

Data Paper

SLAM Project - Long Term Ecological Study of the Impacts of Climate Change in the Natural Forest of Azores: III - Testing the impact of edge effects in a native forest of Terceira Island

Paulo A. V. Borges^{‡,§}, Lucas Lamelas-López[‡], Noelline Tsafack^{‡,I}, Mário Boieiro^{‡,§}, Alejandra Ros-Prieto[‡], Rosalina Gabriel[‡], Rui Nunes[‡], Maria Teresa Ferreira^l

‡ cE3c - Centre for Ecology, Evolution and Environmental Changes / Azorean Biodiversity Group & CHANGE - Global Change and Sustainability Institute, University of the Azores, Faculty of Agricultural Sciences and Environment, Rua Capitão João D` Ávila, São Pedro, 9700-042, Angra do Heroísmo, Azores, Portugal

§ IUCN SSC Mid-Atlantic Islands Specialist Group, Angra do Heroísmo, Azores, Portugal

Regional Secretariat of Environment and Climate Change, Project LIFE BEETLES (LIFE 18 NAT/PT/000864), Rua do Galo n. 118, 9700-040, Angra do Heroísmo, Azores, Portugal

Corresponding author: Paulo A. V. Borges (paulo.av.borges@uac.pt)

Academic editor: Rui Elias

Received: 28 Apr 2022 | Accepted: 31 May 2022 | Published: 16 Jun 2022

Citation: Borges PAV, Lamelas-López L, Tsafack N, Boieiro M, Ros-Prieto A, Gabriel R, Nunes R, Ferreira MT (2022) SLAM Project - Long Term Ecological Study of the Impacts of Climate Change in the Natural Forest of Azores: III - Testing the impact of edge effects in a native forest of Terceira Island. Biodiversity Data Journal 10:

e85971. https://doi.org/10.3897/BDJ.10.e85971

Abstract

Background

The data we present are part of the long-term project "SLAM Project - Long Term Ecological Study of the Impacts of Climate Change in the Natural Forest of Azores" that started in 2012, aiming to understand the impact of biodiversity erosion drivers on Azorean native forests (Azores, Macaronesia, Portugal). The data for the current study consist in an inventory of arthropods collected in three locations of a native forest fragment at Terra-Brava protected area (Terceira, Azores, Portugal) aiming to test the impact of edge effects on Azorean arthropod communities. The three locations were: (i) the edge of the forest, closer to the pastures; (ii) an intermediate area (100 m from edge); and (iii) the deepest

[©] Borges P et al. This is an open access article distributed under the terms of the Creative Commons Attribution License (CC BY 4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

part of the native forest fragment (more than 300 m from edge). The study was carried out between June 2014 and December 2015. A total of nine passive flight interception SLAM (Sea, Land and Air Malaise) traps were deployed (three in each of the studied locations), during 18 consecutive months. This study provides the raw data to investigate temporal and edge effect variation for the Azorean arthropod communities.

New information

The collected arthropods belong to a wide diversity of taxonomic groups of Arachnida, Diplopoda, Chilopoda and Insecta classes. We collected a total of 13,516 specimens from which it was possible to identify to species level almost all specimens (13,504). These identified specimens belong to 15 orders, 58 families (plus three with only genus or family level identification) and 97 species of arthropods. A total of 35 species are considered introduced, 34 native non-endemic and 28 endemic. Additionally, a total of 10 taxa (12 specimens) were recorded at genus, family or order level. This dataset will allow researchers to test the impact of edge effect on arthropod biodiversity and to investigate seasonal changes in Azorean arthropod native forest communities.

Keywords

Arthropoda, Azores, edge effect, inventory, Macaronesia, temporal variation

Introduction

Arthropods are being affected by dramatic population declines and species extinctions worldwide (Sánchez-Bayo and Wyckhuys 2019, Cardoso et al. 2020, Harvey et al. 2020). One of the major causes for this biodiversity loss is the habitat destruction and degradation associated with replacement of native forest areas by other habitats, such as forest timber plantations, pasturelands etc. (e.g. Raven and Wagner 2021). These land use changes lead to habitat fragmentation by creating several isolated native forest patches of different size and morphology, thus leading to the exposure of forest-adapted biota to the conditions of the surrounding habitats, which is known as the "edge effect" (Murcia 1995). This interaction between two adjacent habitats (native forest and newly human-created habitat in this case) may have detrimental effects on the forest-adapted biotas due to changes in the biotic and abiotic conditions, mainly at the edges of the forest patches.

Oceanic islands have been especially affected by habitat degradation, as consequence of human colonisation (Triantis et al. 2010, Borges et al. 2019a, Borges et al. 2019b). In the Azores, the native habitats of the islands were strongly modified since Portuguese settlement starting in the 15th century, by replacing native and pristine forests with pasturelands, agricultural areas, exotic tree plantations (e.g. *Cryptomeria japonica* and *Eucalyptus* spp.) and urban areas. These major land-use changes actuated gradually in a gradient of elevation promoting the extinction of large-bodied beetle species (Terzopoulou

et al. 2015) and the an ongoing process of extinction debt for many more (Triantis et al. 2010). Currently, the original forests comprise only about 5% of the total surface of the islands and are restricted to the most inaccessible areas (Gaspar et al. 2008, Triantis et al. 2010, Rego et al. 2015, Norder et al. 2020).

Some studies revealed a higher species richness and abundance of arthropods in the forest edges, which could have implications on the re-colonisation of adjacent altered habitats (Jokimäki et al. 1998, Magura 2002). Studies about Azorean arthropods have shown that the endemic species are mainly restricted to native forests and introduced species are more frequently detected in anthropogenic habitats, given their higher adaptability to the conditions of the newly-created habitat (Cardoso et al. 2009, Florencio et al. 2015, Florencio et al. 2016). The impact of invasive plants species is the major threat to endemic and native species in the native forest areas (Borges et al. 2019b) and their deleterious effects are probably more severe at the edges of the forests patches (Borges et al. 2006).

This publication is the seventh of a long-term monitoring project that started in the Azores in 2012 (SLAM Project - Long Term Ecological Study of the Impacts of Climate Change in the Natural Forest of Azores). The project was described in detail in Costa and Borges (2021) as a data-paper, but the first outputs were published earlier to test several ecological questions (see Borges et al. 2017, Matthews et al. 2018, Borges et al. 2020, de Vries et al. 2021). More recentlly, another data-paper was published investigating the occurrence of exotic and endemic arthropods in exotic and mixed forests and small disturbed remnants of native forests (Borges et al. 2022).

General description

Purpose: The current study is the third data-paper of the series and provides data from arthropod communities from Terra-Brava pristine native forest fragment (Terceira Island, Azores, Portugal) that will be useful to investigate: i) the impact of edge effects on biodiversity of arthropod communities from Terra-Brava pristine native forest and ii) seasonal changes in arthropod species richness and composition. In addition, the use of three replicate SLAM traps per (micro)habitat will be important to assess sampling completeness, perform sensitivity analyses and to support a cost-effective sampling design.

Additional information: The data we present are part of the long-term project "SLAM Project - Long Term Ecological Study of the Impacts of Climate Change in the Natural Forest of Azores" that started in 2012, aiming to understand the impact of biodiversity erosion drivers on Azorean native forests (Azores, Macaronesia, Portugal). The current study includes new sampling areas in the native forests of Terceira Island and contributes with novel data that will be of paramount importance to obtain information about the native communities of arthropods across gradients of temporal and edge effects variation. Additionally, the samples collected in the most pristine areas contributed to the publication of Matthews et al. (2018) in testing the capacity of one single trap to capture relevant

ecological properties (e.g. species composition, distribution of abundance) of the sampled communities. In two previous data papers, the project was described in detail and spider data were provided for several plots in Terceira and Pico Islands (Costa and Borges 2021) and the occurrence of exotic and endemic arthropods in exotic and mixed forests and small disturbed remnants of native forests was also investigated (Borges et al. 2022).

Project description

Title: SLAM Project III - Testing the impact of edge effects in native forests

Personnel: The project was conceived and led by Paulo A.V. Borges.

Fieldwork: Paulo A. V. Borges, Rui Nunes.

Parataxonomists: Alejandra Ros-Prieto, David Rodilla Rivas, Juan Ignacio Pitarch Peréz, Laura Cáceres Sabater, Laura Gallardo, Marija Tomašić, Percy de Laminne de Bex, Rui Carvalho, William Razey.

Taxonomists: Paulo A. V. Borges.

Voucher specimen management was mainly undertaken by Alejandra Ros-Prieto and Paulo A. V. Borges.

Figure 1. doi
Terra-Brava Forest fragment on Terceira Island (Azores, Portugal) (Credit: Paulo A. V. Borges).

Study area description: The study area comprises a fragment of the native forest "Terra-Brava" (Fig. 1) with an area of 180 ha located in the interior of Terceira Island (coordinates: 38°43'17"; -27°13'14") (Fig. 2), in the Azores Archipelago. The elevation ranges between 600 and 780 m a.s.l. This native forest fragment is pristine and covered by native vegetation, dominated by three endemic trees: *Laurus azorica* (Seub.) Franco (Laurales, Lauraceae), *Ilex azorica* Gand. (Aquifoliales, Aquifoliaceae) and *Juniperus brevifolia*

(Hochst. ex Seub.) Antoine (Pinales, Cupressaceae). The forest type of this forest fragment was classified by Elias et al. (2016) as "Juniperus-Ilex montane forests" that, in addition to a dominance of *J. brevifolia* and *I. azorica*, are characterised also by the presence of *L. azorica* at high densities and a dense cover of bryophytes and ferns in all substrates (Fig. 3). The shrub layer is dominated by the endemic species *Myrsine retusa* Aiton (Ericales, Myrsinaceae) and *Vaccinium cylindraceum* Sm. (Ericales, Ericaceae).

Figure 2. doi
Location of Terra-Brava within Terceira Island, Azores (Credit: Paulo A. V. Borges).

Figure 3. doi
Terra-Brava dense carpet of bryophytes and ferns (Credit: Paulo A. V. Borges).

In general, the climate of the Archipelago is temperate oceanic, with frequent and abundant precipitation, high high relative humidity and persistent winds, mainly during the winter and autumn seasons.

Design description: A total of nine SLAM (Sea, Land and Air Malaise) traps (Fig. 4) were deployed in the Terra-Brava native forest fragment: (i) three were set at the edge of the forest, closer to the pastures; (ii) three in an intermediate area (100 m from edge); and (iii) three in the deepest part of the native forest fragment (more than 300 m from edge) (Table 1). The trap samples were collected each month, during 18 consecutive months (from June 2014 to December 2015).

Figure 4. doi SLAM Trap (Sea, Land and Air Malaise trap) (Credit: Paulo A. V. Borges).

Table 1.

List of the nine sampled sites in the native forest fragment of "Terra-Brava", in Terceira Island (Azores), between June 2014 and December 2015. Information is given about site location, site code, elevation (in metres) and decimal coordinates (Latitude and Longitude).

Site location	Site code	Elevation	Latitude	Longitude
Edge	TER-NFTB-T-18_Edge-A	650	38.73276	-27.19681
Edge	TER-NFTB-T-18_Edge-B	660	38.73232	-27.19657
Edge	TER-NFTB-T-18_Edge-C	660	38.73243	-27.19576
100 m inside	TER-NFTB-T-18_Original	670	38.73206	-27.1972

Site location	Site code	Elevation	Latitude	Longitude
100 m inside	TER-NFTB-T-18_Centre	680	38.73235	-27.19798
100 m inside	TER-NFTB-T-18_Top	680	38.73272	-27.19827
300 m inside	TER-NFTB-T-18_Deep-A	680	38.7327	-27.20035
300 m inside	TER-NFTB-T-18_Deep-B	690	38.73227	-27.20012
300 m inside	TER-NFTB-T-18_Deep-C	700	38.73189	-27.19981

Funding: A large number of students financed by the EU Programmes ERASMUS and EURODYSSÉE sorted the samples prior to species assignment. This manuscript was also partly financed by Portuguese FCT-NETBIOME –ISLANDBIODIV grant 0003/2011 (between 2012 and 2015), Portuguese National Funds, through FCT – Fundação para a Ciência e a Tecnologia, within the project UID/BIA/00329/2013-2020 and AZORESBIOPORTAL –PORBIOTA (ACORES-01-0145-FEDER-000072) (2019). The Natural Park of Terceira provided the necessary authorisation for arthropod sampling (Licence CCPI 006/2014). The database management and Open Access was funded by Fundação para a Ciência e a Tecnologia (FCT) through project "MACRISK-Trait-based prediction of extinction risk and invasiveness for Northern Macaronesian arthropods" - PTDC/BIA-CBI/0625/2021 (2022-2024).

Sampling methods

Sampling description: The data collection was performed using passive flight interception SLAM traps (Sea, Land and Air Malaise trap) (Fig. 4). Trap size is approximately $110 \times 110 \times 1$

Quality control: All sampled individuals were first sorted by trained paratoxonomists (see list above). All specimens were allocated to a taxonomic species by Paulo A. V. Borges. Juveniles are also included in the data presented in this paper since the low species diversity in the Azores allowed a relatively precise identification of this life-stage.

Step description: At the laboratory, specimen sorting and arthropod identification followed standard procedures. A combination of somatic characters and reproductive structure was used for species identification. A reference collection was made for all collected specimens by assigning them a morphospecies code number and depositing them at the Dalberto Teixeira Pombo Insect Collection, University of Azores. Colonisation status for each

identified species is based on Borges et al. (2010) (END -Endemic; NAT - native non-endemic; INT -introduced).

Geographic coverage

Description: Terra-Brava native forest fragment of Terceira Island, in the Azores Archipelago (Portugal).

Coordinates: 38°44'0.47" and 38°48'50.4" Latitude; 27°11'0.99"W and 27°13'20.66" Longitude.

Taxonomic coverage

Description: The following Arthropod Classes and Orders are covered:

Arachnida: Araneae; Opiliones; Pseudoscorpiones.

Chilopoda: Lithobiomorpha.

Diplopoda: Chordeumatida, Julida.

Insecta: Archaeognatha; Blattodea; Coleoptera; Hemiptera; Neuroptera; Orthoptera;

Psocodea; Thysanoptera; Trichoptera.

Taxa included:

Rank	Scientific Name	Common Name
phylum	Arthropoda	Arthropods

Temporal coverage

Data range: 2014-6-11 - 2015-12-14.

Notes: Samples were taken monthly.

Collection data

Collection name: Entomoteca Dalberto Teixeira Pombo (DTP); University of Azores

Collection identifier: DTP

Specimen preservation method: All specimens were preserved in 96% ethanol.

Curatorial unit: Curator: Paulo A. V. Borges

Usage licence

Usage licence: Creative Commons Public Domain Waiver (CC-Zero)

Data resources

Data package title: Monthly monitoring of Azorean forest arthropods testing for edge

effects (Terceira Island, Azores, Portugal)

Resource link: http://ipt.gbif.pt/ipt/resource?r=slam edge&v=1.3

Alternative identifiers: https://doi.org/10.15468/k84m4e

Number of data sets: 2

Data set name: Event Table

Character set: UTF-8

Download URL: http://ipt.gbif.pt/ipt/resource?r=slam_edge&v=1.3

Data format: Darwin Core Archive format

Data format version: Version 1.3

Description: The dataset was published in Global Biodiversity Information Facility platform, GBIF (Borges and Lamelas-López 2022). The following data table includes all the records for which a taxonomic identification of the species was possible. The dataset submitted to GBIF is structured as a sample event dataset that has been published as a Darwin Core Archive (DwCA), which is a standardised format for sharing biodiversity data as a set of one or more data tables. The core data file contains 158 records (eventID). This GBIF IPT (Integrated Publishing Toolkit, Version 2.5.6-rd6f172f) archives the data and thus serves as the data repository. The data and resource metadata are available for download in the Portuguese GBIF Portal IPT (Borges and Lamelas-López 2022).

Column label	Column description
eventID	Identifier of the events, unique for the dataset.
stateProvince	Name of the region of the sampling site.
islandGroup	Name of archipelago.
island	Name of the island.
country	Country of the sampling site.
countryCode	ISO code of the country of the sampling site.
municipality	Municipality of the sampling site.

decimalLatitude	The geographic latitude (in decimal degrees, using the spatial reference system given in geodeticDatum) of the geographic centre of a Location.
decimalLongitude	The geographic longitude (in decimal degrees, using the spatial reference system given in geodeticDatum) of the geographic centre of a Location.
geodeticDatum	The ellipsoid, geodetic datum or spatial reference system (SRS) upon which the geographic coordinates given in decimalLatitude and decimalLongitude are based.
coordinateUncertaintyInMetres	Uncertainty of the coordinates of the centre of the sampling plot in metres.
coordinatePrecision	A decimal representation of the precision of the coordinates given in the decimalLatitude and decimalLongitude.
georeferenceSources	A list (concatenated and separated) of maps, gazetteers or other resources used to georeference the Location, described specifically enough to allow anyone in the future to use the same resources.
locationID	Identifier of the location.
locality	Name of the locality.
IocationRemarks	Additional information about the locality.
minimumElevationInMetres.	The lower limit of the range of elevation (altitude, usually above sea level), in metres.
habitat	The habitat of the sample.
year	Year of the event.
sampleSizeUnit	The unit of the sample size value.
eventDate	Date or date range the record was collected.
sampleSizeValue	The numeric amount of time spent in each sampling.
verbatimEventDate	The verbatim original representation of the date and time information for an Event. In this case, we use the season and year.
samplingProtocol	The sampling protocol used to capture the species.

Data set name: Occurrence Table

Character set: UTF-8

Download URL: http://ipt.gbif.pt/ipt/resource?r=slam_edge&v=1.3

Data format: Darwin Core Archive format

Data format version: Version 1.3

Description: The dataset was published in Global Biodiversity Information Facility platform, GBIF (Borges and Lamelas-López 2022). The following data table includes all the records for which a taxonomic identification of the species was possible. The

dataset submitted to GBIF is structured as an occurrence table that has been published as a Darwin Core Archive (DwCA), which is a standardised format for sharing biodiversity data as a set of one or more data tables. The core data file contains 2779 records (occurrenceID). This GBIF IPT (Integrated Publishing Toolkit, Version 2.5.6-rd6f172f) archives the data and thus serves as the data repository. The data and resource metadata are available for download in the Portuguese GBIF Portal IPT (Borges and Lamelas-López 2022).

Column label	Column description
eventID	Identifier of the events, unique for the dataset.
type	Type of the record, as defined by the Public Core standard.
licence	Reference to the licence under which the record is published.
institutionID	The identity of the institution publishing the data.
institutionCode	The code of the institution publishing the data.
collectionID	The identity of the collection publishing the data.
collectionCode	The code of the collection where the specimens are conserved.
basisOfRecord	The nature of the data record.
occurrenceID	Identifier of the record, coded as a global unique identifier.
recordedBy	A list (concatenated and separated) of names of people, groups or organisations who performed the sampling in the field.
identifiedBy	A list (concatenated and separated) of names of people, groups or organisations who performed the sampling in the field.
dateIdentified	The date on which the subject was determined as representing the Taxon.
individualCount	A number or enumeration value for the quantity of organisms.
organismQuantityType	The type of quantification system used for the quantity of organisms.
lifeStage	The life stage of the organisms captured.
sex	The sex and quantity of the individuals captured.
scientificName	Complete scientific name including author and year.
scientificNameAuthorship	Name of the author of the lowest taxon rank included in the record.
kingdom	Kingdom name.
phylum	Phylum name.
class	Class name.
order	Order name.
family	Family name.
genus	Genus name.

specificEpithet	Specific epithet.
infraspecificEpithet	Infrapecific epithet.
taxonRank	Lowest taxonomic rank of the record.
establishmentMeans	The process of establishment of the species in the location, using a controlled vocabulary: in the GBIF database, we used the Borges et al. (2010) original classification: 'native', 'introduced', 'endemic'.
identificationRemarks	Information about morphospecies identification (code in Dalberto Teixeira Pombo Collection).

Additional information

We collected a total of 13,516 specimens 13,504 of which were identified to species (Table 2). These identified specimens belong to 15 orders, 58 families (plus three with only genus or family level identification) and 97 species of arthropods. A total of 35 species are considered introduced, 34 native non-endemic and 28 endemic (Table 2). Additionally, a total of 10 taxa (12 specimens) were recorded at genus, family or order level (see Table 2).

Table 2.

Inventory of arthropod species collected in the native forest fragment of "Terra-Brava", in Terceira Island (Azores), between June 2014 and December 2015. The list includes individuals identified at species-level and also morphospecies. Class, order, family, scientific name, morphospecies code (MF), colonisation status (CS: END – endemic; NAT – native non-endemic; INT – introduced;) and abundance per forest depth (i.e. at the edge of the forest - Edge, in the most pristine area - Deep and in an intermediate area between both - Centre) are provided.

Class	Order	Family	MF	Scientific Name	cs	Edge	Centre	Deep	Total
Arachnida	Araneae	Araneidae	134	Gibbaranea occidentalis Wunderlich, 1989	END	151	58	141	350
Arachnida	Araneae	Cheiracanthiidae	927	Cheiracanthium erraticum (Walckenaer, 1802)	INT	1	0	2	3
Arachnida	Araneae	Clubionidae	516	Porrhoclubiona decora (Blackwall, 1859)	NAT	0	2	0	2
Arachnida	Araneae	Dictynidae	117	Lathys dentichelis (Simon, 1883)	NAT	96	72	92	260
Arachnida	Araneae	Dysderidae	28	Dysdera crocata C.L. Koch, 1838	INT	3	2	47	52
Arachnida	Araneae	Linyphiidae	2	Tenuiphantes miguelensis (Wunderlich, 1992)	NAT	9	2	15	26

Class	Order	Family	MF	Scientific Name	cs	Edge	Centre	Deep	Total
Arachnida	Araneae	Linyphiidae	4	Porrhomma borgesi Wunderlich, 2008	END	1	1	3	5
Arachnida	Araneae	Linyphiidae	21	Tenuiphantes tenuis (Blackwall, 1852)	INT	28	2	12	42
Arachnida	Araneae	Linyphiidae	34	Erigone atra Blackwall,	INT	0	0	1	1
Arachnida	Araneae	Linyphiidae	50	Canariphantes acoreensis (Wunderlich, 1992)	END	6	0	3	9
Arachnida	Araneae	Linyphiidae	181	Savigniorrhipis acoreensis Wunderlich, 1992	END	213	211	598	1022
Arachnida	Araneae	Linyphiidae	233	Oedothorax fuscus (Blackwall, 1834)	INT	2	0	0	2
Arachnida	Araneae	Linyphiidae	234	Erigone autumnalis Emerton, 1882	INT	1	0	0	1
Arachnida	Araneae	Linyphiidae	246	Erigone dentipalpis (Wider, 1834)	INT	0	0	1	1
Arachnida	Araneae	Linyphiidae	312	Acorigone acoreensis (Wunderlich, 1992)	END	29	70	56	155
Arachnida	Araneae	Linyphiidae	421	Walckenaeria grandis (Wunderlich, 1992)	END	2	1	1	4
Arachnida	Araneae	Linyphiidae	442	Minicia floresensis Wunderlich, 1992	END	0	23	21	44
Arachnida	Araneae	Linyphiidae	697	Microlinyphia johnsoni (Blackwall, 1859)	NAT	114	38	107	259
Arachnida	Araneae	Lycosidae	17	Pardosa acorensis Simon, 1883	END	1	0	0	1
Arachnida	Araneae	Mimetidae	140	Ero furcata (Villers, 1789)	INT	47	76	84	207
Arachnida	Araneae	Pisauridae	39	Pisaura acoreensis Wunderlich, 1992	END	4	9	13	26
Arachnida	Araneae	Salticidae	198	Macaroeris cata (Blackwall, 1867)	NAT	12	9	23	44
Arachnida	Araneae	Tetragnathidae	179	Sancus acoreensis (Wunderlich, 1992)	END	80	24	64	168

Class	Order	Family	MF	Scientific Name	cs	Edge	Centre	Deep	Total
Arachnida	Araneae	Theridiidae	5	Rugathodes acoreensis Wunderlich, 1992	END	114	519	464	1097
Arachnida	Araneae	Thomisidae	3	Xysticus cor Canestrini, 1873	NAT	0	4	1	5
Arachnida	Opiliones	Phalangiidae	6	Leiobunum blackwalli Meade, 1861	NAT	289	373	673	1335
Arachnida	Pseudoscorpiones	Chthoniidae	38	Chthonius ischnocheles (Hermann, 1804)	INT	0	0	2	2
Arachnida	Pseudoscorpiones	Neobisiidae	296	Neobisium maroccanum Beier, 1930	INT	0	3	1	4
Chilopoda	Lithobiomorpha	Lithobiidae	27	Lithobius pilicornis pilicornis Newport, 1844	NAT	7	23	12	42
Diplopoda	Chordeumatida	Haplobainosomatidae	468	Haplobainosoma lusitanum Verhoeff, 1900	INT	10	14	0	24
Diplopoda	Julida	Julidae	9	Ommatoiulus moreletii (Lucas, 1860)	INT	25	3	29	57
Insecta	Archaeognatha	Machilidae	144	Trigoniophthalmus borgesi Mendes, Gaju, Bach & Molero, 2000	END	209	375	462	1046
Insecta	Blattodea	Corydiidae	59	Zetha simonyi (Krauss, 1892)	NAT	46	110	151	307
Insecta	Coleoptera	Carabidae	45	Anisodactylus binotatus (Fabricius, 1787)	INT	1	0	0	1
Insecta	Coleoptera	Cerambycidae	147	Crotchiella brachyptera Israelson, 1985	END	3	1	1	5
Insecta	Coleoptera	Chrysomelidae	266	Chaetocnema hortensis (Fourcroy, 1785)	INT	1	0	0	1
Insecta	Coleoptera	Chrysomelidae	395	Psylliodes marcida (Illiger, 1807)	NAT	1	0	2	3
Insecta	Coleoptera	Chrysomelidae	679	Chrysomelidae	??		0	1	1
Insecta	Coleoptera	Chrysomelidae	1246	Phylotreta	INT	1	0	0	1
Insecta	Coleoptera	Ciidae	107	Atlantocis gillerforsi Israelson, 1985	END	10	0	2	12
Insecta	Coleoptera	Corylophidae	65	Sericoderus lateralis (Gyllenhal, 1827)	INT	0	0	1	1

Class	Order	Family	MF	Scientific Name	cs	Edge	Centre	Deep	Total
Insecta	Coleoptera	Cryptophagidae	145	Cryptophagus	INT	0	0	2	2
Insecta	Coleoptera	Curculionidae	46	Drouetius borgesi borgesi (Machado, 2009)	END	1	6	20	27
Insecta	Coleoptera	Curculionidae	102	Pseudophloeophagus tenax borgesi Stüben, 2022	NAT	21	20	65	106
Insecta	Coleoptera	Curculionidae	141	Calacalles subcarinatus (Israelson, 1984)	END	16	10	47	73
Insecta	Coleoptera	Curculionidae	237	Xyleborinus alni Nijima, 1909	INT	2	0	0	2
Insecta	Coleoptera	Curculionidae	344	Sitona discoideus Gyllenhal, 1834	INT	0	2	1	3
Insecta	Coleoptera	Curculionidae	568	Phloeosinus gillerforsi Bright, 1987	END	0	1	0	1
Insecta	Coleoptera	Curculionidae	673	Mecinus pascuorum (Gyllenhal, 1813)	INT	0	1	0	1
Insecta	Coleoptera	Dryopidae	286	Dryops algiricus (Lucas, 1846)	NAT	0	1	0	1
Insecta	Coleoptera	Elateridae	244	Alestrus dolosus (Crotch, 1867)	END	0	1	1	2
Insecta	Coleoptera	Hydrophilidae	40	Cercyon haemorrhoidalis (Fabricius, 1775)	INT	6	2	2	10
Insecta	Coleoptera	Hydrophilidae	342	Cercyon	INT	1	0	0	1
Insecta	Coleoptera	Laemophloeidae	98	Placonotus	NAT	0	0	1	1
Insecta	Coleoptera	Laemophloeidae	110	Cryptolestes	NAT	0	1	0	1
Insecta	Coleoptera	Laemophloeidae	705	Laemophloeidae	INT	0	1	0	1
Insecta	Coleoptera	Latridiidae	710	Cartodere nodifer (Westwood, 1839)	INT	2	0	1	3
Insecta	Coleoptera	Latridiidae	733	Cartodere bifasciata (Reitter, 1877)	INT	0	0	1	1
Insecta	Coleoptera	Leiodidae	257	Catops coracinus Kellner, 1846	NAT	6	3	25	34
Insecta	Coleoptera	Monotomidae	708	Monotoma	INT	0	0	2	2
Insecta	Coleoptera	Ptiliidae	72	Ptenidium pusillum (Gyllenhal, 1808)	INT	1	0	0	1

Class	Order	Family	MF	Scientific Name	cs	Edge	Centre	Deep	Total
Insecta	Coleoptera	Scraptiidae	78	Anaspis proteus Wollaston, 1854	NAT	21	32	20	73
Insecta	Coleoptera	Staphylinidae	16	Atheta fungi (Gravenhorst, 1806)	INT	2	0	0	2
Insecta	Coleoptera	Staphylinidae	41	Ocypus aethiops (Waltl, 1835)	NAT	1	2	12	15
Insecta	Coleoptera	Staphylinidae	52	Cordalia obscura (Gravenhorst, 1802)	INT	1	0	0	1
Insecta	Coleoptera	Staphylinidae	57	Atheta aeneicollis (Sharp, 1869)	INT	38	6	10	54
Insecta	Coleoptera	Staphylinidae	79	Quedius curtipennis Bernhauer, 1908	NAT	0	0	3	3
Insecta	Coleoptera	Staphylinidae	82	Proteinus atomarius Erichson, 1840	NAT	0	1	2	3
Insecta	Coleoptera	Staphylinidae	89	Tachyporus nitidulus (Fabricius, 1781)	INT	2	2	7	11
Insecta	Coleoptera	Staphylinidae	142	Tachyporus chrysomelinus (Linnaeus, 1758)	INT	1	1	2	4
Insecta	Coleoptera	Staphylinidae	247	Aleochara bipustulata (Linnaeus, 1760)	INT	2	1	1	4
Insecta	Coleoptera	Staphylinidae	265	Xantholinus longiventris Heer, 1839	INT	1	2	1	4
Insecta	Coleoptera	Staphylinidae	439	Notothecta dryochares (Israelson, 1985)	END	27	22	213	262
Insecta	Coleoptera	Staphylinidae	825	Atheta atramentaria (Gyllenhal, 1810)	INT	23	0	3	26
Insecta	Hemiptera	Anthocoridae	521	Brachysteles parvicornis (A. Costa, 1847)	NAT	0	0	1	1
Insecta	Hemiptera	Aphididae	60	Rhopalosiphoninus latysiphon (Davidson, 1912)	INT	3	1	0	4
Insecta	Hemiptera	Cicadellidae	8	Aphrodes hamiltoni Quartau & Borges, 2003	END	0	0	1	1
Insecta	Hemiptera	Cicadellidae	465	Eupteryx azorica Ribaut,	END	7	1	1	9

Class	Order	Family	MF	Scientific Name	cs	Edge	Centre	Deep	Total
Insecta	Hemiptera	Cicadellidae	1019	Eupteryx filicum (Newman, 1853)	NAT	1	1	0	2
Insecta	Hemiptera	Cicadellidae	1021	Cicadellidae		1	0	0	1
Insecta	Hemiptera	Cixiidae	7	Cixius azoterceirae Remane & Asche, 1979	END	469	663	1143	2275
Insecta	Hemiptera	Corixidae	1039	Corixa affinis Leach, 1817	NAT	0	0	1	1
Insecta	Hemiptera	Delphacidae	254	Megamelodes quadrimaculatus (Signoret, 1865)	NAT	0	0	7	7
Insecta	Hemiptera	Delphacidae	321	Kelisia ribauti Wagner, 1938	NAT	0	1	0	1
Insecta	Hemiptera	Delphacidae	1252	Delphacidae	INT	0	0	1	1
Insecta	Hemiptera	Flatidae	124	Cyphopterum adcendens (Herrich-Schäffer, 1835)	NAT	187	135	365	687
Insecta	Hemiptera	Lachnidae	44	Cinara juniperi (De Geer, 1773)	NAT	164	75	476	715
Insecta	Hemiptera	Lygaeidae	167	Kleidocerys ericae (Horváth, 1908)	NAT	1	5	12	18
Insecta	Hemiptera	Miridae	137	Pinalitus oromii J. Ribes, 1992	END	81	186	296	563
Insecta	Hemiptera	Miridae	476	Monalocoris filicis (Linnaeus, 1758)	NAT	18	0	2	20
Insecta	Hemiptera	Miridae	1137	Trigonotylus caelestialium (Kirkaldy, 1902)	NAT	0	1	0	1
Insecta	Hemiptera	Nabidae	230	Nabis pseudoferus ibericus Remane, 1962	NAT	1	1	6	8
Insecta	Hemiptera	Psyllidae	557	Strophingia harteni Hodkinson, 1981	END	10	25	10	45
Insecta	Hemiptera	Psyllidae	662	Acizzia uncatoides (Ferris & Klyver, 1932)	INT	5	1	2	8
Insecta	Hemiptera	Triozidae	195	<i>Trioza laurisilvae</i> Hodkinson, 1990	NAT	261	74	174	509
Insecta	Neuroptera	Hemerobiidae	200	Hemerobius azoricus Tjeder, 1948	END	33	33	85	151

Class	Order	Family	MF	Scientific Name	cs	Edge	Centre	Deep	Total
Insecta	Orthoptera	Gryllidae	245	Eumodicogryllus bordigalensis (Latreille, 1804)	INT	1	0	0	1
Insecta	Psocodea	Caeciliusidae	191	Valenzuela flavidus (Stephens, 1836)	NAT	41	46	80	167
Insecta	Psocodea	Caeciliusidae	625	Valenzuela burmeisteri (Brauer, 1876)	NAT	1	0	0	1
Insecta	Psocodea	Ectopsocidae	121	Ectopsocus briggsi McLachlan, 1899	INT	9	8	18	35
Insecta	Psocodea	Elipsocidae	184	Elipsocus azoricus Meinander, 1975	END	53	3	21	77
Insecta	Psocodea	Elipsocidae	370	Elipsocus brincki Badonnel, 1963	END	224	147	224	595
Insecta	Psocodea	Epipsocidae	374	Bertkauia lucifuga (Rambur, 1842)	NAT	50	15	42	107
Insecta	Psocodea	Trichopsocidae	478	Trichopsocus clarus (Banks, 1908)	NAT	28	8	16	52
Insecta	Thysanoptera	Phlaeothripidae	13	Hoplothrips corticis (De Geer, 1773)	NAT	7	6	75	88
Insecta	Thysanoptera	Thripidae	280	Hercinothrips bicinctus (Bagnall, 1919)	INT	0	0	1	1
Insecta	Trichoptera	Limnephilidae	432	Limnephilus atlanticus Nybom, 1948	END	1	0	0	1
Grand Total						3349	3579	6588	13516

Most species (S = 81) and specimens (n = 6588) were found in the traps located at greater distances from the edge (Table 2). Many species were also found in the edge areas (S = 77), including several exclusive (mostly introduced), but overall abundance was much lower in these areas.

The most abundant endemic species were the planthopper *Cixius azoterceirae* Remane & Asche, 1979 (n = 2275), the spider *Rugathodes acoreensis* Wunderlich, 1992 (n = 1097) and the Archaeognatha jumping bristletail *Trigoniophthalmus borgesi* Mendes, Gaju, Bach & Molero, 2000 (n = 1046) (Table 2). The most abundant native non-endemic species were the harvestmen *Leiobunum blackwalli* Meade, 1861 (n = 1335), the aphid *Cinara juniperi* (De Geer, 1773) (n = 715) and the flatid planthopper *Cyphopterum adcendens* (Herrich-Schäffer, 1835) (n = 687) (Table 2). The most abundant introduced species were the spider

Ero furcata (Villers, 1789) (n = 207), the millipede *Ommatoiulus moreletii* (Lucas, 1860) (n = 57) and the rove-beetle *Atheta aeneicollis* (Sharp, 1869) (n = 54) (Table 2).

Spiders (Araneae) and bugs (Hemiptera) dominate overall and endemic species abundance while Opiliones and Hemiptera include the most abundant non-endemic taxa (Fig. 5). Araneae and Coleoptera had the highest number of introduced specimens (Fig. 5).

Proportionally, the most species-rich taxa are the beetles (Coleoptera), but spiders (Araneae) and bugs (Hemiptera) follow closely (Fig. 6). The same pattern applies when considering just the endemic and native non-endemic species, but Coleoptera are proportionally the most dominant taxon in the introduced species group (Fig. 6).

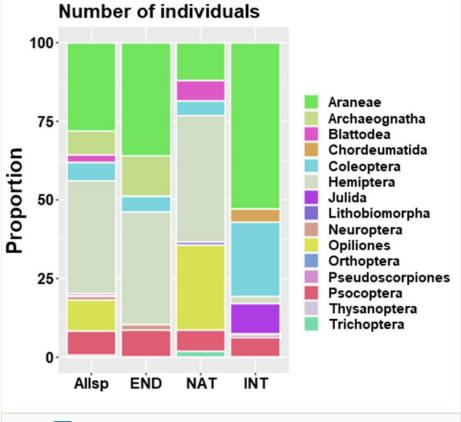


Figure 5. doi

Proportional abundance of arthropods specimens (per order) sampled in the native forest fragment. Allsp = all arthropod species; END = endemic; NAT = native non-endemic; and INT = introduced.

The variation in overall species richness also peaked during the summer months. The species richness patterns of the three groups of species (endemic, native-non-endemic

and introduced) show a similar seasonal variation with very few species being active during winter and early spring (Fig. 8).

With this data, we are opening the possibility to investigate deeply the impact of edge effects in the Azorean hyper-humid native forests, which will be more accurately investigated in a classical research publication elsewhere. The scientific community interested in the use of SLAM traps for monitoring island forests have here also raw data to compare with other island systems (see also Borges et al. (2018) for best practices in monitoring island forest arthropods).

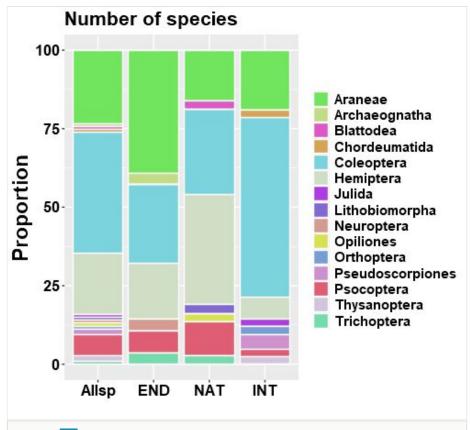


Figure 6. doi

Proportional species richness of arthropods (per order) sampled in the native forest fragment. Allsp = all arthropod species; END = endemic; NAT = native non-endemic; and INT = introduced.

There are striking differences in specimen abundance and species richness throughout the sampling period (Figs 7, 8). The overall abundance of arthropod specimens presents a peak during July-October (unimodal) and this same pattern was found for endemic, native non-endemic and introduced groups of taxa (Fig. 7). Endemic arthropods were particularly abundant during July and August.

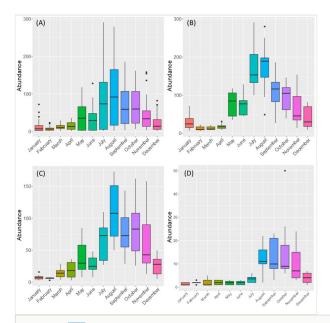


Figure 7. doi

Boxplots of overall monthly variations of abundance for: (A) all species and separately for (B) endemic species, (C) native non-endemic species and (D) introduced species.

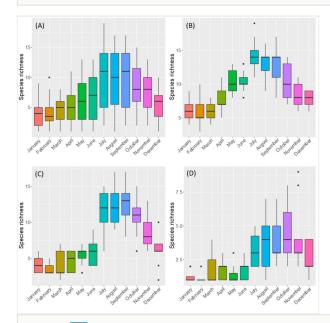


Figure 8. doi

Boxplots of overall monthly variations of species richness for: (A) all species and separately for (B) endemic species, (C) native non-endemic species and (D) introduced species.

Acknowledgements

Trap acquisition and fieldwork were funded by the project Portuguese National Funds, through FCT – Fundação para a Ciência e a Tecnologia, within the project UID/BIA/ 00329/2013-2023. The database management and Open Access was funded by the project "MACRISK-Trait-based prediction of extinction risk and invasiveness for Northern Macaronesian arthropods" Fundação para a Ciência e a Tecnologia (FCT) - PTDC/BIA-CBI/0625/2021 (2022-2024). MB was supported by FCT - DL57/2016/CP1375/CT0001. NT and MTF were supported by the project LIFE-BETTLES (LIFE18 NAT_PT_000864). PAVB and RG were additionally supported by FCT-UIDP/00329/2020-2024 (Thematic Line 1-Integrated ecological assessment of environmental change on biodiversity) and MACRISK -- PTDC/BIA-CBI/0625/2021, through the FCT - Fundação para a Ciência e a Tecnologia.

Author contributions

PAVB and RG contributed to study conceptualisation. PAVB, ARP and RN performed the fieldwork. PAVB, RN and ARP performed the species sorting and identification. PAVB, ARP and LLL contributed to dataset preparation. PAVB, LLL and NT performed data analysis. All authors contributed to manuscript writing.

References

- Borges PAV, Lobo JM, Azevedo EB, Gaspar CS, Melo C, Nunes LV (2006) Invasibility
 and species richness of island endemic arthropods: a general model of endemic vs.
 exotic species. Journal of Biogeography 33 (1): 169-187. https://doi.org/10.1111/j.
 1365-2699.2005.01324.x
- Borges PAV, Vieira V, Amorim IR, Bicudo N, et al. (2010) List of Arthropods (Arthropoda). In: Borges PAV, Costa A, Cunha R, Gabriel R, et al. (Eds) A list of the terrestrial and marine biota from the Azores. Princípia, Cascais, 179-246 pp. URL: https://repositorio.uac.pt/handle/10400.3/1959 [ISBN 978-989-8131-75-1].
- Borges PAV, Pimentel R, Carvalho R, Nunes R, Wallon S, Ros Prieto A (2017) Seasonal dynamics of arthropods in the humid native forests of Terceira Island (Azores).
 Arquipelago Life and Marine Sciences 34: 105-122. URL: https://repositorio.uac.pt/
 handle/10400.3/4470#content
- Borges PAV, Cardoso P, Kreft H, Whittaker RJ, Fattorini S, Emerson BC, Gil A, Gillespie RG, Matthews TJ, Santos AMC, Steinbauer MJ, Thébaud C, Ah-Peng C, Amorim IR, Aranda SC, Arroz AM, Azevedo JMN, Boieiro M, Borda-de-Água L, Carvalho JC, Elias RB, Fernández-Palacios JM, Florencio M, González-Mancebo JM, Heaney LR, Hortal J, Kueffer C, Lequette B, Martín-Esquivel JL, López H, Lamelas-López L, Marcelino J, Nunes R, Oromí P, Patiño J, Pérez AJ, Rego C, Ribeiro SP, Rigal F, Rodrigues P, Rominger AJ, Santos-Reis M, Schaefer H, Sérgio C, Serrano ARM, Sim-Sim M, Stephenson PJ, Soares AO, Strasberg D, Vanderporten A, Vieira V, Gabriel R (2018) Global Island Monitoring Scheme (GIMS): a proposal for the long-term coordinated

- survey and monitoring of native island forest biota. Biodiversity and Conservation 27 (10): 2567-2586. https://doi.org/10.1007/s10531-018-1553-7
- Borges PAV, Gabriel R, Fattorini S (2019a) Biodiversity erosion: Causes and consequences. Encyclopedia of the UN Sustainable Development Goals81-90. https://doi.org/10.1007/978-3-319-95981-8 78
- Borges PAV, Santos AMC, Elias RB, Gabriel R (2019b) The Azores Archipelago: Biodiversity erosion and conservation biogeography. Encyclopedia of the World's Biomes101-113. https://doi.org/10.1016/b978-0-12-409548-9.11949-9
- Borges PAV, Rigal F, Ros-Prieto A, Cardoso P (2020) Increase of insular exotic arthropod diversity is a fundamental dimension of the current biodiversity crisis. Insect Conservation and Diversity 13 (5): 508-518. https://doi.org/10.1111/icad.12431
- Borges PAV, Lamelas-López L (2022) Monthly monitoring of Azorean forest arthropods testing for edge effects (Terceira Island, Azores, Portugal). v1.3. Universidade dos Açores. https://doi.org/10.15468/k84m4e
- Borges PAV, Lamelas-Lopez L, Stüben P, Ros-Prieto A, Gabriel R, Boieiro M, Tsafack N, Ferreira MT (2022) SLAM Project Long Term Ecological Study of the Impacts of Climate Change in the Natural Forest of Azores: II A survey of exotic arthropods in disturbed forest habitats. Biodiversity Data Journal 10 (e81410). https://doi.org/10.3897/bdj.10.e81410
- Cardoso P, Aranda SC, Lobo JM, Dinis F, Gaspar C, Borges PAV (2009) A spatial scale assessment of habitat effects on arthropod communities of an oceanic island. Acta Oecologica 35 (5): 590-597. https://doi.org/10.1016/j.actao.2009.05.005
- Cardoso P, Barton PS, Birkhofer K, Chichorro F, Deacon C, Fartmann T, Fukushima CS, Gaigher R, Habel JC, Hallmann CA, Hill MJ, Hochkirch A, Kwak M, Mammola S, Ari Noriega J, Orfinger AB, Pedraza F, Pryke J, Roque F, Settele J, Simaika J, Stork N, Suhling F, Vorster C, Samways MJ (2020) Scientists' warning to humanity on insect extinctions. Biological Conservation 242 (108426). https://doi.org/10.1016/j.biocon.2020.108426
- Costa R, Borges PAV (2021) SLAM Project Long Term Ecological Study of the Impacts
 of Climate Change in the natural forest of Azores: I the spiders from native forests of
 Terceira and Pico Islands (2012-2019). Biodiversity Data Journal 9 (e69924). https://doi.org/10.3897/bdj.9.e69924
- de Vries JPR, van Loon E, Borges PAV (2021) A small-scale analysis of elevational species richness and beta diversity patterns of arthropods on an oceanic island (Terceira, Azores). Insects 12 (10). https://doi.org/10.3390/insects12100936
- Elias RB, Gil A, Silva L, Fernández-Palacios JM, Azevedo EB, Reis F (2016) Natural zonal vegetation of the Azores Islands: characterization and potential distribution. Phytocoenologia 46 (2): 107-123. https://doi.org/10.1127/phyto/2016/0132
- Florencio M, Lobo JM, Cardoso P, Almeida-Neto M, Borges PAV (2015) The
 colonisation of exotic species does not have to trigger faunal homogenisation: lessons
 from the assembly patterns of arthropods on oceanic islands. PLOS One 10 (5):
 e0128276. https://doi.org/10.1371/journal.pone.0128276
- Florencio M, Rigal F, Borges PAV, Cardoso P, Santos AMC, Lobo JM (2016) The role of plant fidelity and land-use changes on island exotic and indigenous canopy spiders at local and regional scales. Biological Invasions 18 (8): 2309-2324. https://doi.org/10.1007/s10530-016-1162-x

- Gaspar C, Borges PAV, Gaston KJ (2008) Diversity and distribution of arthropods in native forests of the Azores archipelago. Arquipélago Life and marine Sciences 25:
 1-30. URL: http://www.okeanos.uac.pt/storage/2008/10/pp_1_30 Gaspar etal 25.pdf
- Harvey JA, Heinen R, Armbrecht I, Basset Y, et al. (2020) International scientists formulate a roadmap for insect conservation and recovery. Nature Ecology and Evolution 4: 174-176. https://doi.org/10.1038/s41559-019-1079-8
- Jokimäki J, Huhta E, Itämies J, Rahko P (1998) Distribution of arthropods in relation to forest patch size, edge, and stand characteristics. Canadian Journal of Forest Research 28 (7): 1068-1072. https://doi.org/10.1139/x98-074
- Magura T (2002) Carabids and forest edge: spatial pattern and edge effect. Forest Ecology and Management 157: 23-37. https://doi.org/10.1016/s0378-1127(00)00654-x
- Matthews TJ, Sadler J, Carvalho R, Nunes R, Borges PAV (2018) Differential temporal beta-diversity patterns of native and non-native arthropod species in a fragmented native forest landscape. Ecography 42 (1): 45-54. https://doi.org/10.1111/ecog.03812
- Murcia C (1995) Edge effects in fragmented forests: implications for conservation.
 Trends in Ecology & Evolution 10 (2): 58-62. https://doi.org/10.1016/
 s0169-5347(00)88977-6
- Norder SJ, de Lima RF, de Nascimento L, Lim JY, Fernández-Palacios JM, Romeiras MM, Elias RB, Cabezas FJ, Catarino L, Ceríaco LMP, Castilla-Beltrán A, Gabriel R, de Sequeira MM, Rijsdijk KF, Nogué S, Kissling WD, van Loon EE, Hall M, Matos M, Borges PAV (2020) Global change in microcosms: Environmental and societal predictors of land cover change on the Atlantic Ocean Islands. Anthropocene 30 (10042). https://doi.org/10.1016/j.ancene.2020.100242
- Raven P, Wagner D (2021) Agricultural intensification and climate change are rapidly decreasing insect biodiversity. Proceedings of the National Academy of Sciences 118 (2). https://doi.org/10.1073/pnas.2002548117
- Rego C, Boieiro M, Vieira V, Borges PAV (2015) The biodiversity of terrestrial arthropods in Azores. Proyecto S.E.A. Ibero Diversidad Entomológica. Revista IDE@SEA 5b: 1-24.
- Sánchez-Bayo F, Wyckhuys KG (2019) Worldwide decline of the entomofauna: A review of its drivers. Biological Conservation 232: 8-27. https://doi.org/10.1016/j.biocon.2019.01.020
- Terzopoulou S, Rigal F, Whittaker RJ, Borges PAV, Triantis KA (2015) Drivers of extinction: the case of Azorean beetles. Biology Letters 11 (6). https://doi.org/10.1098/rsbl.2015.0273
- Triantis KA, Borges PAV, Ladle RJ, Hortal J, Cardoso P, Gaspar C, Dinis F, Mendonça E, Silveira LMA, Gabriel R, Melo C, Santos AMC, Amorim IR, Ribeiro SP, Serrano ARM, Quartau JA, Whittaker RJ (2010) Extinction debt on oceanic islands. Ecography 33: 285-294. https://doi.org/10.1111/j.1600-0587.2010.06203.x
- Tsafack N, Fattorini S, Boieiro M, Rigal F, Ros-Prieto A, Ferreira MT, Borges PAV (2021)
 The role of small lowland patches of exotic forests as refuges of rare endemic Azorean arthropods. Diversity 13 (9). https://doi.org/10.3390/d13090443