agents, etc…).

You don’t need to implement it, you can reuse the function provided by openzeppelin
for example. Youmight also want to add the ”Pausable” pattern to some of the contract’s
functions. The ”pausable” function can be paused, which will give you more time to fix
a bug and deploy a new version.

3.8 Tokens

Tokens by its common and traditional meaning, were used to refer to privately issued coin-
like items that represent a special ownership or service, like the laundry tokens, arcade game
tokens, collectible tokens for a raffle. With the blockchain, the purposes of tokens have ex-
ploded and that tokens can be traded for each other or for other currencies in exchanges and
liquid markets.

In the first place, it is necessary to introduce some concepts like fungibility to analyze the
properties of tokens in Ethereum. Fungibility can be defined as the following: “In economics,

fungibility is the property of a good or a commodity whose individual units are essentially inter-

changeable.” [28]
Tokens can be substituted for one another without any loss of value, when they are fun-

gible. If the history or origins of a token can be determined, then it is not entirely fungible.
The ability to track the origins of digital assets can lead to the blacklisting and whitelisting of
those assets, reducing or eliminating their fungibility.

In opposite, the non-fungible tokens unique and they are devoted to represent a tangible
or intangible item thus two non-fungible tokens are not the same and they are no interchange-
able. As an example, we can have a token that represent the ownership of a land and a token
that represents the ownership of a crypto-art, they are not easy interchangeable and they do
not have the same value.

3.8.1 Intrinsicality of tokens

By definition, intrinsic means ”belonging naturally; essential.”
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Some tokens are created on the blockchain and they are intrinsic to the blockchain. This
property is really desirable to avoid counter-party risk, since the consensus rules apply to the
network as a whole, this same rules apply to the assets belonging to the network and thus
making no need for third party holders. This rules apply to the ownership of the tokens and
is equivalent as the ownership of a BCA.

There is a distinction between tokens and ether because the Ethereum protocol does not
recognize tokens. Sending ether is an action that is built into the Ethereum platform, but
sending or owning tokens is not. The balance of Ethereum accounts is handled at the protocol
level for ether, and at the smart contract level for tokens. In order to generate a new token
on Ethereum, you have to deploy a contract associated to that token. The smart contract
is responsible for managing all aspects of the agreement, including ownership, transfers, and
access rights. When creating a smart contract, it is advisable to adhere to an existing standard
in order to ensure optimal results. We will examine these standards in more detail later on.We
will weigh the advantages and disadvantages of the following standards at the end of the
chapter.

3.8.2 The ERC-20 standard

The developer Fabin Vogelstellar proposed in 2015 the ERC-20 as how to standardize the to-
kens within smart contracts on the Ethereum blockchain. An Etherum Request for coments.
because it was the twentieth comment, it had been assigned the designation ERC-20.

He followed the standard procedure for proposals in Ethereum. The porposal was ap-
proved and implemented in 2017 and it is know as as Ethereum Improvement Proposal 20
(EIP-20). However, the old name it is still kept, ERC-20 because that’s how it was named until
it was approved.

ERC20 is a standard for fungible tokens, which refers to tokens that are interchangeable
and have no unique properties. The ERC20 standard provides a consistent interface for con-
tracts that implement a token, allowing any compatible token to be accessed and used in a
uniformmanner.The interface is made up of a number of functions that every implementation
of the standard must have, as well as some optional functions and attributes that developers
can choose to add.

The ERC20 implementation is composed by two data structures, the first data mapping
holds an internal table that track the token balances for each owner. This tracks who owns
the tokens. Transfer are just subtraction from someone’s balance and addition to someother’s
balance.

mapping(address => uint256) balances;

The second data structure is ”permission” data mapping. ERC20 tokens allow the holder
of the token to delegate powers to the user to spend a certain amount of money (benefits)
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from the holder’s balance. Become. The ERC20 contract uses a two-dimensional mapping to
keep track of allowances, with the primary key being the address of the token owner. This
maps to a spender address and an allowance amount.

mapping (address => mapping (address => uint256)) public allowed;

The ERC20 interface specification is the following in Solidity:

1 contract ERC20 {
2 function totalSupply() constant returns (uint theTotalSupply);
3 function balanceOf(address _owner) constant returns (uint

balance);
4 function transfer(address _to, uint _value) returns (bool

success);
5 function transferFrom(address _from, address _to, uint _value)

returns (bool success);
6 function approve(address _spender, uint _value) returns (bool

success);
7 function allowance(address _owner, address _spender) constant

returns (uint remaining);
8 event Transfer(address indexed _from, address indexed _to, uint

_value);
9 event Approval(address indexed _owner, address indexed

_spender, uint _value);
10 }

There are two different workflows that can be used with ERC20. The first workflow uses
the transfer function to complete a single transaction. This is the common procedure to follow
to send tokens from one address to another. The majority of token transactions occur in the
transfer workflow. To execute the transfer contract, simply follow the instructions provided.
Alice can send 10 tokens to Bob should call the function included in the smart contract that
allows to make transfers, he makes the transaction including the value of the transfer and
the call to that specific function. The token contract adjusts Alice’s balance by subtracting 10
tokens and Bob’s balance by adding 10 tokens. A Transfer event is also issued. The second
option is a workflow divided in two operations one operation that uses ’approve’ function
followed by the ’transferFrom’ function. This workflow allows a token owner to delegate the
control of the tokens’ contract to another address. By doing so, they can ensure that their
tokens are always being managed in the way they desire, even if they are not able to do so
themselves. The delegation of control to a contract for the distribution of tokens is a common
use case for this technology, but it can also be used by exchanges.

In this section, we have introduced tokens that can be interchangeable. They are fungible
and they have no distinction one from another. The next section will be devoted to the non-
fungible tokens which play a big role in this work.
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3.9 Non Fungible Tokens

All the tokens that we have talked about so far are easily interchangeable, in this section we
introduce the Non Fungible Tokens (NFT).

NTFs works as a notary for digital and physical assets. They record the property of that
particular asset on the blockchain, making it comply with the consensus rules of the network.
The ownership of an NFT is verified and tracked through the use of blockchain technology,
which also allows for the NFT to be sold or traded by its owner. NFTs can be created by
anyone with basic coding skills. NFTs often contain references to photos, files, videos, etc.
NFTs are unique assets that can be identified individually, unlike cryptocurrencies, which are
interchangeable.

3.9.1 The ERC-721

We can find out the difference between ERC20 and ERC721 tokens by just examining the in-
ternal data structures used in each type of token. ERC721 tokens use a different data structure
than ERC20 tokens, which allows for more flexibility and functionality.

1 // Mapping from deed/obligation ID to owner
2 mapping (uint256 => address) private deedOwner;

The ERC721 interface specification is:

1 interface ERC721 /* is ERC165 */ {
2 event Transfer(address indexed _from, address indexed _to, uint256

_deedId);
3 event Approval(address indexed _owner, address indexed _approved,

uint256 _deedId);
4 event ApprovalForAll(address indexed _owner, address indexed

_operator,
5 bool _approved);
6 function balanceOf(address _owner) external view returns (uint256

_balance);
7 function ownerOf(uint256 _deedId) external view returns (address

_owner);
8 function transfer(address _to, uint256 _deedId) external payable;
9 function transferFrom(address _from, address _to, uint256 _deedId)

10 external payable;
11 function approve(address _approved, uint256 _deedId) external

payable;
12 function setApprovalForAll(address _operateor, boolean _approved)

payable;
13 function supportsInterface(bytes4 interfaceID) external view

returns (bool);
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14 }
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Chapter 4

Decentralized storage

In the effort to create the decentralized application as decentralized as possible, the way to
store the certificates is using a decentralized storage. This can be defined as a file storage
sharing system that consists of a peer-to-peer network of user operators who hold parts of
the overall data, making it resistant to data loss. These can be in blockchain based applications
or any peer-to-peer based network. [29]

The properties that we should look for when choosing among the different decentralized
storage providers should be:

• Persistence / redundancy mechanisms

• Data retention policy

• Degree of decentralization

• Consensus

Two of the most popular decentralized storage systems are IPFS [30] and FileCoin [15].
This two services are used in this work and they are explained in the next sections.

4.1 IPFS

IPFS is a distributed system that has been nurtured from the aspects of aspects of successful
previous peer-to-peer like BitTorrent, Git, DHTs, and SFS. IPFS has the potential to simplify
and improve upon existing techniques for writing and deploying applications, as well making
easier the distribution and tracking of version of large storage data. IPFS could potentially
evolve the web as we know it. IPFS is a peer-to-peer network, where all nodes are equal. The
nodes store the objects from the network in their local storage. Nodes communicate with each
other by exchanging information through established connections. These objects represent
different types of data structures, such as files.
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The decentralized property of the system in a real case scenario applies even when you
are downloading a file. Let us say that you download a copy of a popular blog from a distant
node that has it, whenever someone nearby you tries to download the same popular blog, it
may download it from you. That is the way IPFS incentives decentralization and speed. It
also provides resistance to censorship, so that if the information is stored in many anony-
mous nodes, thus it makes it more difficult to completely delete it. Storing the information in
multiple machines, makes the information more resilient to attacks and server crashes.

When using IPFS, it is important to remember that the system is designed to be used col-
laboratively and that all users play a role in its success. If no one using IPFS has anyone else’s
access to the content identified by this address, you won’t be able to retrieve it. A content
cannot be deleted from IPFS is someone is still hosting that content, making it accessible to
the network. This can be an benefitial or a problem depending of the repercussion of the file.
It is the same thing as social media, whenever something is uploaded to the let say Twitter, is
really difficult to make it unavailable forever.

Speeding up the web can be beneficial when you are far away or disconnected from the
main network. If you can retrieve a file from someone who is geographically closer to you,
you can often get it faster. This is even more important to devices and/or machines that have
limited access to the internet, that is they cannot access the entire internet. This can happen
because of censorship of a specific government agency or simply a bad internet connection.
The decentralized storage systemmay solve this problem better than centralized systems since
you do not have to reach a unique destination (centralized system) to get your information
and you may get it faster becuase of proximity.

The IPFS address do not identify the node, they are linked to the file content that it is store.
This address is form by the cryptographic hash of the contents. Even that, the hash is short
compared to the size of whole file, is it unique for each file. As an example, the commonly
used SHA-256 hash function, outputs a hash of 256 bits, which can generate 2e256 which is
in decimal base 1.157e77. In comparison, the number of atoms in the observable universe are
estimated to be between 10e78 to 10e82.

The IPFS protocol is divided into a bunch of sub-protocols, each of which is responsible
for different functions:

• Identities: Administer the node identity generation and verification. They are identified
by the parameter NodeId, created with Kademlia static cryptographic hash table. The
result of that Kademlia function get us the public key of the node. The users of the
network can change their address on demand, though they will lose some benefits on
changing it.

• Network: Uses the underlying network protocols tomanage connections between peers.
The following characteristics are provided by this module:
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– Transport: IPFS supports any transport porotocol, though is best suited for We-
bRTC.

– Reliability: IPFS can provide this characteristic if the underlying protocols are not
able to.

– Connectivity: IPFS provide Interactive Connectivity Establishment (ICE) for ne-
gotiating NAT traversals when establishing peer-to-peer communication sessions.

– Integrity: There is the option to check the integrity of the hash checksum of the
messages.

– Authenticity: It can provide HMAC verification of the messages with sender’s
public key

• Routing: The routing strategy followed in IPFS is based on S/Kademlia and Coral and
by using Distributed Hash Tables (DHTs).

• Exchange - The BitSwap protocol is the protocol that governs the block distribution
efficiently. It is inspired in the BitTorrent protocol. In BitSwap like in BitTorrent, offer
a set of blocks in exchange (have_list) of a set of blocks (want_list) that other peers are
seek to acquire. Unlike BitTorrent, the minimal tradeable units are not files, they are
the blocks.

The BitSwap protocol works as a marketplace where a node can get the blocks it need,
independently from the file the block were got from. That is the blocks that compose a
file can come from completely unrelated files in the file system.

• Objects: On top of the DHTs and BitSwap, IPFS builds a Merkle Directed acyclic graph
(DAG), which is a data structure that uses cryptographic hashes to link objects together.
Thismakes it more secure and efficient than other data structures. This is amore elegant
and persuasive way to store data in Git. This type of data structure comes with the
following properties:

– Content Addressing: All content on the IPFS network is uniquely identified by its
multihash checksum, which includes links to other content.

– Tamper resistance: A checksum is applied to the content to verify if the data is
tampered or corrupted.

– Deduplication: All objects with exactly the same content are equal and stored only
once.

• Files: This layer is settled on top of the Merkle DAG, it defines a set of objects for
modeling the versioned filesystem. The object model is comparable to the object model
of Git:
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– Block: Variable-size block of data

– List: Collection of blocks or other lists.

– Tree: Collection of blocks, list or other trees

– Commit: Snapshot in the version history of a tree.

• Naming: A self-certifying mutable name system. It allows for the publication and re-
trieval of immutable objects. This objects can be tracked by version history. However,
it lacks a critical component: mutable naming. If we did not have IPFS, we would have
to communicate new content using other methods that are not as efficient. IPFS links
make it possible to send content quickly and easily. What is required is some way to
retrieve mutable state from the same location. It is important to note that, even though
we went to great lengths to build an immutable Merkle DAG, there are situations where
mutable data is necessary.

The IPFS is a really good system to keep files for a certain period of time although is not
recommended for long term storage. This system does not have a built-in incentive scheme,
a hybrid solution that introduces the use of contracts to incentive the persistence in the long
run should be implemented for long term persistence.

Pinning services provide a way to keep data stored on IPFS even after it would normally
be removed. Thus the data persistence can be compromised. Therefore, in this work we have
included a contract-based decentralized storage solution FileCoin.

4.2 FileCoin

The Filecoin network is a decentralized file storage system that incentivizes users to store
files reliably over time. In Filecoin, users are charged a storage fee for storing their files on a
storage provider’s network. The storage fee is used to incentivize storage providers to keep
users’ files stored on their networks. Storage providers can join Filecoin to earn rewards for
providing storage to the network. The price and availability of storage is not determined by
any one company. Instead, Filecoin facilitates an open market for file storage and retrieval
that anyone can participate in. The Filecoin network is a decentralized blockchain ledger
with its own native cryptocurrency (FIL). Storage providers earn FIL tokens by providing
storage space for user data on the network. The Filecoin blockchain contains a record of
all transactions involving the sending and receiving of FIL, as well as proof from storage
providers that they are storing files correctly.

As we can see in the image, the network is mainly divided in two actors: users and storage
miners.
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Figure 4.1: FileCoin workflow

4.2.1 Users

The network offers the users to make your selection between the main constrains of the stor-
age systems, redundancy, cost and speed by choosing the storage provider. This tailored suit
reduces reduces the cost when of the characteristic are not needed, thus offering really com-
petitive prices. Another advantage of the network is that everyone that is participating on the
network should ”talk the same language” that is, every node of the network implements the
same protocol. That makes the communication between users and different storage providers
portable.

4.2.2 Storage miners

Filecoin is a decentralized storage network that allows storage providers to sell their free stor-
age space on a openmarket. This enables providers to compete on price, making storage more
affordable for users. In fact, FileCoin pricing is quite competitive. Storage providers are peo-
ple and organizations that manage storage networks, earn Filecoin tokens for providing this
service, and a Filecoin storage provider can be any Internet-connected computer with spare
disk space, or a dedicated system with large amounts of storage dedicated to Filecoin. The
Filecoin protocol incentivizes storage providers to contribute useful storage to the internet,
rather than engaging in wasteful proof-of-work computations. When a provider implements
the Filecoin protocol, they can connect to the Filecoin network and offer their services to users.
The Filecoin protocol and network provide a marketplace for storage providers to advertise
their services and connect with users. This ecosystem of storage providers is decentralized
and removes entry barriers for independent providers.
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4.3 How it works

The Filecoin Network composed by peers that have different roles. Secure channels enable
peers to communicate with each other and distribute information efficiently, even when there
are thousands of peers involved.

Each node on the network is synchronized with each other and every node validates the
messages in every block. After applying the verification, a global state is provided to the net-
work. Nodes are able to handle storage and retrieval requests from FileCoin storage providers.
They can also pay them as they execute the deals.

A FileCoin node is a task that does not require a low amount of resources but it should be
running non stop.

4.3.1 Storage providers

The storage providers play an important role in the network by executing different types of
deals and appending new blocks to the chain. They are rewarded with FIL, the token of the
network, for their efforts.

4.3.2 Deals

Filecoin operates through two types of deals: storage deals and retrieval deals:
Storage deals are agreements between clients and storage providers that enable clients

to store data on the network.Once a deal is initiated, and the storage provider has received
the data to store, it will repeatedly demonstrate to the chain that it is still storing the data in
accordance with the agreement so that it can collect rewards.If not, the storage provider will
be penalized and lose FIL.

The agreementsmade to retrieve the data from the network are call retrieval deals, they are
made between clients and retrieval providers to extract data that’s stored within the network.
These deals are fulfilled off-chain, that’s out of the network infrastructure, using payment
channels to incrementally procure the info received. This reduces the employment of the
network resources thus reducing costs of operation.

4.3.3 Proofs

As mentioned above, storage providers must prove that they’re storing the info per the terms
of a deal. Meaning that:

• All the information received from the client should be stored

• This data should be stored throught all the amount that’s stated within the deal
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To fullfil this requirements, cryptographic proofs are used.
The Proof of Replication (PoRep) mechanism allow the storage providers to prove that all

the data has been recived and that is enconded in a way that is unique for that specific storage
provider. This operation is done at the start of a deal, then the sealing operation is done.

The storage provider will use Proof of Spacetime (PoSt) to demonstrate that it is still stor-
ing the data associated with a particular deal, for the duration of that deal’s active lifetime.

In order to prove data availability for Proof-of-Space-Time, storage providers must show
that randomly selected portions of the data they are storing are still intact. The Filecoin
network relies on clients and storage providers to continuously verify the proofs included in
each block, in order to maintain security and penalize storage providers that do not uphold
their agreements.

4.3.4 Gas

Proofs or transactions are included to the network by using messages. This operation of
agregating new messages to the network consumes computational and storage resources.
Gas is a unit that measures the amount of computational and storage resources required to
execute a message or transaction. The gas cost of a message affects the amount the sender
has to pay for it to be stored on a blockchain.

In other blockchains, miners have typically specified a gas fee in terms of the native cur-
rency. This approach has a number of advantages, including providing a clear incentive for
miners to continue processing transactions and ensuring that transactions are processed in a
timely manner. They then pay the miner that includes the transaction to the ledger a priority
fee based on how fast they want the transaction to be included in the transaction pool, since
miners will select the most cost effective transactions first, and they include the transaction
base fee. The Filecoin network functions similarly to Ethereum, except that a portion of the
transaction fees are burned in order to compensate for the resources expended by the network
nodes.This is based on Ethereum’s EIP1559.

The Filecoin network features a dynamic BaseFee that is automatically adjusted based
on network congestion parameters (block sizes). This ensures that an appropriate amount
of fees are burned, providing elegant and persuasive fee management.. This allows for the
network to more efficiently manage fees and prevent network congestion.The current value
of a cryptocurrency can be obtained from a block explorer, which is a website that provides
information about cryptocurrency transactions, or by inspecting the current head block.
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4.4 PowerGate

Running a client that can connect to the IPFS and FileCoin network can make an overhead in
the resources for small devices like IoT. This work utilizes a dockerized private API that can
be deployed in any system that supports docker. That removes the overhead of running that
on the small devices which now have to communicate to an API through HTTP.

Powergate is defined as a set of tools and configurations that can be used together or
separately to integrate Filecoin into your application or storage system. This tool manages
Filecoin wallets, storing each address and its configuration data privately for each user.

The main benefits of this API is that it supports both networks, FileCoin and IPFS. It
ensures high and easy availability with the IPFS network and long term resilence, storing the
data for the long run in FileCoin. It can also handle multiple FileCoin wallet addresses.

The good thing about powergate is that it combines both networks in a way so that one
complements the other. IPFS is called ”Hot Storage” it is used by powergate to retrieve the
archive fast, since it is faster although it cannot be used for long term since it is not reliable.
This shortcoming is covered by the connection to FileCoin which is has a cost on each use
and it is slower, however it is reliable for long term storage. The distribution of the files be-
tween the ”cold” and ”hot” storage is done by Powergate, making it a great tool for managing
decentralized stored files.

This chapter introduced the decentralized systems that we are used in combination. The
next chapter is devoted to PUF and the existing different types.
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Physical Unclonable Functions

Physical Unclonable Functions are like the genome sequence of the silicon chip of a device.
This kind of functions use the variations on the integrated circuit during the manufac-

turing process of the chip to uniquely identify it. Even if the whole process of manufacturing
is carefuly monitorized, this imperfections are introduced. This unique characteristic could be
use for identification and even authentication of a particular circuit which can be particularly
useful in RFID and SmartCards. The specific features of a circuit are usually formalized in
terms of input-output behavior. Strong PUFs have a requirement that each circuit has a large
number of features, making it virtually impossible for an attacker to copy and imitate all of
them. When an electrical signal is transmitted on two circuits that are completely symmetri-
cal, there can be significant differences in the delay times incurred. SRAM cells have totally
different start-up values attributable to method variation, as well as planographic printing
variations in effective feature size and random threshold voltages. In general, the purpose of
PUF is to extract the randomness of these manuals.

The idea of physical unclonable functions was first introduced in 2002 in this article. [9]
As for now, they are being introduced in IoT devices and industrial devices where low energy
consumption and lack of computational resources is the normal operational environment.

Thought all of this chapter we will introduce the different common types of PUFs at
present, that include Arbiter PUF [31], Ring Oscillator PUF (RO PUF) and SRAM PUF. Af-
terwards, we will discuss the different benefits and drawbacks on each one. In this, work we
will not deep in the details and error correction mechanism of the different physical unclon-
able functions. A simulation provided by the library pypuf [32] of one type of PUFs, Bistable
Ring PUF will be used in this work.
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5.1 Arbiter-based PUF

An arbiter PUF utilizes the inherent timing differences between two symmetrically designed
circuit paths to produce a single bit of the response at the output of the circuit. It consist of
multiple selectors connected between each other in the the way that the output of previous
is the input of the next and an arbiter at the end. Each stage of the challenge consists of two
outputs and three inputs. The single bit of the challenge is combined with the two outputs
from the previous stage to create the final output. The inputs of the first stage are connected
to a common enable signal.

The outputs of the last stage are connected to an arbiter, which determines which signal
arrived first. Based on the responses on all of the stages, the arbiter outputs a single bit
response which is known as the response. The schema of this type of PUFs can be see in
Figure 5.1.

Figure 5.1: Structure of an PUF arbiter

The PUF arbiter’s circuit has an X input withmultiple bits, and it calculates a 1-bit Y output
based on the delay difference between two paths of the same length. The challenge bits, the
ones feeding the MUXes from the bottom in the picture, control the delay paths, therefore
producing different responses given the same input. Here, a pair of MUXes controlled by the
same input bit C[i] work as a switching box.

The selectors have to go throught two delay signals from the left side if the input control
bit C[i] is zero. Otherwise, the top and bottom signals are switched. In this way, the circuit
can create a pair of delay paths for every input C. To judge the output for a specific input, a
rising signal is given to both paths at the identical time, the signals race through the 2 delay
paths, and also the arbiter (latch) at the tip decides which signal is quicker. The output is one
if the signal to the latch data input (D) is quicker, and 0 otherwise.

This PUF delay circuit has two methods of generating a response of n-bit size from this
1-bit output circuit. First, one circuit can be used k times with different inputs. A challenge
is employed as a seed for a pseudo-random number generator (such as a linear feedback shift
register). Then, the PUF delay circuit is evaluated k times, using k different bit vectors from
the pseudo-random number generator serving of the input X to line the delay path. It’s also
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possible to duplicate the single-output PUF circuit itself multiple times to get k bits with one
evaluation.

5.1.1 Discussing Arbiter PUFs and its compositions

The arbiter physical unclonable functions have the particularly that they could be imple-
mented using the common CMOS manufacturing process [10] so they are relatively chip.
However, this kind of PUF are prone to machine learning attacks, which might emulate the
response as our library is doing. Machine Learning needs an oversized data set of challenge-
response pairs CRP to accurate predict the response. Non-linearities can be introduced in
the response of the PUF to reduce the quality of the responses of the machine learning based
approximations. [33]

That is why stand-aloneAPUF by itself is not deployable because of its severe vulnerability
to modeling attacks , PUF arbiters still offer unique advantages although they are simple by
design, low hardware overhead, and being amenable to be VLSI implementation. [34]

As a result, APUFs are still used as a foundation for more secure APUF compositions, the
most popular of which are XORPUFs, Lightweight Secure PUFs (LSPUFs) [35], Multiplexer
PUFs (MPUFs) and their variants cMPUF and rMPUF.

5.2 Lightweight Secure PUF

As we saw in previous sections the PUF arbiters are vulnerable to machine learning attacks.
The combination of permutations and XORs has been proven to reduce the resistance against
machine learning attacks. The name after this tecnique is called ”Lightweight secure PUFs”.
However, in [36] it was found that this type of PUF was not as resistant as it was thought. In
fact, they can be simulated as easy as PUF XOR arbiters.

5.3 Ring Oscillator PUF

The PUF delay circuit in Figure 5.2 [37] is made up of many ring oscillators that are all laid
out in the same way. Each ring oscillator is a circuit that produces a periodic signal with
a specific frequency. Due to manufacturing differences, each ring oscillator oscillates at a
slightly different frequency.

In order to generate a fixed number of bits, a fixed sequence of oscillator pairs is selected
and their frequencies are compared in order to generate an output bit. The output bits from
the same sequence of oscillator pair comparisons will vary from one chip to another. If the
oscillators are arranged in the same way,
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Figure 5.2: Ring oscillator structure

This is the type of PUF used in this work since they are the most secure of the one that
can be simulated with the pypuf [32] library.
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Infrastructure for certification of
IoT devices

This work was born from the idea of decoupling the certification process from the CA.
The IoT devices where taken as the devices for certification since they are been rapidly

introduced and there are increasingly been the target for attacks. Most of them are simple
devices and many of them use proprietary protocols that do not implement or implement
weak secure communication mechanisms. [38]

The blockchain technology, that is nowadays almost common knowledge for everyone,
it offers the magical consensus rules between anonymous parties in a decentralized system.
The old Byzantine Fault Tolerance (BFT) problem was solved by this consensus algorithms
since every participant in the network can verify the information contained in the blocks in
an common and objective way. Besides, it offers data integrity and authenticity of the data
trail added to chain of blocks by using hashing and signing algorithms and application code
that can be securely executed and verified on-chain.

From that properties of the blockchain, the following question arose to me: why not asso-

ciating an IoT device directly to a blockchain address? It will provide the device with a public
key, data integrity and data authenticity. Well, communicating using the data storage mecha-
nisms of a blockchain network like Ethereum can be quite expensive and inefficient. The time
that it takes to add a new block of data to the chain is at least 15 seconds which is unfeasible
for communications. Traditional protocols of communication like DTLS and TLS which are
heavily supported and tested may be used in combination with the blockchain properties.

Let us say that we are going to use usual communication protocols and we associate the
device with an address so that we have a public key linked to that address. The public key
linked to the blockchain address can be used for data encryption and signing, from that ad-
dress we can obtain a public key that can be used for secure communications and we have our
problem solved. Well, it is not that easy. One of the key aspects in the security of IoT devices
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is the authentication and identity management [38]. The IoT device needs to be able to con-
firm that the person behind an address of a blockchain is authorized to access or communicate
with the device. Authorization and access control is key in establishing a secure connection
between multiple devices and services. The identification of the real entity or person behind
a BCA is not an easy task in blockchain networks.

The Ethereum network was built based on the idea of decentralization, making a difficult
task to confirm the real identity behind a blockchain address. In fact, the identification of the
user that is behind a certain blockchain address is almost impossible without the interven-
tion of a third trusted party or some consensus between parties. This is the same solution
traditional solution as the proposed with the CA, however, there is another way to identify
devices without third parties.

PUFs are the solution to identify the devices, they offer a way to uniquely identify a
device using their hardware characteristics. The imperfections introduced in the silicon chip
during the manufacturing process work as the true identification number of the device. This
functions have a chagellenge-reponse mechanism that can be used to generate private keys
[39]. However, it is not one hundred percent problem-free, as seen in the previous chapter,
some transformations should be applied to make them as secure as possible [40] and usable
for key generation.

Error corrections mechanism should be applied to dissipate the noise of the response.
After applying such mechanisms, the response can be use as a private key. Using that private
key, a public key can be generated and a public blockchain address can be derived from it.

Now, we have a blockchain address for our device, it is linked to a blockchain address
through the use PUF. It is time to set the ownership of the device by using the NFT tokens
explained in the chapter number three. The role of ownership of a device can be used identi-
cally to the administrator role and can be programmed in the devices’ logic. The ownership
can be tracked during time and cannot be tampered with since it is ruled to the consensus
rules of ETH.

In other to attach, the owner blockchain address to a device, the ”ownable-iot” contact
explained in Section 6.2.1 is used to act as a notary, registering the ownership without the use
of a third party. Thus, possibly eliminating the need of CA.

The Root of Trust (RoT) is shifted from the CA to the manufacturer and physical devices.
This is explained in later section 6.2

The infrastructure proposed is mainly based in this article [11] but it removes some of the
characteristic proposed that we consider as limiting. The need of actively participate in the
blockchain is some feature that may not be desirable for some devices and the obligation of
registering each user that communicate with the device in the smart contract’s logic can ruin
scalability. In fact, the smart contract’s programming logic limits the number of users that
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a device can talk to, to be one. There is a single variable in each token that tracks the user
address. Since, a single token can only be associated to a device, a single user can only talk
to a device. A mapping can be used to track the user’s that can talk to a device. However, we
decide to remove this workflow as we consider it an overhead. This work delegates the user
authentication to the commonly used x509 certificates authentication.

Besides, some of the variables are recycled and have been given another use. The timeout
variable is no longer used to verify if the device is available. The device is forced to update its
state which the timestamp bound, thus having to interact with the blockchain every times-
tamp period of time. The timeout parameter now is used to set the maximum age of the shared
secret.

Moreover, it is included a new functionality that allows the owner to reset the shared key
between owner and device since [11] did not implement it. A new function is included in this
proposal that allows the owner to reset the device shared secret.

The certificates creation, and distribution is also handle by this infrastructure in a way
the the integrity and authenticity of them are preserved. Having each device linked to a
certificate, allows us to implement many other, like Network Access Control (NAC) or 802.X
EAP authentication to robust the security of the enterprise infrastructure.

This work comes with an user guide is for the interfaces and the process of securing a device

is included in the appendix.

6.1 Actors

Three main actors are defined in the infrastructure:

• Device’s manufacturer: The manufacturer is the owner of the smart contract. It is the
responsible of deploying the contract and creating the secure tokens. This secure tokens
represent the ownership of the device.

• Device’s owner: The owner of the device. It can perform the engage operation, set the
devices certificate signature and transfer the ownership to another address.

• Device: The secure device that is represented by the token.

The device is supposed to interact directly to the blockchain however we just included
the simulated device into the manufacturer web interface since we do not have access to a
real PUF and it does not add any additional value having it decoupled from it in our proof of
concept. The manufacturer has a web interface that implements the functions associated to
its role. Another web interface, is provided to the owner to perform his/her operations.

52



CHAPTER 6. INFRASTRUCTURE FOR CERTIFICATION OF IOT DEVICES

6.2 How it works

The infrastructure is composed by an smart contract deployed in the Ethereum network, a
Powergate machine that offer connection to the decentralized storage systems and two web
interfaces that interconnect the different components and handle the actor’s functions logic
behind the scenes. The two interfaces that are exposed are used by the owner and one used
by the manufacturer.

The smart contract handles the key agreement and the ownership workflow of the device.
It works as a notary, like a trusted party that assure that the process is correctly done. It pro-
vides authentication by stating in its logic an access control mechanisms where the only the
specified actors can interact with the functions in it. Integrity is also provided to certificates
since the storage of the hash digest of the certificates is done in the contract. Thus, every
device that connects to that device can verify in the contract that the hash that is has received
is correct.

Authenticity is also provided even if we are using the hash certificates. This int256 hash

stores the certificate’s digest. You may be wondering why we are storing the hash and not
some other data like an HMAC or a signature that is more secure. Well, the truth is that
the data is added to the contract through a transaction that is signed and later an access
control mechanisms verifies that the sender of the data is the owner of the device, so that
authentication is provided and there is no need for a signature or similar. Moreover, the hash
perfectly fits of a uint256 variable, thus reducing the gas cost of the operations.

The connection to the IPFS and FileCoin networks is offered by Powergate. The dockerized
version of this product is used and it is installed and running in a machine that is devoted
of only handling the connection to the decentralized storage systems. This functionality is
used for storing, for each device, the ciphered certificates and permissions file that states the
devices to which that device can talk to. In the diagram of Figure 6.1, the infrastructure can
be visualized.

Having the visualization of the process in Figure 6.1, the followingworkflow of registering
works as follows:

1. The manufacturer deploys the contract

2. The manufacturer creates a token associating the owner address and the device address

3. The owner starts the engagement process

4. The device completes the engagement process

5. The owner creates a certificate associated to the device

6. The certificate is uploaded to the decentralized storage systems through Powergate API
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Figure 6.1: Infrastructure proposed

7. The device gets the certificate and verifies it.

8. A secure channel can be established with other secured devices

This schema can be similar to the Intel’s SDO substituting the centralized parties for de-
centralized parties. [41]

These steps are the generalization of the process of securing a device. Each component
will be treated separately to analyze it behaviour in the next sections.

6.2.1 Smart Contract

The ownable-iot.sol smart contract, inherits form the interfaces ERC721 and smartNFT.
contract OwnableIoT is ERC721, smartNFT

The ERC721 is the standard interface for NFT token which was used as the base for this
contract. The other functionalities addedwith theOwnableIoT contract provide the key agree-
ment mechanism that the standard interface does not provide. Let us compare the variations
in the structure of the SmartNFT, OwnableIoT and ERC721 in Table 6.1.

The process of engagement starts right after the token is deployed. The state of the se-
cure token afterwards is set to ”Waiting for Owner” and the device is waiting for owner
authentication. The owner then, authenticates against the contract using the Elliptic-curve
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Data Type Name Defined in contract

uint256 tokenId SmartNFT & OwnableIoT & ERC721

address owner SmartNFT & OwnableIoT & ERC721

address SD SmartNFT & OwnableIoT

States state SmartNFT & OwnableIoT

uint256 hashK_OD SmartNFT & OwnableIoT

uint256 hashK_UD SmartNFT & OwnableIoT

string dataEngagement SmartNFT & OwnableIoT

timestamp timestamp SmartNFT & OwnableIoT

timeout timeout SmartNFT & OwnableIoT

address user SmartNFT

string signature OwnableIoT

Table 6.1: Specification of the block

Diffie–Hellman (ECDH) key exchange mechanism. The device public key and owner public

key are used to generate a shared secret. The good thing about about this method is that no
one has to disclose its private key to share a common secret.

Note that, we have emphasized public key words and it is because it may not be con-
fused the with the BCA, they are related but they are not the same. As a recall from the
section ”Transactions” of chapter number three, the transactions in Ethereum included the
parameters v,r,s that are the components of the public key. The blockchain address is derived
from hashing that public key, therefore we cannot obtain the public key from the blockchain
address.

In fact, when the device is on the ”Waiting for Owner” state it can happen that no transac-
tion was issued by the device and public key cannot be known. That is why the manufacturer
web interface has the ability to show the public key of the device so that it can be shared with
the owner.

Now that we have our public key, and the shared secret, this cryptographic primitive is
hashed and this hash is registered in the contract by the owner. The same secret should be
generated in both ends, the HashK_OD and the hashK_UD should the identical. The device
then, gets the dataEngagement variable saved by the owner. The key is in the compressed
format and it is used to generate the hash of the secret.

Finally, the smart contract checks whether the hashes are equal and if so the device is set
to the state ”Engaged with owner”.
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The user role has been removed since the SmartNFT contract only allowed to link one
user to each token. This can be a limitation to a device. If a new user wanted to communicate
with the device, he or she will have to go through all the process of key exchange each time
the user changes. Besides, it is more of an overhead that a benefit.

The timestamp in the OwnableIoT contract has a different use than the one that was
originally proposed. In this work, there is no need for timestamp for the verification of the
availability of the device, in some cases is not recommended to have need the devices 24/7
connected to the blockchain network. Therefore, this attribute is used as the maximum age
of the shared secret kind of like a expire date for the key.

The diagram in Figure 6.2 exemplifies the workflow of the engagement process.

Figure 6.2: States of the contract

6.2.2 The code of the contract

The functions introduced by thiswork are getCertificateHash, setCertificateHash, resetKeyEx-
change, and getDataEngagement. The first two functions are introduced to keep track of the
devices’ certificates. It is required by the set function to be executed by the owner of the
device. The code of these functions is quite simple:

1 function setCertificateSignature(
2 address _addressSD,
3 string memory _certSignature
4 ) external override {
5 require(msg.sender == ownerOfSD[tokenIDOfBCA[_addressSD]]);
6 Secure_Token[tokenIDOfBCA[_addressSD]].signature =

_certSignature;
7 }
8
9 function getCertificateSignature(address _addressSD)

10 external
11 view
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12 returns (string memory)
13 {
14 return Secure_Token[tokenIDOfBCA[_addressSD]].signature;
15 }

The resetKeyExchange function is added to allow the owner to refresh the key on demand.

1 function resetKeyExchange(address _addressSD) external {
2 require(msg.sender == ownerOfSD[tokenIDOfBCA[_addressSD]]);
3 Secure_Token[tokenIDOfBCA[_addressSD]].digest = 0;
4 Secure_Token[tokenIDOfBCA[_addressSD]].dataEngagement = "";
5 Secure_Token[tokenIDOfBCA[_addressSD]].state =

States.waitingForOwner;
6 }

The last function aggregate is the getDataEngagement function which is just a simple
view function to retrieve the engagement data so that is it easy for developers to get the
owner public key.

The rest of the functions that are defined in the smart contract of this proposal are also
defined in [11].

Table 6.2 shows the mapping of the functions in the OwnableIoT, ERC721 and SmartNFT
contracts.
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Functions Defined in

function transferFrom(..) SmartNFT & OwnableIoT & ERC721

function ownerOf (..) SmartNFT & OwnableIoT & ERC721

function balanceOf(..) SmartNFT & OwnableIoT & ERC72

function createToken(..) SmartNFT & OwnableIoT

function startOwnerEngagement(..) SmartNFT & OwnableIoT

function ownerEngagement(..) SmartNFT & OwnableIoT

function startUserEngagement(..) SmartNFT

function userEngagement(..) SmartNFT

function setUser(..) SmartNFT

function tokenFromAddress(..) SmartNFT

function userOfFromAddress(..) SmartNFT

function userOf(..) SmartNFT

function userBalanceOf(..) SmartNFT

function userBalanceOfAnOwner(..) SmartNFT

function updateTimestamp(..) SmartNFT & OwnableIoT

function setTimeout(..) SmartNFT & OwnableIoT

function checkTimeout(..) SmartNFT & OwnableIoT

function getCertificateSignature(..) OwnableIoT

function setCertificateSignature(..) OwnableIoT

function getDataEngagement(..) OwnableIoT

function resetKeyExchange(..) OwnableIoT

Table 6.2: Specification of the block

6.3 The workflow of the actors

In this section, that it is divided in two subsections, we are going to take a deeper look at the re-
lations between the different actors. The first one, will be devoted to the device-manufacturer
relation and the second to the owner-device relation.
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6.3.1 Manufacturer

The first operation in this process is the generation of the PUF response from the device. The
manufacturer sends a challenge to the device and this sends a respond back with the crypto-
prahic primitives. This values then should go through amechanism of cell values classification
to eliminate those cells that do not produce the same output when the same challenge is ap-
plied. Afterwards, error correction mechanisms to eliminate any noise that could from the
environment. The output of this is the input of a hash function that generates the private of
the BCA

This private key is then used to create the public key and derive the blockchain address.
This address is now used by the manufacturer to instantiate the token with the parameters of
the device address and the owner address.

Afterwards, the smart contract returns the tokenId if is the device is not already registered.
If it is already registered, that is the token is already created, the function also returns the
tokenId

6.3.2 Owner

Theworkflow for the owner starts when the owner calls the engagement function. The owner
knows the public key of the device and uses it in combination with the public key to generate
the shared secret. Then, this shared secret is included in the function that start the process of
engagement as a sha-256 digest. The device afterwards, takes the data engagement, the public
key of the owner, and sets the hash of the secret. If everything goes smoothly, the same secret
of the other. Thus, we have both ends sharing the same key, so that the following formula
holds:

KO = SKOD ∗ PKDEV = SKOD ∗ (SKDEV ∗ P )

= SKDEV ∗ (SKOD ∗ P ) = SKDEV ∗ PKOD = KD.
(6.1)

During these process of key establishment there is no process of key exchange scheme agree-
ment. The SECP256k1 elliptic curve is used as the default since it is the one used in the
network.

After the key establishment, the owner generates a certificate that will be ciphered with
the shared secret. This ciphered certificate then is uploaded to the decentralized storage so
that the device can retrieve. A token is issued and posted ciphered on the smart contract.
Then, the device gets the ciphered token, decrypts it with the shared secret and it will grant
access to the powergate API. Thus, the device gets access to the decentralized storage system.
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6.4 Web Interfaces

The web interfaces of the manufacturer and the owner are quite similar. They have been
implemented using flask for the Web technology and file routing service, this library allows
us to specify the routes with decorators of above the function declaration and to render HTML
templates which can be reused. The option is also available to run code in it so that we can
create dynamic pages.

The programs’ logic can be divided in three operative modules: the module dedicated to
blockchain operations, the functionality and logic of the web application and the connector
to the decentralized storage. The web3.py library is used for this goal, it allows us to connect
to HTTP providers and compile our solidity code using python. The rest of the logic of the
program is built using general purpose libraries in combination with python code.

The way to store the data of web application, like Users and password is thought sql
using a module provided by Flask, SQL Alchemy. Simple relations and entities compose the
structure of the database, so it not worth it to stop on the design of it.

The last component of the program is the connectivity to the decentralized storage, the
library used for this purpose is Pygate gRPC library. This is really easy to use and it abstracts
all the complexity of the communication with API. However, there is a lack of documentation
for it.

6.4.1 Powergate integration

The powergate API is running in a Debian local machine in a simulated local environment.
The library used for integrating the flask web application and the calls to the API. In fact, the
developers design this library with the concept of Web3.0 in mind and they have included in
their scheme the flask module.

PowerGate besides the ”hot” and ”cold” storage balancing benefits, has the ability to create
users that can use the API with different priviledges. In this case, the privileged user would
be the owner of the devices who creates the different accounts with its tokens associated.
This tokens then are distributed to the different devices so that they grant access to their
certificates.
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Figure 6.3: Integration with Powergate

6.5 Security aspects

The private keys of the blockchain address of the owner and manufacturer are stored ciphered
in a Json format. The key is ciphered using the Advanced Encryption Standard (AES) algo-
rithm in Counter mode (CTR) mode, which is fast and outputs a pseudo random cipher text
for each plain text. This mode does not provide authentication nor integrity although it is
assumed that is the key is not accessible from the outside.

It will be a preferred choice to use a hardware wallet to store the keys however this ap-
proach is out of scope of this work. The key used in the encryption is derived from the user’s
login password. Scrypt algorithm is used to get the 128 bit key length required by AES. This
algorithm is both FPGA and ASIC resistant and has been there for years, since 2009, thus its
security and efficacy has been heavily tested. The Bcrypt algorithm is used to generate the
password hashing of the user’s password that is stored in the database.

6.6 Root of Trust

The Root of Trust was usually represented as a tree where the Root role is played by the CA
that are considered to be the trusted parties. From top to bottom, we have the intermediate
certification authorities that are been monitorized by the Root CA and the bottom of the
hierarchy the usual web servers are placed.

The schema of this work, follows the opposite certification path, the RoT is not deposited
in the centralized parties, it is the device itself. Thus, the security of the device resides in the
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hardware, posing a challenge to security of the devices. The devices know have to implement
mechanisms that assure their safety from stage zero of the booting process.

For that matter, secure booting mechanism and signature mechanisms provide a way to
verify the firmware and code that is running in the device so that it has not been corrupted.

6.7 Description of the environment

Wemainly have three components in our component in this work, although it can bemodified
by the person in charge of the deployment adjusting it to the specific needs.

On one hand, we have the secure device that is simulated in a Raspberry Pi 4B that is
also running the manufacturer web interface, we already mention in previous sections why
we merge both actors. The device is in charge of the PUF response and the manufacturer
workflow.

In the other hand, we have the owner that it is running in a windows OS in my personal
laptop. The owner side could be run in any workstation that the deployer wants to.

Finally, the machine that is running Powergate in a local dockerized instance is running
in a VMware Virtual machine over Debian 11 OS. It is worth noticing that Powergate is an

open source brand new service and it is prone to errors and crashes.

6.8 Development of the project

This project was developed using the spiral model methodology, the scrum agile methodology
was preferred at a first glance, however, there is only one person in charge of the development
of this work and there is a lack of roles for this approach. The spiral model was chosen for this
development since it is the one that fits better to our project. It provides risk management
which can be really determining in this type of projects that play with services and libraries
that can be prone to errors and crashes.

In a nutshell, the spiral model is divided in four stages and those stages are iterated un-
til the product is finished. Though it cannot be confused with the concept of iterating the
waterfall model over and over.

The first phase of the iterations was devoted to planning of the requirements of the web
application in the very first iteration. In this first iteration, we defined the minimal viable
product which was composed of the engagement process of the devices. The next iterations
this phase was used to realize the possible risks and rethink the objectives of the software.
The users handling, contract deployment and the rest of the characteristics were included in
latter planing phases.

The second phase was used to solve the possible risk that could happen during develop-
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Figure 6.4: Spiral model Boehm

ment or solving risk that were identified in the previous iterations. In the first iterations the
risk were related to the integration the web interface with the blockchain and the compatibil-
ity of the data types between them. This problem was identified and correctly targeted using
the Web3py library and the identification of the inputs and outputs of the functions in use.
The latter iterations also suffer from the same risk except from the last one which the risk
was the correct integration with Powergate. The lack of documentation of the python library
added more risk to the current issue and the problem was solved by testing many times the
connection phase to the machine.

The third phase was devoted to development and testing. Testing was performed by filling
the values in the form like a normal user would do it. If testing have to be repeated, the request
was saved and repeated with a software like curl or Postman.

The last phase was reserved to planing the next iteration and make an overview of the
iteration.

It is worth noticing that the most time consuming part of this work was not the develop-
ment or the planning of the development. It was the design of the infrastructure that is out
of the scope of the software engineering tasks.
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6.9 Pricing

The cost of the Etherum operations in gas units are the following for each funciton:

• createToken(): 167,263 gas cost

• startOwnerEngagement(): 69,216 gas cost

• transferFrom(): 64,556 gas cost

• ownerEgagement(): 47,962 gas cost

• setTimeout(): 28,874 gas cost

• checkTimeout(): 26,429 gas cost

• updateTimestamp(): 28,162 gas cost

• setCertificateDigest(): 21,916 gas cost

The cost of storage of the certificates in minimal since the certificate storage size is less
than 10KB and the cost of storing 1TB/year in Filecoin is less than 5$. So it is minimal. Besides,
the cost of storing in IPFS is zero.

6.10 A possible continuation

This project was developed with the mindset of just exposing that the blockchain, the hard-
ware identification of the devices and the common communication protocols can be combined
in such a way that the beneficial characteristics of somemake up for the deficiencies of others.

We hope that this infrastructure is continued by time. It can have a big potential if a good
User Experience is given to the user though I am cybersecurity evaluator not a UX designer.
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Conclusion

The goal of the this proposal was at first to get a deep knowledge of the blockchain tech-
nology; how the transactions work, how the different parameters in the transactions

play their role, the consensus algorithms used by the different network, the new concept of
theWeb3.0 and the smart contracts. I enjoyed the whole process of coming up to this idea and
also suffer some nights without decent sleep but I think all that I have learnt pays the price.
I have always curious about this technology and how it may change the future and probably
theWeb as we know it. After this short reflection, I would like to make a few comments about
the project.

This project is no focused on being a ready to run infrastructure that you can set up. It
was created as a proof of concept. It can come with many bugs since no input validation has
been performed for the input fields. So it comes with no guarantee. Besides, the tools used are
developed following the open source guidelines and there is no guarantee of security neither
responsibility.

Regarding the development process, I have found myself stuck multiple times in the de-
cision of the representation of the data and the data handling whether the data was securely
stored, transferred and verified. However, one of the most blocking points of this project was
communicating with the simulated instance of Powergate, it happens so that sometimes it did
not work at all even if it was perfectly running. I maybe attribute this problem to one of the
layers that constitute this application, sometimes just got stuck and stop answering correctly
the requests. It is worth noticing that most of the time was expend on research and designing
the infrastructure and therefore the focus of this work was not on the user experience but on
the theoretical properties that arise from combining the technologies studied.

The physical unclonable functions and blockchain technology are really powerful con-
cepts that can make a difference in the field of cybersecurity. Combining them together can
two concepts can bring us closer and closer to an almost insurmountable level of security
if applied correctly. Though they have are quite new and they have to refined to constitute
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a fundamental branch in cybersecurity, that I think by the time will be. Hardware wallets
should also be used to store the private keys and sign the transactions offline so that the keys
are never loaded to a memory of a device that is exposed to the internet in some way.

More than ever before, the industry is going online and more Programmable Logic Con-
trollers are being exposed to the Internet. Thus, the scalabilty and cost should be considered
so that more and more critical devices are being connected to the internet. Implementing
relativity cheap solutions like this ones
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User Guide

A.1 Manufacturer

This is the user manual for the manufacturer role First we are prompted with a message
in the log in page that says that we should log in to access the functionalities. Then

Figure A.1: Log in page

we go to sign up, choose an username and a password and register our manufacturer user.
Once, one user is registered, you should be logged to create other users. The same method
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of registration cannot be used. We are prompted to a home page, where we should select the
contracts drop-down menu and select deploy contract

Figure A.2: Contract deployment

Figure A.3: Contract deployment

Then we are prompted with a message that says that the contract is created, now we have
to register our device. We select the devices drop-down and click create device

On the register device page Figure A.5, we fill the inputs and select the contract where we
want to register our device. Then, we will have our device registered.

We can see in Figure A.6 that right after registration our device has the ”Waiting for
Owner” state.

Afterwards, the owner has performed the triggered the engagement and we can see that
the hash is the same as the owner’s Figure A.7.
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Figure A.4: Contract deployment

Figure A.5: Register device

Figure A.6: List devices
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A.2 Owner

The owner role follows the same path as the manufacturer for registering a user. He or She
register a user that plays the role of admin.

Figure A.7: Registration of manufacturer

The account is created as we can see in Figure A.9 however the contract address is not the
correct one so we have to change. The option is available to change the address.

Figure A.8: Account created

Figure A.9: Change of address
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Then, we have to register the device that wewant to engage to. We need for that the public
key of the device and the blockchain address that we can get from the list devices interface of
the manufacturer. As we can see the device is at the ”Waiting for owner” state

Figure A.10: Registration of device

Figure A.11: Device’s registration form

We click on submit and our device is registered so we can complete the engagement pro-
cess.

Figure A.12: Registration success

We need to go the engagement section, select the device along with owner’s private key
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configuration. As we can see, the password of the private key is ask in many operations, that
is because we do not want to store the password or password hash of the private key since we
do not have access to a hardware wallet. Therefore, authentication should be made on each
operation that requires the use of the private key.

Figure A.13: Request engagement

When finished, it can be seen that a message saying ”Engaged successfully” is prompted.
We ca see that the hashes of the owner and device match. If we go and see the listing of the

Figure A.14: Engagement finished

manufacturer, we can see that the state of the device is ”Engaged with owner”. The process
of engagement is finished.
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Figure A.15: Full engagement

Then our device is prepared to be assigned to a certificate, we go the certificate section,
click on create and fill the form. Then a messaged will be prompted with the CID and user
token associated to it.

Now we go to the device interface and retrieve the certificate
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Figure A.16: Certificate form

Figure A.17: Certificate created
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Figure A.18: Certificate retrieved
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List of Acronyms

AES Advanced Encryption Standard. 61

BCA Blockchain Address. 3, 51, 55, 59

BFT Byzantine Fault Tolerance. 50

BTC Bitcoin. 2, 5, 8

CA Certification Authorities. 1, 3, 50, 51, 61

CRP challenge-response pairs. 48

CTR Counter mode. 61

DAG Directed acyclic graph. 40

DApps Decentralized Applications. 26

DHTs Distributed Hash Tables. 40

DoS Denial of Service. 30

DTLS Datagram Transport Layer Security. 3, 50

ECDH Elliptic-curve Diffie–Hellman. 54, 55

ECDSA Elliptic Curve Digital Signature Algorithm. 5

EIPs Ethereum Improvement Proposals. 2

EOA Externally Owned Account. 18, 24

ETH Ethereum. 2, 7, 51

EVM Ethereum Virtual Machine. 2, 21–23, 25, 27, 32
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List of Acronyms

ICE Interactive Connectivity Establishment. 40

IoT Internet of Things. 1, 50, 51

IPFS InterPlanetary File System. 38, 53

NAC Network Access Control. 52

NFT Non Fungible Tokens. 36, 51

OTP One-Time-Programmable Memory. 2

PoA Proof of Authority. 17

PoRep Proof of Replication. 44

PoS Proof of Stake. 2, 14, 16, 17

PoSt Proof of Spacetime. 44

PoW Proof of Work. 2, 11

PUF Physical Unclonable Functions. 3, 45, 47–49, 51, 52, 59, 62

ROM Read-only memory. 21

RoT Root of Trust. 1, 51, 61

RPoW reusable proof-of-work system. 8

TLS Transport Layer Security. 3, 50

78



Glossary

bytecode Bytecode is a type of computer code that is read by an interpreter and converted
into binary machine code. This allows a computer’s hardware processor to read and
execute the code. The interpreter is typically implemented as a virtual machine (VM)
in order to translate the bytecode for the target platform. This makes the interpreter
much more elegant and persuasive. 21

hash A cryptographic hash function is an algorithm that takes an arbitrary amount of data
input—a credential—and produces a fixed-size output of enciphered text called a hash
value, or just “hash”. 2

Kademlia Kademlia is based on performance and reliability. The network’s structure is
specified by how information is exchanged between nodes through lookups. Kademlia
nodes communicate efficiently and effectively using UDP. A virtual or overlay network
is a network that is formed by participant nodes. This type of network has many ben-
efits, including the ability to provide better security and performance. A unique ID is
assignate to each node. The node ID not only serves as identification, but also as a way
to locate values using the Kademlia algorithm. The node ID provides a direct map to
file hashes and stores information on where to obtain the file or resource, making it an
elegant and persuasive solution.. 39

mutex Amutex is a program object that allowsmultiple threads to share a resource by taking
turns accessing it. For example, a mutex can be used to control access to a shared file..
29

nonce A nonce is a number that is generated for a specific use without any specific pattern
(random or pseudorandom). This area of study is concerned with the secure exchange
of information and the use of technology to support this process. A nonce is a number
that is used only once, typically in cryptography.. 9
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