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Abstract
In this paper we study random non-autonomous second order linear differential
equations by taking advantage of the powerful theory of random difference
equations. The coefficients are assumed to be stochastic processes, and the initial
conditions are random variables both defined in a common underlying complete
probability space. Under appropriate assumptions established on the data stochastic
processes and on the random initial conditions, and using key results on difference
equations, we prove the existence of an analytic stochastic process solution in the
randommean square sense. Truncating the random series that defines the solution
process, we are able to approximate the main statistical properties of the solution,
such as the expectation and the variance. We also obtain error a priori bounds to
construct reliable approximations of both statistical moments. We include a set of
numerical examples to illustrate the main theoretical results established throughout
the paper. We finish with an example where our findings are combined with Monte
Carlo simulations to model uncertainty using real data.
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1 Introduction
In this paper, we take advantage of the powerful theory of random difference equations to
conduct a full probabilistic study to the random second order linear differential equation

⎧
⎪⎪⎨

⎪⎪⎩

Ẍ(t) + A(t)Ẋ(t) + B(t)X(t) = 0, t ∈R,

X(t0) = Y0,

Ẋ(t0) = Y1.

(1)

The data coefficients A(t) and B(t) are stochastic processes and the initial conditions Y0

and Y1 are random variables on an underlying complete probability space (�,F ,P). In the
triple of the probability space, � is the sample space, which consists of outcomes that will
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be generically denoted by ω; F is a σ -algebra of events; and P is a probability measure.
Naturally, the solution of (1), X(t), is a stochastic process as well. Actually, we should write
A(t,ω), B(t,ω), Y0(ω) and Y1(ω), but to simplify the notation, and in concordance with the
literature, we will hide the generic outcome ω and just write A(t), B(t), Y0 and Y1 instead.

The aim of this paper is, in the first step, to specify the meaning of random differential
equation (1) via the Lp(�) random calculus or, more concretely, using the so-called mean
square calculus that corresponds to p = 2; secondly, to find a proper stochastic process
solution to (1); and thirdly, to compute its main statistical information (expectation and
variance) under mild conditions.

Particular cases of the random initial value problem (1) have been studied in previous
contributions using Lp(�) random calculus. For instance, important deterministic mod-
els appearing in the area of mathematical physics like Airy, Hermite, Legendre, Laguerre
and Bessel differential equations have been randomized and rigorously studied in [3, 4, 7,
8, 10], respectively. In these contributions, approximate solution stochastic processes to-
gether with their main statistical moments (mean and variance) are constructed by taking
advantage of the random mean square calculus. Since in the case of Hermite, Legendre and
Laguerre deterministic differential equations it is well known that they admit polynomial
solutions, in those contributions the concept of random polynomial solution is introduced
in the stochastic framework as well. In [15], the authors propose a homotopy technique
to solve some particular random differential equations belonging to the class given in (1).
A very important case of problem (1) is when its coefficients are random variables rather
than stochastic processes, i.e., A(t) = A and B(t) = B, corresponding to the autonomous
case. In [6] the authors construct approximations of the first and second probability den-
sity function of the solution stochastic process using a complementary approach to mean
square calculus. In [13, 14, 18–20, 33] one addresses significant advances for other random
differential equations, dealing with the computation of the probability density function of
the corresponding solution. Additional studies dealing with random differential equations
via random mean square calculus include [12, 21–24, 26–28, 31, 36], for instance.

The structure of this paper is described as follows. In Sect. 2 we revise the notation and
the theory of Lp(�) calculus necessary to understand the paper. In Sect. 3 we solve the
random initial value problem (1) in a suitable way, and we describe the manner of approx-
imating the main statistical information of the solution process (mean and variance). In
Sect. 4 we compare our findings with the existing literature, and we also perform some
numerical examples including an illustrative application in a modeling setting using real
data. Finally, in Sect. 5 conclusions are drawn.

2 Preliminaries
Let (�,F ,P) be a complete probability space. In this paper we work with random variables
X : � → R that belong to the so-called Lebesgue spaces Lp(�). Recall that we say that
X ∈ Lp(�), 1 ≤ p < ∞, if the norm

‖X‖Lp(�) :=
(∫

�

|X|p dP
) 1

p

is finite. We say that X ∈ L∞(�) if the norm

‖X‖L∞(�) := inf
{
sup
{∣
∣X(ω)

∣
∣ : ω ∈ �\N

}
: P(N) = 0

}
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is finite (this norm is usually termed essential supremum). These spaces are Banach, and
the particular case of L2(�) is a Hilbert space. Sometimes, when we refer to convergence
in L2(�), we will say that the convergence holds in the mean square (m.s.) sense.

In general, the statistical information of the random variable X is given by a set of oper-
ators that give information about the distribution of X. In this paper we will deal with the
expectation, E[X] =

∫

�
X dP, and with the variance, V[X] = E[(X – E[X])2]. Mean square

convergence is important because it preserves the limit of the expectation and variance:
if {Xn}∞n=1 is a sequence of random variables that converges in L2(�) to X (that is, m.s.
convergent), then

lim
n→∞E[Xn] = E[X], lim

n→∞V[Xn] = V[X] (2)

(see Theorem 4.3.1 in [37]).
A very important inequality concerning the norm of a product of random variables

is Hölder’s inequality: for any two random variables X and Y , we have ‖XY‖Lr (�) ≤
‖X‖Lp(�)‖Y‖Lq(�), where 1 ≤ r, p, q ≤ ∞ and 1/r = 1/p + 1/q. When r = 1 and p = q = 2,
the inequality is known as Cauchy–Schwarz inequality. Another stochastic result that
will be used throughout this paper is Jensen’s inequality: if f is a convex function on
R and assuming that the expectations E[X] and E[f (X)] both exist and are finite, then
f (E[X]) ≤ E[f (X)]. In particular, if f (z) = |z| one gets |E[X]| ≤ E[|X|].

In this paper we will also deal with stochastic processes X = {X(t,ω) : t ∈ I,ω ∈ �}, where
I ⊆R. To simplify notation, we will just write X or X(t) and we will make the dependence
on ω ∈ � implicit. Fixed ω ∈ �, the stochastic process X(t) can be seen as a real mapping
from I ⊆ R to R, so any concept of real calculus, such as continuity, differentiability, etc.,
can be defined for the stochastic process.

However, sometimes it is more suitable to work with Lp(�) random calculus. In the case
of p = 2, it is termed mean square calculus. To read a full exposition on this topic, see [37,
Ch. 4], [29, Ch. XI], or [30, Ch. 5]. In [38] the authors combine L2(�) and L4(�), corre-
sponding to mean square and mean fourth random calculus, to solve random differential
equations.

We say that the stochastic process X is in Lp(�) if the random variable X(t) belongs to
Lp(�) for all t ∈ I . For such processes, we say that X is differentiable in the Lp(�) sense at
t0 ∈ I if there exists a random variable Ẋ(t0) in Lp(�) such that

lim
h→0

∥
∥
∥
∥

X(t0 + h) – X(t0)
h

– Ẋ(t0)
∥
∥
∥
∥

Lp(�)
= 0.

The random variable Ẋ(t0) is called the Lp(�) derivative of X(t) at t0. We say that the
stochastic process X is differentiable on I in the Lp(�) sense if it is differentiable at every
t0 ∈ I .

The stochastic process X is analytic at t0 if X(t) =
∑∞

n=0 Xn(t – t0)n for every t in a neigh-
bourhood of t0, where X0, X1, . . . are random variables and the sum is in the topology of
Lp(�).

Thus, when we deal with the random differential equation (1), we will understand the
derivatives in an Lp(�) random sense. More concretely, as we will see, the correct setting
will be L2(�) and the use of the mean square calculus.
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An important difference with respect to the deterministic scenario when solving a ran-
dom differential equation is the computation of the main statistical functions associated
to the solution stochastic process, such as the mean and the variance functions.

3 Results
Our main goal is to find the solution stochastic process to the random initial value prob-
lem (1). We will assume that the data stochastic process A(t) and B(t) are analytic at t0, in
the following sense:

A(t) =
∞∑

n=0

An(t – t0)n, B(t) =
∞∑

n=0

Bn(t – t0)n,

for t ∈ (t0 – r, t0 + r), being r > 0 fixed, and the sum is understood in the L2(�) setting. We
search for an analytic solution process X(t) of the form

X(t) =
∞∑

n=0

Xn(t – t0)n,

for t ∈ (t0 – r, t0 + r), where the sum is in L2(�). This stochastic process will be a solution
to the random problem (1) in the sense of L2(�) (so, in particular twice differentiable in
the mean square sense).

3.1 Auxiliary results concerning random power series
We need some auxiliary results to deal with random power series in the L2(�) setting.
First of all, we need a result to differentiate a power series in the Lp(�) sense (in this paper
we will just use the cases p = 1 and p = 2, but we do the proof for a general p ≥ 1 just for the
sake of completeness). The particular case p = 2 is a consequence of Theorem 3.1 in [11].

Theorem 3.1 (Differentiation of a random power series in the Lp(�) sense) Let A(t) =
∑∞

n=0 An(t – t0)n be a random power series in the Lp(�) setting (p ≥ 1) for t ∈ (t0 – r, t0 + r),
r > 0. Then the random power series

∑∞
n=1 nAn(t – t0)n–1 exists in Lp(�) for t ∈ (t0 – r, t0 + r);

moreover, the Lp(�) derivative of A(t) is equal to it:

Ȧ(t) =
∞∑

n=1

nAn(t – t0)n–1

for all t ∈ (t0 – r, t0 + r).

Proof Let us see first that the random power series
∑∞

n=1 nAn(t – t0)n–1 exists in Lp(�) for
t ∈ (t0 – r, t0 + r). Given 0 < ρ < r, we prove that

∞∑

n=1

n‖An‖Lp(�)ρ
n–1 < ∞. (3)

Fix s : 0 < ρ < s < r. Since the sum
∑∞

n=0 Ansn exists in Lp(�), limn→∞ ‖An‖Lp(�)sn = 0, so
there exists K > 0 such that ‖An‖Lp(�)sn ≤ K for every n ≥ 0. Then

n‖An‖Lp(�)ρ
n–1 ≤ nK

1
s

(
ρ

s

)n–1

.
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As
∑∞

n=1 n(ρ/s)n–1 < ∞, by the comparison test for series, we conclude that (3) holds.
Let us see now that the Lp(�) derivative of A(t) is equal to

∑∞
n=1 nAn(t – t0)n–1. By the

definition of Lp(�) derivative, we have to check that

lim
h→0

∥
∥
∥
∥
∥

∞∑

n=0

An
(t + h – t0)n – (t – t0)n

h
–

∞∑

n=1

nAn(t – t0)n–1

∥
∥
∥
∥
∥

Lp(�)

= 0.

Fix s and h such that 0 < ρ < s < r and 0 < |h| < s – ρ . Fix t ∈ (t0 – ρ, t0 + ρ). By the triangular
inequality,

∥
∥
∥
∥
∥

∞∑

n=0

An
(t + h – t0)n – (t – t0)n

h
–

∞∑

n=1

nAn(t – t0)n–1

∥
∥
∥
∥
∥

Lp(�)

≤
∞∑

n=1

‖An‖Lp(�)

∣
∣
∣
∣
(t + h – t0)n – (t – t0)n

h
– n(t – t0)n–1

∣
∣
∣
∣. (4)

We know that

lim
h→0

∣
∣
∣
∣
(t + h – t0)n – (t – t0)n

h
– n(t – t0)n–1

∣
∣
∣
∣ = 0 (5)

(by the definition of the pointwise derivative of (t – t0)n). On the other hand, using the
identity an – bn = (a – b)(

∑n–1
m=0 an–1–mbm), we perform the following estimates:

∣
∣
∣
∣
(t + h – t0)n – (t – t0)n

h

∣
∣
∣
∣ =
∣
∣
∣
∣
(t + h – t0)n – (t – t0)n

(t + h – t0) – (t – t0)

∣
∣
∣
∣

=

∣
∣
∣
∣
∣

n–1∑

m=0

(t + h – t0)n–1–m(t – t0)m

∣
∣
∣
∣
∣

≤
n–1∑

m=0

|t + h – t0|n–1–m|t – t0|m

≤
n–1∑

m=0

(|t – t0| + |h|)n–1–m|t – t0|m

≤ n
(|t – t0| + |h|)n–1 ≤ nsn–1,

where we have used that |t – t0| ≤ |t – t0| + |h|, |t – t0| < ρ and |h| < s – ρ . Then

‖An‖Lp(�)

∣
∣
∣
∣
(t – t0 + h)n – (t – t0)n

h
– n(t – t0)n–1

∣
∣
∣
∣

≤ ‖An‖Lp(�)

(∣
∣
∣
∣
(t – t0 + h)n – (t – t0)n

h

∣
∣
∣
∣ + n|t – t0|n–1

)

≤ ‖An‖Lp(�)
(
nsn–1 + nρn–1)≤ ‖An‖Lp(�)

(
nsn–1 + nsn–1) = 2‖An‖Lp(�)nsn–1, (6)

being
∑∞

n=1 ‖An‖Lp(�)nsn–1 < ∞. By the dominated convergence theorem for series, both
(5) and (6) permit us to conclude that (4) tends to 0 as h → 0, as wanted. �
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As it shall be apparent later, we need a theorem to multiply random power series. In
the deterministic setting, the so-called Merten’s theorem allows multiplying two power
series. The deterministic version of Merten’s theorem is proved in Theorem 8.46 of [1].
We adapt the proof in [1] to a stochastic setting in Theorem 3.2. Notice that, from Theo-
rem 3.2, when we multiply two random power series, we lose Lebesgue spaces of conver-
gence. As we will see in the proof, this fact will be a consequence of the Cauchy–Schwarz
inequality (for two real numbers u and v, we always have |uv| = |u||v|; however, for ran-
dom variables U and V , we do not have ‖UV‖L2(�) = ‖U‖L2(�)‖V‖L2(�) in general, but
‖UV‖L1(�) ≤ ‖U‖L2(�)‖V‖L2(�)).

Theorem 3.2 (Merten’s theorem for random series in the mean square sense) Let U =
∑∞

n=0 Un and V =
∑∞

n=0 Vn be two random series that converge in L2(�). Suppose that one
of the series converges absolutely, say

∑∞
n=0 ‖Vn‖L2(�) < ∞. Then

( ∞∑

n=0

Un

)( ∞∑

n=0

Vn

)

=
∞∑

n=0

Wn,

where

Wn =
n∑

m=0

Un–mVm

and
∑∞

n=0 Wn is understood in L1(�). The series
∑∞

n=0 Wn is known as the Cauchy product
of the series

∑∞
n=0 Un and

∑∞
n=0 Vn.

Proof Let us write the N th partial sum of
∑∞

n=0 Wn in an appropriate way:

N∑

n=0

Wn =
N∑

n=0

n∑

m=0

Un–mVm =
N∑

m=0

Vm

N∑

n=m
Un–m =

N∑

m=0

Vm

N–m∑

n=0

Un

=
N∑

m=0

Vm

(

U –
∞∑

n=N–m+1

Un

)

= U
N∑

m=0

Vm –
N∑

m=0

Vm

∞∑

n=N–m+1

Un.

The first addend, U
∑N

m=0 Vm, tends to UV in L1(�) as N → ∞. In fact, observe that be-
cause of the Cauchy–Schwarz inequality, one gets

∥
∥
∥
∥
∥

U
N∑

m=0

Vm – UV

∥
∥
∥
∥
∥

L1(�)

=

∥
∥
∥
∥
∥

U

( N∑

m=0

Vm – V

)∥
∥
∥
∥
∥

L1(�)

≤ ‖U‖L2(�)

∥
∥
∥
∥
∥

N∑

m=0

Vm – V

∥
∥
∥
∥
∥

L2(�)

−−−→
N→∞

0,

where we have used that ‖U‖L2(�) < ∞ (since U ∈ L2(�) because it is the m.s. limit of
the series

∑∞
n=0 Un) and that ‖∑N

m=0 Vm – V‖L2(�)
0−−−→

N→∞
(since by hypothesis

∑∞
n=0 Vn

converges to V in L2(�)).
Thus, it only remains to prove that the second addend,

∑N
m=0 Vm

∑∞
n=N–m+1 Un, goes to

0 in L1(�) as N → ∞.
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Since limN→∞
∑∞

n=N Un = 0 in L2(�), there exists L > 0 such that

∥
∥
∥
∥
∥

∞∑

n=N

Un

∥
∥
∥
∥
∥

L2(�)

≤ L, ∀N ∈N.

Let K =
∑∞

n=0 ‖Vn‖L2(�). Fix ε > 0. We can take Nε such that, for all N ≥ Nε ,

∥
∥
∥
∥
∥

∞∑

n=N

Un

∥
∥
∥
∥
∥

L2(�)

<
ε

2K
,

∞∑

n=N+1

‖Vn‖L2(�) <
ε

2L
.

Then, for N ≥ 2Nε , by the triangular inequality and the Cauchy–Schwarz inequality,

∥
∥
∥
∥
∥

N∑

m=0

Vm

∞∑

n=N–m+1

Un

∥
∥
∥
∥
∥

L1(�)

≤
Nε∑

m=0

‖Vm‖L2(�)

∥
∥
∥
∥
∥

∞∑

n=N–m+1

Un

∥
∥
∥
∥
∥

L2(�)

+
N∑

m=Nε+1

‖Vm‖L2(�)

∥
∥
∥
∥
∥

∞∑

n=N–m+1

Un

∥
∥
∥
∥
∥

L2(�)

≤ ε

2K

Nε∑

m=0

‖Vm‖L2(�) + L
N∑

m=Nε+1

‖Vm‖L2(�)

≤ ε

2K

∞∑

m=0

‖Vm‖L2(�) + L
∞∑

m=Nε+1

‖Vm‖L2(�)

≤ ε

2K
K + L

ε

2L
= ε.

This shows that
∑N

m=0 Vm
∑∞

n=N–m+1 Un tends to 0 in L1(�) as N → ∞. �

3.2 Main result: constructing the solution stochastic process of the random
non-autonomous second order linear differential equation

We present the main theorem of this paper. After stating and proving it, a deeper analysis
of the hypotheses and consequences of the theorem will be performed.

Theorem 3.3 Let A(t) =
∑∞

n=0 An(t – t0)n and B(t) =
∑∞

n=0 Bn(t – t0)n be two random series
in the L2(�) setting, for t ∈ (t0 – r, t0 + r), being r > 0 finite and fixed. Assume that the initial
conditions Y0 and Y1 belong to L2(�). Suppose that there is a constant Cr > 0, maybe depen-
dent on r, such that ‖An‖L∞(�) ≤ Cr/rn and ‖Bn‖L∞(�) ≤ Cr/rn, n ≥ 0. Then the stochastic
process X(t) =

∑∞
n=0 Xn(t – t0)n, t ∈ (t0 – r, t0 + r), where

X0 = Y0, X1 = Y1, (7)

Xn+2 =
–1

(n + 2)(n + 1)

n∑

m=0

[
(m + 1)An–mXm+1 + Bn–mXm

]
, n ≥ 0, (8)

is the unique analytic solution to the random initial value problem (1) in the mean square
sense.
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Proof Suppose that X(t) =
∑∞

n=0 Xn(t – t0)n is a solution to (1) in the L2(�) sense for t ∈
(t0 – r, t0 + r), r > 0. By Theorem 3.1 with p = 2, the mean square derivatives of X(t) are
given by

Ẋ(t) =
∞∑

n=1

nXn(t – t0)n–1 =
∞∑

n=0

(n + 1)Xn+1(t – t0)n,

Ẍ(t) =
∞∑

n=2

n(n – 1)Xn(t – t0)n–2 =
∞∑

n=0

(n + 2)(n + 1)Xn+2(t – t0)n.

By the random Merten’s Theorem 3.2,

A(t)Ẋ(t) =
∞∑

n=0

( n∑

m=0

An–m(m + 1)Xm+1

)

(t – t0)n,

B(t)X(t) =
∞∑

n=0

( n∑

m=0

Bn–mXm

)

(t – t0)n,

where these two random series converge in L1(�). From Ẍ(t) + A(t)Ẋ(t) + B(t)X(t) = 0,

∞∑

n=0

[

(n + 2)(n + 1)Xn+2 +
n∑

m=0

(
An–m(m + 1)Xm+1 + Bn–mXm

)
]

(t – t0)n = 0, (9)

for t ∈ (t0 – r, t0 + r), where the random series is again in the L1(�) sense. By Theorem 3.1
with p = 1, differentiating (9) over and over again in the L1(�) sense and evaluating at t = t0

yield

(n + 2)(n + 1)Xn+2 +
n∑

m=0

(
An–m(m + 1)Xm+1 + Bn–mXm

)
= 0.

Isolating Xn+2 we obtain the recursive expression (8):

Xn+2 =
–1

(n + 2)(n + 1)

n∑

m=0

[
(m + 1)An–mXm+1 + Bn–mXm

]
.

The initial conditions of the random initial value problem (1) give (7), and so X(t) is
uniquely determined with probability 1.

It remains to check that the random series
∑∞

n=0 Xn(t – t0)n is convergent in L2(�). For
that purpose, we will make use of the L∞(�) bounds for An and Bn quoted in the hypothe-
ses.

From the hypothesis Y0, Y1 ∈ L2(�) and by induction on n in expression (8), we obtain
that Xn ∈ L2(�) for all n ≥ 0. By the triangular inequality, the hypotheses and Hölder’s
inequality with r = 2, p = ∞ and q = 2 (see the notation used in Sect. 2),

‖Xn+2‖L2(�) ≤ 1
(n + 2)(n + 1)

n∑

m=0

[
(m + 1)‖An–mXm+1‖L2(�) + ‖Bn–mXm‖L2(�)

]

≤ 1
(n + 2)(n + 1)

Cr

rn

n∑

m=0

rm((m + 1)‖Xm+1‖L2(�) + ‖Xm‖L2(�)
)
. (10)
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Define H0 := ‖Y0‖L2(�), H1 := ‖Y1‖L2(�) and

Hn+2 :=
1

(n + 2)(n + 1)
Cr

rn

n∑

m=0

rm((m + 1)Hm+1 + Hm
)
. (11)

By induction on n it is trivially seen that ‖Xn‖L2(�) ≤ Hn for n ≥ 0. Thus, given 0 < ρ < r,
it is enough to see that

∑∞
n=0 Hnρ

n < ∞. For that purpose, we rewrite (11) so that Hn+2 is
expressed as a function of Hn+1 and Hn (second order recurrence equation):

Hn+2 =
1

(n + 2)(n + 1)
Cr

rn

( n–1∑

m=0

rm((m + 1)Hm+1 + Hm
)

+ rn((n + 1)Hn+1 + Hn
)
)

=
1

(n + 2)(n + 1)
Cr

rn
(n + 1)n

Cr
rn–1

(
1

(n + 1)n
Cr

rn–1

n–1∑

m=0

rm((m + 1)Hm+1 + Hm
)

︸ ︷︷ ︸
=Hn+1

)

+
Cr

n + 2
Hn+1 +

Cr

(n + 2)(n + 1)
Hn

=
(

n
(n + 2)r

+
Cr

n + 2

)

Hn+1 +
Cr

(n + 2)(n + 1)
Hn. (12)

Fix s : 0 < ρ < s < r. We have

Hn+2sn+2 =
(

ns
(n + 2)r

+
Crs

n + 2

)

Hn+1sn+1 +
Crs2

(n + 2)(n + 1)
Hnsn.

Let Mn = max0≤m≤n Hmsm. We have

Hn+2sn+2 ≤
(

ns
(n + 2)r

+
Crs

n + 2
+

Crs2

(n + 2)(n + 1)

)

Mn+1. (13)

Since

lim
n→∞

ns
(n + 2)r

+
Crs

n + 2
+

Crs2

(n + 2)(n + 1)
=

s
r

< 1,

it holds Mn+2 = Mn+1 for all large n, and call the common value M. Hence, Hnsn ≤ M for
all large n, therefore Hnρ

n ≤ M(ρ/s)n. Since
∑∞

n=0(ρ/s)n < ∞, by comparison the series
∑∞

n=0 Hnρ
n converges, and we are done. �

3.3 Comments on the hypotheses of the theorem
The hypotheses concerning the L∞(�) growth of the coefficients An and Bn, n ≥ 0,
may seem quite restrictive. However, these hypotheses have been necessary to relate the
L2(�) norm of the coefficients X0, X1, X2, . . . in (10), then define the random variables
H0, H1, H2, . . . and finally bound ‖Xn‖L2(�) ≤ Hn by induction on n ≥ 0. Without the hy-
potheses ‖An‖L∞(�) ≤ Cr/rn and ‖Bn‖L∞(�) ≤ Cr/rn of Theorem 3.3, this would not have
been possible.

Moreover, these L∞(�) hypotheses are equivalent to a growth condition on the mo-
ments of the random variables A0, A1, . . . and B0, B1, . . . . The key fact is that, for a given
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random variable Z, we have that E[|Z|n] ≤ HRn for certain H > 0 and R > 0 if and only if
‖Z‖L∞(�) ≤ R.

This key fact is a direct consequence of the following result: if Z is a random variable,
then limn→∞ ‖Z‖Ln(�) = ‖Z‖L∞(�). For the sake of completeness, we show the proof. If
‖Z‖L∞(�) < ∞, define �δ = {|Z| ≥ ‖Z‖L∞(�) – δ} for δ > 0 small. By the definition of L∞(�),
P(�δ) > 0. Now,

‖Z‖Ln(�) =
(∫

�

|Z|n dP
) 1

n
≥
(∫

�δ

|Z|n dP
) 1

n
≥ (‖Z‖L∞(�) – δ

)
P(�δ)

1
n .

Since P(�δ) > 0, we obtain

lim inf
n→∞ ‖Z‖Ln(�) ≥ ‖Z‖L∞(�) – δ.

As δ > 0 is arbitrary, lim infn→∞ ‖Z‖Ln(�) ≥ ‖Z‖L∞(�). To prove the reverse inequality, write

‖Z‖Ln(�) =
(∫

�

|Z|n dP
) 1

n
=
(∫

�

|Z|n–1|Z|dP
) 1

n
≤ ‖Z‖ n–1

n
L∞(�)‖Z‖ 1

n
L1(�).

Since ‖Z‖L1(�) ≤ ‖Z‖L∞(�) < ∞, it holds limn→∞ ‖Z‖ 1
n
L1(�) = 1 (the trivial case Z ≡ 0 is

obvious, we can assume Z �≡ 0). Then

lim sup
n→∞

‖Z‖Ln(�) ≤ ‖Z‖L∞(�).

This shows the result when ‖Z‖L∞(�) < ∞. If ‖Z‖L∞(�) = ∞, then one has to define �L =
{|Z| ≥ L} for L > 0 large. Proceeding similarly and by the arbitrariness of L, one arrives at
lim infn→∞ ‖Z‖Ln(�) = ∞ = ‖Z‖L∞(�).

Growth hypotheses of the form E[|Z|n] ≤ HRn, for certain H > 0 and R > 0, are com-
mon in the literature to find stochastic analytic solutions to particular cases of (1). See,
for example, Airy’s random differential equation in [7] and Hermite’s random differential
equation in [3]. We have proved in this subsection that controlling the growth of the mo-
ments is equivalent to controlling the L∞(�) norm. Hence, Theorem 3.3 will allow us to
generalize the results obtained in previous articles, for instance [3, 7]. See Example 4.1 and
Example 4.2 for the generalization.

3.4 Relationship between the random pointwise and classical differential
equations approaches

The hypotheses of Theorem 3.3, besides providing a stochastic solution to our problem (1),
also give a pointwise classical solution to (1) under the additional assumption Y0, Y1 ∈
L∞(�). Indeed, by hypothesis we have rn‖An‖L∞(�) ≤ Cr and rn‖Bn‖L∞(�) ≤ Cr . For fixed
δ > 0 small enough, one gets

(
r

1 + δ

)n

‖An‖L∞(�) ≤ Cr

(1 + δ)n ,
(

r
1 + δ

)n

‖Bn‖L∞(�) ≤ Cr

(1 + δ)n .
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From these two inequalities,

∞∑

n=0

‖An‖L∞(�)(t – t0)n < ∞,
∞∑

n=0

‖Bn‖L∞(�)(t – t0)n < ∞

for t ∈ (t0 – r/(1 + δ), t0 + r/(1 + δ)). Letting δ approach 0, we arrive at the uniform conver-
gence of the series for t ∈ (t0 – r, t0 + r). The solution X also satisfies

∑∞
n=0 ‖Xn‖L∞(�)(t –

t0)n < ∞ for t ∈ (t0 – r, t0 + r), because we can apply the triangular inequality in (10) with
the L∞(�) norm instead of the L2(�) norm. Therefore, X(t) is a pointwise classical solu-
tion for each ω ∈ � fixed (it is a solution from a deterministic point of view). This manner
of studying random differential equations is referred to as the sample approach [37, Ap-
pendix I], [9].

3.5 Statistical information of the solution stochastic process: mean and variance
The expectation and variance of the stochastic process X(t) =

∑∞
n=0 Xn(t – t0)n given by

(7)–(8) can be approximated. Indeed, first, one has to obtain Xn as a function of Y0, Y1,
A0, . . . , An–1 and B0, . . . , Bn–1 by recursion via (8) for n = 0, 1, . . . , N . After this, we construct
a truncation

XN (t) =
N∑

n=0

Xn(t – t0)n (14)

of the solution stochastic process X(t). Since XN (t) → X(t) in L2(�) as N → ∞, according
to the key property (2), we have

lim
N→∞E

[
XN (t)

]
= E
[
X(t)

]
, lim

N→∞V
[
XN (t)

]
= V
[
X(t)

]
.

As an example of the manner one can proceed, we show by hand some random coeffi-
cients Xn:

X2 =
–1
2

(A0Y1 + B0Y0),

X3 =
–1
6

(A1Y1 + B1Y0 + 2A0X2 + B0Y1) =
–1
6
(
A1Y1 + B1Y0 – A2

0Y1 – A0B0Y0 + B0Y1
)
,

X4 =
–1
12

(A2Y1 + B2Y0 + 2A1X2 + B1X1 + 3A0X3 + B0X2)

=
–1
12

(

A2Y1 + B2Y0 – A1A0Y1 – A1B0Y0 + B1Y1 –
1
2

A0A1Y1 –
1
2

A0B1Y0

+
1
2

A3
0Y1 +

1
2

A2
0B0Y0 –

1
2

A0B0Y1 –
1
2

B0A0Y1 –
1
2

B2
0Y0

)

.

From these computations, we have truncation (14) for N = 4, X4(t) = Y0 +Y1t +X2t2 +X3t3 +
X4t4. We need to compute E[X4(t)] to approximate E[X(t)]. By linearity of the expecta-
tion, E[X4(t)] = E[Y0] + E[Y1]t + E[X2]t2 + E[X3]t3 + E[X4]t4. Assuming independence of
Y0, Y1, A0, A1, . . . , B0, B1, . . . and applying a property from [16, p. 93], we are able to compute
the expectation of the addends by hand:

E[X2] =
–1
2
(
E[A0]E[Y1] + E[B0]E[Y0]

)
,
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E[X3] =
–1
6
(
E[A1]E[Y1] + E[B1]E[Y0] – E

[
A2

0
]
E[Y1]

– E[A0]E[B0]E[Y0] + E[B0]E[Y1]
)
,

E[X4] =
–1
12

(

E[A2]E[Y1] + E[B2]E[Y0] – E[A1]E[A0]E[Y1] – E[A1]E[B0]E[Y0]

+ E[B1]E[Y1] –
1
2
E[A0]E[A1]E[Y1] –

1
2
E[A0]E[B1]E[Y0]

+
1
2
E
[
A3

0
]
E[Y1] +

1
2
E
[
A2

0
]
E[B0]E[Y0] –

1
2
E[A0]E[B0]E[Y1]

–
1
2
E[B0]E[A0]E[Y1] –

1
2
E
[
B2

0
]
E[Y0]

)

.

For large values of n, we need a computer to manage the big expressions for Xn, and as a
consequence E[XN (t)] and V[XN (t)] for large values of N . We show how to implement the
necessary formulas to compute the expectation and variance of the truncated series in the
software Mathematica®. The recurrence relation (7)–(8) is defined as follows:
X[n_?NonPositive] := Y0;

X[1] = Y1;

X[n_] := -1/(n*(n - 1))*Sum[(m + 1)*A[n - 2 - m]*X[m + 1]

+ B[n - 2 - m]*X[m], {m, 0, n - 2}].

Truncation (14) is implemented by writing
seriesX[t_, t0_, N_] := X[0] + Sum[X[n]*(t - t0)^n, {n, 1, N}].

Using the Expectation function, in which one can set the distributions of A[n], B[n],
Y0 and Y1, both the expectation and variance of (14) can be calculated by the computer.

There are other approaches to approximating the expectation of the solution to the ran-
dom initial value problem (1). One of these approaches is the so-called dishonest method
[2], [17, p. 149], which assumes that A(t) and Ẋ(t) are independent and that B(t) and X(t)
are independent. Denoting μX(t) = E[X(t)], the idea is that, since E[Ẍ(t)] = d2

dt2 (μX(t)) and
E[Ẋ(t)] = d

dt (μX(t)), because of the commutation between the mean square limit and the
expectation operator (see [37, Ch. 4]), by the assumed independence we arrive at a deter-
ministic initial value problem to compute μX(t):

⎧
⎪⎪⎨

⎪⎪⎩

d2

dt2 (μX(t)) + E[A(t)] d
dt (μX(t)) + E[B(t)]μX(t) = 0, t ∈R,

μX(t0) = E[Y0],
d
dt (μX(t0)) = E[Y1].

(15)

In [2] and [17, p. 149] this method is used to handle the problem of computing the expec-
tation of the solution stochastic process of certain random differential equations. In [3,
7] approximations of the expectation of the corresponding solution stochastic process ob-
tained via specific methods have been compared with the ones calculated by the dishonest
approach. In our context, the dishonest method will work on cases where Cov[A(t), Ẋ(t)]
and Cov[B(t), X(t)] are small, but in general, there is no certainty that this may hold. In Ex-
ample 4.1 and Example 4.2, we approximate Cov[A(t), Ẋ(t)] and Cov[B(t), X(t)] in order
to understand better the accuracy of the dishonest method. Nevertheless, the approxima-
tions via the truncation method previously described allow us to obtain reliable approxi-
mations for the expectation, and also for the variance, of the solution process.
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Another popular approach consists in using Monte Carlo simulations. Sample from the
distributions of A(t), B(t), Y0 and Y1 to obtain, say M realizations, for M large. That is, we
have A(t,ω1), . . . , A(t,ωM), B(t,ω1), . . . , B(t,ωM), Y0(ω1), . . . , Y0(ωM) and Y1(ω1), . . . , Y1(ωM)
for M outcomes ω1, . . . ,ωM ∈ �. Then we solve the M deterministic initial value problems

⎧
⎪⎪⎨

⎪⎪⎩

Ẍ(t,ωi) + A(t,ωi)Ẋ(t,ωi) + B(t,ωi)X(t,ωi) = 0, t ∈R,

X(t0,ωi) = Y0(ωi),

Ẋ(t0,ωi) = Y1(ωi),

(16)

so that we obtain M realizations of X(t): X(t,ω1), . . . , X(t,ωM). The law of large numbers
permits approximating E[X(t)] and V[X(t)] by computing the sample mean and sample
variance of X(t,ω1), . . . , X(t,ωM).

Monte Carlo simulations, in contrast to the dishonest method, give always correct ap-
proximations, and as M grows, these approximations are more accurate, although Monte
Carlo method possesses a slow convergence rate, namely, O(1/

√
M) [39, p. 53]. Thereby,

the statistical information computed by means of Monte Carlo simulations must approx-
imate our truncation method.

3.6 Obtaining error estimates for the approximation of the solution stochastic
process, its mean and its variance

Given an error ε, we want to obtain Nε so that ‖XN (t)–X(t)‖L2(�) < ε for all N ≥ Nε . Notice
that, in such a case, by Jensen’s and the Cauchy–Schwarz inequalities, we would have

∣
∣E
[
XN (t)

]
–E
[
X(t)

]∣
∣ =
∣
∣E
[
XN (t)–X(t)

]∣
∣≤ E

[∣
∣XN (t)–X(t)

∣
∣
]≤ ∥∥XN (t)–X(t)

∥
∥

L2(�) < ε,

therefore we will be able to estimate the error when approximating the mean E[X(t)] via
E[XN (t)].

The method to estimate errors for ‖XN (t) – X(t)‖L2(�) is as follows. We use the notation
from the proof of Theorem 3.3. If we denote ρ = |t – t0| and take ρ < s < r, we have

∥
∥XN (t) – X(t)

∥
∥

L2(�) =

∥
∥
∥
∥
∥

∞∑

n=N+1

Xn(t – t0)n

∥
∥
∥
∥
∥

L2(�)

≤
∞∑

n=N+1

‖Xn‖L2(�)ρ
n ≤

∞∑

n=N+1

Hnρ
n. (17)

To bound Hnsn, we base our reasoning on (13). Given Mn = max0≤m≤n Hmsm, we saw in the
proof of Theorem 3.3 that Mn = M for sufficiently large n. In fact, for n satisfying

ns
(n + 2)r

+
Crs

n + 2
+

Crs2

(n + 2)(n + 1)
< 1, (18)

it holds Mn = M, so M can be computed just by knowing r, Cr , s, ‖Y0‖L2(�) and ‖Y1‖L2(�),
because from these values we can see when (18) holds and compute Hn via the recursion
(11) or (12), and thereby M. Notice that, if a lot of the random variables An and Bn are 0,
then Hn will not be a tight bound for ‖Xn‖L2(�), in general.

Once we know M, recall from the end of the proof of Theorem 3.3 that Hnρ
n ≤ M(ρ/s)n.

We bound from (17):

∥
∥XN (t) – X(t)

∥
∥

L2(�) ≤ M
∞∑

n=N+1

(
ρ

s

)n

= M
( ρ

s )N+1

1 – ρ

s
.
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If we want ‖XN (t) – X(t)‖L2(�) to be smaller than a prefixed error ε > 0, we impose

M
( ρ

s )N+1

1 – ρ

s
< ε.

This yields

Nε =
⌈

log( (1– ρ
s )ε

M )
log( ρ

s )
– 1
⌉

(19)

(here, x� denotes the least integer that is greater than or equal to x, commonly known as
the ceiling of x).

In Example 4.1 and Example 4.4, we will apply these computations to find an Nε for
which the approximation of E[X(t)] via E[XN (t)] at the points t = 1 and t = 0.25, respec-
tively, gives an error smaller than ε.

We develop a similar method to estimate the errors in the approximations for the vari-
ance. That is to say, given an error ε > 0, we want to find Nε such that |V[XN (t)]–V[X(t)]| <
ε for all N ≥ Nε . We start bounding the difference |V[XN (t)] – V[X(t)]| using triangular,
Jensen’s and the Cauchy–Schwarz inequalities:

∣
∣V
[
XN (t)

]
– V
[
X(t)

]∣
∣

=
∣
∣E
[(

XN (t)
)2] –

(
E
[
XN (t)

])2 – E
[(

X(t)
)2] +

(
E
[
X(t)

])2∣∣

≤ E
[∣
∣
(
XN (t)

)2 –
(
X(t)

)2∣∣
]

+
∣
∣
(
E
[
XN (t)

])2 –
(
E
[
X(t)

])2∣∣

= E
[∣
∣XN (t) – X(t)

∣
∣
∣
∣XN (t) + X(t)

∣
∣
]

+
∣
∣E
[
XN (t)

]
– E
[
X(t)

]∣
∣
∣
∣E
[
XN (t)

]
+ E
[
X(t)

]∣
∣

≤ ∥∥XN (t) – X(t)
∥
∥

L2(�)

∥
∥XN (t) + X(t)

∥
∥

L2(�)

+
∣
∣E
[
XN (t)

]
– E
[
X(t)

]∣
∣
(∣
∣E
[
XN (t)

]∣
∣ +
∣
∣E
[
X(t)

]∣
∣
)

≤ ∥∥XN (t) – X(t)
∥
∥

L2(�)

(∥
∥XN (t)

∥
∥

L2(�) +
∥
∥X(t)

∥
∥

L2(�)

)

+
∣
∣E
[
XN (t)

]
– E
[
X(t)

]∣
∣
(∣
∣E
[
XN (t)

]∣
∣ +
∣
∣E
[
X(t)

]∣
∣
)
.

Let δ > 0 that will be determined later on to make the error smaller than ε. By the results
previously obtained in this subsection, we can choose Nδ such that ‖XN (t) – X(t)‖L2(�) < δ

for all N ≥ Nδ (just applying (19) with ε = δ > 0). Moreover, |E[XN (t)]–E[X(t)]| ≤ ‖XN (t)–
X(t)‖L2(�) < δ, by Jensen’s and the Cauchy–Schwarz inequalities. Then

∣
∣V
[
XN (t)

]
– V
[
X(t)

]∣
∣

≤ δ
(∥
∥XN (t)

∥
∥

L2(�) +
∥
∥X(t)

∥
∥

L2(�)

)
+ δ
(∣
∣E
[
XN (t)

]∣
∣ +
∣
∣E
[
X(t)

]∣
∣
)

≤ δ
(∥
∥XN (t) – X(t) + X(t)

∥
∥

L2(�) +
∥
∥X(t)

∥
∥

L2(�)

)

+ δ
(∣
∣E
[
XN (t)

]
– E
[
XN (t)

]
+ E
[
XN (t)

]∣
∣ +
∣
∣E
[
X(t)

]∣
∣
)

≤ δ
(∥
∥XN (t) – X(t)

∥
∥

L2(�) +
∥
∥X(t)

∥
∥

L2(�) +
∥
∥X(t)

∥
∥

L2(�)

)

+ δ
(∣
∣E
[
XN (t)

]
– E
[
XN (t)

]∣
∣ +
∣
∣E
[
X(t)

]∣
∣ +
∣
∣E
[
X(t)

]∣
∣
)
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≤ δ
(
δ + 2

∥
∥X(t)

∥
∥

L2(�)

)
+ δ
(
δ + 2

∣
∣E
[
X(t)

]∣
∣
)
.

To bound ‖X(t)‖L2(�), write

∥
∥X(t)

∥
∥

L2(�) =

∥
∥
∥
∥
∥

∞∑

n=0

Xn(t – t0)n

∥
∥
∥
∥
∥

L2(�)

≤
∞∑

n=0

‖Xn‖L2(�)ρ
n

≤
∞∑

n=0

Hnρ
n ≤ M

∞∑

n=0

(
ρ

s

)n

= M
1

1 – ρ

s
=: γ ,

where ρ = |t – t0| and s is any number satisfying ρ < s < r. Before, we saw how to compute
M, so we have obtained a computable bound for ‖X(t)‖L2(�). On the other hand, to bound
|E[X(t)]| we have two options. One option consists in using Jensen’s and the Cauchy–
Schwarz inequalities to derive |E[X(t)]| ≤ ‖X(t)‖L2(�) ≤ γ , and we are done. The second
option, which provides a tighter bound for |E[X(t)]|, consists in using the approximations
performed for E[X(t)] via E[XN (t)], and from them deducing an upper bound for E[X(t)].
For any of these two options, we denote the upper bound obtained for |E[X(t)]| by β > 0.
Thus, for N ≥ Nδ ,

∣
∣V
[
XN (t)

]
– V
[
X(t)

]∣
∣≤ δ(2γ + δ) + δ(2β + δ).

Now choose δ so that

δ(2γ + δ) + δ(2β + δ) ≤ ε.

From here, we take

δ =
–(γ + β) +

√
(γ + β)2 + 2ε

2
> 0. (20)

To sum up, given a prefixed error ε > 0, the steps to be done in order to guarantee the
approximations V[XN (t)] of the exact variance V[X(t)] to satisfy |V[XN (t)] – V[X(t)]| ≤ ε

are the following ones:
1. Compute γ = M/(1 – ρ/s);
2. Compute β > 0, upper bound of |E[X(t)]|;
3. Obtain δ > 0 from (20);
4. Take Nδ as in the approximation of the mean (expression (19), but with δ instead

of ε).
To put forward these ideas, in Example 4.1 and Example 4.4 we will apply these com-

putations to find an Nε for which, given a priori error ε > 0, the approximation of V[X(t)]
by means of V[XN (t)] at the points t = 1 and t = 0.25, respectively, gives an error smaller
than ε.

4 Examples
The main goal of this section is to approximate the expectation and variance of the solution
process X(t) to particular random initial value problems (1). Our tools will be the ones
described in Sect. 3.5. That is, computing E[XN (t)] and V[XN (t)] for truncation (14), the



Calatayud et al. Advances in Difference Equations        (2018) 2018:392 Page 16 of 29

dishonest method and Monte Carlo simulations. We will compare the three approaches in
order to realize the potentiality of using the truncation method. Our truncation method
and Monte Carlo simulation must give similar approximations of the statistical moments
(and equal and exact results in the limit).

In addition, we will take some particular problems (1) that have been already studied in
the literature such as Airy’s and Hermite’s random differential equations [3, 7]. As we will
see, our findings will generalize the results obtained in those papers (recall Sect. 3.3).

Example 4.1 (Airy’s random differential equation) Airy’s random differential equation is
the following:

⎧
⎪⎪⎨

⎪⎪⎩

Ẍ(t) + AtX(t) = 0, t ∈R,

X(0) = Y0,

Ẋ(0) = Y1,

(21)

where A, Y0 and Y1 are random variables.
In [7], the hypothesis used in order to obtain a mean square analytic solution X(t)

is E[|A|n] ≤ HRn, n ≥ n0. Notice that this hypothesis is equivalent to ‖A‖L∞(�) ≤ R by
Sect. 3.3.

In the case E[|A|n] ≤ HRn, n ≥ n0 (that is, ‖A‖L∞(�) ≤ R), we are under the hypotheses
of Theorem 3.3. Indeed, in the notation of Theorem 3.3, An = 0 for all n ≥ 0, B1 = A and
Bn = 0 for every n �= 1. For a fixed and finite r > 0 and t0 = 0, we have ‖B1‖L∞(�) ≤ Cr/r1,
being Cr = r‖A‖L∞(�), for instance. Then the stochastic process X(t) =

∑∞
n=0 Xntn, defined

as in Theorem 3.3, is a mean square analytic solution to (21) in (–r, r). As r > 0 is arbitrary,
in fact X(t) =

∑∞
n=0 Xntn is a mean square analytic solution to (21) in R.

Let us carry out a practical case. As in [7], consider A ∼ Beta(2, 3) and Y0, Y1 indepen-
dent random variables such that Y0 ∼ Normal(1, 1) and Y1 ∼ Normal(2, 1). Tables 1 and 2
collect the simulations obtained in [7]. In Table 1 we show, for distinct values of t, E[XN (t)]
for N = 15 and N = 16, the expectation of the solution stochastic process obtained via the
dishonest method and also using Monte Carlo simulations with samples of size 50,000 and
100,000. In Table 2 we present, for distinct values of t, V[XN (t)] for N = 15 and N = 16 and
the corresponding approximations computed via Monte Carlo sampling with 50,000 and
100,000 simulations.

We observe that convergence has been achieved for small N . Compare with Monte Carlo
simulation, in which a lot of realizations are required in order to obtain good approxima-
tions. Nevertheless, it must be remarked that small N is needed for the truncation order,
because Airy’s random differential equation is not specially complex. For more complex
data processes, as in Example 4.3, Example 4.4 and Example 4.5, a larger order of trunca-
tion N may be needed. This may imply a computational expense greater than or similar
to Monte Carlo simulation.

On the other hand, it is remarkable how well the dishonest method approximates the
correct expectation, although the required independence between A(t), Ẋ(t) and B(t), X(t)
does not hold. The key point is thatCov[A(t), Ẋ(t)] andCov[B(t), X(t)] are small, as Table 3
shows, which justifies the accuracy of the dishonest method, especially for small t. Notice
that, in this example, Cov[A(t), Ẋ(t)] = 0, because A(t) ≡ 0 is deterministic. The value of
Cov[B(t), X(t)] is calculated by considering approximations XN (t) of X(t) with N = 16,
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Table 1 Approximation of the expectation of the solution stochastic process. Example 4.1, assuming
independent random data

t E[X15(t)] E[X16(t)] Dishonest MC 50,000 MC 100,000

0.00 1 1 1 0.99701 1.00138
0.25 1.49870 1.49870 1.49870 1.49519 1.49976
0.50 1.98752 1.98752 1.98752 1.98353 1.98829
0.75 2.45108 2.45108 2.45102 2.44667 2.45160
1.00 2.86856 2.86856 2.86818 2.86383 2.86893
1.25 3.21494 3.21494 3.21339 3.21008 3.21534
1.50 3.46310 3.46310 3.45812 3.45831 3.46376
1.75 3.58660 3.58660 3.57340 3.58215 3.58784
2.00 3.56336 3.56335 3.53286 3.55948 3.56552

Table 2 Approximation of the variance of the solution stochastic process. Example 4.1, assuming
independent random data

t V[X15(t)] V[X16(t)] MC 50,000 MC 100,000

0.00 1 1 0.99610 0.99530
0.25 1.06035 1.06035 1.05902 1.05642
0.50 1.23142 1.23142 1.23408 1.22793
0.75 1.49261 1.49261 1.50041 1.48944
1.00 1.81392 1.81392 1.82744 1.81127
1.25 2.15870 2.15870 2.17768 2.15721
1.50 2.49379 2.49379 2.51690 2.49462
1.75 2.80560 2.80560 2.83029 2.81030
2.00 3.11530 3.11530 3.13783 3.12559

Table 3 Approximation of Cov[A(t), Ẋ(t)] and Cov[B(t),X(t)] via accurate truncations Ẋ16(t) and X16(t),
respectively. Example 4.1, assuming independent random data

t Cov[A(t), Ẋ16(t)] Cov[B(t),X16(t)]

0.00 0 0
0.25 0 –0.0000325384
0.50 0 –0.000622983
0.75 0 –0.00365252
1.00 0 –0.0130099
1.25 0 –0.0349332
1.50 0 –0.0778424
1.75 0 –0.151444
2.00 0 –0.264968

since for this order of truncation one gets good approximations of X(t); in other words,
approximations can be consider as fairly exact.

We perform another example of Airy’s random differential equation (21), but this time
the input random variables A, Y0 and Y1 will not be independent. Indeed, take a random
vector (A, Y0, Y1) that follows a multivariate Gaussian distribution, with mean vector and
covariance matrix

μ =

⎛

⎜
⎝

0.4
1
2

⎞

⎟
⎠ , 
 =

⎛

⎜
⎝

0.04 0.0001 –0.05
0.0001 1 0.5
–0.005 0.5 1

⎞

⎟
⎠ ,

respectively. In order for the hypotheses of Theorem 3.3 to be satisfied, we need to truncate
A (because the normal distribution is unbounded). Since A follows a normal distribution
with mean μA = 0.4 and variance σ 2

A = 0.04, the interval [μA – 3σA,μA + 3σA] = [–0.2, 1]



Calatayud et al. Advances in Difference Equations        (2018) 2018:392 Page 18 of 29

Table 4 Approximation of the expectation of the solution stochastic process. Example 4.1, assuming
dependent random data

t E[X15(t)] E[X16(t)] Dishonest MC 50,000 MC 100,000

0.00 1 1 1 1.00287 1.00114
0.25 1.50619 1.50619 1.49870 1.50202 1.50134
0.50 1.98755 1.98755 1.98750 1.99129 1.99168
0.75 2.45120 2.45120 2.45102 2.45529 2.45678
1.00 2.86893 2.86893 2.86818 2.87321 2.87583
1.25 3.23538 3.23538 3.21339 3.22008 3.22386
1.50 3.46485 3.46485 3.45812 3.46878 3.47374
1.75 3.58966 3.58966 3.57340 3.59290 3.59902
2.00 3.56817 3.56817 3.53286 3.57032 3.57755

Table 5 Approximation of the variance of the solution stochastic process. Example 4.1, assuming
dependent random data

t V[X15(t)] V[X16(t)] MC 50,000 MC 100,000

0.00 1 1 1.01144 1.00603
0.25 1.31128 1.31128 1.32213 1.31611
0.50 1.75161 1.75161 1.73855 1.73153
0.75 2.22370 2.22370 2.22680 2.21842
1.00 2.72094 2.72094 2.73668 2.72659
1.25 3.06515 3.06515 3.20829 3.19619
1.50 3.57031 3.57031 3.58843 3.57424
1.75 3.83591 3.83590 3.85507 3.83916
2.00 4.02095 4.02100 4.04117 4.02478

Table 6 Approximation of Cov[A(t), Ẋ(t)] and Cov[B(t),X(t)] via accurate truncations Ẋ16(t) and X16(t),
respectively. Example 4.1, assuming dependent random data

t Cov[A(t), Ẋ16(t)] Cov[B(t),X16(t)]

0.00 0 0
0.25 0 –0.00106042
0.50 0 –0.00177052
0.75 0 –0.00618508
1.00 0 –0.0173
1.25 0 –0.0509053
1.50 0 –0.0858552
1.75 0 –0.161068
2.00 0 –0.276206

contains 99.7% of the observations of A. Thus, the multivariate Gaussian distribution will
be truncated to [–0.2, 1] ×R×R.

In Tables 4 and 5, we present the numerical experiments. We use truncation (14) with
N = 15 and N = 16, the dishonest method and Monte Carlo simulation.

Once again, convergence has been achieved quite quickly compared with Monte Carlo
simulation. The results obtained are more accurate than via the dishonest method and
Monte Carlo simulation. Nonetheless, the accuracy of the dishonest method is remarkable
again, particularly in the time interval t ∈ [0, 1], although not as good as in the previous
case (see Table 1). In Table 6, we show approximations of the covariances Cov[A(t), Ẋ(t)]
and Cov[B(t), X(t)]. These covariances are small, especially for small t, which explains the
good approximation of the expectation via the dishonest method.

As an application of the error estimates studied in Sect. 3.6, we estimate for which in-
dex Nε the error obtained in the approximation of E[X(t)] via E[XN (t)] is smaller than
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ε = 0.00001. Take t = 1 and r = 2. Let, for instance, s = 1.5. In both cases in this exam-
ple (assuming independent and dependent random data), we have Cr = r‖A‖L∞(�). Since
‖A‖L∞(�) = 1 (recall that in the two cases considered throughout this example, the re-
alizations A(ω), ω ∈ �, of the random variable A lie either in [0, 1] or in [–0.2, 1], thus
being less than 1), we take Cr = r = 2. From these values, the least n0 such that (18) holds
for all n ≥ n0 is n0 = 7 (this value is obtained by plotting the left-hand side of (18) and
looking at the point n0 from which the graph is less than 1). Then, from (13), M = M8 =
max0≤m≤8 Hmsm = 2024.49. Finally, using (19), one gets Nε = 10. For N ≥ Nε = 10, it holds
|E[XN (t)] – E[X(t)]| < 0.00001.

Now, given ε = 0.00001, we obtain an Nε such that |V[XN (t)] – V[X(t)]| < ε at t = 1 for
every N ≥ Nε . We use the ideas and notation from Sect. 3.6. We have t = 1, ρ = 1, r = 2 and
s = 1.5. We saw that M = 2024.49. Then γ = M/(1 – ρ/s) = 6073.47. Recall that we could
choose β equal to γ or, for a tighter bound, use Tables 1 and 4. We see that |E[X(t)]| ≤
2.869 =: β . From these values, we obtain δ = 8.22638 · 10–10. Finally, choose Nδ so that
‖XN (1) – X(1)‖L2(�) < δ. Use formula (19) (with δ instead of ε) to get Nδ = 73. Thus, for
N ≥ 73, the inequality |V[XN (t)] – V[X(t)]| < 0.00001 holds for sure.

Example 4.2 (Hermite’s random differential equation) Hermite’s random differential
equation is defined as follows:

⎧
⎪⎪⎨

⎪⎪⎩

Ẍ(t) – 2tẊ(t) + AX(t) = 0, t ∈R,

X(0) = Y0,

Ẋ(0) = Y1,

(22)

where A, Y0 and Y1 are random variables.
In [3], the moments of A are controlled as E[|A|n] ≤ HRn, n ≥ n0, to prove the existence

of a mean square analytic solution to random initial value problem (22). As we saw in
Sect. 3.3, this hypothesis reduces to ‖A‖L∞(�) ≤ R.

If E[|A|n] ≤ HRn, n ≥ n0 (that is, ‖A‖L∞(�) ≤ R), we are under the assumptions of The-
orem 3.3. Indeed, in the notation of Theorem 3.3, A1 = –2, An = 0 for all n �= 1, B0 = A and
Bn = 0 for every n �= 0. For a fixed and finite r > 0 and t0 = 0, we have ‖A1‖L∞(�) ≤ Cr/r1 and
‖B0‖L∞(�) ≤ Cr/r0 = Cr , being Cr = max{2r,‖A‖L∞(�)} for example. Then X(t) =

∑∞
n=0 Xntn

defined as in Theorem 3.3 is an analytic solution to (22) in (–r, r). Again, as r > 0 is arbi-
trary, X(t) =

∑∞
n=0 Xntn is a mean square analytic solution stochastic process to random

initial value problem (22) in R.
As in [3], let A ∼ Normal(μ = 5,σ 2 = 1) and Y0, Y1 independent random variables such

that Y0 ∼ Normal(1, 1) and Y1 ∼ Normal(2, 1). In this case, since the normal distribution
is unbounded, it does not fulfill the hypotheses, therefore we need to truncate it: in [3]
it has been truncated to the interval [μ – 3σ ,μ + 3σ ] = [2, 8], which contains approxi-
mately 99.7% of the observations of a Gaussian random variable. Tables 7 and 8 simulate
the results obtained in [3]. In Table 7 we show, for distinct values of t, E[XN (t)] for N = 15
and N = 16, the corresponding approximation obtained via the dishonest method and
Monte Carlo simulations with samples of size 50,000 and 100,000. In Table 8 we present,
for distinct values of t, V[XN (t)] for N = 15 and N = 16 and Monte Carlo simulations with
samples of size 50,000 and 100,000. As it occurred in the previous example, convergence
has been achieved for small N . In Table 9, we show approximations of the covariances
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Table 7 Approximation of the expectation of the solution stochastic process. Example 4.2

t E[X15(t)] E[X16(t)] Dishonest MC 50,000 MC 100,000

0.00 1 1 1 0.99750 0.99919
0.25 1.32907 1.32907 1.32889 1.32619 1.32703
0.50 1.26473 1.26473 1.26175 1.26351 1.26219
0.75 0.74510 0.74510 0.72906 0.74737 0.74316
1.00 –0.27157 –0.27157 –0.32467 –0.26484 –0.27144
1.25 –1.80636 –1.80635 –1.93991 –1.79597 –1.80237
1.50 –3.85882 –3.85868 –4.13681 –3.84872 –3.84906
1.75 –6.40911 –6.40754 –6.90081 –6.40873 –6.39186
2.00 –9.43553 –9.42222 –10.1448 –9.46498 –9.41066

Table 8 Approximation of the variance of the solution stochastic process. Example 4.2

t V[X15(t)] V[X16(t)] MC 50,000 MC 100,000

0.00 1 1 0.98671 1.00327
0.25 0.77433 0.77433 0.76716 0.77821
0.50 0.37752 0.37752 0.37822 0.37992
0.75 0.54181 0.54181 0.53554 0.54357
1.00 2.10396 2.10396 2.06444 2.10993
1.25 5.48674 5.48670 5.40047 5.50378
1.50 10.4476 10.4467 10.3456 10.4828
1.75 18.0186 18.0108 17.9539 18.0963
2.00 43.5731 43.6462 43.5773 44.1340

Table 9 Approximation of Cov[A(t), Ẋ(t)] and Cov[B(t),X(t)] via accurate truncations Ẋ16(t) and X16(t),
respectively. Example 4.2

t Cov[A(t), Ẋ16(t)] Cov[B(t),X16(t)]

0.00 0 0
0.25 0 –0.0345004
0.50 0 –0.145742
0.75 0 –0.322733
1.00 0 –0.515142
1.25 0 –0.612961
1.50 0 –0.403919
1.75 0 0.522644
2.00 0 3.0078

Cov[A(t), Ẋ(t)] and Cov[B(t), X(t)] to understand better the accuracy of the dishonest
method.

Example 4.3 (Random linear differential equation with polynomial data processes) Let us
consider more complex data processes in our random differential equation (1). The data
stochastic processes will be random polynomials. For example,

⎧
⎪⎪⎨

⎪⎪⎩

Ẍ(t) + (A0 + A1t)Ẋ(t) + (B0 + B1t)X(t) = 0, t ∈R,

X(0) = Y0,

Ẋ(0) = Y1,

(23)

where A0 = 4, A1 ∼ Uniform(0, 1), B0 ∼ Gamma(2, 2), B1 ∼ Bernoulli(0.35), Y0 = –1 and
Y1 ∼ Binomial(2, 0.29) are assumed to be independent. In order for the hypotheses of The-
orem 3.3 to be satisfied, the gamma distribution will be truncated. For the gamma distri-



Calatayud et al. Advances in Difference Equations        (2018) 2018:392 Page 21 of 29

Table 10 Approximation of the expectation of the solution stochastic process. Example 4.3

t E[X19(t)] E[X20(t)] Dishonest MC 50,000 MC 100,000

0.00 –1 –1 –1 –1 –1
0.25 –0.886467 –0.886467 –0.886418 –0.886789 –0.886432
0.50 –0.809269 –0.809269 –0.808743 –0.809370 –0.809219
0.75 –0.747589 –0.747589 –0.745742 –0.747321 –0.747526
1.00 –0.693453 –0.693453 –0.689284 –0.692816 –0.693375
1.25 –0.643943 –0.643944 –0.636462 –0.642985 –0.643845
1.50 –0.598053 –0.598082 –0.586360 –0.596854 –0.597952

Table 11 Approximation of the variance of the solution stochastic process. Example 4.3

t V[X15(t)] V[X16(t)] MC 50,000 MC 100,000

0.00 0 0 0 0
0.25 0.0102077 0.0102074 0.0101172 0.0102664
0.50 0.0190996 0.0190999 0.0189214 0.0192053
0.75 0.0237400 0.0237403 0.0235191 0.0238499
1.00 0.0268721 0.0268711 0.0266311 0.0269620
1.25 0.0297852 0.0297465 0.0295049 0.0298201
1.50 0.0333309 0.0325867 0.0325021 0.0328009

bution with shape and rate 2, it can straightforwardly be checked that the interval [0, 4]
contains approximately 99.7% of the observations.

By Theorem 3.3, the mean square solution of (23) can be written as a random power
series X(t) =

∑∞
n=0 Xntn that is mean square convergent for all t ∈R.

In Tables 10 and 11, the numerical experiments for the expectation and variance are
presented.

Example 4.4 (Random linear differential equation with infinite series data processes) In
this example, the data stochastic processes in the random differential equation (1) are
non-polynomial analytic stochastic process:

⎧
⎪⎪⎨

⎪⎪⎩

Ẍ(t) + A(t)Ẋ(t) + B(t)X(t) = 0, t ∈R,

X(0) = Y0,

Ẋ(0) = Y1,

(24)

where An ∼ Beta(11, 15) for n ≥ 0, Bn = 1/n2, for n ≥ 1, and Y0 ∼ Poisson(2) and Y1 ∼
Uniform(0, 1) are assumed to be independent. We have E[An] = 11/26 and V[An] =
55/6084, therefore ‖An‖L2(�) =

√
V[An] + E[An]2 = 0.12908, n ≥ 0. Then

∞∑

n=0

‖An‖L2(�)tn = 0.12908
∞∑

n=0

tn,

which is convergent for t ∈ (–1, 1). On the other hand,

∞∑

n=0

‖Bn‖L2(�)tn =
∞∑

n=1

1
n2 tn,

which is convergent for t ∈ (–1, 1) as well. Therefore, the maximum r, that we can take so
that the random differential equation (24) makes sense, is r = 1.
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Table 12 Approximation of the expectation of the solution stochastic process. Example 4.4,
assuming independent initial conditions

t E[X16(t)] E[X17(t)] Dishonest MC 50,000 MC 100,000

0.00 2 2 2 2.01406 1.99858
0.25 2.11267 2.11267 2.11266 2.12676 2.11130
0.50 2.17662 2.17662 2.17654 2.19050 2.17531
0.75 2.15693 2.15693 2.15675 2.17021 2.15573

Table 13 Approximation of the variance of the solution stochastic process. Example 4.4, assuming
independent initial conditions

t V[X17(t)] V[X18(t)] MC 50,000 MC 100,000

0.00 2 2 2.00274 2.00822
0.25 1.99421 1.99421 1.99725 2.00356
0.50 1.93408 1.93408 1.93725 1.94407
0.75 1.76917 1.76919 1.77222 1.77899

Since |An(ω)| ≤ 1 for all ω ∈ �, |Bn| ≤ 1 and r = 1, we can take Cr = 1 in Theorem 3.3 and
the hypotheses hold. By Theorem 3.3, the mean square solution of (24), X(t), is defined
and is mean square analytic on (–1, 1).

In Tables 12 and 13 we present the numerical experiments. To apply the dishonest
method, we need the following two computations:

E
[
A(t)

]
=

11
26

∞∑

n=0

tn =
11

26(1 – t)
, t ∈ (–1, 1)

and

E
[
B(t)

]
=

∞∑

n=1

tn

n2 , t ∈ (–1, 1).

To apply Monte Carlo simulation, we need realizations of the stochastic process A(t),
that is, realizations of the random variables A0, A1, . . . . As we cannot obtain infinite realiza-
tions of a beta distribution in the computer, we will approximate A(t,ω) ≈∑100

n=0 An(t,ω)tn.
So, from realizations of A0, . . . , A100, we will obtain an approximation of a realization of
A(t).

By contrast, our approximations using truncation XN (t), t ∈ (–1, 1), do not require real-
izations of the infinite data stochastic process A(t).

As it is observed in Tables 12 and 13, the convergence has been practically achieved for
N = 17.

As an application of the error estimates analyzed in Sect. 3.6, we estimate for which
index Nε the error obtained in the approximation of E[X(t)] via E[XN (t)] is smaller than
ε = 0.00001. Take t = 0.25 and, for instance, s = 0.5. We have r = 1 and Cr = 1, and from
these values we obtain the least n0 such that (18) holds for all n ≥ n0 by trial and error.
We obtain n0 = 0. From (13), M = M1 = max{H0, H1s} = max{‖Y0‖L2(�),‖Y1‖L2(�) · 0.5} =
max{√6, 1/(2

√
3)} =

√
6, whence Nε = 18 by using (19).

Now we bound the error made when approximating the variance. Given an error ε =
0.00001, we obtain an Nε such that |V[XN (t)] – V[X(t)]| < ε at the point t = 0.25 for all
N ≥ Nε . We use the ideas and notation from Sect. 3.6. We have t = 0.25, ρ = 0.25, r = 1
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Table 14 Approximation of the expectation of the solution stochastic process. Example 4.4,
assuming dependent initial conditions

t E[X15(t)] E[X16(t)] Dishonest MC 50,000 MC 100,000

0.00 0.87 0.87 0.87 0.866780 0.869210
0.25 0.973828 0.973828 0.973819 0.970205 0.973499
0.50 1.04817 1.04817 1.0481 1.04427 1.04823
0.75 1.07358 1.07358 1.0734 1.06961 1.07394

Table 15 Approximation of the variance of the solution stochastic process. Example 4.4, assuming
dependent initial conditions

t V[X14(t)] V[X15(t)] MC 50,000 MC 100,000

0.00 0.617700 0.617700 0.616645 0.621350
0.25 0.574373 0.574373 0.574355 0.577586
0.50 0.553754 0.553754 0.554522 0.556844
0.75 0.525683 0.525704 0.526991 0.528727

and s = 0.5. We computed M =
√

6, whence γ = M/(1 – ρ/s) = 4.89898. Recall that we
could choose β equal to γ or, for a tighter bound, use Table 12. In Table 12, we see that
|E[X(0.25)]| ≤ 2.113 =: β . From these values, δ = 7.13065 · 10–7. To end up, pick Nδ such
that ‖XN (0.25) – X(0.25)‖L2(�) < δ. Using expression (19) (with δ instead of ε), we get Nδ =
22. Thereby, |V[XN (0.25)] – V[X(0.25)]| < 0.00001 for N ≥ 22.

We perform another example for the random initial value problem (24), again with
An ∼ Beta(11, 15) for n ≥ 0, Bn = 1/n2 for n ≥ 1, but now the random vector (Y0, Y1) fol-
lows a multinomial distribution with three repetitions and probabilities 0.29 and 0.15. The
random variables/vectors A0, A1, . . . and (Y0, Y1) are independent, but, obviously, Y0 and
Y1 are not independent. Again, the solution stochastic process X(t) is defined on (–1, 1).

In Tables 14 and 15, we show the numerical experiments. Convergence has been prac-
tically achieved.

Example 4.5 (An application of the truncation method and Monte Carlo simulation to
modeling) In order to see a real application of our theoretical development, let us fit data
that describe the fish weight growth over the time via a random second order linear differ-
ential equation. In Fig. 1, we show the fish weight in lbs (vertical axis) per year (horizontal
axis). The fish weight datum at the ith year will be denoted by wi for 1 ≤ i ≤ 33.

These data were previously used in [5], where a randomized Bernoulli differential equa-
tion was used, taking as reference the Bertalanffy model [34, p. 331].

Let W be the stochastic process that models the fish weight. The random variable W (t)
models the fish weight at year t, 1 ≤ t ≤ 33. Since W (t) is a positive random variable, we
will work with X(t) = log(W (t)) instead. The observed data become log(w1), . . . , log(w33).
We use the random initial value problem

⎧
⎪⎪⎨

⎪⎪⎩

Ẍ(t) + A0Ẋ(t) + (B0 + B1t)X(t) = 0, t ∈R,

X(0) = Y0,

Ẋ(0) = Y1

(25)

to model the logarithm of the fish weight growth. The stochastic processes A(t) = A0 and
B(t) = B0 + B1t have been chosen by numerical fit trials and computational viability. Notice
that (25) is a generalization of Airy’s random differential equation from Example 4.1.
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Figure 1 Data on fish weights. In the horizontal axis, we represent the years, from 1 to 33. In the vertical axis,
we represent the weights in lbs

Using the data drawn in Fig. 1, we would like to find the best random variables A0, B0,
B1, Y0 and Y1 so that W (t) fits appropriately the uncertainty associated to the fish weight
growth. Since we do not have an explicit solution process X, we will use truncation (14),
XN (t), to approximate it in the L2(�) sense. Using the truncation with a high N , we will be
able to give a suitable distribution for (A0, B0, B1, Y0, Y1).

There are two statistical approaches to dealing with this problem: the frequentist and the
Bayesian techniques. Reference [25] provides an introduction to Bayesian statistics. We do
not carry out a Bayesian approach, because XN (t) has a very large expression, which makes
the use of Bayesian estimation impracticable in the computer. Thereby, we use the ideas
of the so-called inverse frequentist technique for parameter estimation exhibited in [5]
and [35, Chap. 7]. In order not to depart from our reasoning, we will explain our concrete
frequentist approach in Remark 4.6 at the end of this example.

Without entering into the theoretical details that will be explained in Remark 4.6, we
specify the steps to solve our modeling problem. Computational viability makes us choose
N = 24 as the order of truncation. We give the random vector (A0, B0, B1, Y0, Y1) a sixth
dimensional multinormal random distribution (in the end, it will be truncated so that the
hypotheses of Theorem 3.3 are fulfilled). The mean vector μ is determined as the solution
of the deterministic minimization problem

min
a0,b0,b1,y0,y1∈R

33∑

i=1

(
log(wi) – X24(ti|a0, b0, b1, y0, y1)

)2,

where X24(t|a0, b0, b1, y0, y1) corresponds to the value of X24(t) substituting A0, B0, B1, Y0

and Y1 by the real numbers a0, b0, b1, y0 and y1. This minimization problem can be solved
with the built-in function FindFit with the option Method -> NMinimize in Mathe-
matica®. We obtain

μ =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

0.169695
–0.0123653
0.000347771

–2.09309
0.672599

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

.
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Figure 2 Fit of the fish weight data. The blue points represent the real weights, the red points represent the
estimated weights (the mean) and the green lines cover a 95% confidence interval constructed with the
Gaussian rule [mean± 2 · standard deviation]

The covariance matrix 
 is estimated with σ 2(JT J)–1, where

σ 2 =
∑33

i=1(log(wi) – X24(ti|μ))2

33 – 5
= 0.00369358,

and J is the Jacobian matrix of X24(t) with respect to (A0, B0, B1, Y0, Y1) evaluated at μ. We
obtain


 =

⎛

⎜
⎜
⎝

0.000109461 –0.000010458 1.44986 · 10–7 –0.000645456 0.000435313
–0.000010458 2.47732 · 10–6 –7.94312 · 10–8 0.0000461867 –0.0000398354
1.44986 · 10–7 –7.94312 · 10–8 3.23082 · 10–9 –3.16049 · 10–7 5.53045 · 10–7

–0.000645456 0.0000461867 –3.16049 · 10–7 0.00624016 –0.00312264
0.000435313 –0.0000398354 5.53045 · 10–7 –0.00312264 0.00186506

⎞

⎟
⎟
⎠ .

Once we know the estimated distribution of the random vector (A0, B0, B1, Y0, Y1), we
know the distribution of X24(t), at least theoretically. The computational complexity of
X24(t) is very big, so computing its exact expectation or even good approximations of it is
nearly impossible. Due to the complexity of both the truncation expression and the dis-
tribution of (A0, B0, B1, Y0, Y1), it is better to perform Monte Carlo simulation directly on
(25) via simulations of (A0, B0, B1, Y0, Y1), which follows a (truncated) multivariate Gaus-
sian distribution (μ,
).

By means of Monte Carlo simulation with 100,000 iterates, we obtain samples of X(i),
i = 1, . . . , 33. Applying exponential, we have samples of W (i), i = 1, . . . , 33. Hence, approx-
imations of both E[W (i)] and V[W (i)] can be calculated. A confidence interval can be
computed in two ways: either considering [E[W (t)] ± 2

√
V[W (t)]] (this is based on how

confidence intervals are constructed in a Gaussian setting) or obtaining an accurate ap-
proximation using the quartiles of the sample produced by Monte Carlo. In Figs. 2 and 3,
the results are shown. As it is observed in both plots, the mean approximates well the real
data. However, the confidence interval grows as we move away from 0. Intuitively, this
may hold because a truncated random power series centered at t0 works better near t0.
This phenomenon may be resolved by making the order of truncation N larger and larger
(if the computer permits it).

Remark 4.6 (Frequentist technique used in Example 4.5) Let X be a random vector of size
n to be modeled (in our case, (log(W (1)), . . . , log(W (33)))). We set a model of the form
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Figure 3 Fit of the fish weight data. The blue points represent the real weights, the red points represent the
estimated weights (the mean) and the green lines cover a 95% confidence interval constructed by taking the
quartiles in the Monte Carlo sampling

X = f (V ), where V is a random vector with p components (in our case (A0, B0, B1, Y0, Y1))
that follows a multinormal distribution with parameters (μ,
), and f : Rp →R

n is a func-
tion, maybe non-linear (in our case, n = 33 and fi(a0, b0, b1, y0, y1) = X24(i|a0, b0, b1, y0, y1),
i = 1, . . . , 33, where X24(t|a0, b0, b1, y0, y1) is the truncation that approximates the solution
of the random differential equation). Let x = X(ω) be a vector realization of X (in our ex-
ample, the real data x = (log(w1), . . . , log(w33))). From x, we want to estimate the best μ and

 so that the model X = f (V ) can be considered correct. Let v̂ ∈R

p be the minimizer of

min
v∈Rp

n∑

i=1

(
xi – fi(v)

)2.

Using Taylor’s expansion,

X ≈ f (v̂) + Jf (v̂)(V – v̂),

where J stands for the Jacobian. Then

Z := X – f (v̂) + Jf (v̂)v̂ ≈ Jf (v̂)
︸︷︷︸

J

V .

We derive that Z ≈ Jμ+E, where E follows a multivariate normal distribution with param-
eters (0, J
JT ) (here T stands for the transpose matrix operator), i.e., E ∼ MN(0, J
JT ).
Write J
JT = PT DP, where P and D are an orthogonal and a diagonal matrix, respectively.
Multiplying by P, we have Z̄ ≈ J̄μ+ Ē, where Z̄ = PZ, J̄ = PJ and Ē = PE ∼ MN(0, D). There-
fore, Z̄ ≈ J̄μ + Ē is a classical linear model (see [32, Chap. 7], [35, Chap. 7]) with normal
and independent errors. In a linear model, one should assume homoscedasticity so that
the estimation of the parameters makes sense. Thus, we impose D = σ 2In, where σ 2 is the
variance of the errors in the linear model. As a consequence, Z̄ ≈ J̄μ + Ē is a classical lin-
ear model with homoscedasticity, and the estimations follow from general theory: μ̂ is the
minimizer of

min
μ∈Rp

‖z̄ – J̄μ‖2
2 = min

μ∈Rp
‖Pz – PJμ‖2

2 = min
μ∈Rp

‖z – Jμ‖2
2,
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where z = x – f (v̂) + J v̂ is the vector realization of Z, z̄ = Pz is the vector realization of Z̄
and ‖ · ‖2 is the Euclidean norm. Now,

‖z – Jμ‖2
2 =
∥
∥x –

(
f (v̂) + J(μ – v̂)

)∥
∥2

2 ≈ ∥∥x – f (μ)
∥
∥2

2,

so we can take μ̂ = v̂, which justifies our choice for the mean in the example. On the other
hand, by the general theory of linear models,

σ̂ 2 =
‖z̄ – J̄μ̂‖2

2
n – p

=
‖Pz – PJμ̂‖2

2
n – p

=
‖z – Jμ̂‖2

2
n – p

≈ ‖x – f (μ̂)‖2
2

n – p
.

Finally, from J
JT = PT DP = σ 2PT P = σ 2In, we derive 
 = σ 2(JT J)–1, by multiplying by
(JT J)–1JT to the left and by J(JT J)–1 to the right at both sides of the equality (we assume
rank(J) = p so that (JT J)–1 exists). Thus, we choose the estimator 
̂ = σ̂ 2(JT J)–1.

5 Conclusions
In this paper we have determined analytic stochastic processes that are solutions to the
random non-autonomous second order linear differential equation in the mean square
sense taking advantage of the powerful theory of random difference equations. After re-
viewing the Lp(�) random calculus and results concerning random power series (differ-
entiation of a random power series in the Lp(�) sense and Merten’s theorem for random
series in the mean square sense), we stated the main theorem of the paper, Theorem 3.3.
This theorem gives assumptions on the coefficient stochastic processes and on the random
initial conditions of a random non-autonomous second order linear differential equation,
so that there exists an analytic stochastic process that is a solution in the mean square
sense. This mean square approach permitted approximating the main statistical informa-
tion of the solution stochastic process, expectation and variance. These approximations
for the expectation and variance were compared with other methods previously used in
the literature: the dishonest method and Monte Carlo simulation.

The numerical examples presented illustrate the potentiality of our results. The exam-
ples show that our findings allow for much more complex random non-autonomous sec-
ond order linear differential equations than those from the existing literature. The ideas
of this paper permit dealing with any random non-autonomous second order linear dif-
ferential equation in a general form. The statistical information of the stochastic process
solution can be computed up to any degree of accuracy. These achievements have been
reached thanks to the powerful theory of difference equations.

Moreover, our truncation method provides a methodology to estimate the parameters
of the multivariate normally distributed explanatory random vector in the modeling of
real data via random non-autonomous second order linear differential equations. This
procedure together with Monte Carlo simulations gives fitting approximations of the real
data.

We mention that a future line of research could consist in extending our ideas to a
random non-autonomous linear differential equation of order higher than two using ap-
propriate results belonging to the theory of random difference equations. The extension
would require a more complex solution process than that given in Theorem 3.3, which, in
turn, would increase the computational expense when approximating accurately its main
statistical features.
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