
Construção de Linguagens Específicas de
Domínio e a sua Integração com IDEs

LUÍS MIGUEL GODINHO PINHO OLIVEIRA MARQUES
Junho de 2022

Domain-Specific Languages
Automated Building and their IDE

Integration

Luis Marques

A dissertation submitted in partial fulfillment of
the requirements for the degree of Master of Science,

Specialisation Area of Computer Systems

Supervisor: Alexandre Bragança

Porto, June 30, 2022

iii

Abstract

Low-code platforms are presented as model-based software development solutions. In this
sense, they could be described as applications of the Model-driven Engineering (MDE)
paradigm. Despite the apparent success of these development platforms, they do not appear
to adhere to standards and are frequently closed-source solutions. These characteristics may
cause problems in the maintenance and evolution of solutions developed on these platforms
in the future. One of these issues is the difficulty in migrating solutions to other platforms,
implying that the client/user is dependent on the platform.

The goal of the study is to externalize low-code platform modeling or any DSL to more
general-purpose integrated development environments (IDE) like Visual Studio Code or
Eclipse. As a result, users are able to use DSLs to model their applications in the IDE
and integrate them with more general-purpose programming languages.

This dissertation starts by providing an overview of the current state of the use of domain-
specific language in general-purpose IDE environments.

Furthermore, several designs were developed to find the best solution that achieves the goal.
The designs are then compared, and the best one is selected to be implemented.

The solution developed still has quite some future work to be done. It lacks many of the
features found in a full-fledged IDE for a general-purpose language, like Visual Studio Code
supports Javascript. Nonetheless, it may be quite useful when deploying a DSL to a general-
purpose IDE.

Keywords: Model-driven Engineering, Domain-specific Language, Integrated development
environment, Open Source

v

Resumo

As plataformas low-code são apresentadas como soluções de desenvolvimento de software
baseadas em modelos. Nesse sentido, podem ser descritas como aplicações do paradigma
Model-driven Engineering (MDE). Apesar do aparente sucesso dessas plataformas de de-
senvolvimento, não parecem aderir aos padrões e frequentemente são soluções de código
fechado. Essas características podem causar problemas na manutenção e evolução das
soluções desenvolvidas nessas plataformas no futuro. Um desses problemas é a dificuldade
em migrar soluções para outras plataformas, implicando que o cliente seja dependente da
plataforma.

O objetivo do estudo é externalizar a modelagem de plataforma low-code ou de uma lingua-
gens específica de domínio (DSL) para ambientes de desenvolvimento integrado (IDE) de
propósito geral, como Visual Studio Code ou Eclipse. Como resultado, os usuários poderão
usar DSLs para modelar seus aplicativos no IDE e integrá-los com linguagens de programação
mais gerais.

Esta dissertação começa fornecendo uma visão geral do estado atual do uso de DSL em
ambientes IDE de uso geral.

Além disso, vários designs foram desenvolvidos para encontrar a melhor solução que atinja o
objetivo. Os designs são então comparados e o melhor é selecionado para ser implementado.

A solução desenvolvida ainda tem bastante trabalho a ser feito. Faltam muitas das fun-
cionalidades encontrados em um IDE para uma linguagem de uso geral, tal com o Visual
Studio Code tem suporte para Javascript. No entanto, pode ser bastante útil ao implantar
uma DSL num IDE de uso geral.

Palavras-chave: Engenharia Orientada a Modelos, Linguagem Específica de Domínio, Am-
biente de Desenvolvimento Integrado, Código Aberto

vii

Acknowledgement

First and foremost, I would like to thank my supervisor, Professor Alexandre Bragança, for
his availability and his interest in guiding me throughout this project.

I’d want to thank my loved ones and friends for their support and encouragement throughout
this time.

ix

Contents

List of Figures xiii

List of Tables xv

List of Algorithms xv

List of Source Code xvii

List of Acronyms xix

1 Introduction 1
1.1 Context . 1

1.1.1 Model-driven Engineering . 1
Domain-Specific Language . 2
Concrete Syntax . 2

1.1.2 Low-Code development platform 2
1.1.3 Integrated development environment 3

1.2 Problem . 3
1.3 Goals . 3
1.4 Hypothesis . 4
1.5 Research methodology . 4
1.6 Expected Results . 5
1.7 Dissertation Structure . 5

2 State Of The Art 7
2.1 Technological . 7

2.1.1 Xtext . 7
2.1.2 Syntax Highlighters . 8

ANTLR . 9
TextMate grammars . 9

2.1.3 Tools supporting the LSP . 9
Eclipse IDE . 9
Visual Studio Code . 10
Theia . 11

2.2 Related Work . 12
2.2.1 TextX . 12

Languages/Generators Preview 13
Languages/Generators Preview 13
Default Syntax Highlighting . 15
Live-reload on grammar changes 15

2.2.2 Xtext Generator Fragment for Visual Studio Code Extensions . . . 15

x

2.3 Summary . 17
2.3.1 Technologies Comparison and Decision 17
2.3.2 Related Work Comparison . 17

TextX for VS Code . 17
Xtext Fragment . 17

3 Value Analysis 19
3.1 New Concept Development Model . 19

3.1.1 Opportunity Identification . 20
3.1.2 Opportunity Analysis . 21

3.2 Value Proposition . 21
3.2.1 Value Proposition Canvas . 21

Customer Profile . 22
Value Map . 22

3.3 Analytic Hierarchy Process (AHP) . 26

4 Analysis and Design 33
4.1 Functional and Non-Functional Requirements 33

4.1.1 Functional Requirements . 33
4.1.2 Non-Functional Requirements . 33

4.2 Design . 34
4.2.1 Context . 36
4.2.2 Alternatives . 36

Alternative 1 . 37
Alternative 2 . 39
Alternative 3 . 41
Summary . 42

5 Implementation 45
5.1 Project Structure . 45
5.2 Ecore Module . 46
5.3 Xtext Module . 47

5.3.1 Creation of Xtext Project . 47
5.3.2 Load Xtext Grammar . 48

5.4 TextMate Module . 48
5.5 Vscode Module . 50
5.6 Controller Module . 51

5.6.1 Functional Requirements 1 . 51
5.6.2 Functional Requirements 2 . 52
5.6.3 Summary . 53

6 Experiments 55
6.1 Hypothesis . 55
6.2 Assessment Methodology . 55

6.2.1 QEF . 55
6.2.2 Comparison Testing . 55

6.3 Results . 56
6.3.1 Omnia extension . 56
6.3.2 Xtext Eclipse Plugin Comparison Test Results 57

Arithmetics . 57

xi

Domain Model . 57
State Machine . 58
Home Automation . 58
Summary . 58

6.3.3 Assessment Completion . 58

7 Conclusion 63
7.1 Goals Achieved . 63
7.2 Limitations and Future Work . 63
7.3 Personal Remarks . 63

References 65

xiii

List of Figures

1.1 Example GCS and TCS, From: Brambilla, Cabot, and Wimmer 2017 . . . 2

2.1 Desktop Eclipse IDE, From:(Foundation 2022) 10
2.2 Desktop Visual Studio Code IDE, From:(Visual Studio Code 2022) 11
2.3 Coffee Editor tool based on Eclipse Theia , From:(EMF.cloud Project 2022) 12
2.4 TextX View, From:(textX for VS Code 2022) 13
2.5 TextX Meta-model validation, From:(textX for VS Code 2022) 14
2.6 TextX Model validation, From:(textX for VS Code 2022) 14
2.7 TextX Live-reload, From:(textX for VS Code 2022) 15

3.1 The Innovation Process, From: (Koen et al. 2002) 19
3.2 NCD model, From: (Koen et al. 2002) . 20
3.3 Value Canvas . 23
3.4 Value Canvas . 25
3.5 Xtext Editor Features by Platform , From:(Xtext 2022) 26
3.6 Hierarchical Decision Tree . 27

4.1 Illustration of the 4+1 Architectural View Model, From (Kruchten 1995) . 36
4.2 System Context Logical View . 36
4.3 Container Logical View of Alternative 1 37
4.4 Component Logical View of Alternative 1 38
4.5 Component Process View for FR1 and FR2 of Alternative 1 38
4.6 Container Logical View of Alternative 2 39
4.7 Component Logical View of Alternative 2 40
4.8 Component Process View for FR1 of Alternative 2 40
4.9 Component Process View for FR2 of Alternative 2 41
4.10 Container Logical View of Alternative 3 41
4.11 Component Logical View of Alternative 3 42

5.1 Project Structure Tree . 45
5.2 Module Structure Tree . 46
5.3 Extension Structure Tree . 51
5.4 Code Process View for FR1 . 52
5.5 Code Process View for FR2 . 53

6.1 Omnia Extension usage example . 56
6.2 Arithmetics DSL Comparison . 57
6.3 Domain Model DSL Comparison . 58
6.4 State Machine DSL Comparison . 59
6.5 Home Automation DSL Comparison . 59

xv

List of Tables

2.1 Editor Features By Platform, From: (Xtext 2022) 8

3.1 Saaty fundamental scale, From: (Saaty 1990) 27
3.2 Comparison Matrix between Criteria . 28
3.3 Normalized Comparison Matrix and Relative Priority Vector 28
3.4 Random Consistency Index, From:(Vaidya and Kumar 2006) 29
3.5 Comparison Matrix between Integration in Alternatives 29
3.6 Comparison Matrix between Potential in Alternatives 29
3.7 Comparison Matrix between Active Users in Alternatives 30
3.8 Normalized Comparison Matrix and Local Priority for the comparison be-

tween Alternatives regarding Integration Criterion 30
3.9 Normalized Comparison Matrix and Local Priority for the comparison be-

tween Alternatives regarding Potential Criterion 30
3.10 Normalized Comparison Matrix and Local Priority for the comparison be-

tween Alternatives regarding Active Users Criterion 30
3.11 Criteria/Alternatives Classification Matrix and Global Priority 31

4.1 Alternative 1 Advantages and Disadvantages 42
4.2 Alternative 2 Advantages and Disadvantages 43
4.3 Alternative 3 Advantages and Disadvantages 43

6.1 QEF Functionality Scale . 60
6.2 QEF Usability Scale . 60
6.3 QEF Supportability Scale . 60
6.4 QEF Assessment . 61

xvii

List of Source Code

2.1 Xtext Language workflow fragments . 16
2.2 Xtext Generator Fragment . 17
5.1 Creating Resource Set to load Ecore Models 46
5.2 Loading Ecore Models . 47
5.3 Xtext preset configurations . 47
5.4 Create Xtext Project . 48
5.5 Xtext Resource Set . 48
5.6 Loading Information from Grammar . 49
5.7 Velocity Template Snippet . 49
5.8 Velocity Usage . 50
5.9 Xtext Command usage . 51
5.10 Vscode Command usage . 52

xix

List of Acronyms

AHP Analytic Hierarchy Process.

CI Consistency Index.
CLI Command-line interface.
CR Consistency Ratio.

DSL Domain-specific Language.
DSRM Design Science Research Methodology.

FFE Fuzzy front end.

GCS Graphical Concrete Syntaxes.
GPL General-purpose language.
GUI Graphical User Interface.

IDE Integrated development environment.

JVM Java Virtual Machine.

LCDP Low-Code Development Platform.
LSP Language server protocol.

MDE Model-driven Engineering.

NCD New Concept Development.
NPD New product development.

QEF Quantitative Evaluation Framework.

SWOT Strengths, Weakness, Opportunities and
Threats.

TCS Textual Concrete Syntaxes.

UML Unified Modeling Language.
URI Uniform Resource Identifier.

1

Chapter 1

Introduction

This Chapter was written to give an overview of the document’s structure, the context
of this work, and to explain the foundations of this dissertation. Finally, the objectives,
approach, and development process will all be specified.

1.1 Context

This section introduces Model-driven Engineering, Low code platforms, and Integrated De-
velopment Environments, to ease the understanding of this work.

1.1.1 Model-driven Engineering

Software engineers have long attempted to make software development easier by providing
abstractions that allow them to program in terms of design rather than computer environ-
ments and technology (Schmidt 2006).

Despite the fact that advances in languages and platforms have raised the level of software
abstractions in recent decades, software developers still spend a significant amount of time
and effort developing and maintaining applications in third-generation languages, as well as
manually porting application code to newer platforms or versions of the same platform.

Third-generation languages are high-level computer programming languages that are more
user-friendly and machine-independent than second-generation languages but have a nar-
rower focus than the fourth and fifth generations. Languages like Java and Python are
examples of third-generation languages (What is a Generation Languages? 2022).

One issue with developing software with third-generation languages is that they require
developers to focus on so many tactical imperative programming details that they lose sight
of strategic architectural considerations like system-wide accuracy and performance.

Model-Driven Engineering technologies, which integrate Domain-specific Language (DSL),
transformation engines, and generators, could be one answer to this problem. However,
MDE is not without its limitations; there is a substantial initial cost associated with building
or implementing tools and transformations. MDE is a long-term investment and needs
customization of environment, tools and processes, and training (Mohagheghi et al. 2008).

2 Chapter 1. Introduction

Domain-Specific Language

A domain-specific language (DSL) is a computer language specialized to a particular domain
or context, in contrast to a General-purpose language (GPL), which as the name implies is
general and applicable across domains.

Some DSL examples are HTML, Gherkin, and SQL.

Examples of GPL are XML, Unified Modeling Language (UML), Java.

The DSLs have the two syntactical ingredients of modeling languages, namely the abstract
syntax and the concrete syntax of the languages.

• The abstract syntax of an implementation is the set of trees used to represent pro-
grams in the implementation. This is, the abstract syntax defines the way the programs
look to the evaluator/compiler (Meuter 2022).

• The concrete syntax of a programming language is the graphical or textual elements
used to render the model elements in modeling editors (Schmidt 2006). It consists
of a set of rules (productions) that define the way programs look to the programmer
(Meuter 2022). We will be focussing more on the concrete syntaxes since it is more
important for this dissertation.

Concrete Syntax

Two kinds of concrete syntaxes are currently supported by existing frameworks: Graphical
Concrete Syntaxes (GCS) and Textual Concrete Syntaxes (TCS). Having a textual language
allows the encoding of information using sequences of characters like in most program-
ming languages, while graphical languages encode information using spatial arrangements of
graphical (and textual) elements. Thus, textual representations are onedimensional, while
most graphical languages allow for two-dimensional representations. For example, in UML
diagrams each model element is located in a two-dimensional modeling canvas (Brambilla,
Cabot, and Wimmer 2017).

Figure 1.1: Example GCS and TCS, From: Brambilla, Cabot, and Wimmer
2017

1.1.2 Low-Code development platform

A Low-Code Development Platform (LCDP) provides a development environment used to
create application software through a graphical user interface. A low-coded platform may

1.2. Problem 3

produce entirely operational applications, or require additional coding for specific situations.
Low-code development platforms can reduce the amount of traditional time spent, enabling
accelerated delivery of business applications. (Richardson et al. 2014)

One disadvantage of these platforms is that they each have their own visual "editor" and
lack interoperability.

1.1.3 Integrated development environment

An Integrated development environment (IDE) software for building applications that com-
bines common developer tools into a single Graphical User Interface (GUI). An IDE typically
consists of:

• Source code editor: A text editor that can assist in writing software code with
features such as syntax highlighting with visual cues, providing language-specific auto-
completion, and checking for bugs as code is being written.

• Local build automation: Utilities that automate simple, repeatable tasks as part of
creating a local build of the software for use by the developer, like compiling computer
source code into binary code, packaging binary code, and running automated tests.

• Debugger: A program for testing other programs that can graphically display the
location of a bug in the original code. (What is an IDE? 2022)

1.2 Problem

Low-code platforms are presented as model-based software development solutions. In this
sense, they could be described as applications of the Model-driven Engineering (MDE)
paradigm (Schmidt 2006). Despite the success that these development platforms seem
to be enjoying, they don’t seem to follow standards, and most of the time they are closed-
source solutions. These characteristics can lead to future problems in the maintenance, and
evolution of the solutions developed on these platforms. An example of these problems is
the difficulty in migrating solutions to other platforms, that is, the client/user is dependent
on the platform.

1.3 Goals

This dissertation proposal arises in the context of the BAMoL research project which aims
to develop a language workbench (Fowler 2005) for domain-specific languages (DSL) for
low-code platforms. Overall, the aim is to externalize the modeling of low-code platforms
to more general-purpose IDE environments, such as Visual Studio Code or Eclipse. In this
way, it will be possible for the user of the low-code platform to use DSLs to model their low-
code applications in the IDE and integrate them with more general-purpose programming
languages. The IDE solution will be integrated with the low-code platform, allowing the
user to use the environment that is most convenient for them and, at the same time, can
migrate the solution to other low-code platforms. This approach is partially described in
(Bragança et al. 2021).

This dissertation, in particular, is intended to explore concrete syntaxes for the domain-
specific languages to be made available in the IDE solution mentioned above. As a starting
point, we intend to explore the different existing alternatives, as demonstrated in (EMF.cloud

4 Chapter 1. Introduction

Project 2022). If possible, a tool should be produced that fully or partially supports this
activity, namely in the automatic generation of support for concrete syntaxes from domain-
specific language meta-models.

BAMoL’s approach is to produce the low-code platform meta-model in a standard format,
Ecore. This project will use the meta-model produced for the low-code platform as a starting
point for generating the DSL and IDE support. In the context of BAMoL, it was also decided
to use Visual Studio Code extensions and the Language Server Protocol to support the DSL
in IDEs.

Since this dissertation is part of the BAMoL research project, it comes with some techno-
logical constraints:

• The tool for designing domain-specific languages is Xtext since it supports Ecore;

• The IDE for the DSL has to support the language server protocol.

1.4 Hypothesis

The following hypothesis should be analyzed and validated in order to establish a starting
point for this project:

• H1 - The proposed approach provides an automated and effective way of producing a
language server implementation and complete Visual Studio extension based solely on
the abstract syntax (i.e., meta-model) of the domain-specific language.

1.5 Research methodology

This dissertation conforms to the Design Science Research Methodology (DSRM) to improve
the relevance and quality of the solution to the previously mentioned problem. DSRM is a
framework that defines and analyzes the constraints, objectives, processes, and results to
be presented in the simplest terms with legitimate value to the audience to evaluate and
perform design science research in information systems (Peffers et al. 2007).

This technique comprises six activities, applied in the context of this dissertation as follows:

• Problem identification and motivation: consist of describing the problem that will
be the focus of the study and demonstrating how the suggested solution will be useful
in this context. In this document, the problem is described in section 1.2, and the
value of the solution in section 3.2;

• Objectives of a solution: consists of identifying the goals depending on the con-
straints of the problem. This is described in section 1.3;

• Design and development: Create and implement the chosen solution. After ex-
amining existing state-of-the-art frameworks, patterns, and approaches, the design
is completed to create a proof of concept that implements this architecture. This
activity is described in Chapters 4 and 5;

• Demonstration: includes a description of how well the solution solves the problem.
Experimentation and evidence are used to determine how well the implemented solution
addresses the problem. This is described in Chapter 6;

1.6. Expected Results 5

• Evaluation: consists of utilizing metrics to evaluate how well the implementation holds
against the problem’s solution. This is also described in the Chapter 6;

• Communication: This final activity consists of communicating how successful the
proposed solution’s outputs are at solving the problem, their utility in the context of
the area, and how well they meet the expected value. Communication is discussed
in the final section of this dissertation, Chapter 7 - Conclusions, as well as the final
presentation to the evaluation audience.

The source code of the solution is available in a public repository1.

1.6 Expected Results

When it comes to predicted outcomes, it is expected to provide a tool that allows the user
to generate concrete syntaxes using the modeling language’s abstract syntax.

Furthermore, the domain-specific language generated should be able to be utilized in an
open-source IDE with all of the functionality that a third-generation language IDE has, such
as:

• Keywords highlighting

• Auto-completion

• Error highlighting

Finally, the application project should be available in a public repository.

1.7 Dissertation Structure

This document is divided into seven chapters. Those chapters are Introduction, State of
the Art, Value Analysis, Analysis and Design, Experiments, and Conclusions.

The introduction contextualizes the project, followed by a brief description of the problem
that drove this dissertation, a definition of the objectives, the preferred approach, and work
planning.

State of the Art describes the technologies used with some alternatives. Following that,
some work related to delivering DSLs to IDEs is presented and compared.

The following chapter depicts the project’s Value Analysis. As a result, this dissertation
begins with a description of the Innovation Process, followed by a characterization of its
theoretical constituents and implementation. Second, the Analytic Hierarchy Process (AHP)
is used to select the best IDE to deploy a DSL alternative for this study. Finally, the Value
Proposition, Customer Value, and Canvas Business Model in this dissertation are designed
to assist the reader in better understanding the value that will be delivered to the clients.

Functional and non-functional requirements are described in the Analysis and Design. There
are also three alternatives for satisfying all requirements. Finally, there is a list of the pros
and cons of each alternative, as well as the choice of the alternative.

The project structure is described in the implementation. Then, it is documented how each
module was developed, including code snippets and problems encountered.

1https://github.com/Lzgpom/xtext-gen-extension

7

Chapter 2

State Of The Art

State of the Art will start on addressing the technologies in concern. It will describe them
with more focus on the parts that have more interest for this dissertation. Afterward, there
is related work. And finally, there is a summary justifying what distinguishes this solution
from the others mentioned in the related work.

2.1 Technological

In this section, there will be a demonstration of the chosen technologies as well as worthwhile
alternative technologies for this project. The technologies shown will be based on the
constraints described in section 1.3.

2.1.1 Xtext

Xtext is an open-source software framework for developing programming languages and
domain-specific languages (DSLs). Some of Xtext’s features are:

• Multi Platform - Supports Eclipse, any editor that supports the Language server
protocol (LSP) or browser editors. Table 2.1 shows the editors features by platform.

• Continuous Integration - Supports both Gradle and Maven to build the language and
use it in downstream projects.

• JVM languages - Xtext can build languages for any platform. But if targeted to
JVM, Xbase can be used, as a statically typed expression language. Linking against
Java types, code generation, and debugging work out of the box.

• Compatible with Graphical Editors - The text-based formats created with Xtext can
be combined with many graphical editing frameworks, such as (GEF 2022), (Sirius
2022), and (Graphiti 2022).

• Single Sourcing - Xtext’s grammar definition language is not just for the parser.
Many Xtext IDE features automatically adapt to your language, so whenever you
change your grammar definition, the behavior of the text editor is adjusted without
any further code changes. This includes advanced capabilities like cross-reference
handling, code completion, navigation, syntax coloring, validation, and more.

8 Chapter 2. State Of The Art

Table 2.1: Editor Features By Platform, From: (Xtext 2022)

LSP Eclipse Web
Browser

Syntax Coloring D D D
Semantic Coloring D D
Error Checking D D D
Auto-Completion D D D
Formatting D D D
Hover Information D D D
Mark Occurrences D D D
Go To Declaration D D
Rename Refactoring D D
Debugging D
Toggle Comments D D
Outline / Structure View D D
Quick Fix Proposals D D
Find References D D
Call Hierarchy D
Type Hierarchy D
Folding D

To specify a language, the developer either writes a grammar in Xtext’s grammar language
or generates it from an Ecore model. From that definition, a code generator derives an
ANTLR parser and the classes for the object model, which can be used independently of
Eclipse.

2.1.2 Syntax Highlighters

Syntax highlighting is a feature of text editors that is used for programming, scripting,
or markup languages, such as HTML. The feature displays text, especially source code,
in different colors and fonts according to the category of terms. (d’Anjou, Fairbrother,
and Kehn 2005) This feature makes it easier to write in a structured language, such as
a programming language or a markup language because structures and syntax errors are
visually distinct.

Syntax Highlighters are technologies that allow IDEs to have this feature. The following
sections describe some of these.

2.1. Technological 9

ANTLR

ANTLR (ANother Tool for Language Recognition) is a powerful parser generator for reading,
processing, executing, or translating structured text or binary files. It’s widely used to build
languages, tools, and frameworks. From a grammar, ANTLR generates a parser that can
build and walk parse trees. (ANTRL 2022)

ANTRL is the technology used for the Xtext Generated Eclipse plugins. It allows syntax
highlighting, among other features.

TextMate grammars

TextMate grammars are used to assign names to document elements such as keywords,
comments, strings or similar. The purpose of this is to allow styling (syntax highlighting) and
to make the text editor “smart” about which context the caret is in. (Language Grammars
2022).

Invented for the TextMate editor, they have been adopted by many other editors and IDEs
due to large number of language bundles created and maintained by the Open Source com-
munity. (Syntax Highlight Guide 2022).

2.1.3 Tools supporting the LSP

The Language server protocol (LSP) defines the protocol used between an editor or IDE
and a language server that provides language features like auto-complete, go to definition,
find all references, etc. (Language Server Protocol 2022)

A wide range of IDEs support LSP, and Xtext can generate language servers. As a result,
LSP will be utilized.

An analysis is required to determine which tool should be used as an LSP client. Of the
many tools that support LSP, only a few of the most well-known will be examined. The
ones chosen are Visual Studio Code, Eclipse IDE, and Theia.

Eclipse IDE

Eclipse is an integrated development environment (IDE) used in computer programming. It
contains a base workspace and an extensible plug-in system for customizing the environment.
Eclipse is primarily built in Java and is intended for the development of Java applications.
However, it may also be used to develop programs in other programming languages via
plug-ins, such as C++, Javascript, and Python.

10 Chapter 2. State Of The Art

Figure 2.1: Desktop Eclipse IDE, From:(Foundation 2022)

Visual Studio Code

Microsoft’s Visual Studio Code is an open-source code editor that runs on Windows, Linux,
and macOS (Lardinois 2015). It includes features such as support for debugging, syntax
highlighting, intelligent code completion, and code refactoring. Also, users can customize
the theme, keyboard shortcuts, and preferences, as well as install extensions for extra func-
tionality.

These extensions are available from a centralized repository. One notable feature is the
ability to use the Language Server Protocol to construct extensions that add support for new
languages, themes, and debuggers, do static code analysis, and add code linters (Creating
Language Servers for Visual Studio Code 2022).

2.1. Technological 11

Figure 2.2: Desktop Visual Studio Code IDE, From:(Visual Studio Code
2022)

In the recent Stack Overflow 2021 Developer Survey, Visual Studio Code was ranked as
the most popular developer environment tool (Stack Overflow Developer Survey 2021 -
Integrated Development Environment 2022).

Theia

Eclipse Theia is also a free and open-source integrated development environment (IDE)
framework based on Visual Studio Code. Theia has multiple features as stated on the
official website (Theia 2022), in which the following stand out:

• Cloud and Desktop: it is possible to develop one IDE and run it in a browser or as a
native desktop application from a single source.

• Extensible: it is designed in a modular way to allow extenders and adopters to cus-
tomize and extend every aspect.

• Modern Tech: It provides language support via LSP and DAP, which is critical for
this dissertation. Further, it can host VS Code extensions and provides full terminal
access.

12 Chapter 2. State Of The Art

Figure 2.3: Coffee Editor tool based on Eclipse Theia , From:(EMF.cloud
Project 2022)

2.2 Related Work

This section contains some related work about generating a plugin/extension for a given
DSL to be used in an IDE.

2.2.1 TextX

TextX is a meta-language for domain-specific language (DSL) specification in Python, in-
spired by Xtext.

From a single grammar description, TextX automatically builds a meta-model (in the form
of Python classes) and a parser for your language. The parser will parse expressions of your
language and automatically build a graph of Python objects (i.e. the model) corresponding
to the meta-model (textX 2022).

For this dissertation is of most importance to note that this tool, TextX, there is in an
ongoing effort to build tooling support around Visual Studio Code. It is named TextX for VS
Code. The input for the generator is the language grammar and some additional information
about the DSL. At the time of writing, TextX for VS Code has the following features:

• Install/Uninstall textX Language Project

• Languages/Generators Preview, described in 2.2.1.

• Model/Meta-model Validation, described in 2.2.1.

• Default Syntax Highlighting, described in 2.2.1.

• Live-reload on grammar changes, describe in 2.2.1.

2.2. Related Work 13

Languages/Generators Preview

In the Visual Studio Code, there is a view where the registered TextX languages and gener-
ators are listed.

Figure 2.4: TextX View, From:(textX for VS Code 2022)

Languages/Generators Preview

When modifying a DSL’s meta-model or model in Visual Studio Code, the editor highlights
the errors and displays an error message with the problem. The Figures 2.5 and 2.6 depict
some examples of this.

14 Chapter 2. State Of The Art

Figure 2.5: TextX Meta-model validation, From:(textX for VS Code 2022)

Figure 2.6: TextX Model validation, From:(textX for VS Code 2022)

2.2. Related Work 15

Default Syntax Highlighting

The extension creates syntax highlight for the model files based on the grammar. For
example, with the meta-model described in Figure 2.5 the highlight in Figure 2.6 is created.

Live-reload on grammar changes

The extension watches for the grammar file changes and generates a new syntax highlighting
information from the changed grammar. The extension then re-paints and re-validates
opened files. This can be seen in Figure 2.7.

Figure 2.7: TextX Live-reload, From:(textX for VS Code 2022)

2.2.2 Xtext Generator Fragment for Visual Studio Code Extensions

Xtext Generator Fragment for Visual Studio Code Extensions is an open-source project
developed by Itemis and published on Github. (Xtext Generator Fragment for Visual Studio
Code Extensions 2022)

The workflow file in Xtext has the configurations of the language in Xtext. This workflow
file allows the customization and or extension of the language through fragments. The frag-
ments can change what modules of the Xtext create, and create custom modules, among
other things. Listing 2.1 shows some fragments that Xtext has.

16 Chapter 2. State Of The Art

1 l a n guage = S t a n d a r tG e n e r a t o r {
2 name = " org . examp le . domainmodel . Domainmodel "
3 f i l e E x t e n s i o n s = "dmodel "
4 r e f e r e n c e dR e s o u r c e = " p l a t f o rm : / r e s o u r c e / org . e c l i p s e . x t e x t . xba se /

model /Xbase . genmode l "
5

6 f r agment = grammarAccess . GrammarAccessFragment2 {}
7 f r agment = eco r e . EMFGeneratorFragment2 {}
8 f r agment = s e r i a l i z e r . S e r i a l i z e r F r a g m e n t 2 {}
9 f r agment = r e s o u r c e F a c t o r y . Resou rceFac to r yF ragment2 {}

10 f r agment = p a r s e r . a n t l r . X t e x tAn t l rGen e r a t o rF r agmen t2 {}
11 f r agment = v a l i d a t i o n . Va l i d a t o rF r a gmen t2 {}
12 f r agment = s c o p i n g . Impor tNamespacesScop ingFragment2 {}
13 f r agment = e x p o r t i n g . Qua l i f i e dNamesFragment2 {}
14 f r agment = b u i l d e r . B u i l d e r I n t e g r a t i o n F r a g m e n t 2 {}
15 f r agment = g e n e r a t o r . Gene ra to rF ragment2 {}
16 f r agment = f o rma t t i n g . Formatte r2Fragment2 {}
17 f r agment = u i . l a b e l i n g . L ab e lP r o v i d e rF r a gmen t 2 {}
18 f r agment = u i . o u t l i n e . Qu i ckOut l i n eF ragment2 {}
19 f r agment = u i . o u t l i n e . Ou t l i n eT r e eP r o v i d e rF r a gmen t 2 {}
20 f r agment = u i . q u i c k f i x . Qu i c k f i x P r o v i d e r F r a gmen t 2 {}
21 f r agment = u i . c o n t e n t A s s i s t . Con t en tAs s i s tF r agmen t2 {}
22 f r agment = j u n i t . J un i tF r agmen t {}
23 f r agment = u i . r e f a c t o r i n g . RefactorE lementNameFragment2 {}
24 f r agment = t y p e s . TypesGene ra to rFragment2 {}
25 f r agment = xbase . XtypeGene ra to rF ragment2 {}
26 f r agment = xbase . XbaseGene ra to rFragment2 {}
27 f r agment = u i . t emp l a t e s . Code t emp l a t e sGene ra to rF ragment2 {}
28 f r agment = u i . compare . CompareFragment2 {}
29 f r agment = web . Web In t eg r a t i onF ragment {
30 f ramework = "Ace"
31 }
32 f r agment = u i . p r o j e c tW i z a r d . Temp la tePro j ec tWiza rdF ragment {}
33 f r agment = u i . f i l e W i z a r d . Temp l a t eF i l eW i za rdF ragment {}
34 }

Listing 2.1: Xtext Language workflow fragments

This project makes use of a custom fragment. This fragment generates a new module con-
taining the generated visual studio code extension. To achieve the creation of the extension,
the fragment does the following steps:

• Obtains all the keywords from the Xtext grammar to create the TextMate file con-
taining the syntax highlighting.

• Uses the language server created by Xtext to provide code suggestions and error
highlighting.

Listing 2.2 is an example of the usage of this fragment.

2.3. Summary 17

1 l a nguage = StandardLanguage {
2 . . .
3 f r agment = com . i t e m i s . x t e x t . g e n e r a t o r . v s code . VSCodeExtens ionFragment

{
4 p r o v i d e r = "My Company" // t h i s p r o p e r t y i s mandatory
5 // f r agment c o n f i g u r a t i o n goes h e r e . . .
6 }
7 }

Listing 2.2: Xtext Generator Fragment

2.3 Summary

The following sections show the technologies that are going to be used and some comparisons
with the related work.

2.3.1 Technologies Comparison and Decision

In regards to the syntax highlighter, TextMate grammar is the only supported by Visual
Studio Code, so this is the one chosen for this purpose.

2.3.2 Related Work Comparison

Now that all the related work is known, certain distinctions can be established from this
solution. Firstly, there is a comparison with TextX for VS Code, then with the Xtext
Fragment from Itemis.

TextX for VS Code

The TextX solution accomplishes all the objectives this dissertation is trying to achieve.
Unfortunately, the TextX solution does not work with ecore meta-models, which is a tech-
nological constraint of this dissertation.

Xtext Fragment

The Xtext Fragment solution generates an extension for Visual Studio Code from an Xtext
project, which is also one objective of this dissertation.

One problem is that to generate the Xtext project from a meta-model, Eclipse is needed.
This is one part where this dissertation is improving.

Another problem with the Xtext fragment is that, at the time of writing, it does not work
for the new Xtext versions as it is outdated and has no support.

19

Chapter 3

Value Analysis

This section focuses on the envisioned value that this solution provides, utilizing the New
Concept Development Model (NCD) to identify and analyze the opportunity, as well as
define and analyze the perceived value, or value proposition, using the Quality Function
Deployment and Analytic Hierarchy Process methods.

3.1 New Concept Development Model

As shown in Figure 3.1, the innovation process is separated into three main sections: Fuzzy
front end (FFE), New product development (NPD), and commercialization (Koen et al.
2002).

Figure 3.1: The Innovation Process, From: (Koen et al. 2002)

The Fuzzy Front End represents an unstructured, chaotic, and experimental state when
commercialization and finance variables are unpredictable and company conceptions are
improving and strengthening.

The New Concept Development (NCD) Model, as defined by Peter Koen (Koen et al. 2002),
is a model created using standard language and terminology that aims to help improve
operations in the FFE, resulting in a higher number of lucrative concepts entering the New
product development (NPD).

The NCD model is a nonlinear process that is divided into three sections:

• Bull’s-eye section - Also known as the engine, represents the factors that drive the
five key elements that are controllable by the corporation, such as the organization’s
leadership, culture, and business strategy.

20 Chapter 3. Value Analysis

• Inner spoke - Identifies the five key elements under the organization’s control, namely
opportunity identification, opportunity analysis, idea generation, and enrichment, idea
selection, and concept definition

• Influencing Factors - The organization’s capabilities, the outside world, and the en-
abling sciences and technologies are all variables that affect the entire innovation
process and influence the notion and its viability.

Figure 3.2: NCD model, From: (Koen et al. 2002)

Furthermore, the two arriving arrows show that a project can start at the "opportunity
identification" or "idea generation and enrichment" stage.

3.1.1 Opportunity Identification

Opportunities can appear in a variety of forms, such as the launch of a new product or the
addition of new features to existing products/services.

Given the growing popularity of low-code tools, it would make sense to try to make their
development faster and easier. One area where developing low-code tools is slow is creating
concrete syntax. So there are some options:

• A fully automatic concrete syntax generator;

• A generator that assists in the generation of the concrete syntax.

Another opportunity is in the deployment of the DSL into an IDE. Making that process
automatic would also be of great help.

3.2. Value Proposition 21

3.1.2 Opportunity Analysis

An opportunity is assessed to see whether it is worth pursuing. More information is needed
to convert opportunity identification into particular business and technology prospects.

As a result, the SWOT analysis was used in order to better comprehend the highlighted
opportunity. SWOT stands for Strengths, Weaknesses, Opportunities, and Threats, and
so a SWOT analysis is a technique for assessing these four aspects of your business. The
presence of internal and external components with positive and negative aspects results in
a reasonably comprehensive SWOT instrument. Because of these multiple advantages, the
SWOT analysis is still relevant when examining an opportunity (Sevgili Koçak and GÜVEN
2020). The SWOT analysis is divided into four parts:

• Strength: This statistic represents the favorable internal factors that bring value.

• Weakness: Internal defects that push back and result in fallacies and disadvantages
for the opportunity when compared to others.

• Opportunities: External factors that enhance the potential.

• Threats: Identifies external negative forces that may cause the project to fail.

Strengths
• Speed up the development process of

DSLs.
• Fast deployment of the language to an

IDE.

Weaknesses
• Hard to make complex language edi-

tors with many features.

Opportunities
• Most low-code solutions are not open

source.
• Increase use of domain-specific lan-

guages.

Threats
• Users are most likely to use other

low-code platforms instead of creat-
ing their own DSL.

3.2 Value Proposition

The value proposition is a statement that identifies clear, measurable, and demonstrable
benefits consumers get when buying a particular product or service. It should convince
consumers that this product or service is better than others on the market. This proposition
can lead to a competitive advantage when consumers pick that particular product or service
over other competitors because they perceive a higher value (Hassan 2012).

The following statement proposition is the value proposition pitch for this project:

“The automatic language deployment to an IDE increases development efficiency, allowing
developers and companies to be more productive.”

3.2.1 Value Proposition Canvas

Dr. Alexander Osterwalder created the Value Proposition Canvas as a framework to guar-
antee that the product and market are a good match. It provides a detailed examination of
the relationship between two components of Osterwalder’s larger Business Model Canvas:
client segmentation and value propositions. The Value Proposition Canvas can be used to

22 Chapter 3. Value Analysis

refine an existing product or service offering or to create a new offering from the scratch
(Osterwalder, Pigneur, et al. 2015).

The Figure 3.3 is the value proposition canvas for this project.

Customer Profile

Customer profiling consists of three primary components: gains, pains, and customer jobs:

• Gains: the benefits that the customer expects and requires, what would please cus-
tomers, and what could boost the possibility of adopting a value proposition;

• Pains: the negative experiences, emotions, and risks that the customer encounters
while performing a job;

• Customer jobs: the functional, social, and emotional tasks that customers are at-
tempting to complete, the issues that they are trying to solve, and the requirements
that they wish to satisfy.

Value Map

• Gain creators: how the product or service generates customer gains and adds value
to the customer;

• Pain relievers: a detailed description of how the product or service alleviates the
customer’s pains;

• Products and services: the items and services that increase gains and alleviate pain,
and which underpin the creation of value for the customer.

3.2. Value Proposition 23

Figure 3.3: Value Canvas

The Business Model is “a conceptual tool that contains a set of elements and their relation-
ships and allows expressing the business logic of a specific firm” (Osterwalder and Pigneur
2003). The Canvas Business Model will be used to quickly develop the business model.
Canvas Business Model is separated into nine sections that are critical for the development
of the business model. The following sections will be presented:

• Key Partners: the network of suppliers and partners that ensures the business model’s
viability;

• Key Activities: the most critical things a company must do to ensure the viability of
its business model;

24 Chapter 3. Value Analysis

• Key Resources: the most critical assets required to make your business model func-
tion;

• Value Propositions: a collection of products and services that add value to a specific
Customer Segment;

• Customer relationships: the kinds of partnerships your organization establishes with
specific Customer Segments;

• Channels: how your organization connects with and reaches out to your Customer
Segments in order to convey your value proposition;

• Customer Segments: are the various groups of people or organizations that your
business hopes to reach and service;

• Revenue Streams: reflect the various methods in which your organization produces
revenue from each Customer Segment;

• Cost Structure: all cost incurred in order to run your business model.

Figure 3.4 shows the model for this project.

3.2. Value Proposition 25

Figure 3.4: Value Canvas

26 Chapter 3. Value Analysis

3.3 Analytic Hierarchy Process (AHP)

Thoma L. Saaty invented the Analytic Hierarchy Process (AHP) in 1980 as a multi-criteria
decision method. AHP is an accurate method for measuring the weights of decision criteria
that may be utilized with both qualitative and quantitative criteria. The goal of AHP is to
break the problem into hierarchical decision levels, making it easier to understand.

The AHP technique begins with the construction of a hierarchical decision tree, with three
levels representing the problem, the criteria, and the choices, respectively (Vaidya and Kumar
2006).

The only problem to solve is the tool to choose as IDE for language usage since the tool for
designing domain-specific languages is Xtext. These are the alternatives for this project:

• Eclipse IDE, using the built-in Xtext integration with eclipse;

• Visual Studio Code, via an extension and language server protocol;

• Theia, via an extension and language server protocol.

The following criteria were used to determine which is the best tool to use in this project:

• Integration - How much the tool can be integrated with Xtext, according to the
Figure 3.5.

• Potential - The features that can be created within the tool, to take best advantage
of DSL.

• Active Users – In comparison, how many active users the tool has, according to the
recent Stack Overflow 2021 Developer Survey (Stack Overflow Developer Survey 2021
- Integrated Development Environment 2022)

Figure 3.5: Xtext Editor Features by Platform , From:(Xtext 2022)

3.3. Analytic Hierarchy Process (AHP) 27

The Figure 3.6 represents the Hierarchical Decision Tree.

Figure 3.6: Hierarchical Decision Tree

Alternatives and Criteria In the next phase, a comparison matrix is utilized to assign
priority to all alternatives and criteria. The Saaty fundamental scale is used to assign priority
levels to the criterion, as shown in Table 3.1.

Table 3.1: Saaty fundamental scale, From: (Saaty 1990)

Importance
Level Definition Explanation

1 Equal importance
Two activities contribute equally to the
objective

3
Moderate importance
of one over another

Experience and judgment strongly favor
one activity over another

5
Essential of strong im-
portance

Experience and judgment strongly favor
one activity over another

7
Very strong impor-
tance

An activity is strongly favored and its
dominance demonstrated in practice

9 Extreme importance
The evidence favoring one activity over
another is of the highest possible order of
affirmation

2, 4, 6, 8
Intermediate values be-
tween the two adjacent
judgment

When compromise is needed

The pairwise comparison of the defined criteria may be observed in Table 3.2.

After the comparison matrix, the next step is to calculate the relative priority of each
criterion by normalizing the pairwise comparison matrix (Table 3.2) and then computing the

28 Chapter 3. Value Analysis

Table 3.2: Comparison Matrix between Criteria

Integration Potential Active Users

Integration 1.000 2.000 3.000

Potential 0.500 1.000 2.000

Active Users 0.333 0.500 1.000

arithmetic average of the values in each line of the normalized matrix. Table 3.3 displays
the acquired results.

Table 3.3: Normalized Comparison Matrix and Relative Priority Vector

Integration Potential Active Users Relative Priority

Integration 0.545 0.571 0.500 0.539

Potential 0.273 0.286 0.333 0.297

Active Users 0.182 0.143 0.167 0.164

According to the results, the most critical criterion is the Integration. This result is as
expected since it is desired that the IDE works as well as possible with Xtext. The criterions
are sorted in the following order: Integration > Potencial > Active Users.

The consistency ratio (RC) is then calculated to evaluate the consistency of the judgments.
If the value of RC is less than one, the judgments are regarded as dependable (Vaidya and
Kumar 2006). First, λmax is calculated using the formula:

Ax = λmaxx (3.1)

Where A is the criteria comparison matrix and x is the priority vector. The result of λmax is
approximately 3.009.

With this value it is possible to calculate the Consistency Index (CI) using the following
formula:

CI =
λmax − n
n − 1 (3.2)

When the formula is replaced with the previously obtained values and n with the number of
criteria, the result obtained is:

CI =
3.09− 3
3− 1 ≈ 0, 0046 (3.3)

Finally, the Consistency Ratio (CR) can be calculated using the formula below:

CR =
CI

RCI
(3.4)

3.3. Analytic Hierarchy Process (AHP) 29

As a result, the RC still requires the Random Consistency Index for our matrix, which
corresponds to the RCI.

Table 3.4: Random Consistency Index, From:(Vaidya and Kumar 2006)

As this is a 3x3 matrix, the Random Consistency value (RCI) for order 3 matrices is 0.58
according to Table 3.4. So the CR is:

CR =
CI

RCI
=
0.0046

0.58
≈ 0.008 (3.5)

Because the resulting CR value was roughly 0.008, which is less than 0.1, it is possible to
assume that the priority values are considered reliable.

After calculating the global priority vector, the next step is to generate a comparison matrix
for each criterion. Each matrix uses all alternatives to determine the best approach based
on the criteria. The procedure is done by repeating the creation of the comparison matrices
(this time, between each criterion and alternative), the normalizing matrix, and the priority
vector calculation. Tables 3.5, 3.6 and 3.7 show the comparison using the fundamental scale
(Table 3.2).

Table 3.5: Comparison Matrix between Integration in Alternatives

Integration

Eclipse IDE VS Code Theia

Eclipse IDE 1.000 2.000 2.000

VS Code 0.500 1.000 1.000

Theia 0.500 1.000 1.000

Table 3.6: Comparison Matrix between Potential in Alternatives

Potential

Eclipse IDE VS Code Theia

Eclipse IDE 1.000 0.333 0.200

VS Code 3.000 1.000 0.500

Theia 5.000 2.000 1.000

30 Chapter 3. Value Analysis

Table 3.7: Comparison Matrix between Active Users in Alternatives

Active Users

Eclipse IDE VS Code Theia

Eclipse IDE 1.000 0.200 2.000

VS Code 5.000 1.000 7.000

Theia 0.500 0.143 1.000

The matrices are then normalized, and the local priority vector for each is calculated. Tables
3.8, 3.9 and 3.10 display the results.

Table 3.8: Normalized Comparison Matrix and Local Priority for the compar-
ison between Alternatives regarding Integration Criterion

Integration

Eclipse IDE VS Code Theia Local Priority

Eclipse IDE 0.500 0.500 0.500 0.500

VS Code 0.250 0.250 0.250 0.250

Theia 0.250 0.250 0.250 0.250

Table 3.9: Normalized Comparison Matrix and Local Priority for the compar-
ison between Alternatives regarding Potential Criterion

Potential

Eclipse IDE VS Code Theia Local Priority

Eclipse IDE 0.111 0.100 0.118 0.110

VS Code 0.333 0.300 0.294 0.309

Theia 0.555 0.600 0.589 0.581

Table 3.10: Normalized Comparison Matrix and Local Priority for the com-
parison between Alternatives regarding Active Users Criterion

Active Users

Eclipse IDE VS Code Theia Local Priority

Eclipse IDE 0,154 0.149 0.200 0.168

VS Code 0.769 0.745 0.700 0.738

Theia 0.077 0.106 0.100 0.094

3.3. Analytic Hierarchy Process (AHP) 31

The result from Tables 3.8, 3.9 and 3.10 are then combined with Table 3.3’s relative priority
to create a new matrix. The Composite Priority Vector can be calculated using these values
by multiplying the outcome of each alternative with the priority vector. Based on the criteria,
this vector will indicate the relevance of each alternative.

Table 3.11: Criteria/Alternatives Classification Matrix and Global Priority

Integratioon Potential Active Users Global Priority

Eclipse IDE 0,500 0.110 0.168 0.330

VS Code 0.250 0.309 0.738 0.348

Theia 0.250 0.581 0.094 0.323

To sum up, the AHP method and the related findings of the global priority vector from Table
3.11 indicate that VS Code is the preferred tool as the IDE, followed Eclipse and Theia.

33

Chapter 4

Analysis and Design

This chapter focuses on the functional and non-functional needs of the project. Also, the
description of the requirements and the design that results from the project requirements is
shown.

4.1 Functional and Non-Functional Requirements

A functional requirement in software engineering describes a function of its component,
where the function is defined as a definition of behavior between inputs and outputs (Ful-
ton and Vandermolen 2017). Non-functional requirements (sometimes known as "quality
requirements") impose constraints on the design or implementation of functional require-
ments (such as performance requirements, security, or reliability). In general, functional
requirements are expressed as "system must do <requirement>," whereas non-functional
requirements are expressed as "system shall be <requirement>" (Loucopoulos 2005).

Requirements for this project are as follows.

4.1.1 Functional Requirements

• FR1: Users can create the grammar given the meta-model, and the root object;

• FR2: Users can deploy the language created to Visual Studio Code.

It is important to note that to generate a grammar of a meta-model, the meta-model has
to be valid.

4.1.2 Non-Functional Requirements

The FURPS+ model will be used to analyze non-functional requirements. “FURPS stand for
functionality, usability, reliability, performance and supportability” (Shaha and Pawar 2018).
The "+" in the FURPS+ acronym provides for the specification of constraints such as design,
implementation, interface, and physical constraints.

Functionality Specifies the features that are not related to the use cases, namely: auditing,
reporting, interoperability, and security. No non-functional requirement was identified to fit
this attribute.

34 Chapter 4. Analysis and Design

Usability Evaluates the user interface. It has several subcategories, including error preven-
tion, aesthetics, design, aids, documentation, consistency, and standards. In this project,
the non-functional requirements that fit this attribute are:

• NFR1: The extension has to have keyword and error highlighting.

• NFR2: The extension has to have some features such as formatting, quick fix, auto-
completion, and go-to the declaration.

Reliability Refers to software integrity, compliance, and interoperability. The requirements
to be considered are frequency and severity of failures, the possibility of recovery, extent,
duration of failure (recovery/survival), and predictability (stability). No non-functional re-
quirement was identified to fit this attribute.

Performance Evaluates the performance requirements of the software, namely: response
time, resource consumption, capacity, and scalability. No non-functional requirement was
identified to fit this attribute.

Supportability Testability, adaptability, maintainability, compatibility, configurability, in-
stallability, and scalability are all examples of supportability requirements. In this project, the
non-functional requirements that fit this attribute are:

• NFR3: The visual studio extension should be tested.

• NFR4: The grammar generation should support ecore meta-models as input.

Design Constraints A design constraint, as the name implies, restricts the design. De-
sign constraints include Design Patterns and Software Development Processes. No non-
functional requirement was identified to fit this attribute.

Implementation Constraints Specifies or constrains a system’s code or construction using
constraints such as Resource Limits and Operating Systems. No non-functional requirement
was identified to fit this attribute.

Interface Constraints Specifies or restricts the functionality inherent in different compo-
nent interfaces. External modules are commonly used, and the constraints that come with
them must be considered in this section. No non-functional requirement was identified to
fit this attribute.

Physical Constraints Specifies a physical constraint imposed by the hardware used to
deploy the system. No non-functional requirement was identified to fit this attribute.

4.2 Design

The C4 Model and the 4+1 architectural view model are going to be used in conjunction to
better describe the design of this project.

4.2. Design 35

C4 Model The C4 model is an "abstraction-first" approach to software architecture dia-
gramming that is based on abstractions that reflect how software architects and developers
think about and build software. The C4 model considers the static structures of a software
system in terms of containers, components, and code. It is important to note there is no
need to use all 4 diagram levels, only those that add value (The C4 model for visualising
software architecture 2022). The levels are used in this project are:

• Context: which is the highest level of abstraction and describes something that delivers
value to its users.

• Container: which represents an application or a data store.

• Component: which is a grouping of related functionality encapsulated behind a well-
defined interface.

• Code: which represents how each component is implemented as code.

4+1 architectural view model 4+1 is a view model that is used to "describe the architec-
ture of software-intensive systems using multiple, concurrent views." (Kruchten 1995) The
model has four views: logical, development, process, and physical. In addition, selected use
cases or scenarios are used as the ’plus one’ view to illustrate the architecture. As a result,
there are 4+1 views in the model: (Kruchten 1995)

• Logical view: The logical view is concerned with the system’s functionality as it
pertains to end-users.

• Process view: The process view focuses on the system’s run-time behavior and deals
with the system’s dynamic aspects. It explains the system processes and how they
communicate.

• Development view: The development view depicts a system from a programmer’s
standpoint and is concerned with software management.

• Physical view: The physical view portrays the system from the perspective of a system
engineer. The physical layer is concerned with the topology of software components
and the physical connections between these components.

• Scenarios: A small number of use cases, or scenarios, that become the fifth view, are
used to illustrate the description of architecture. Sequences of interactions between
objects and processes are described in the scenarios.

Figure 4.1 shows a diagram with the relation between the views.

36 Chapter 4. Analysis and Design

Logical

view

Development

view

Process

view

Physical

view

System

& environment

Figure 4.1: Illustration of the 4+1 Architectural View Model, From (Kruchten
1995)

4.2.1 Context

To better understand the context of this project, the diagram in Figure 4.2 was created.

<<component>>
BAMol Low-Code Platform

Metamodel Provider

<<component>>
BAMol DSL Generator

Provides the ecore
meta-model

<<component>>
IDECreates support for

the DSL generated

Visual Paradigm Online Free Edition

Visual Paradigm Online Free Edition

Figure 4.2: System Context Logical View

The component that is going to be developed is the BAMol DSL Generator. To gen-
erate the DSL, BAMol DSL Generator takes the ecore meta-model from the component
BAMol Low-Code Platform Metamodel Provider. Then, BAMol DSL Generator creates
an extension for Visual Studio Code, the IDE, that adds support for the language.

4.2.2 Alternatives

For the design, three possible alternatives were created. To describe the alternatives, the
container logical view and component logical view are used.

4.2. Design 37

Alternative 1

In this first alternative, the application developed in this dissertation only allows the gen-
eration of the Visual Studio Code extension of the DSL. That process requires the Xtext
project with the correct modules created.

Since Xtext does not have a standalone application to generate Xtext projects, Eclipse is
required. Figure 4.3 shows the container logical view.

Generates
Xtext Project

Generates
VS Code extension

<<component>>
System

<<component>>
Xtext Extension

Generator

<<component>>
Eclipse IDE

User

Visual Paradigm Online Free Edition

Visual Paradigm Online Free Edition

Figure 4.3: Container Logical View of Alternative 1

Let’s call the application created in this alternative Xtext Extension Generator.

Now getting into a finer level of detail, the component level, it is possible to see how the
component Xtext Extension Generator is decomposed, in Figure 4.4. The components are:

• Controller: the component that handles and performs requests with the use of other
components. It only supports requests for the generation of Visual Studio Code ex-
tensions in this scenario.

• Xtext: allows the Xtext grammar to be loaded. This grammar is generated by the
Eclipse component. It should be noted that this is not Xtext itself, but rather a module
with Xtext-related functionality.

• VS Code: allows the generation of the Visual Studio Code extension given the gram-
mar. This component uses the TextMate component for the syntax highlighting in
the extension.

• TextMate: given the grammar of the DSL, it creates a TextMate file syntax highlight
file.

38 Chapter 4. Analysis and Design

<<component>>
Xtext Extension Generator

<<component>>
Xtext

<<component>>
VS Code

<<component>>
TextMate

<<component>>
Controller

Load Xtext Grammar

Generate Extension

TextMate Syntax
Highlight

VS Code Extension
Generator

Visual Paradigm Online Free Edition

Visual Paradigm Online Free Edition

Figure 4.4: Component Logical View of Alternative 1

Figure 4.5 shows a better view of how the components of the application work to fulfill FR1,
to create the Xtext project, and FR2, to deploy the language to Visual Studio Code.

User

Controller Xtext

Starts the generation of
the VS Code extension

Loads the Grammar from
the Xtext Grammar definition

VS Code

Create the VS Code extension

TextMate

Create textmate syntax hightligh

Generates the extension

Eclipse

Create Xtext project given the ecore metamodel
and the correct configurations

Create Xtext project

Visual Paradigm Online Free Edition

Visual Paradigm Online Free Edition

Figure 4.5: Component Process View for FR1 and FR2 of Alternative 1

4.2. Design 39

Alternative 2

For this alternative, the application developed allows the creation of both the Xtext project
and the Visual Studio Code extension for the DSL. This alternative joins both functionally
from alternative 1 in one application. One bonus of this is that the configuration of the
Xtext project is predefined to work with the extension generator. Figure 4.6 shows the
container logical view.

Generates
VS Code extension Generates

Xtext Project

<<component>>
System

User

Visual Paradigm Online Free Edition

Visual Paradigm Online Free Edition

Figure 4.6: Container Logical View of Alternative 2

Given that the application to develop fulfills all the functional requirements, the components
change in comparison to the first alternative. Therefore the components in this alternative
are:

• Controller: the component that handles and performs requests with the use of other
components. It supports requests for the generation of Visual Studio Code extensions
and the generation of Xtext projects.

• Xtext: allows the Xtext grammar to be loaded and the generation of Xtext projects.
It should be noted that this is not Xtext itself, but rather a module with Xtext-related
functionality.

• Ecore: allows Ecore models to be loaded.

• VS Code: allows the generation of the Visual Studio Code extension given the gram-
mar. This component uses the TextMate component for the syntax highlighting in
the extension. It should be noted that this is not Visual Studio Code itself, but rather
a module with VS Code-related functionality.

• TextMate: given the grammar of the DSL, it creates a TextMate file syntax highlight
file. It should be noted that this is not TextMate itself, but rather a module with
TextMate-related functionality.

The diagram in Figure 4.7 shows how the components communicate with each other.

40 Chapter 4. Analysis and Design

<<component>>
System

<<component>>
Xtext

<<component>>
TextMate

<<component>>
Controller

Generate Extension Load Xtext Grammar

TextMate Syntax
Highlight

<<component>>
VS Code

<<component>>
Ecore

Load Ecore Model Generate Xtext Project

VS Code Extension
Generator

Generate Xtext
Project

Visual Paradigm Online Free Edition

Visual Paradigm Online Free Edition

Figure 4.7: Component Logical View of Alternative 2

To fulfill FR1, to create the grammar, meaning the Xtext project, Figure 4.8 shows a better
view of the process between the components.

User

EcoreController Xtext

Starts the generation
 of the Xtext project

Loads the Ecore Model

Creates the xtext project

Visual Paradigm Online Free Edition

Visual Paradigm Online Free Edition

Figure 4.8: Component Process View for FR1 of Alternative 2

4.2. Design 41

Figure 4.9 shows a better view of how the components of the application work to fulfill FR2,
to deploy the language to Visual Studio Code.

User

Controller Xtext

Starts the generation of
the VS Code extension

Loads the Grammar from
the Xtext Grammar definition

VS Code

Create the VS Code extension

TextMate

Create textmate syntax hightligh

Generates the extension

Visual Paradigm Online Free Edition

Visual Paradigm Online Free Edition

Figure 4.9: Component Process View for FR2 of Alternative 2

Alternative 3

In this last alternative, the application would be a lot like the related work in 2.2.2. The frag-
ment would only create the Visual Studio Code extension. Like alternative 1, the generation
of the Xtext project would be through Eclipse IDE.

The fragment would have to be in the Xtext project workflow. Executing the default gen-
eration of the language process would also create the Visual Studio Code extension.

Figure 4.10 shows the container logical view.

Runs the default
generate language

process

<<component>>
Xtext Project

<<component>>
VS Code Fragment

User

Visual Paradigm Online Free Edition

Visual Paradigm Online Free Edition

Figure 4.10: Container Logical View of Alternative 3

42 Chapter 4. Analysis and Design

Now that the fragment is within the Xtext project workflow, it can access the grammar and
other settings, reducing the components needed for it, as can be seen in Figure 4.11. So
the components in this alternative are:

• VS Code: allows the generation of the Visual Studio Code extension given the gram-
mar. This component uses the TextMate component for the syntax highlighting in
the extension.

• TextMate: given the grammar of the DSL, it creates a TextMate file syntax highlight
file.

<<component>>
Fragment

<<component>>
TextMate

TextMate Syntax
Highlight

<<component>>
VS Code

Generate

Visual Paradigm Online Free Edition

Visual Paradigm Online Free Edition

Figure 4.11: Component Logical View of Alternative 3

Summary

To determine which alternative to choose, they are compared against one another. This
comparison is based on the advantages and disadvantages of each solution. Tables 4.1, 4.2
and 4.3 show the comparisons. Finally, the ideal option for the requirements is chosen.

Table 4.1: Alternative 1 Advantages and Disadvantages

Alternative 1

Advantages Disadvantages

• Generation of the Xtext
projects is maintained by
Eclipse.

• Visual Studio Code extension
generation is in a separate ap-
plication.

• Uses multiple application to
fulfills all requirements.

4.2. Design 43

Table 4.2: Alternative 2 Advantages and Disadvantages

Alternative 1

Advantages Disadvantages

• Visual Studio Code extension
generation and Xtext project
generation are in the same ap-
plication.

• No need for other applications

• Slightly more complex.

Table 4.3: Alternative 3 Advantages and Disadvantages

Alternative 1

Advantages Disadvantages

• Generation of the Xtext
projects is maintained by
Eclipse.

• Easier access to language
grammar and other settings.

• Needs setup for every project.

Given all the advantages and disadvantages of all alternatives, the ideal solution is Alterna-
tive 2. It offers more pros, and the only con is that more complex that might require more
work.

45

Chapter 5

Implementation

After finishing the Design phase, which comprises the layout of all components and the de-
scription of the Architecture, the developer can safely begin the implementation phase. As a
result, this chapter will focus on implementation details and reveal the necessary components
so that the reader can gain a better grasp of the application’s inner workings. First, the
project structure will be described. Following that, the implementation of each component
of the chosen design is documented.

5.1 Project Structure

Gradle is being used as the build automation tool framework in this project. Each component
for the selected design 4.2.2 is a module in Gradle project. The project structure is shown
in Figure 5.1.

xtext-gen-extension

bamol-controller

bamol-ecore

bamol-textmate

bamol-vscode

bamol-xtext

gradle

build.gradle

settings.gradle

Figure 5.1: Project Structure Tree

Each module contains the following folders and file:

• src/main/kotlin - contains the source code of the application.

• src/mainresource - contains resources of the project. This is usually templates for
file creation.

• src/test - contains tests of the source code.

46 Chapter 5. Implementation

• build.gradle - contains the dependencies for the module.

The module structure is as follows:

bamol-<name-of-component>

src

main

kotlin

resources

test

build.gradle

Figure 5.2: Module Structure Tree

5.2 Ecore Module

This module allows the loading of ecore models. An eclipse library for ecore models is
utilized to accomplish this. Given that there is a library, this module should be simple, but
unfortunatly some resources have to be instantiated.

To give a bit of context, eclipse libraries read resources from files using Resource Sets. This
Resource Sets use factories to parse the content of a file. The factory to use is determined
by the extension of the file.

Ecore models is decomposed into two files with file extensions .ecore and .genmodel. So
the resource factory has to be set for both extensions.

1 p r i v a t e fun c r e a t eR e s o u r c eS e t () : Re sou r ceSe t {
2 v a l r e s o u r c e S e t = Re sou r c eSe t Imp l ()
3 v a l e c o r eF a c t o r y = Eco r eRe s ou r c eFa c t o r y Imp l ()
4

5 v a l r e g i s t r y = r e s o u r c e S e t . r e s o u r c e F a c t o r y R e g i s t r y
6 v a l map = r e g i s t r y . ex tens i onToFacto ryMap
7 map [" ecore "] = e c o r eF a c t o r y
8 map [" genmodel "] = e c o r eF a c t o r y
9

10 // Inits the GenModelPackage
11 GenModelPackage . eINSTANCE
12 r e t u r n r e s o u r c e S e t
13 }

Listing 5.1: Creating Resource Set to load Ecore Models

5.3. Xtext Module 47

Now loading a ecore model is as simple as:
1 v a l r e s o u r c e S e t : Re sou r ceSe t = c r e a t eR e s o u r c eS e t ()
2

3 // Model Uniform Resource Identifier
4 v a l genModelURI = URI . c r e a t e F i l e U R I (genModel . a b s o l u t ePa t h)
5

6 // The Ecore model loaded .
7 v a l r e s o u r c e = r e s o u r c e S e t . g e tRe sou r c e (genModelURI , t r u e)

Listing 5.2: Loading Ecore Models

With the model resource loaded, the model resource is manipulated to ease the creation of
Xtext projects. This module also contains some utilitarian methods.

5.3 Xtext Module

This module allows the creation of Xtext projects and the loading of Xtext grammar.

5.3.1 Creation of Xtext Project

For this feature, the Xtext library implemented in Eclipse is used. So to create a project is
as simple as calling the library with some configuration.

The configuration that is needed to provide contains the following parameters:

• targetDirectory - The directory where the projects are going to be created.

• languageName - The language name.

• baseName - The base name of the project.

• fileExtensions - The file extensions of the dsl.

• packageInfos - The set of EPackageInfo for the ecore configuration. The EPackage-
Info contains the Package that has all the elements of the language.

• defaultPackage - The default EPackageInfo for the ecore configuration.

• rootElementClass - The root element class for the ecore configuration.

Some configurations are necessary for the visual studio extension generation. These config-
urations are preset and are the following:

1 v a l PROJECT_LAYOUT = P ro j e c t L a y o u t . HIERARCHICAL
2 v a l SOURCE_LAYOUT = SourceLayout .MAVEN
3 v a l BUILD_SYSTEM = Bu i l dSy s t em .GRADLE
4 v a l JAVA_VERSION = Ja v aVe r s i o n . JAVA11
5 v a l JUNIT_VERSION = JUn i t V e r s i o n . JUNIT_5
6 v a l LANGUAGE_SERVER = LanguageSe r v e r . FATJAR
7 v a l ENCODING = Cha r s e t s .UTF_8
8 v a l LINE_DELIMITER : S t r i n g = L i n e D e l i m i t e r . UNIX . v a l u e

Listing 5.3: Xtext preset configurations

The following Listing 5.4 shows the implementation of the creation of a project.

48 Chapter 5. Implementation

1 fun c r e a t e (x t e x t C o n f i g u r a t i o n : X t e x t C o n f i g u r a t i o n) {
2 v a l c o n f i g = c r e a t e X t e x t C o n f i g u r a t i o n (x t e x t C o n f i g u r a t i o n)
3 v a l c r e a t o r = C l i P r o j e c t s C r e a t o r ()
4

5 c r e a t o r . l i n e D e l i m i t e r = c o n f i g . l i n e D e l i m i t e r
6 c r e a t o r . c r e a t e P r o j e c t s (c o n f i g)
7 }

Listing 5.4: Create Xtext Project

5.3.2 Load Xtext Grammar

Like loading ecore models, loading an xtext grammar requires a resource set. So there was
a need to also register a factory for .xtext files. However there was another problem.

A Resource Set to locate files uses Uniform Resource Identifier (URI). URIs uses a protocol
and a path to locate the resource. For example, to locate a file in the system, the URI can
be: "file:/root/file.txt".

The Xtext Resource Set uses the classpath protocol, which locates resources inside the
JVM. This protocol is not implemented by default, so a custom implementation was needed
for this to work.

1 Xte x tS t anda l o n eSe t up . doSetup ()
2 Resou rce . Fac to r y . R e g i s t r y . INSTANCE . p rotoco lToFacto ryMap [" classpath "] =
3 ob j e c t : R e s o u r c eFa c t o r y Imp l () {
4 o v e r r i d e fun c r e a t eR e s o u r c e (u r i : URI) : Resou rce ? {
5 v a l r e s o u r c e : URL? = t h i s . j a v a C l a s s . g e tRe sou r c e (u r i . path ())
6 r e t u r n Xtex tRe sou r c eSe t () . c r e a t eR e s o u r c e (URI . c r e a t eUR I (

r e s o u r c e ! ! . t oEx t e r na lFo rm ()))
7 }
8 }

Listing 5.5: Xtext Resource Set

5.4 TextMate Module

This module creates TextMate files for Xtext grammar. TextMate files are necessary for
the syntax highlighting of a language in the VS Code extension.

The Xtext grammar contains all the information necessary to create the TextMate file. The
information read is the keywords, language name, and comments tokens. Some treatment
might be needed in the keywords, like escaping special characters and sorting by tokens and
class keywords.

5.4. TextMate Module 49

1 fun fromGrammar (grammar : Grammar , f i l e E x t e n s i o n s : I t e r a b l e <St r i ng >) :
GrammarInfo {

2 v a l name = nameFromGrammar (grammar)
3 v a l keywords = keywordsFromGrammar (grammar)
4 v a l o p e r a t i o n s = operat ionsFromGrammar (grammar)
5 v a l comment = Comment . fromGrammar (grammar)
6

7 r e t u r n GrammarInfo (
8 name ,
9 f i l e E x t e n s i o n s ,

10 keywords ,
11 o p e r a t i o n s ,
12 L i s t s . n ewA r r a yL i s t () ,
13 comment
14)
15 }

Listing 5.6: Loading Information from Grammar

After the information is loaded, it is passes into a template that generates a TextMate json
file. The template library used is Apache Velocity 1. Apache Velocity allows the use of
templates and, given a context, it produces a String. The Listings 5.7 and 5.8 shown an
example of this library is used.

1 . . .
2 " language_keyword " : {
3 " p a t t e r n s " : [
4 #fo r e a c h ($keyword i n $grammar . keywords)
5 {
6 "match" : " $keyword . match" ,
7 "name" : " $keyword . t ype . v a l u e "
8 }
9 #i f ($ f o r e a c h . count != $grammar . keywords . s i z e ())

10 ,
11 #end
12 #end
13]
14 } ,
15 " l a nguage_ope r a t i o n " : {
16 " p a t t e r n s " : [
17 #fo r e a c h ($ o p e r a t i o n i n $grammar . o p e r a t i o n s)
18 {
19 "match" : " $ o p e r a t i o n . match" ,
20 "name" : " $ o p e r a t i o n . t ype "
21 }
22 #i f ($ f o r e a c h . count != $grammar . o p e r a t i o n s . s i z e ())
23 ,
24 #end
25 #end
26]
27 }
28 . . .

Listing 5.7: Velocity Template Snippet

1https://velocity.apache.org/

50 Chapter 5. Implementation

1 fun c r e a t e (grammar : Grammar , f i l e E x t e n s i o n s : I t e r a b l e <St r i ng >) : S t r i n g {
2 v a l grammar In fo = GrammarInfo . fromGrammar (grammar , f i l e E x t e n s i o n s)
3

4 // Preparing the context for the template .
5 v a l c o n t e x t = V e l o c i t y C o n t e x t ()
6 c o n t e x t . put (GRAMMAR_TEMPLATE_VARIABLE, grammar In fo)
7

8 // Read template .
9 v a l t emp l a t e = ve . getTemp late (TEMPLATE_PATH)

10

11 // Executing the template with the context .
12 v a l w r i t e r = S t r i n g W r i t e r ()
13 t emp l a t e . merge (con tex t , w r i t e r)
14

15 r e t u r n U t i l s . p r e t t i f y T e x t M a t e R e s u l t (w r i t e r . t o S t r i n g ())
16 }

Listing 5.8: Velocity Usage

5.5 Vscode Module

This module creates a Visual Studio Code extension development workspace. This workspace
is a node project. It also contains all the configurations for the language extension.

The workspace contains the following files:

• .vscode/launch.json - The launch configuration of the extension.

• language-configuration-json - Contains the information for autocompletion and val-
idation.

• syntaxes/language.tmLanguage.json - The TextMate file for the DSL highlighting.

• package.json - Contains the language name, file extensions, node module dependen-
cies, etc.

• bin/language-server.jar - The Xtext language server of the DSL.

• src/extension.js - The script to start and communicate with the language server.

5.6. Controller Module 51

extension

.vscode

launch.json

bin

language-server.jar

src

extension.js

syntaxes

language.tmLanguage.json

.vscodeignore

language-configuration.json

package.json

Figure 5.3: Extension Structure Tree

5.6 Controller Module

The Controller Module is an application that has a Command-line interface (CLI). The
picocli 2 library is used to simplify application development. It contains two commands, one
for each functional requirement.

5.6.1 Functional Requirements 1

The command to fulfill this requirement allows the creation of an Xtext project. The
following Listing 5.9 shows documentation of how the command works.

1 Usage : x t e x t [−o=<ou tD i r>] <genmodel> <packageName> <roo tE l emen t>
2 <languageName> <baseName> [< e x t e n s i o n s > [, <

e x t e n s i o n s > . . .]]
3 Cr e a t e s an x t e x t p r o j e c t g i v e n i t s c o n f i g u r a t i o n
4 <genmode l> The genmodel f i l e w i t h the metamodel .
5 <packageName> The d e f a u l t package .
6 <roo tE l emen t> The r oo t e l ement .
7 <languageName> The l a nguage name .
8 The l a s t name o f the l a nguage as to be

c a p i t a l i z e d .
9 Examp le : o rg . bamol . Ds l

10 <baseName> The base name o f the l a nguage .
11 Examp le : s t a t emach i n e
12 [< e x t e n s i o n s > [, < e x t e n s i o n s > . . .]]
13 The f i l e e x t e n s i o n s o f the d s l .
14 −o , −−ou tD i r=<ou tD i r> The path to ou tpu t the x t e x t p r o j e c t c r e a t e d .
15 By d e f a u l t i s the c u r r e n t path .

Listing 5.9: Xtext Command usage

2https://picocli.info/

52 Chapter 5. Implementation

The diagram in Figure 5.4 shows a part of the implementation of this functional requirement.

Actor

CommandManager CreateXtextProject EPackageInfoLoader

xtext genmodel packageName
 rootElement languageName

 baseName extensions

call()
createEPackageInfosFromGenModel(genmodel:File)

packageInfos: Set<EPackageInfo>

findEPackageInfoByName(packageInfos,
packageName:String)

defaultPackage: EPackageInfo

findClassByName(defaultPackage, rootElement:String)

rootElement: EClass

XtextConfiguration

config = new(outDir:File, languageName,
baseName, extensions, packageInfos,

defaultPackage, rootElement)

validateLanguageName()

ProjectCreator

create(config)

Visual Paradigm Online Free Edition

Visual Paradigm Online Free Edition

Figure 5.4: Code Process View for FR1

5.6.2 Functional Requirements 2

The command to fulfill this requirement allows the creation of a Visual Studio Code extension
with the DSL information. The following Listing 5.10 shows documentation of how the
command works.

1 Usage : v s code [−o=<ou tD i r>] <grammar> < l a n g u a g eS e r v e r> [< e x t e n s i o n s > [,
2 < e x t e n s i o n s > . . .]]
3 Cr e a t e s an v scode e x t e n s i o n f o r a x t e x t l a nguage .
4 <grammar> The grammar f i l e o f the l a nguage .
5 Th i s i s a . x t e x t f i l e .
6 < l a n g u a g e S e r v e r> The l a nguage s e r v e r j a r f i l e c r e a t e d from

x t e x t .
7 [< e x t e n s i o n s > [, < e x t e n s i o n s > . . .]]
8 The f i l e e x t e n s i o n s o f the d s l .
9 −o , −−ou tD i r=<ou tD i r> The path to ou tpu t the x t e x t p r o j e c t c r e a t e d .

10 By d e f a u l t i t i s a e x t e n s i o n f o l d e r i n the
c u r r e n t

11 path .

Listing 5.10: Vscode Command usage

The diagram in Figure 5.5 shows a part of the implementation of this functional requirement.

5.6. Controller Module 53

Actor

CommandManager CreateExtension

extension grammar
 languageServer extensions

call()

GrammarLoader

load(grammar:File)

grammar:Grammar

ExtensionProjectGrammar

new(grammar,
extensions:List<String>,

 outDir: String,
languageServer:File)

TextMateCreator

generate()

create(grammar, fileExtensions)

content:String

generates files and folders

Visual Paradigm Online Free Edition

Visual Paradigm Online Free Edition

Figure 5.5: Code Process View for FR2

5.6.3 Summary

In this section, implementation details of the designed solution were presented. First, an
overview of the developed system modules was provided, along with their intrinsic aspects.
The following section will focus on the evaluation of the implementation.

55

Chapter 6

Experiments

This chapter describes the experiences and evaluation carried out on the implemented so-
lution. Initially, it is shown an explanation of the evaluation methodology used to test the
solution, followed by the results.

6.1 Hypothesis

A hypothesis is an assumption that serves as a starting point for further investigation. The
following hypothesis was identified, as indicated before in the first chapter (section 1.4):

• H1 - The proposed approach provides an automated and effective way of producing a
language server implementation and complete Visual Studio extension based solely on
the abstract syntax (i.e., meta-model) of the domain-specific language.

6.2 Assessment Methodology

For the evaluation, two methodologies are used:

• Quantitative Evaluation Framework (QEF) for Quality Assessment.

• Comparison Testing for Functionality Assessment.

6.2.1 QEF

Quantitative Evaluation Framework (QEF) evaluates how close the intended solution is to
the initially set objectives, allowing the development team to focus on fixing those flaws and
directing the product to meet the desired criteria. (Escudeiro and Bidarra 2008)

In this dissertation, QEF uses all functional and non-functional requirements of the project.
As a result, the solution can be evaluated using predefined criteria that measure the overall
completion of each requirement.

6.2.2 Comparison Testing

Comparison testing refers to a type of testing where the strength and weaknesses of the
currently developed software produced are compared with already existing software products
in the market. It helps to assess how the current software product performs against the
market competition along with this, the comparison testing helps for the development of
a high-quality software product with improved performance and functionality. (Comparison
Testing in Software Engineering 2021)

56 Chapter 6. Experiments

For this project, the approach for language deployment to Visual Studio Code is compared
against the Xtext-generated Eclipse plugins. This feature of creating plugins for Eclipse is
made by Xtext developers.

6.3 Results

The project source code and all the extensions created are in an open-source GitHub project1.

This section is responsible for presenting the system’s quality assessment. Firstly it is shown
an example of an extension for the Omnia meta-model. Then this project solution is com-
pared to the Xtext Eclipse plugins using comparison testing. The results of the tests are
compiled and used to validate the Functionalities Dimension in QEF.

6.3.1 Omnia extension

Using the Omnia ecore metamodel, the grammar and the extension are generated. Figure
6.1 shows an example of using the DSL. Note that the contents are only for demonstration
purposes.

Figure 6.1: Omnia Extension usage example

1https://github.com/Lzgpom/xtext-gen-extension

6.3. Results 57

6.3.2 Xtext Eclipse Plugin Comparison Test Results

As previously stated, comparison testing is going to be used to compare the Visual Studio
Code extensions generated by this project with the Xtext Eclipse plugins. This comparison
test was conducted to evaluate the hypothesis H1. To create the extensions the application
was used by giving the grammar of each language.

Multiple DSLs were used to compare both solutions. The DSLs are the following:

• Arithmetics2 - Allows the creation of formulas and calculates the results.

• Domain Model3 - Allows the creation of a domain model with properties and functions
with Java classes.

• State Machine4 - Represents a statemachine.

• Home Automation5 - Represents some devices and some operations that can have a
trigger.

Arithmetics

Figure 6.2 shows a snippet of the Arithmetics DSL in the Eclipse plugin on the left and the
same snippet in the Visual Studio Code extension on the right.

Figure 6.2: Arithmetics DSL Comparison

One significant disadvantage of this project solution, the Visual Studio Code extension,
is that it cannot display extra information. In this example, the plugin can execute the
calculation and display the result, whereas the extension cannot.

Other than that, both behave similarly.

Domain Model

Figure 6.3 shows a snippet of the Domain Model DSL in the Eclipse plugin on the left and
the same snippet in the Visual Studio Code extension on the right.

2https://github.com/eclipse/xtext-eclipse/tree/master/org.eclipse.xtext.xtext.ui.
examples/projects/arithmetics

3https://github.com/eclipse/xtext-eclipse/tree/master/org.eclipse.xtext.xtext.ui.
examples/projects/domainmodel

4https://github.com/eclipse/xtext-eclipse/tree/master/org.eclipse.xtext.xtext.ui.
examples/projects/fowlerdsl

5https://github.com/eclipse/xtext-eclipse/tree/master/org.eclipse.xtext.xtext.ui.
examples/projects/homeautomation

58 Chapter 6. Experiments

Figure 6.3: Domain Model DSL Comparison

Like in the Arithmetics DSL, the extension cannot display extra information. In this case,
the plugin shows the number of properties and operations an entity has.

An advantage of the plugin is that the String class, which is a java class, is highlighted
differently. Also, when attempting to go to the class definition it shows the Java class
definition, whereas in the extension this is not possible.

Other than that, both behave similarly.

State Machine

Figure 6.4 shows a snippet of the State Machine DSL in the Eclipse plugin on the left and
the same snippet in the Visual Studio Code extension on the right.

In this DSL, both behave similarly.

Home Automation

Figure 6.5 shows a snippet of the Home Automation DSL in the Eclipse plugin on the left
and the same snippet in the Visual Studio Code extension on the right.

Like in the State Machine DSL, the extension and plugin for this DSL behave similarly.

Summary

Given all the previous comparisons, it can be concluded that the solution developed, the
extension, does not offer as many features as the Xtext Eclipse plugin. This is due to the
limitations of the language server protocol, shown in Table 2.1.

Nevertheless, the extension is pretty complete, and the grade from 0 to 100% is 75%.

6.3.3 Assessment Completion

The solution is assessed using QEF in Table 6.4, which depicts the primary dimensions:

• Functionality: includes all the functional requirements. Table 6.1 shows the scales
used for the functional requirements.

• Usability: includes all the non-functional requirements for usability, more precisely for
the User Interface. Table 6.2 shows the scales used for the usability.

6.3. Results 59

Figure 6.4: State Machine DSL Comparison

Figure 6.5: Home Automation DSL Comparison

60 Chapter 6. Experiments

• Suportability: includes all the non-functional requirements for supportability, more
precisely for Maintenance and Compatability. Table 6.3 shows the scales used for the
supportability.

Table 6.1: QEF Functionality Scale

Wfk - Fullfilment (%)

Requirement Metric Evaluation 0 25 50 75 100

FR1 - Create the gram-

mar given the meta-

model and the root ob-

ject

User can create an

xtext project.

No

access to

function-

ality

- - -

Full

access to

function-

ality

FR2 - Deploy the lan-

guage created to Visual

Studio Code

User can create an vi-

sual studio code ex-

tension for the lan-

guage.

Based on

the com-

parison

test

Based on

the com-

parison

test

Based on

the com-

parison

test

Based on

the com-

parison

test

Based on

the com-

parison

test

Table 6.2: QEF Usability Scale

Wfk - Fullfilment (%)

Requirement Metric Evaluation 0 50 100

NFR1 - The extension has to

have keyword and error highlight-

ing.

The extension has the fea-

tures.
No - Yes

NFR2 - The has to have some

features such as: formatting,

quick fix, auto-completion and,

go to declaration.

The extension has the fea-

tures.
No - Yes

Table 6.3: QEF Supportability Scale

Wfk - Fullfilment (%)

Requirement Metric Evaluation 0 50 100

NFR3 - The visual studio code

extension should be tested.

How much the extension is

tested.
No tests

Some

tests

Fully

tested

NFR4 - The grammar genera-

tion should support ecore meta-

models as input.

The level of support of ecore

meta-models.

No sup-

port

Support

to single

file ecore

models

Full

support

The ratings and results of QEF are shown in Table 6.4.

6.3. Results 61

Table 6.4: QEF Assessment

q D Qi Dimension Qj Wi j Factor rwjk Requirement wf k
%

90% 0.28

87.5 Functionality 87.5 1.00 Functional
10

FR1 - Create the gram-
mar given the meta-
model and the root ob-
ject

100

10
FR2 - Deploy the lan-
guage created to Visual
Studio Code

75

100 Usability 100 1.00 User Interface
10

NFR1 - The extension
has to have keyword and
error highlighting.

100

8

NFR2 - The extension
has to have some fea-
tures such as: format-
ting, quick fix, auto-
completion and, go to
declaration

100

75 Supportability
100 0.50 Maintenance 8

NFR3 - The visual studio
code extension should be
tested.

100

50 0.50 Compatibility 10

NFR4 - The grammar
generation should sup-
port ecore meta-models
as input.

50

Throughout the QEF, six requirements were individually reviewed, using each own rating
system.

Only one Functional requirement was completed receiving a 75% score. This is justified
in the section 6.3.2. NFR4 was another criterion that was not fully met in Supportability.
This is due to the solution’s inability to read multi-file ecore models, only single-file ecore
models. For this reason, it received a 50% score.

When all of the assessed dimensions are considered, the final system score is 90% of the
ideal solution. This score answers the hypothesis raised in (section 6.1).

63

Chapter 7

Conclusion

This chapter will go over all of the conclusions from the investigation. Its goal is to connect
previously established objectives with accomplishments. This chapter will demonstrate the
goals achieved. Second, it will take into account the system’s limitations as well as future
work. Finally, there will be a section for some personal remarks ending the conclusion.

7.1 Goals Achieved

The main goal of this work was to build an application to automatically generate and de-
ploy domain-specific languages to an Integrated Development Environment. This goal was
achieved and the solution is available for the community in an open-source repository1.

The results were great as the application can create a language and deploy it to Visual
Studio Code. Another good point of the application is that it is not for a specific project as
it can work with any ecore meta-model.

The application might be handy if the user wants to quickly deploy a language to Visual
Studio Code. Or the automatically generated Visual Studio Code extension can be the basis
for a more complex extension.

7.2 Limitations and Future Work

The generated language extensions were simple, and it would be interesting to add some
features, including a live reload of grammar, finding all references, and code folding, among
others. Adding those features would take a significant amount of time, which was out of
the time scope available for this work.

7.3 Personal Remarks

This project allowed the author to investigate some of the main concepts of the master’s
degree in software engineering, namely MDE.

This project also provided a challenge, learning how to reverse engineer, which happened
when understanding how the Eclipse IDE uses Xtext.

Furthermore, because MDE is a popular software development methodology, it was an ex-
cellent opportunity to learn more about it and acquire relevant skills from a professional
standpoint.

1https://github.com/Lzgpom/xtext-gen-extension

65

References

ANTRL (2022). https://www.antlr.org/. Accessed: 2021-12-16.
Bragança, Alexandre et al. (2021). “Towards supporting SPL engineering in low-code plat-

forms using a DSL approach”. In: Proceedings of the 20th ACM SIGPLAN International
Conference on Generative Programming: Concepts and Experiences, pp. 16–28.

Brambilla, Marco, Jordi Cabot, and Manuel Wimmer (2017). “Model-driven software engi-
neering in practice”. In: Synthesis lectures on software engineering 3.1, pp. 1–207.

Comparison Testing in Software Engineering (2021). https://www.geeksforgeeks.org/
comparison-testing-in-software-engineering. Accessed: 2022-06-01.

Creating Language Servers for Visual Studio Code (2022). https://code.visualstudio.
com/docs/extensions/example-language-server. Accessed: 2021-12-18.

d’Anjou, Jim, Scott Fairbrother, and Dan Kehn (2005). The Java developer’s guide to
Eclipse. Addison-Wesley Professional.

EMF.cloud Project (2022). https://www.eclipse.org/emfcloud/. Accessed: 2021-11-
30.

Escudeiro, Paula and José Bidarra (2008). “Quantitative evaluation framework (QEF)”. In:
Conselho Editorial/Consejo Editorial 16.

Foundation, Eclipse (2022). Eclipse IDE. https://www.eclipse.org/ide/. Accessed:
2021-12-16.

Fowler, Martin (2005). Language workbenches: The killer-app for domain specific languages.
Accessed: 2022-02-22.

Fulton, Randall and Roy Vandermolen (2017). Airborne Electronic Hardware Design Assur-
ance: A Practitioner’s Guide to RTCA/DO-254. CRC Press.

GEF (2022). https://www.eclipse.org/gef/. Accessed: 2022-06-10.
Graphiti (2022). https://www.eclipse.org/graphiti/. Accessed: 2022-06-10.
Hassan, Almoatazbillah (2012). “The value proposition concept in marketing: How customers

perceive the value delivered by firms-A study of customer perspectives on supermarkets in
Southampton in the United Kingdom”. In: International journal of marketing studies 4.3,
p. 68.

Koen, Peter A et al. (2002). “Fuzzy front end: effective methods, tools, and techniques”.
In: The PDMA toolbook 1, pp. 5–35.

Kruchten, Philippe B (1995). “The 4+ 1 view model of architecture”. In: IEEE software 12.6,
pp. 42–50.

Language Grammars (2022). https://macromates.com/manual/en/language_grammars.
Accessed: 2021-12-16.

Language Server Protocol (2022). https://microsoft.github.io/language-server-
protocol/. Accessed: 2021-12-18.

Lardinois, Frederic (2015). “Microsoft launches visual studio code, a free cross-platform
code editor for os x, linux and windows”. In: United State: TechCrunch.

Loucopoulos, Pericles (2005). “Requirements engineering”. In: Design process improvement.
Springer, pp. 116–139.

66 References

Meuter, Wolfgang De (2022). Concrete vs. Abstract Syntax. http://pico.vub.ac.be/
mc/absconc.html. Accessed: 2021-11-22.

Mohagheghi, Parastoo et al. (2008). “MDE adoption in industry: challenges and success cri-
teria”. In: International Conference on Model Driven Engineering Languages and Systems.
Springer, pp. 54–59.

Osterwalder, Alexander and Yves Pigneur (2003). “Modeling value propositions in e-Business”.
In: Proceedings of the 5th international conference on Electronic commerce, pp. 429–436.

Osterwalder, Alexander, Yves Pigneur, et al. (2015). Value proposition design: How to create
products and services customers want. Vol. 2. John Wiley & Sons.

Peffers, Ken et al. (2007). “A design science research methodology for information systems
research”. In: Journal of management information systems 24.3, pp. 45–77.

Richardson, Clay et al. (2014). “New development platforms emerge for customer-facing
applications”. In: Forrester: Cambridge, MA, USA 15.

Saaty, Thomas L (1990). “How to make a decision: the analytic hierarchy process”. In:
European journal of operational research 48.1, pp. 9–26.

Schmidt, Douglas C (2006). “Model-driven engineering”. In: Computer-IEEE Computer
Society- 39.2, p. 25.

Sevgili Koçak, Seda and MEHMET GÜVEN (2020). “Aile içi iletişimi geliştirmeye yönelik
grupla psikolojik danışmanın bireylerin iletişim beceri düzeylerine etkisi”. In.

Shaha, Manali and Meenakshi Pawar (2018). “Transfer learning for image classification”.
In: 2018 second international conference on electronics, communication and aerospace
technology (ICECA). IEEE, pp. 656–660.

Sirius (2022). https://www.eclipse.org/sirius/. Accessed: 2022-06-10.
Stack Overflow Developer Survey 2021 - Integrated Development Environment (2022).
https://insights.stackoverflow.com/survey/2021. Accessed: 2021-12-16.

Syntax Highlight Guide (2022). https://code.visualstudio.com/api/language-
extensions/syntax-highlight-guide. Accessed: 2021-12-16.

textX (2022). http://textx.github.io/textX/3.0/. Accessed: 2021-11-30.
textX for VS Code (2022). https://github.com/textX/textX- LS/tree/master/
client. Accessed: 2021-12-13.

The C4 model for visualising software architecture (2022). https://c4model.com/.
Theia (2022). https://theia-ide.org/. Accessed: 2021-12-18.
Vaidya, Omkarprasad S and Sushil Kumar (2006). “Analytic hierarchy process: An overview

of applications”. In: European Journal of operational research 169.1, pp. 1–29.
Visual Studio Code (2022). https://code.visualstudio.com/. Accessed: 2021-12-16.
What is a Generation Languages? (2022). https://www.computerhope.com/jargon/
num/1gl.htm. Accessed: 2021-12-16.

What is an IDE? (2022). https://www.redhat.com/en/topics/middleware/what-is-
id. Accessed: 2021-12-16.

Xtext (2022). https://www.eclipse.org/Xtext/. Accessed: 2021-12-25.
Xtext Generator Fragment for Visual Studio Code Extensions (2022). https://github.
com/itemis/xtext-generator-vscode. Accessed: 2021-12-14.

