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ABSTRACT.  The incorporation by ionic assembly of the hexanuclear molybdenum cluster 

(Bu4N)2[Mo6I8(CH3CO2)6] (1) in amino-decorated mesoporous silica nanoparticles MCM-41, has 

yielded the new molybdenum-based hybrid photosensitizer 1@MCM-41. The new photoactive 

material presents a high porosity, due to the intrinsic high specific surface area of MCM-41 

nanoparticles (989 m2 g-1) which is responsible for the good dispersion of the hexamolybdenum 

clusters on the nanoparticles surface, as observed by STEM analysis. The hybrid photosensitizer 

can generate efficiently singlet oxygen, which was demonstrated by using the benchmark 

photooxygenation reaction of 9,10-anthracenediyl-bis(methylene)dimalonic acid (ABDA) in 

water. The photodynamic therapy activity has been tested using LED light as an irradiation source 

(λirr ~ 400–700 nm; 15.6 mW/cm2). The results show a good activity of the hybrid photosensitizer 

against human cervical cancer (HeLa) cells, reducing up to 70% their viability after 20 min of 

irradiation, whereas low cytotoxicity is detected in the darkness. The main finding of this research 
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is that the incorporation of molybdenum complexes at porous MCM-41 supports enhances their 

photoactivity and improves cellular uptake, compared to free clusters. 

 

1. Introduction 

The photosensitized generation of reactive oxygen species (ROS) is used in a wide range 

of applications, from photocatalysis[1–4] to antimicrobial photodynamic inactivation (aPDI)[5–9] 

and photodynamic therapy of cancer (PDT).[10–14] One of the most frequently used ROS species 

in the biomedical context is singlet oxygen O2 (
1Δg). This highly reactive species is formed when 

the excited triplet state of certain photosensitizer molecules transfers its excess energy to molecular 

oxygen.[15–18] Molybdenum clusters with the formula [Mo6X8L6]
2- (where X = Cl, Br, I; and L 

is a ligand) are well-known singlet oxygen photosensitizers.[19–23] In this kind of complex, six 

Mo(II) atoms form an octahedral cluster and are surrounded and strongly bound to eight bridging 

atoms and six labile apical ligands. When irradiated with near UV or visible light below 450 nm, 

these complexes exhibit phosphorescence due to an efficient intersystem crossing to form triplet 

states that relax to the ground state emitting in the red-NIR wavelengths range. This 

phosphorescence is deactivated in the presence of molecular oxygen to produce singlet oxygen in 

high yields. The photophysical properties exhibited by these complexes have allowed their use in 

applications such as heat insulation materials,[24] sensing of oxygen,[25,26] development of 

luminescent materials,[27–32] electro-optic devices,[33] bioimaging,[34,35] 

photocatalysis,[9,36–40] aPDI[8,9,41,42] and PDT,[41,43–49] among others. Hexanuclear 

molybdenum clusters have been proved to be superior to other photosensitizers described in the 

literature in terms of resistance to photobleaching [9] and luminescence lifetimes [23, 34] which 
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opens the door to theranostic applications. Additionally, in recent times they have been described 

also as efficient agents for X-ray induced therapies [45]. 

Despite the high performance of hexamolybdenum clusters as singlet oxygen 

photosensitizers, the main drawback concerning the application of these compounds in PDT is 

their low stability in water. In this solvent, the clusters have a high tendency to hydrolyze even at 

neutral pH values, by replacement of the labile ligands with water and hydroxy groups. The 

hydrolyzed complexes tend to aggregate and precipitate, losing their photoactivity in 

solution.[36,50–53] Moreover, these clusters are generally anionic in an aqueous environment, 

making their internalization into cells through the cell membrane very difficult. An important 

strategy to avoid or minimize the hydrolysis facilitating at the same time the cellular uptake is the 

use of nanocarriers. Thus, the encapsulation of hexamolybdenum clusters in polystyrene 

nanoparticles,[47] PLGA nanoparticles,[44,54] a chromium-terephthalate metal-organic 

framework nanocarrier[46] and non-porous silica nanoparticles[43,48] for their use in PDT 

applications have been reported. 

Important nanocarriers that have been up to date unexplored in PDT applications with 

hexamolybdenum clusters are mesoporous silica nanoparticles (MSNs) which present multiple 

advantages for the encapsulation of bioactive drugs and photosensitizers for PDT[55,56], namely, 

high specific surface area, large pore volumes, tunable pore size, highly homogeneous porosity, 

easy functionalization, high loading capacities, good chemical and biological stability, 

biocompatibility and optical transparency. Cellular uptake can be easily modulated by using 

appropriate functional groups and even biomolecules anchored on the silica surface.[57–61] 

Moreover, the size of nanoparticles of the order of 100 nm or fewer results very convenient to 

facilitate the cellular uptake by endocytosis.[62,63] Photosensitizers such as porphyrins,[64–67] 
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phthalocyanines,[68,69] xanthenic[70] and squaraine[71] based dyes have been incorporated into 

mesoporous silica nanoparticles to develop PDT anticancer materials.  

Taking all these into consideration, in this work, we aimed at a new photosensitizer 

material through the encapsulation in MCM-41 mesoporous silica nanoparticles of the 

hexamolybdenum cluster (Bu4N)2[Mo6I8(CH3CO2)6]
 (1)[72] with acetate apical ligands, 

that has shown a good photoactivity in different applications.[8,9,43,73] Cluster 1 is 

adsorbed onto mesoporous silica nanoparticles functionalized with ammonium groups 

(APTES@MCM-41), which effectively loads the cluster anions by electrostatic 

interactions. This approach has been used in the past for loading hexamolybdenum clusters 

in different solid matrices[8,9,29,43,74,75] but, to the best of our knowledge, this is the 

first time that a matrix based on mesoporous silica nanoparticles is used. Due to the large 

porosity and high surface area of MCM-41, cluster 1 can be efficiently loaded and 

dispersed on the nanoparticles, while remaining well protected against hydrolysis. It is 

expected that the high dispersion of the cluster on the matrix surface will favour the 

generation of singlet oxygen upon irradiation. To check this hypothesis, the PDT efficiency 

of the new photosensitizer material versus the free cluster was tested against human cervical 

cancer (HeLa) and melanoma (SK-Mel-103) cells. 
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Figure 1. a) Anionic form of cluster 1. b) Encapsulation of cluster 1 in amino decorated 

mesoporous silica nanoparticles gives rise to the hybrid photosensitizer 1@MCM-41. 

 

2. Materials and methods 

2.1. Materials 

The chemical reagents tetraethylorthosilicate (TEOS), n-cetyltrimethylammonium 

bromide (CTABr), sodium hydroxide (NaOH), (3-aminopropyl) triethoyxysilane (APTES, 

99%), Pluronic® F-127, 9,10-anthracenediyl-bis(methylene)dimalonic acid (ABDA, 

≥90%), as well as the reagents to prepare the phosphate-buffered saline (PBS) solution 

namely, RPMI 1460 media (R8758), lipopolysaccharide (LPS) from Escherichia coli 

O111:B4 (L2630-100MG), nigericin (NG) (N7143-5MG), Crystal Violet, Cell 

Proliferation Reagent WST-1, NaCl (≥99%), KCl (≥99.0%), Na2HPO4 (≥99.0%) and 

KH2PO4 (≥99.5%) were supplied by Sigma-Aldrich, 3-(4,5-Dimethyl-2-thiazolyl)-2,5-
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diphenyl-2H-tetrazolium bromide (MTT) was acquired from Serva. LDH activity assay 

was purchased from Promega (G7891). Human IL-1β ELISA Set II was obtained from BD 

Biosciences (557953). Penicillin/streptomycin, Dulbecco's modified Eagle's medium 

(DMEM), minimum essential medium (MEM), fetal bovine serum (FBS) and Dulbecco's 

phosphate-buffered saline (DPBS), were supplied by Biowest. Solvents THF, CH2Cl2 and 

CH3CN were acquired from Scharlab, S.L. Distilled water was used to prepare the aqueous 

solutions. Hexanuclear cluster (Bu4N)2[Mo6I8(CH3CO2)6] (1) was synthesized according to 

the procedure reported in the literature.[72] 

2.2. Cultivation of cell lines 

Cell lines were acquired from the American Type Culture Collection (ATCC). HeLa 

cell line was cultured in DMEM medium containing 10% fetal bovine serum, 1% 

penicillin/streptomycin and 2 mM L-glutamine. SK-Mel-103 cell line was cultured in 

Minimum Essential Medium supplemented with 10 % fetal bovine serum. THP-1 cells were 

cultured in RPMI 1640 media with 10% fetal bovine serum. The cell lines were kept in a 

monolayer culture at 37 °C in a humidified atmosphere containing 5% CO2.  

2.3. Instrumentation 

Powder X-ray diffraction (PXRD) analysis of the materials was performed in a Philips D8 

Advance diffractometer using CuKα radiation. Transmission Electron Microscopy (TEM) images 

were acquired using a 100 kV Philips CM10 microscope. Scanning Transmission Electron 

Microscopy (STEM) and Energy Dispersive X-Ray Spectroscopy (EDS) analysis were recorded 

with a JEOL JEM 2100F (200 Kv). Thermogravimetric measurements were performed on a 

TGA/SDTA 851e Mettler Toledo balance using an oxidant atmosphere (air, 80 mL/min). The 
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heating program consisted of a heating ramp (10 °C min-1) from 120 °C to 1000 °C and an 

isothermal heating step at this temperature for 30 minutes. Inductively coupled plasma mass 

spectrometry (ICP-MS) was performed on a spectrometer Agilent 7900 in H2 mode, with 

germanium as an internal reference. N2 adsorption-desorption isotherms were acquired using a 

Micromeritics ASAP2010 automated sorption analyser. Confocal laser scanning microscopy 

(CLSM) images were recorded on an inverted confocal microscope Leica TCS SPE using an ACS 

APO 40X/1.15 Oil CS objective. Dynamic light scattering (DLS) and zeta potential measurements 

were performed in a Zetasizer Nano ZS (Malvern Instruments). Solutions were filtered before the 

measurements using a 0.45 µm Millipore nylon membrane filter and every analysis was carried 

out three times. All samples with nanoparticles were sonicated for 30 min before measurements. 

The pH values of the solutions were measured with a CRISON pH meter GLP 21. The UV-vis 

absorption measurements were made using an Agilent Cary 60 UV-Vis Spectrometer. The steady-

state emission spectroscopy was performed in an Agilent Cary Eclipse spectrofluorometer. The 

excitation wavelength was set at 420 nm. The luminescence at 1270 nm corresponding to O2(
1Δg), 

was recorded using a modular Horiba FluoroLog-3 spectrofluorometer. The quantum yields of 

singlet oxygen generation, ΦΔ, were measured in oxygen-saturated acetonitrile using anthracene 

as a standard with known quantum yield (ΦΔ = 0.69 ± 0.02).[76] All the solutions presented the 

same absorbance at the wavelength of excitation (308 nm). 

2.4. Synthesis of mesoporous silica nanoparticles (MCM-41) 

An aqueous solution (480 mL) of the surfactant n-cetyltrimethylammonium bromide 

(CTABr, 1.00 g, 2.74 mmol) was prepared and basified with 3.5 mL of NaOH 2 M solution. 

Then, TEOS (5 mL, 2.57 x 10-2 mol) was slowly added to this solution at a temperature of 

80 °C. After 2 h of stirring, a white precipitate was obtained. The solid was separated by 
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centrifugation, washed with distilled water and dried at a temperature of 60 °C. The final 

mesoporous material (MCM-41) was obtained by calcination of the solid at 550 °C for 5 h 

in the presence of an oxidizing atmosphere, to remove the template phase. 

2.5. Synthesis of APTES@MCM-41 

(3-aminopropyl) triethoxysilane (240 mL, 1 mmol) was added dropwise to a suspension of 

MCM-41 (200 mg) in acetonitrile (15 mL) at room temperature. After 12 h of stirring, the 

resulting solid was separated by filtration, washed with acetonitrile and dried under 

vacuum. 

2.6. Synthesis of the hybrid photosensitizer 1@MCM-41 

The incorporation of the hexamolybdenum cluster into the functionalized MCM-41 

nanoparticles was accomplished by following a procedure based on that reported in the 

literature for non-porous silica nanoparticles.[43] Basically, an aqueous solution of cluster 

1 (0.035 M) containing Pluronic® F-127 (0.3 mM) was mixed with an aqueous suspension 

of APTES@MCM-41 (0.5 g L-1). The mixture was shaken for 10 min and then sonicated 

for 15 min. 1@MCM-41 nanoparticles were separated by centrifugation at 9000 rpm, 

washed with water and dried under vacuum. 

2.7. Benchmark photooxidation reaction for measuring 1O2 production 

Neutral aqueous solutions of ABDA (3.3x10-5 M, PBS 10 mM) were mixed with the 

corresponding heterogeneous (1@MCM-41, 0.1 mg/mL) or homogeneous (1, 2.9x10-5 M) 

photosensitizers in quartz cuvettes. Control experiments with blank MCM-41 and in the 

absence of any photosensitizer were also performed. The mixtures were stirred 

continuously and irradiated with the light provided by two LED lamps (Lexman; λirr ~ 400–
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700 nm; power: 11 W each; irradiance: 15.6 mW/cm2) separated from the cuvette by a 

distance of 3 cm. The photooxygenation reaction of ABDA was followed by monitoring 

the decrease of the absorption band at 380 nm. The photooxidation rates were calculated 

considering a pseudo-first order kinetics model. 

2.8. Crystal Violet Staining  

HeLa and SK-Mel-103 cells were seeded in a 24-well plate at a density of 35,000 

cells/well. The complex 1 and the 1@MCM compounds were added the following day at 

200 µg/mL for 24h. Then, the cells were washed with PBS and fixed with 

paraformaldehyde 4% (15 minutes, RT). After incubation time, the cells were washed, and 

the crystal violet solution (0.05%) was added for 45 min. Finally, the cells were washed 

with water to discard the excess the dye and dried at RT before visualization.  

2.9. Immune activation assays 

THP-1 cells were seeded in a 6 well-plate at 800,000 cells/mL in RPMI 1% FBS and 

incubated for 24 h. Next, the cells were treated for 24h with complex 1 and 1@MCM-41 at 

14.3µM and 200 µg/mL, respectively. After the incubation time, as a positive control for 

immune activation, the untreated cells (without the compounds) were stimulated with 

lipopolysaccharide (LPS) from Escherichia coli (100 ng/mL) for 3 h and nigericin (NG) at 

20 µM during the last 30 min of incubation to activate the NLPR3 inflammasome and thus 

the inflammatory response. The inflammatory activity was evaluated by measuring the 

secretion of inflammatory cytokines, such as interleukin-1βeta (IL-1β) by ELISA kit 

following supplier’s instructions (Human IL-1β ELISA Set II, ref. 557953). Besides, lactate 

dehydrogenase (LDH) activity, as marker of the inflammatory mode of regulated cell death, 

was measured through the LDH Assay Kit II following manufacturer instructions. 
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2.10. Confocal laser scanning microscopy (CLSM) 

HeLa cells were seeded on microscope slides (1.5 x105 cells per slide) and incubated 

for 18 h at 37 ºC under an atmosphere containing 5% CO2. After that, the medium was 

replaced with a fresh medium containing 1@MCM-41 (50 µg mL-1) or cluster 1 (3.5 µM) 

and incubated for 2 h. Controls were also performed, incubating cells in the absence both 

of silica nanoparticles and cluster 1. After the incubation, the cells were doubly washed 

with DPBS, fixed in 4% paraformaldehyde, and washed again with DPBS two times. Cells 

were visualized on an inverted confocal microscope Leica TCS SPE. The recorded pictures 

were analysed with Image J software. The experiments were performed in triplicate on 

separate days. 

2.11. Cytotoxicity of the nanoparticles 

In a first step, the possible toxicity of the nanoparticles was evaluated by cell 

viability assays at different concentrations. HeLa and SK-Mel-103 cells were seeded at 

5000 cells/well in a p96 well-plate for 24h. Then different concentrations of the complex 1 

(0 to 30µM) and 1@MCM-41 (0 to 500µg/mL) were added. After 24h, 10 μL of  the Cell 

Proliferation Reagent WST-1 were added to each well and the plates incubated for 1 h. The 

absorbance was measured at 450 nm in a spectrophotometer Wallac 1420 Victor2 

Microplate Reader (PerkinElmer). 

On the other hand, 3-(4,5-Dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium 

bromide (MTT) assay was used to study the cytotoxic activity of the nanoparticles for PDT 

purposes. Cells were incubated at 37 °C in a humidified atmosphere containing 5% CO2. 

After trypsinisation, harvesting and counting, cells were seeded in 96-well plates at a 

density of 2.5x103 for HeLa cells/well or 5x103 for SK-Mel-103 cells/well. After 24 hours, 
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the medium was replaced with a cell culture medium containing 100 and 200 µg/mL of 

MCM-41 or APTES@MCM-41 nanoparticles and further incubated for 24 hours. Then, 

the cells were washed two times with Dulbecco's phosphate-buffered saline (DPBS) and 

afterwards incubated for 45 min with a cell culture medium containing MTT (0.5 mg/mL). 

After removal of the medium, formazan crystals were solubilized in DMSO. Measurements 

of the absorbance at 565 nm were performed with a microplate reader and the cell viability 

was calculated using the formula [A565]MCM/[A565]control*100, where [A565]MCM corresponds 

to samples containing either MCM-41 or APTES@MCM-41 and [A565]control is the value 

for a control cell culture non-treated with nanoparticles. All experiments were performed 

in triplicate, with three replicates per experiment.  

2.12. Photodynamic treatment 

Cells were seeded in 96-well plates in 200 µL of DMEM at a density of 2.5x103 

cells/well for HeLa cells or 5x103 for SK-Mel-103 cells. After 24 h of incubation, the cell 

culture medium was replaced with a new one containing the corresponding nanoparticles 

(100 or 200 µg/mL) or cluster 1 (14.3 or 7.3 μM) and incubated for 6 h. Then, the cells 

were doubly washed with DPBS and supplemented with fresh medium.  Irradiation was 

performed using light-emitting diodes (LED, 15.6 mW/cm2) at 400–700 nm for 20 min, 

placing the samples at a distance of 3 cm to the LED source which resulted in a light dose 

of 19 J/cm2. The viability of the irradiated cells was quantified by the MTT assay. The 

relative cell viability was calculated regarding control cell cultures non-treated with 

nanoparticles nor cluster 1 and non-irradiated, using the formula [A565]x/[A565]control*100, 

where [A565]x is the absorbance at 565 nm of the samples incubated with nanoparticles or 

cluster 1 which can be either irradiated or non-irradiated whereas [A565]control is the 
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absorbance at 565 nm of the control cells culture. Three independent experiments, counting 

three replicates each, were carried out. 

2. Results and discussion 

The nanosized hybrid material 1@MCM-41 was prepared by combining 

mesoporous silica MCM-41 and the hexanuclear molybdenum complex 1. MCM-41 

nanoparticles possess several characteristics such as inertness, high homogeneous porosity, 

high load capacity, and ease of surface functionalization which make them very attractive 

materials to develop new hybrid photosensitizers.[58,59,69,77–79] 

The hexanuclear cluster (Bu4N)2[Mo6I8(CH3CO2)6]
 (1) was synthesized following 

the procedure reported in the literature.[72] To encapsulate the cluster into the mesoporous 

silica, template-free nanoparticles (calcined MCM-41) were first functionalized with (3-

aminopropyl)triethoxysilane (APTES@MCM-41) which provided positive charges on the 

surface of the nanoparticles by protonation of the amino groups in water.[43]  

The final ionic assembly between the amino-decorated silica nanoparticles and the 

[Mo6I8(CH3CO2)6]
2- cluster units to yield 1@MCM-41 (Scheme 1) was achieved by 

mixing a Pluronic® F-127 triblock copolymer based-solution of 1 with APTES@MCM-

41 nanoparticles, following a protocol similar to that reported by Elistratova et al.[43] They 

demonstrated that the use of a poloxamer increases the solubility of the molybdenum cluster 

in an aqueous solution and improves the subsequent loading in non-porous silica. In the 

present work, we go a step forward using mesoporous silica MCM-41 as the inorganic 

scaffold which due to its high specific surface area is expected to increase substantially the 

number of molybdenum photoreactive centres on the surface of the nanoparticles. 
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Scheme 1. The chemical reaction of calcined MCM-41 with APTES and subsequent incorporation 

of 1 to obtain 1@MCM-41. 

MCM-41, APTES@MCM-41, and 1@MCM-41 nanoparticles were thoroughly 

characterized using several analytical techniques. PXRD of the MCM-41 nanoparticles 

before calcination showed four low-angle peaks, typical for the hexagonal-ordered pore 

array exhibited by this material, which corresponds to the (100), (110), (200) and (210) 

Bragg reflections. The diffractogram of MCM-41 after calcination shows a shift of the 

(100) peak and a significant broadening of the (110) and (200) peaks. These changes can 

be attributed to further condensation of silanol groups during the calcination process. 

Importantly, the analysis confirms that the hexagonal porous array is preserved in the final 

hybrid material 1@MCM-41, as confirmed by the persistence of the characteristic (100) 

reflection in the diffraction pattern (see Figure S1 in Supplementary Material). 

N2 adsorption-desorption analysis was performed on MCM-41 samples before and 

after calcination. The calcined NPs of MCM-41 showed an adsorption step at an 

intermediate value of P/P0 comprised between 0.1 and 0.3. The isotherm could be classified 

as type IV and is characteristic of mesoporous materials. The application of the BET model 

resulted in a value for the total specific surface area of 989 m2g-1. The pore size distribution 

(PSD) of this sample was calculated by Barret-Joyner-Halenda (BJH) method, obtaining a 
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value of pore diameter of 2.49 nm and pore volume of 0.86 cm3 g-1. In contrast, the N2 

adsorption-desorption isotherm of MCM-41 before calcination was typical for mesoporous 

systems with mesopores filled with the CTABr template (Figure 2).  

 

Figure 2. Adsorption-desorption isotherms for (a) MCM-41 nanoparticles before calcination and 

(b) MCM-41 calcined after surfactant extraction; together with pore-size distribution (c). 

Figure 3 shows TEM (transmission electron microscopy) and STEM (scanning 

transmission electron microscopy) images of APTES@MCM-41 (Figure 3A) and final 

nanoparticles 1@MCM-41 (Figure 3B). The micrographs allow observing the 

characteristic porosity associated with MCM-41, with a diameter of ca. 100 nm, in 

agreement with the size measured by DLS (Figure S2). In the case of 1@MCM-41, the 

black dots indicate the incorporated molybdenum clusters. The STEM analysis of 

1@MCM-41 (Figure 3C) shows a sharper contrast between the silica support and the metal 

cluster aggregates which appear as white dots. In fact, energy-dispersive X-ray 

spectroscopy (EDX, 20 kV) confirms unequivocally the presence of molybdenum and 
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iodine heavy atoms in the white spots. This technique is very useful to prove the presence 

of hexamolybdenum clusters in inorganic supports and was used to analyse the presence of 

the clusters in ZnO nanocrystals[80] and non-porous silica nanoparticles obtained by water-

in-oil microemulsions.[31,81] In our system, additional elemental mapping analysis of 

molybdenum and iodine indicates that both elements are distributed together in the 

nanoparticles, indicating good dispersion of the hexamolybdenum clusters in the 

mesoporous silica. 
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Figure 3. TEM images of APTES@MCM-41 NPs (A) and 1@MCM-41 NPs (B) and STEM 

micrograph of 1@MCM-41 NPs (C) with mapping of silicon (green), iodine (red) and 

molybdenum (yellow) via energy-dispersive X-ray spectroscopy.  

The efficiency of the assembly protocol was furthermore confirmed by ICP-MS, 

which allowed the quantification of Mo and Si contents. In addition, from 

thermogravimetric analyses, the APTES content was determined. The corresponding values 

are 1.09 mmol g-1 SiO2 for APTES and 0.015 mmol g-1 SiO2
 for hexamolybdenum cluster 
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1. Indirect observation of the incorporation of APTES and 1 into the silica nanoparticles is 

supplied from zeta potential measurements of the corresponding nanoparticles. The 

potential switched dramatically from -27 mV to +33 mV after the functionalization with 

APTES, due to the presence of protonated amino groups on the surface of the nanoparticles. 

Subsequent incorporation of the anionic [Mo6I8(CH3CO2)6]
2- units caused a reduction of 

the zeta potential to +4 mV. Moreover, after loading of 1, the amino decorated silica 

nanoparticles acquired the characteristic yellow colour from the cluster. Moreover, 

visualization of the 1@MCM-41 colloidal suspension in neutral aqueous solution (PBS 10 

mM) under UV light (365 nm), showed the typical red emission from the cluster (Figure 

4A).[72] 

The emission spectra of 1 and 1@MCM-41 in aqueous media are shown in Figure 

4B. A redshift in the emission maximum from 661 to 716 nm was observed after loading 

the hexamolybdenum cluster in the mesoporous silica nanoparticles, together with a 

broadening of the emission band that is compatible with different microenvironments 

surrounding the cluster in the particles. Similar redshifts have been observed in analogous 

systems combining Mo6 clusters and SiO2 particles and can be attributed to the partial 

substitution of the apical acetate ligands by the siloxy and amino groups present in the 

nanoparticles,[43] as well as hydroxy and water ligands.[82,83] The emission of both 

samples decreased remarkably after bubbling oxygen for 15 min, due to the more efficient 

energy transfer process from the photosensitizer to molecular oxygen and the subsequent 

formation of singlet oxygen (Figure S3). The emission of 1@MCM-41 NPs was also 

recorded in the presence of organic solvents as shown in Figure 4C. In this case, it is 

possible to see a slight red shift in the emission with the decrease of solvent polarity. On 



 19 

the other hand, 1@MCM-41 shows very weak emission as a powder, in the absence of any 

solvent (data not shown). 

 

 

Figure 4. (A) Aqueous suspension (PBS 10mM, pH = 7) of 1@MCM-41 under visible light (left) 

and UV light (365 nm, right). (B) Normalized emission spectra (λexc = 420 nm) corresponding to 

1 and 1@MCM-41 NPs in water (10 mM PBS, pH = 7). (C) Emission of 1@MCM-41 NPs (λexc 

= 420 nm) in different solvents: H2O (a), CH3CN (b), CH2Cl2 (c) and THF (d). 

The generation of singlet oxygen by 1@MCM-41 in water was evaluated using a 

well-known benchmark reaction such as the reaction of 9,10-anthracenediyl-

bis(methylene)dimalonic acid (ABDA) with 1O2 to give the corresponding 

endoperoxide.[84] This reaction can be easily followed by UV-vis absorption spectroscopy. 

As a representative example, Figure 5A shows the monitoring by UV-vis absorbance 

changes of the photooxygenation of ABDA (3.3x10-5 M) in PBS 10 mM (pH = 7) in the 

presence of 0.1 mg/mL of 1@MCM-41 nanoparticles. The decrease in the absorption 

maximum at 380 nm, due to the formation of the endoperoxide, was followed. The sample 

was initially stirred in the dark for 10 min and then irradiation was performed. The changes 

in the absorption after starting the irradiation are very clear in Figure 5, the sample is 

completely bleached after only 2 min of irradiation. 

A C B 
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Determination of the pseudo-first order rate constant (k) is accomplished by 

following the absorption decrease at 380 nm as a function of the time of irradiation and the 

magnitude of the kinetic constant can be used as an estimation of the photoactivity of the 

material (Figure 5B and Figure S4). Analogous experiments were performed in the 

presence of APTES@MCM-41 nanoparticles (0.1 mg mL-1), free compound 1 (2.9x10-5 

M) and in the absence of photosensitizer (self-oxidation of ABDA). Figure 5B shows that 

1@MCM-41 is the most active system while the blank APTES@MCM-41 has very little 

effect when compared with the self-oxidation control. The rate constant calculated for 

1@MCM-41 is more than 3.5 times higher than the value determined for compound 1 

(0.548 vs. 0.151 min-1). 

 

Figure 5. (A) Irradiation of an aqueous solution of ABDA (3.3x10-5 M, PBS 10 mM, pH = 

7) in the presence of 1@MCM-41 NPs (0.1 mg mL-1). Inset: changes in the absorption, the 

arrow shows the time when irradiation was started. (B) Pseudo-first order rate constants for 

the photooxidation reaction of ABDA (3.3x10-5 M) in water (PBS 10 mM, pH = 7). The 

error was calculated as the standard deviation of at least three independent measurements. 

This result is striking because the concentration of the Mo6 cluster in the irradiated 

samples of 1@MCM-41 is more than 10 times lower than the concentration in the samples 
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corresponding with the free cluster 1. To be precise, the concentration of the Mo6 in 

1@MCM-41 used in the irradiations was 1.5x10-6 M, according to the ICP-MS analysis of 

the material. So, the differences in rate and concentration corroborate the hypothesis that 

the use of the highly porous support MCM-41 improves the photooxygenation efficiency 

of the hexamolybdenum cluster due to the high dispersion of 1 on the surface of the material 

(as confirmed by STEM), preventing the inactivation of the photoactive centres. 

Additionally, the measurement of the O2(
1g) luminescence at 1270 nm (Figure S5) 

allowed us to determine the quantum yield of singlet oxygen formation, ϕ∆, corresponding 

to cluster 1, using the comparative method with anthracene as singlet-oxygen 

photosensitizer standard in oxygen-saturated acetonitrile.[76] The calculated value ϕ∆ = 

0.86, is identical to the reported one for the analogous compound 

(nBu4N)2[Mo6I8(CF3CO2)6] (ϕ∆ = 0.86).[82] Unfortunately, in the case of 1@MCM-41, it 

was not possible to register the O2(
1∆g) luminescence at 1270 nm because of the high light 

dispersion originated from the nanoparticle suspension. 

An important factor to consider for the potential application of the photosensitizer 

nanoparticles is their stability in solution. In Figure 6A the normalized emission of fresh 

1@MCM-41 aqueous solution (0.1 mg mL-1) is compared with that from the samples 

stored for 2 and 7 days respectively. A slight redshift of the emission with time is observed 

with stabilization occurring approximately after 2 days. This shift can be attributed to some 

aquation and hydrolysis. It is also worth noting that the intensity of emission does not show 

significant changes during the measured period. Analogous studies are displayed in Figure 

6B for solutions of the free compound 1 (2.9x10-5 M). In this case, the red shift in the 

emission due to hydrolysis and aquation is much more relevant and the emission maximum 
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shifts about 30 nm after two days. These results indicate that free compound 1 is much 

more prone to react in water than that supported in 1@MCM-41.[43] 

 

Figure 6. Normalized emission spectra (λexc = 420 nm) of 1@MCM-41, 0.1 mg mL-1 (A) 

and 1, 2.9x10-5 M (B) as a function of time in water (PBS 10 mM, pH = 7). 

The activity of the fresh and aged samples (2 and 7 days) in the photooxygenation 

of ABDA was compared (Figure 7). Free compound 1 shows very similar activity for the 

three samples, with a slight decrease after 7 days. In the case of 1@MCM-41, an increase 

in the activity was observed after 2 days. The results are indicative of two facts: i) the 

system evolved from 1@MCM-41 does not precipitate significantly in the period evaluated 

and conditions used in this study (PBS 10 mM, pH = 7); ii) the photoactivity of the 

nanoparticles is maintained despite the ageing process. These results are in agreement with 

the behaviour of analogue compounds, where hydrolysis changes the luminescence of the 

complexes but does not reduce the ability to produce singlet oxygen, which can become 

even better in aged samples.[41,52] 
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Figure 7. Pseudo-first order rate constants for the photooxidation reaction of ABDA by samples 

of 1@MCM-41 and 1 stored in water (PBS 10 mM, pH = 7) at different times. 

After the evaluation of the singlet oxygen generation by 1@MCM-41, the material was 

examined as a potential photodynamic anti-cancer agent, since hexamolybdenum clusters exhibit 

relevant photodynamic activity when incorporated into inorganic and organic materials[43,44,85]. 

Alternatively, the introduction of uncommon functional groups on the apical ligands has been also 

recently used to prepare free clusters that can accumulate in certain organelles of cancer cells and 

act as efficient PDT agents.[41,86]  

In a first step, the possible cytotoxicity of the hybrid material and the [Mo6I8(CH3CO2)6]2 

complex was evaluated. The human cervical cancer HeLa cells and the human melanoma SK-Mel-

103 cells were selected as tumoral models. The toxicity of complex 1 and 1@MCM-41 was 

evaluated at different concentrations at 24h by the cell proliferation WST-1 assay. The 

nanoparticles and the complex were well-tolerated by both cell lines at concentrations up to 30µM 

and 500 µg/mL 1 and 1@MCM-41 with viabilities in the 90-100% range, respectively. (Figures 

8A and S7). Besides, crystal violet (CV) staining was performed for evaluating actively 

proliferating cells (see Figures 8B and S6 and S7). The results demonstrated that there are no 
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differences between control cells and those cells treated with the complex 1 and 1@MSNs and a 

similar number of proliferating cells in each field were observed. Images at higher magnifications 

revealed live cells with intact cell membranes in which the CV dye penetrated through the 

cytoplasm and stains the cell nuclei. All these findings confirmed that the compounds are well 

tolerated by the cells. 

To discard any additional effect of complex 1 or the 1@MCM-41 nanoparticles to activate 

an immune response we carried out further studies with THP-1 cells. The cells were treated with 

the complex 1 and the 1@MCM-41 and their possible immunogenicity, the ability of a foreign 

substance to provoke an immune response in the body, was evaluated (i) by measuring the release 

of the intracellular lactate dehydrogenase (LDH) enzyme to the extracellular media as an 

inflammatory cell death marker, and (ii) by measuring inflammatory cytokine IL-1β release as 

indicative of the activation of an inflammatory response (Figure 8C). In addition, THP-1 cells were 

stimulated with LPS and nigericin to active an inflammatory activation as control. The results 

demonstrated that complex 1 and 1@MCM-41 are unable to induce a significant immune 

response.  
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Figure 8. (A) Cell viability assays at different concentrations of complex 1 (left) and 

1@MCM-41 nanoparticles (right) at 24h in HeLa cells. (B) Crystal violet staining of 

proliferative HeLa cells. (C) LDH and IL-1β release from THP-1 cells as immune activation 

markers. Data represent the mean ± SEM of at least three independent experiments. 

Once confirmed no obvious toxicity effects on immune cells as well as in the studied cancer 

cells, the potential ability of our hybrid material for PDT was studied in cancer cells. HeLa cells 

were incubated with 1@MCM-41 nanoparticles, and with a solution of free cluster 1 (see 

Materials and methods section for details). Confocal laser scanning microscopy (CLSM) images 

revealed that 1@MCM-41 nanoparticles were efficiently internalized into the cells and the 
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recorded emission intensity seems to indicate that the uptake was higher for 1@MCM-41 than for 

cluster 1 (Figure 9). This is compatible with the uptake of the hybrid nanoparticles by 

endocytosis,[43,48,64,65] whereas the anionic [Mo6I8(CH3CO2)6]
2- units of the free cluster are 

more impeded to enter through the membrane cell due to electrostatic repulsions [48]. Moreover, 

hydrolysis of the free complex that can originate micrometre-sized aggregates[53] can be also 

detrimental to its cellular internalization. 
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Figure 9. (A) CLSM images showing the uptake of 50 µg mL-1 of 1@MCM-41 and 3.5 

µM of 1 by HeLa cells. (B) Quantification of complex associated fluorescence in cells using 

the ImageJ software. Error bars indicate standard deviations from two independent 

experiments. 

Once we assessed the proper uptake of 1@MCM-41 nanoparticles by HeLa cells, the 

toxicity of the material was tested in the dark or when irradiated (singlet oxygen generation). For 

this purpose, HeLa cells incubated with 1@MCM-41 nanoparticles (200 and 100 μg mL-1) and 

with 1 (14.3 and 7.3 μM) were irradiated with a LED lamp at 400-700 nm for 20 min (Figure 10). 

As a control, MCM-41 or APTES@MCM-41 were used at the same concentrations (200 and 100 

μg mL-1) in the dark or irradiated. The cell viability in the blank studies was found to be around 

90-100 %, indicating that they are not cytotoxic. However, the results obtained with 1@MCM-41 

were different and the hybrid nanoparticles demonstrated relevant photodynamic activity at both 

concentrations tested. In this respect, the viability of the HeLa cells incubated with the 

nanoparticles in the dark was found to be around 80-90 %, whereas upon irradiation the cell 

viability was reduced to 30-40 %. In the case of the free cluster 1, at equivalent concentrations 

than in 1@MCM-41, practically no photodynamic effect was observed. 
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Figure 10. Toxicity and phototoxicity of 1@MCM-41 and 1 against HeLa cells. 

The photodynamic activity was also evaluated against melanoma SK-Mel-103 cells 

(Figure S8). In this case, the viability of SK-Mel-103 cells incubated with 1@MCM-41 

also decreased under irradiation, although to a lesser extent than for HeLa cells (~60 % 

viability). Again, free cluster 1 showed practically no activity. 

These results can be attributed to the poor cellular uptake of free cluster 1, 

aggravated by hydrolysis processes that favour the precipitation of the photochemically 

active molybdenum cluster units, thus reducing their concentration and, therefore, its 

activity. Also, enzymatic degradation of the cluster inside the cell cannot be excluded. 

Dollo et al. found similar results for the cluster (TBA)2Mo6Br14 which displayed no activity 

against A2780 cancer cells. The authors ascribed these results to poor cellular uptake and/or 

fast degradation of the cluster in the cell.[44] Our results demonstrate that encapsulation of 

cluster 1 in MCM-41 favours the cellular uptake and protects the cluster against 
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degradation. Moreover, the high dispersion of the cluster in the mesoporous silica 

guarantees good accessibility to oxygen and exposition to light, rendering the material a 

hybrid photosensitizer that generates efficiently singlet oxygen causing cellular death. 

These results are promising, and our efforts are now addressed to include cellular 

recognition vectors in the nanoparticles that can yield materials with improved PDT 

properties. 

3. Conclusions 

In summary, a new hybrid photosensitizer has been developed by electrostatic 

attachment of the hexanuclear molybdenum cluster (Bu4N)2[Mo6I8(CH3CO2)6] (1) to 

amino-modified mesoporous MCM-41 silica nanoparticles. The high specific surface area 

of these nanoparticles (989 m2 g-1) guarantees a very good dispersion of the 

hexamolybdenum cluster, as corroborated by electron microscopy analysis. The evaluation 

of the material as singlet oxygen photosensitizer was performed using the benchmark 

photooxidation reaction of 9,10-anthracenediyl-bis(methylene)dimalonic acid (ABDA) in 

water and the results indicate that the hybrid material generates singlet oxygen more 

efficiently than the free nanocluster even at lower concentration of the photoactive units. 

Finally, the potential activity of the new photosensitizer for PDT was tested in cancer cells. 

The possible toxicity of the complex 1 and the 1@MCM-41 was discarded in cancer cells 

as well as any additional effect to activate an immune response. The hybrid nanoparticles 

exhibit good activity against human cervical cancer (HeLa) cells and moderate activity 

against melanoma (SK-Mel-103) cells whereas free cluster 1 showed practically no 

photoactivity, probably due to poor cellular uptake and degradation inside the cell. The 
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work presented here shows a new strategy to develop efficient photosensitizer materials by 

a combination of hexanuclear molybdenum clusters and mesoporous silica nanoparticles. 

The high porosity of the nanoparticles guarantees a good dispersion of the cluster, which 

favours its photosensitizing properties. Moreover, the nanoparticles protect the cluster from 

hydrolysis and subsequent precipitation and facilitate cellular uptake, which is very 

convenient in PDT applications. Additional work is being performed in our laboratories to 

optimize the nanoparticle design and attachment of the molybdenum photoactive units and 

render efficient photosensitizers against different types of cancer cells. 
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