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A B S T R A C T   

Monitoring multifunctional agricultural areas is paramount to ensure their cost-effective management. The 
remote sensing-based detection of land-cover/land-use (LCLU) changes and analysis of vegetation dynamics 
constitute a relevant indicator to support robust monitoring schemes, allowing the control of agri-environmental 
conditions and enforcing related measures and policies. The Rao’s Q diversity index (RaoQ) is frequently used to 
measure functional diversity in ecology, thanks to the textural analysis of the environment. This paper aims to 
develop and provide an open-source Python application whose workflow may constitute a RaoQ-based LCLU 
change monitoring tool for multifunctional agricultural areas. Here, a use case is presented for detecting and 
mapping LCLU changes leveraging the free and open access Landsat 8 (L8) satellite data. The workflow is 
organized in four main stages: (1) data processing; (2) Normalized Difference Vegetation Index (NDVI) calcu-
lation; (3) RaoQ calculation; and (4) detection and mapping of LCLU changes through thresholding of RaoQ. 
Three methodological approaches were developed (RaoC – “classic” RaoQ; RaoMD – “multidimensional” RaoQ, 
and “classic + multidimensional” RaoQ) with overall accuracies ranging from 0.88 to 0.92. An example of an 
agri-environmental monitoring decision-support framework based on spectralrao-monitoring is presented. The 
application is easily reproducible, and the code is fully available and utilizable with other sensors at different 
resolutions to support monitoring other types of agricultural areas.   

1. Introduction 

The multifunctionality could be the driver of the future of sustain-
able rural development (Huylenbroeck and Durand, 2003). In fact, it is 
considered a promising framework of analysis of transformations in 
agriculture (Cairol et al., 2009; Wilson, 2009). This concept is related to 
the social, environmental, and ethical services crucial for the society 
that can be provided by the agricultural and food production sectors 
(Casini et al., 2012). A multifunctional farming system creates value 
significantly beyond the mere collection and commercialization of the 
harvested products (Slámová and Belčáková, 2019). It represents one of 
the essential aspects of sustainable rural development (Gullino et al., 
2018). In these terms, agricultural production presents the opportunity 
to create various interconnected benefits beyond the main harvested 

products. It may provide environmental services such as the control of 
soil health (Williams et al., 2020) and biodiversity (Oliver et al., 2015). 
Evaluating the effects of different farming systems worldwide is helpful 
to gauge sustainable agriculture’s benefits (Sachs et al., 2010). For this 
purpose, the European Commission (EC) proposed a set of 28 Agri- 
Environmental Indicators (AEI) based on the Driver-Pressure-State- 
Impact-Response approach in the Commission Communication COM 
final 0508/2006 (European Commission, 2006). Although most of these 
AEI are based on land-cover/land-use (LCLU), the land-use change (AEI 
#9) is a relevant AEI for monitoring and assessing socioeconomic and 
environmental impacts in agricultural areas, particularly in High Nature 
Value (HNV) farmlands (Gil et al., 2018) because it ties together 
biodiversity to the continuation of farming on certain types of land and 
the maintenance of specific farming systems. Land-use change mapping 
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and monitoring represent significant challenges (Lomba et al., 2014). 
Identifying the LCLU changes is highly relevant for agroecosystem 
monitoring, planning, and management. Public institutions use LCLU to 
help develop new policies, assess the implementation of past and current 
policies (Johnson et al., 2002), design effective subsidies, and support 
the decision-making process in urban planning and development (Thu-
nig et al., 2011). Other agencies, such as NGOs and private enterprises, 
use LCLU for a range of applications, including monitoring of the crop 
yields and productivity (Lobell et al., 2015), analysis of forest degra-
dation, and illegal logging activities (Hansen et al., 2013), handling of 
critical animal habitats, biological hotspots and restoration and reha-
bilitation under disaster management (Balamurugan and Aravind, 
2015). The study of LCLUC can help shed light on the current global 
issues, like melting of ice, modified rainfall patterns, abnormal tem-
peratures, monitoring coastal change (Tassi and Gil, 2020), urban 
sprawl (Aboelnour and Engel, 2018), conflicts, and food security 
(Abdulkareem et al., 2018) agricultural field (Ramankutty and Foley, 
1999), water bodies (Costa et al., 2003) and about woodlands and for-
ests (Hansen et al., 2014). Techniques based on multi-temporal multi-
spectral satellite data have demonstrated the potential to detect, 
identify, map, and monitor ecosystem changes, irrespective of their 
causal agents. However, there are several challenges facing ecosystem 
change monitoring from space, namely: (i) to detect the arising new 
types of land use, in addition to conversions from already present land 
uses; (ii) to monitor rapid and abrupt changes, as well as the progressive 
and incremental changes; (iii) to separate inter-annual variability from 
secular trends, given the reduced length of the available time series; (iv) 
to understand and correctly address the variations deriving from the 
spatial scale dependence of statistical estimates of change at different 
spatial resolutions; and (v) to match the temporal sampling rates of 
observations of processes to the intrinsic scales of these processes 
(Coppin et al., 2004). 

The use of the spectral indices allows highlighting the changes. The 
Normalized Difference Vegetation Index (NDVI) (Rouse et al., 1974) is 
widely used because it directly expresses a measure of vegetation health. 
It is common to detect the changes in the Earth’s surface (Lunetta et al., 
2006; Woodcock et al., 2010). The combination of its normalized dif-
ference formulation and the use of the highest absorption and reflec-
tance regions of chlorophyll make it robust over a wide range of 
conditions (Tassi et al., 2021). In a review, Rocchini et al. (Rocchini 
et al., 2010) summarized several approaches to measure ecosystem di-
versity from remotely sensed images. Those approaches are mainly 
based on the spatial variability of the reflectance value recorded by 
multispectral sensors. In this context, the Spectral Variation Hypothesis 
(SVH) is defined as the higher the spectral variation exhibited by such 
satellite sensor acquisitions, the higher the environmental heterogeneity 
and thus the species diversity of that area. High-resolution multispectral 
satellite data can contribute to the biodiversity assessment of complex 
ecosystems (Rocchini et al., 2004; Palmer et al., 2002). The pixel-to- 
pixel variability of the spectral response in a remotely sensed image is 
driven by multiple factors in variable proportion depending on the 
observation scale (Torresani et al., 2021). The emergence of SVH has 
gained widespread attention in the remote sensing community, espe-
cially as a method for deriving biodiversity information from remotely 
sensed data (Madonsela et al., 2021). Several studies have tested SVH in 
different ecosystems, using various spectral heterogeneity metrics, and 
observed varying levels of relationships between spectral heterogeneity 
and species diversity (Schmidtlein & Fassnacht, 2017). Nevertheless, 
there is some criticism about the SVH hypothesis. Schmidtlein & Fass-
nacht (2017) observed that high spectral heterogeneity does not always 
correspond to high species richness and vice versa, being SVH ecosystem 
dependent. Rocchini et al. (2017) have demonstrated the potential ad-
vantages of applying the SVH to remote sensing data through the 
determination of RaoQ, to calculate diversity in digital imagery. 

The RaoQ was initially developed by Rao (1982) and introduced by 
Botta-Dukát (2005) to measure functional diversity in ecology. Given a 

subset MxM pixels of an NxN image, where M is an odd number, the 
RaoQ is proportional to the sum of all the pixel values pairwise dis-
tances, weighted by the relative abundance of each pair of pixels in the 
analyzed image. In other words, RaoQ is the expected difference in 
reflectance values between two pixels drawn randomly with replace-
ment from the considered evaluated pixels set. Most commonly, the 
RaoQ is calculated from pixel values from combinations of the satellite 
spectral bands (Zhang et al., 2017), such as the NDVI index is used as 
input (Khare et al., 2021). Furthermore, the potential to explore multiple 
combinations of spectral bands is derived from the utilization of the 
Near-Infrared (NIR) and from the information of the Shortwave Infrared 
(SWIR) to calculate the vegetation indices most sensitive to phenological 
variations (Chaves et al., 2020). 

An additional point is computational; in fact, the remote sensing data 
processing procedure has been mainly based on traditional worksta-
tions, benefitting from limited computational resources and implying 
relevant limitations on managing vast amounts of data, storage, and 
analysis. Although Sentinel-2 data has a higher spatial resolution than 
Landsat-8 data, we decided to use the latter because of its faster 
computational processing. Furthermore, the main advantage of Landsat- 
8 data is providing a nearly 60-year long and uninterrupted historical 
archive that allows doing these same analyses using much larger tem-
poral ranges. Congedo (2019) provided cost-effective GIS-based tools for 
the download, preprocessing, and post-processing of images, but the 
performance in terms of speed is still related to the workstation’s 
characteristics. The use of cloud-based platforms (i.e., Google Earth 
Engine - GEE) allows their users to instantly access and analyze geo-
spatial data through web interfaces (Gorelick et al., 2017) and obtain, 
for example, LCLU classification maps without the use of local resources 
(Tassi and Vizzari, 2020). This paper aims to develop and provide an 
open-source Python application whose workflow may constitute a 
RaoQ-based LCLU change monitoring tool for multifunctional agricul-
tural areas. This application will also support the semi-automatic and 
cost-effective monitoring of the agri-environmental indicator (AEI) #9, 
“land-use change”, proposed by the European Commission in the Com-
mission Communication COM final 0508/2006 (European Commission, 
2022). To achieve this goal, two main research questions are addressed 
in this methodological proposal: (1) Are RaoQ-based approaches effec-
tive for detecting and mapping LCLU changes in LCLU-diverse areas as 
the multifunctional agricultural sites?; and (2) Is the “classic” and 
computational low-cost NDVI-based RaoQ calculation enough to effec-
tively detecting and mapping LCLU changes in multifunctional agri-
cultural sites, or do we need more complex approaches (e.g., 
multidimensional and classic + multidimensional) for achieving more 
reliable results? 

2. The spectralrao-monitoring Python package 

The open-source repository called spectralrao-monitoring is available 
on GitHub at https://github.com/AndreaTassi23/spectralrao-monitoring. 
The user can find the methods implemented on Python3 to replicate the 
result of the work. 

A function called spectralrao was implemented, being the code a free 
port of the original R code published by Rocchini et al. (2017). This R 
code has also been implemented in the R rasterdiv package, rasterdiv-an 
(Rocchini et al., 2021). This function is based on the following Python 
packages: NumPy, pandas, math, rasterio, combination, and matplotlib. The 
function receives one or more rasters as input and converts them to a 
NumPy 2d array. Spectralrao function performs all the steps needed to 
retrieve the RaoQ index and saves the output as a GeoTIFF raster in the 
desired path. The function supports two different modes of use: (i) 
“classic” calculates RaoQ on a single raster layer (or band); and (ii) multi- 
dimensional, making use of several bands defined by the user. In both 
cases, a window size parameter given by the user is required to define an 
odd-sized square rolling window to preserve the integrity of the infor-
mation - the movement of the window on the whole image allowing to 
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iterate the procedures to define RaoQ. A larger window size allows 
covering a broader area in a single pass of the moving window. Another 
argument is called na.tolerance, and it determines the algorithm’s 
behavior when encountering Not a Number (NaN) values in the input 
image. This parameter represents the minimum number of finite values 
accepted, enabling the calculation of the RaoQ in any given rolling 
window. In the multi-dimensional mode, the distance matrix is used to 
compare and assess the similarity of the input bands for the definition of 
RaoQ. According to the specific user needs, the distance matrix used can 
be controlled by specifying the optional parameter distance_m. Possible 
choices are Euclidean or Manhattan distance to produce multivariate 
measures of dissimilarity (Podani, 2000). 

The identification of the change that occurred in the time is based on 
a threshold computed using the secant method (Vázquez-Jiménez et al., 
2018) that allows representing in a histogram the distribution of the 
pixels and the automatic position of the threshold. This is defined using 
two methods available in the Python package: calculateDistance used to 
calculate the distance between two points. It is mandatory to compute 
the threshold_method to determine the interest value to define the limit to 
certificate a change. This last method requires as input the NumPy type 
difference between the RaoQ for two periods of interest, being the result 
a binary map (Change-NoChange). 

The Python3 methods available allowed to compare two different 
binary maps with the same shape and a NumPy type as input. The output 
of the binary_change is a single binary map where the change is 
confirmed only when it occurred in the same pixel of two different in-
puts. The priority assessment framework’s example developed within 
this case study (see 4.2), synthesized in Table 2, supports more robust 
and cost-effective LCLU change-related controlling schemes in CAP- 
subsidized multifunctional agricultural areas. The method, prior-
ity_classification, requires the input of the two binary maps extracted 
using RaoQ and NDVI information and allows defining the priority of the 
change for each pixel of the area of interest. 

3. Material and methods 

3.1. Study area 

The study area selected to develop, test, and validate the work is a 
multifunctional agricultural area of 11,871 ha called “Charneca do 
Infantado”, located in Portugal’s Ribatejo region (Fig. 1). This territory 
is part of the estate “Companhia das Lezírias S.A”, which is the largest 
Portuguese multifunctional farmstead located on the left margin of the 
Tagus River (38◦ 52′ 48′′ N, 08◦ 51′ 08′′ W; Central Portugal). A multi-
functional landscape mosaic characterizes the area of interest with high 
abundance and diversity of agricultural lands (e.g., rice fields, irrigated 
forages, pastures, cork oak woodlands, and pine forests). 

3.2. Methodological workflow 

The methodological workflow of this application is constituted by 
four main steps (Fig. 2). First, L8 remote sensing data were downloaded 
and corrected. The NDVI processing phase allowed the production of 
NDVI maps to support the production of RaoQ-based maps. RaoQ and a 
thresholding method were combined to produce the binary map to 
define the changes, minimizing “false changes”. In this methodological 
approach, we assumed that “false changes” only refer to detected 
changes in any of the two initial RaoQ-based approaches, RaoC and 
RaoMD, that were not confirmed in the other RaoQ-based approach (e. 
g., a pixel classified as “change” in the RaoC approach and classified as 
“no-change” in the RaoMD approach). The maps allowed to identify and 
quantify each class’s changes from 2015 to 2018 in the spring growing 
season (SGS). 

3.2.1. Prospection, preprocessing, and organization of L8 data 
The L8 multispectral bands covering the case-study area were ob-

tained at the Terrain Precision Correction processing level (L1TP). In 
particular, bands 4 (B4, Red: 0.630–0.680 µm), 5 (B5, NIR: 0.845–0.885 
µm) and 6 (B6, SWIR-1: 1.560–1.660 µm) were acquired for four 

Fig. 1. Location of the multifunctional agricultural study area in Ribatejo, Portugal (a). An overview of “Charneca do Infantado” (b) and the RGB image (c) based on 
Landsat-8 bands. 
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different dates, respectively 25 May 2015, 26 June 2015, 17 May 2018, 
and 18 June 2018. The imagery was atmospherically corrected using the 
Dark Object Subtraction (DOS) method (Chavez, 1996). Next, the 
average value was computed for each pixel between two periods during 
the spring growing season (SGS): May/June 2015 (producing the aver-
aged data set SGS_2015) and May/June 2018 (producing the averaged 
data set SGS_2018). This step mitigated the influence of small changes 
between bands from the same season and year, thus reducing the rela-
tive differences from phenological and meteorological conditions, and 
was performed separately for the two different years, 2015 and 2018. 

3.2.2. NDVI processing 
The average data generated in the previous step was used to compute 

the NDVI. An NDVI map was produced for both SGS_2015 and SGS_2018 
data sets. To illustrate, at the end of this article, a potential example of 
an agri-environmental policy-support application, a 2015–2018 NDVI 
changes map (ΔNDVI_2015-2018), was created as the square root of the 
squared difference between the two NDVI maps (Shao et al., 2016) (Eq. 
(1)): 

ΔNDVI2015− 2018 =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

(NDVI2018 − NDVI2015)
2

√

(1) 

The resulting map was divided in three ranges of NDVI change 
values: (i) < 0.2: No/Low Change; (ii) 0.2 to 0.4: Medium Change; and 
(iii) > 0.4: High Change. 

3.2.3. RaoQ processing 
RaoQ maps were calculated for SGS_2015 and SGS_2018, respec-

tively, using two approaches: (i) the one-band or “classic” approach 
(RaoC) directly derived from each average NDVI map previously 

defined, following (Rocchini et al. (2017)); and (ii) the multi-band or“ 
multi-dimensional” approach (RaoMD) using for each period a combi-
nation of the average values of three vegetation-relevant L8 spectral 
bands, namely B4 (Red), B5 (NIR) and B6 (SWIR-1). This innovative 
band combination improved spectral information to calculate the 
vegetation indices most sensitive to phenological variations (Chaves 
et al., 2020). The same input parameters are used for both approaches: 
the window’s dimension defined is 3, and the na.tolerance is set 0. Af-
terward, two 2015–2018 RaoQ maps were produced by applying the 
root square difference to the RaoC (Eq. (2)) and RaoMD (Eq. (3)) ap-
proaches, respectively: 

RaoC2015− 2018 =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

(RaoC2018 − RaoC2015)
2

√

(2)  

RaoMD2015− 2018 =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

(RaoMD2018 − RaoMD2015)
2

√

(3)  

3.2.4. Threshold-based change detection 
The difference between each pair of RaoQ maps (RaoC_2015-2018 or 

RaoMD_2015-2018) is defined by the pixel values corresponding to the 
intensity of the change estimated. For each methodological approach 
(“classic” or “multi-dimensional”), a final binary map using two classes, 
“Change” and “No Change”, was generated based on a threshold value. 
The secant method determined the optimal threshold (Ramos-Bernal 
et al., 2018). This threshold is defined by the value corresponding to the 
point in the histogram distribution of all pixel values, where the 
maximum perpendicular line intersects the secant line between the 
highest and lowest points of the histogram (Fig. 3). The classic approach 
produced a threshold of 0.031, while the value for the multi-dimensional 
approach is 0.047. Afterward, both “Change/No Change” binary maps 

Fig. 2. Methodological flowchart.  
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derived respectively from RaoC_2015-2018, and RaoMD_2015-2018 
were overlaid to produce a final and unified RaoQ_2015-2018 
“Change/No Change” binary map assuming as “changed areas” only 
pixels with this same classification in both approaches’ outputs. This 
idea reduced the “false positive” changes, as referred to previously. The 

change is confirmed only when it occurs in both binary maps. 

3.2.5. Overall accuracy assessment 
To assess the accuracy of each RaoQ-based methodological 

approach’s binary map results (RaoC, RaoMD, and “classic +

Fig. 3. The secant method used to detect the threshold according to Ramos-Bernal et al. (2018).  

Fig. 4. In the horizontal sequence at the top, RaoQ-based change detection through thresholding using the RaoC approach. Figure (a) shows the RaoQ root square 
difference relative to the period of interest SGS_2015 - SGS_2018. The threshold obtained is Th = 0.031, and it is used to define the binary map (b), highlighting the 
changes obtained with the “classic” method. In the horizontal sequence at the bottom, the RaoMD approach. Figure (c) shows the RaoQ root square difference relative 
to SGS_2015 - SGS_2018. The threshold value for this method is Th = 0.047 which is used to define the binary map that highlights the changes that occurred in the 
“multidimensional approach” (d). 
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multidimensional”), the respective overall accuracy (Lillesand & Kiefer, 
2000) was computed by producing and evaluating for each binary map a 
random 100-points dataset (shapefile format) with 50 change and 50 no- 
change points. These three validation datasets were assessed through a 
GIS-based comparative photo-interpretation of two high spatial resolu-
tion Rapideye satellite images of the case-study area, acquired respec-
tively at 18 June 2015 and 16 June 2018. The identification of change/ 
no change in LCLU among both dates (2015–2018) was the photo 
interpretation criteria used for classifying the change/no change clas-
sification obtained with each RaoQ approach as correct/incorrect. 

4. Results 

4.1. The RaoQ-based monitoring framework for LCLU change detection in 
multifunctional agricultural areas 

The spectralrao-monitoring workflow led to the development and 
validation of an innovative, free, and open-source python application 
able to constitute a RaoQ-based LCLU change monitoring tool in 
multifunctional agricultural areas. The calculation of RaoQ was used in 
both the “classic” (RaoC) and “multi-dimensional” (RaoMD) approaches 
to defining the root square difference relative to the period of interest. 
According to the secant method, the latter allowed to determine the 
automatic threshold and the subsequent binary maps (“no-change” 
versus “change”) derived as shown in Fig. 4. 

The information extracted from the RaoQ-based change detection 
method using the “classic” and “multi-dimensional” approaches was 
combined to get a unique binary map representing the identification of 
LCLU changes in the study area (“classic + multidimensional”). 

Table 1 shows the overall accuracy results obtained for each one of 
the RaoQ-based methodological approaches. The approach showing best 
results (“classic + multidimensional”) was the one selected to illustrate a 
potential example of an agri-environmental policy-support application 
(4.2). 

4.2. Example of a policy-support application: Monitoring and controlling 
vegetation and LCLU changes in a CAP-subsidized multifunctional 
agricultural area - Charneca do Infantado (Portugal) 

As the introduction mentioned, LCLU change (AEI #9) is one of the 
28 agri-environmental indicators proposed by the European Commis-
sion, as identifying the LCLU changes is highly relevant for agro-
ecosystem monitoring, planning, and management. Furthermore, the 
development of robust, reliable, (semi-)automatized and cost-effective 
LCLU changes monitoring tools might allow a better assessment of so-
cioeconomic and environmental impacts in agricultural areas, 
providing, therefore, relevant information to support public institutions 
(e.g., the European Commission and the national authorities in agri-
culture and rural development) in improving public policies develop-
ment and assessment (e.g., CAP - EU’s Common Agricultural Policy: 
design of agri-environmental schemes and public subsidies; monitoring 
and assessment of CAP measures; etc.). To illustrate the potential of our 
tool for monitoring LCLU changes in multifunctional agricultural areas 
as “Charneca do Infantado” (Portugal), we present below an example of 
a simple decision-support framework aiming at more robust, reliable, 
and cost-effective management by public entities – namely the national/ 
regional authorities on CAP-subsidizing monitoring. Its use might avoid 

unnecessary and expensive on-site LCLU-related control actions and 
focus their limited (economic, human, and logistic) resources in the 
more problematic areas, where relevant LCLU/vegetation changes are 
effectively detected. 

Fig. 5 shows the visual comparison between the NDVI-based change 
detection classification (see 3.2.2) and the RaoQ-based change detection 
by using the “classic + multidimensional” approach, which showed the 
higher overall accuracy (0.92) from all three previously tested RaoQ- 
based approaches. 

By overlaying both layers, the different combinations of 
ΔNDVI_2015-2018 and ΔRaoQ_2015-2018 values (Table 2) can be used 
by the Portuguese national public authority on CAP-subsidizing and 
monitoring (IFAP – Instituto de Financiamento da Agricultura e Pescas) to 
assess, rank, and map their priorities in controlling the LCLU/vegetation 
change-related actions in “Charneca do Infantado”. Table 2 displays a 
hypothetical example of how an entity like IFAP could address their 
priority assessment and management for on-site control actions: Low 
Priority Areas (P0, with no changes in RaoQ-based LCLU status and 
NDVI-based vegetation status); Medium Priority Areas (P1, with no 
changes in RaoQ-based LCLU status and with relevant changes in NDVI- 
based vegetation status); and High Priority Areas (P2, with detected 
changes in RaoQ-based LCLU status and highly-relevant changes in 
NDVI-based vegetation status). 

In the case of this study area, for the experimental period between 
SGS 2015 and SGS 2018, the quantitative results of using such an 
approach are reported in Table 3. 

The final step of this policy-support operational framework would be 
overlaying the priority assessment map with a detailed and updated 
LCLU map (according to the time range considered for analysis), as the 
one developed by Fernandes et al. (2019) for “Charneca do Infantado”. 
The LCLU map generated (Fig. 7) was based on 22 different LCLU/ 
vegetation categories. 

According to Fig. 6 and Table 3, most of the study area is classified as 
showing low priority (P0: not relevant or no changes at all), representing 
92.13% of the whole area with approximately 10,936.54 ha. The me-
dium priority area (P1: relevant NDVI-based vegetation status changes) 
represents 7.36% of the total area, with about 874.14 ha. According to 
Table 4, P1 areas are mainly associated with Mediterranean cork oak 
savannas (320.19 ha, 2.70%), irrigated crops (235,19 ha, 1.98%), and 
rice fields (193.17 ha, 1.64 %). In comparison, a minor contribution is 
associated with Eucalyptus plantations (38.56 ha, 0.33%) and Open 
areas (22.37 ha, 0.19%) – see Fig. 8.a. Finally, the most critical area 
showing highly relevant changes (and requiring, therefore, special 
attention in terms of on-site controlling), classified as P2 (highly rele-
vant NDVI and effective RaoQ-based changes), were identified in about 
0.51% (60.60 ha) of “Charneca do Infantado”. These LCLU/vegetation 
changes classified as P2 areas were associated with dynamic agricultural 
or forest areas with changeable cultures/crops (see Fig. 8.b), which 
require more intensive and seasonal management measures, namely 
irrigated crops (18.37 ha, 0.16%), Eucalyptus plantations (7.46 ha, 
0.063%), floodplain areas (6.59 ha, 0.056%), Mediterranean cork oak 
savannas (5.09 ha, 0.044%), open areas (4.74 ha, 0.040%), permanent 
water surfaces (4.35 ha, 0.038%), vineyards (3.89 ha, 0.034%), and rice 
fields (1.98 ha, 0.018%). 

5. Discussion and conclusions 

The overall accuracies of 0.91 and 0.88 obtained respectively by the 
RaoC and the RaoMD approaches showed the effectiveness of using the 
Rao’s Q diversity index to detect and map LCLU changes in diverse and 
complex landscapes as the multifunctional agricultural areas, positively 
addressing our Research Question #1. Most detected LCLU changes are 
associated with dynamic agricultural or forest areas with changeable 
cultures/crops requiring more intensive and seasonal management 
measures, namely irrigated crops, production forest plantations, flood-
plain areas, permanent water surfaces, vineyards, and rice fields. 

Table 1 
Overall accuracy results obtained for each one of the RaoQ methodo-
logical approaches.  

Method Overall Accuracy 

RaoC  0.91 
RaoMD  0.88 
“classic + multidimensional”  0.92  
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Furthermore, as illustrated in Fig. 5, it constitutes a more reliable 
approach than using the NDVI changes map (ΔNDVI) solely, as those 
might not correspond to real LCLU changes. Instead, both ΔNDVI and 
ΔRaoQ-based information shall be used synergistically to support 
decision-making, as shown in our “Example of a policy-support 

application”. These results also confirm the indications made by Tor-
resani et al. (2019) and Khare et al. (2021) regarding the effectiveness of 
using the NDVI-based Rao’s Q diversity index (our RaoC approach). 

To take advantage of the massive amount of very high/high/medium 
spatial resolution open and free multispectral data (e.g., Landsat, 
Sentinel-2, ASTER, SPOT, CBERS), another objective of this research 
was to test the effectiveness of using a multidimensional approach of the 
Rao’s Q diversity index (our RaoMD approach), using a combination of 
three selected L8 spectral bands (RED-NIR-SWIR1) meant to take 
advantage of specific spectral characteristics of vegetation. In this study, 
the “classic” NDVI-based RaoQ (RaoC) approach performed better than 
the “multidimensional” (RaoMD) approach (0.91 and 0.88 of overall 
accuracy, respectively), although the differences obtained between 
these two approaches were minor. These results positively address our 
Research Question #2, confirming that using only the NDVI-based RaoQ 
approach (RaoC) might be sufficient to detect and map LCLU changes in 
multifunctional agricultural areas effectively. Nevertheless, for future 
case studies using our spectralrao-monitoring script, we recommend users 
to previously compare and assess the similarity of the selected input 
multispectral bands by using multivariate measures of dissimilarity (e. 
g., Transformed Divergence and Jeffries-Matsushita separability 
assessment). Although both RaoC and RaoMD approaches presented and 
tested in this study were developed using L8 multispectral data (as 
explained above), the spatial, spectral, and temporal resolutions of the 
input bands can be significantly improved by using data from a different 

Fig. 5. Comparison between NDVI-based change detection classification (a) and RaoQ-based change detection (b). High-resolution Rapideye’s RGB images from 
June 2015 (c) and June 2018 (d) zooming in the same subarea of interest showing different results for NDVI-based change detection classification (e) and RaoQ-based 
change detection (f). 

Table 2 
Hypothetical example of how an entity like IFAP (Portugal) could address their 
priority assessment and management for LCLU/vegetation-related on-site con-
trol actions in multifunctional agricultural areas as “Charneca do Infantado”.   

RaoQ NoChange RaoQ Change 

NDVI No/Low change Low Priority Area (P0) High Priority Area (P2) 
NDVI Medium change Medium Priority Area (P1) High Priority Area (P2) 
NDVI High change High Priority Area (P2) High Priority Area (P2)  

Table 3 
Quantification and classification of LCLU/vegetation-related on-site controlling 
actions in “Charneca do Infantado” (after May/June 2018).  

Type Areas (ha) Areas (%) 

P0  10936.54 92.13 % 
P1  874.14 7.36 % 
P2  60.60 0.51 %  
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sensor (e.g., Sentinel-2, Worldview) or even by adopting a multi-sensor 
approach (e.g., Worldview + Sentinel-2), especially in geographical 
regions with frequent cloud-cover (e.g., mountainous, insular or tropical 
areas) and chronic scarcity of suitable and workable multispectral data. 
Finally, the option of developing and testing a third approach consisting 
of combining both RaoC and RaoMD outputs (“classic + multidimen-
sional”) to get a unique binary map representing the detected LCLU 

changes in the study area, has slightly improved the overall accuracy 
results (0.92) regarding the two initial options. 

The “Example of a policy-support application” that we present in 4.2 
illustrates the potential and pertinence of implementing the spectralrao- 
monitoring workflow to minimize unnecessary and expensive on-site 
LCLU-related control actions in multifunctional agricultural areas. It 
could allow regional/national controlling agencies to focus their limited 

Fig. 6. Hypothetical priority assessment map for IFAP’s LCLU/vegetation-related on-site control actions in “Charneca do Infantado,” for the period of interest 
(SGS_2015 - SGS_2018). P0 represents the low priority class, P1 is the medium priority, and P2 is the high priority class. 

Fig. 7. 2018 LCLU map of “Charneca do Infantado”proposed by Fernandes et al. (2019) using 22 LCLU categories.  
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resources on the areas where relevant LCLU/vegetation changes were 
effectively detected. 

This study was conducted using desktop/laptop-based limited 
computational resources, which is still common for most remote sensing 
and digital agriculture scientists/practitioners, especially in public in-
stitutions. By comparing the results obtained through RaoQ-based 
methodological approaches with different data requirements (e.g., 
RaoC, RaoMD, “classic + multidimensional”), and by concluding that 
they are pretty close in terms of overall accuracy, we were also able to 
guide users towards the most suitable solution for each case. 

The spectralrao-monitoring application can be easily accessed and 
reproduced thanks to a Python repository available at https://github. 
com/AndreaTassi23/spectralrao-monitoring. As a dynamic, high-level, 
free, and open-source programming language, Python can support 
object-oriented programming and procedural-oriented programming. It 
can also be easily integrated with other languages (e.g., C, C++). Python 
supports several relevant geospatial libraries to perform various basic 
and advanced geoprocessing and image processing analytical tasks (e.g., 
GDAL, LibLAS), providing complete interoperability with GIS and 
remote sensing-based platforms and frameworks. In terms of computa-
tional resources, the execution of the spectralrao-monitoring workflow 
may be demanding. Its application in vast study areas or its use with 
high/very-high spatial resolution data might require more powerful 
hardware or the use of a cloud-based platform. This is particularly true 

Table 4 
Quantification for each LCLU/vegetation category (in hectares) shows the total 
area and the respective subareas identified as P0, P1 or P2 priority level for on- 
site controlling, according to their type of changes.  

LCLU category  P0 (in ha) P1 (in ha) P2 (in ha) 

Social Area   60.28 1.96 ~ 0 
Acacia forest   0.97 ~ 0 ~ 0 
Permanent water surfaces   89.40 2.46 4.35 
Rice Fields   469.75 193.17 1.98 
Reed vegetation   4.07 0.11 0.04 
Seasonal Ponds   7.13 0.55 ~ 0 
Road   60.88 0.05 ~ 0 
Eucalyptus plantations   525.86 38.56 7.46 
Bare soil areas   15.49 0.36 1.12 
Schrubland   132.48 3.34 0.44 
Mixed forest   277.81 0.32 1.09 
Mediterranean cork oak savannas   6402.01 320.19 5.09 
Olive Trees plantations   74.82 ~ 0 0.16 
Maritime pine forests   1492.45 0.89 1.10 
Stone pine forests   386.04 1.23 0.77 
Irrigated crops   187.44 235,19 18.37 
Pastureland   30.53 11.29 2.66 
Riparian vegetation   201.24 0.92 0.69 
Floodplain area   170.94 37.77 6.59 
Spontaneous vegetation   5.31 ~ 0 ~ 0 
Vineyards   145.09 3.42 3.89 
Open areas   196.53 22.37 4.74  

Fig. 8. Relation (in percentage) between LCLU/vegetation categories and their on-site controlling priority-level assessment: P1 (a) and P2 (b).  
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for the calculation of RaoC and RaoMD, as the use of the moving window 
centered for each pixel allows the extraction of textural information, and 
the resulting performance might be relatively slow, especially for larger 
study areas and higher spatial resolutions. The other workflow steps are 
swift and require low computational resources since all the georefer-
enced images are converted into NumPy, and the classification processes 
are based on an automatic threshold. Authors encourage the open- 
source development and implementation of this application in geo-
spatial cloud-based computing platforms, especially Google Earth En-
gine, because of its global popularity and active users’ community. 

Based on this case study, we can conclude that this RaoQ-based 
application may constitute a straightforward and reliable LCLU 
change monitoring tool for multifunctional agricultural areas. It can be 
used as a low-cost decision-support tool to quickly and effectively in-
crease the cost-benefit ratio of the on-site LCLU-related controlling ac-
tions, namely those related to the monitoring of subsidized areas for 
agricultural production or agri-environmental schemes implementation. 
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