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Abstract

Lung disease identification through X-ray imaging is still an exclusively manual procedure.
This means it is prone to human error, such as distraction, inexperience, or fatigue from the radi-
ologist. A tool that could work as a support to the medical professionals, giving them a "second
opinion,” pointing to details that could have been missed, could lead to a significant increase in
diagnosis success. Because it would help reduce uncertainty, it could also accelerate the diag-
nosis process and help initiate the treatment of the patient sooner. To evaluate the possibility of
implementing such a tool, a study was made on the performance of deep learning algorithms in
identifying several pathologies on chest X-ray images.

Deep learning models have been proven a powerful tool for medical data analytics. They can
identify some implicit features that cannot be easily described. This capacity will be used in this
thesis, in which the model must learn to distinguish several lung pathologies based on the features
found in the dataset images.

We have based our work on an existing initial study and have used its dataset. It contained
around 220 000 use cases and was put together by the CheXpert paper authors. It is available in
two versions, one with the full resolution of the images, of around 400GB, and one with lower
resolution images, of about 11GB. For this work, the latter version was used. This dataset con-
sisted of actual case studies, so some patients had more than one underlying disease. We filtered
the dataset to remove use cases with more than one pathology, reducing its original size by 30%.
The original paper was done with a multi-label approach, differentiating the pathologies simulta-
neously. In contrast, this work was done with a binary label approach, "disease" or "no disease,”
repeated for each pathology.

The first part of the experimental phase consisted of running the algorithm for each of the
twelve pathologies. The worst result of this phase was in the "Pleural Other" category, with an
AUC of 0.9937. The best ones had an AUC of 0.9971 for Enlarged Cardiomediastinum and Con-
solidation classes. Then, in the second phase, each pathology sub-set was filtered by one of six
attributes, such as projection or view of the radiography or sex of the patient, to see how perfor-
mance was affected and draw conclusions from that. The worst results of the second phase, for the
isolated attributes, were for the Posterior-Anterior projection of the Pleural Other category, with
an AUC of 0.6645. The best was for the Anterior-Posterior projection of the Edema category, with
an AUC of 0.9073.

The final results are very close to the ones obtained in the original CheXpert study and the
leader board of the ongoing competition on the Stanford website, related to the same paper. This
indicates that a binary-label approach is similar to a multi-label approach. These studies lead to
belief in a promising future for medical diagnosis assisted by Artificial Intelligence.
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Resumo

O diagnóstico de doenças pulmonares através de raios-X de tórax é ainda um procedimento
exclusivamente manual. Isto significa que é suscetível a erros humanos, tais como distração,
inexperiência, ou fadiga por parte do radiologista. Uma ferramenta que funcionasse como apoio
aos profissionais de saúde, oferecendo uma "segunda opinião", apontando detalhes que podem
não ter sido detetados, pode levar a um aumento significativo no sucesso do diagnóstico. Pelo
facto de ajudar na redução da incerteza, poderá também acelerar o processo de diagnóstico e fazer
chegar o tratamento ao paciente mais cedo. Para avaliar a possibilidade de implementação de uma
ferramenta com estas características, foi feito um estudo sobre a performance de algoritmos de
deep learning na identificação de diversas patologias em imagens de raios-X do tórax.

Modelos de deep learning têm-se mostrado ferramentas poderosas para análise de dados médi-
cos. Estes algoritmos são capazes de identificar características implícitas que não são facilmente
descritas. Esta capacidade vai ser utilizada nesta tese para os algoritmos a serem construídos, dos
quais os modelos terão de aprender a distinguir patologias de acordo com as características que
conseguem detetar nas imagens.

Este trabalho é baseado num estudo já existente, "CheXpert", e utilizamos o seu conjunto de
dados, ou dataset. Este contém mais de 220 mil casos de estudo e foi reunido pelos autores. Está
disponível em duas versões, uma com imagens de alta resolução (a resolução original) e outra
com a resolução reduzida. O tamanho destas duas versões é de aproximadamente 400 GB e 11
GB, respetivamente. Neste trabalho foi utilizada a segunda versão. Este dataset consiste em casos
de estudo reais, portanto alguns pacientes acusaram mais do que uma patologia em simultâneo.
Filtramos o conjunto total para remover estes casos de patologias sobrepostas, reduzindo em 30% o
seu tamanho original. O estudo "CheXpert" foi feito com uma abordagem de múltiplas categorias
identificadas e diferenciadas em simultâneo, enquanto que neste trabalho temos uma abordagem
binária de "com anomalia" ou "saudável", repetida para cada patologia individualmente.

A primeira parte do processo experimental consistiu na execução de um algoritmo para cada
uma das doze patologias. O pior resultado da experiência foi na categoria "Pleural Other", ou
"Outras anomalias na pleura", com um AUC (Area Under ROC Curve, medida de 0 a 1) de
0.9937. Os melhores resultados foram nas categorias "Enlarged Cardiomediastinum" (Silhueta
Cardiomediastinal Aumentada) e "Consolidation" (Consolidação). Na segunda parte do processo
experimental, cada conjunto de imagens correspondente a cada patologia foi dividido dependendo
de certos atributos isolados, tais como projeção e ângulo da radiografia ou sexo do paciente. O pior
resultado desta fase correspondeu à projeção Posterior-Anterior da anomalia "Pleural Other", com
um AUC de 0.6645 e o melhor resultado correspondeu à projeção Anterior-Posterior dos casos de
Edema, com um AUC de 0.9073.

Os valores obtidos foram, no geral, muito próximos aos obtidos no estudo em que este trabalho
foi baseado, o que indica que o método de classificação binária com dados filtrados tem uma
validade semelhante à classificação múltipla simultânea. Ambos os estudos levam a acreditar num
futuro promissor para o diagnóstico médico apoiado de inteligência artificial.

iii



iv



Acknowledgements

I would firstly like to show my appreciation to my supervisor, Professor Rui Camacho, for his
advice and guidance along this project.

I am also very grateful for my parents and family, who shaped me into the person I am today,
and for my friends, who walked this path alongside me.

Finally, a special thanks to my partner for their consistent support throughout the last few
years, with whom I have built beautiful memories that I will always cherish.

Ana Marques

v



vi



"Woof!"

Nina

vii



viii



Contents

1 Introduction 1
1.1 Context . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Goals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Structure of the Document . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2 Data Mining and Computer Vision 3
2.1 Data Mining . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.1.1 KDD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.1.2 SEMMA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.1.3 CRISP-DM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.2 Computer Vision . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2.1 Digital Image Processing . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2.2 Image Segmentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.3 Machine Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.3.1 Decision Trees . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.3.2 Random Forest Classifier . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.3.3 Support-Vector Machines . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.4 Deep learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.4.1 Artificial Neural Networks . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.4.2 Machine Learning, Deep Learning and Programming Tools . . . . . . . . 13
2.4.3 DL Model Hyper-Parameters . . . . . . . . . . . . . . . . . . . . . . . . 14
2.4.4 DL Model Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3 Methodology 17
3.1 Problem Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.2 Setup description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.3 Dataset Technical Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.4 Deep Learning Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.5 Experimental Planning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.5.1 Ideal Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.5.2 First Experiment and Base Values . . . . . . . . . . . . . . . . . . . . . 27
3.5.3 Second Experiment and Variations . . . . . . . . . . . . . . . . . . . . . 28

3.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

4 Experiments 29
4.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

ix



x CONTENTS

5 Conclusions and Future Work 33

References 35



List of Figures

2.1 An Overview of the Steps That Compose the KDD Process . . . . . . . . . . . . 5
2.2 SEMMA steps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.3 Partitioning polygons[23] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.4 DIP levels and how they relate to computer vision[23] . . . . . . . . . . . . . . . 9

3.1 Directory tree of the dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.2 Example of the two views in images of a healthy patient . . . . . . . . . . . . . 18
3.3 Atelectasis pathology example . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.4 Cardiomegaly pathology example . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.5 Consolidation example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.6 Edema pathology example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.7 Enlarged cardiomediastinum example . . . . . . . . . . . . . . . . . . . . . . . 21
3.8 Fracture example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.9 Lung lesion example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.10 Lung opacity example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.11 Pleural effusion example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.12 Pleural other example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.13 Pneumonia example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.14 Pneumothorax example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.15 Distribution of the number of samples for each pathology . . . . . . . . . . . . . 26

xi



xii LIST OF FIGURES



List of Tables

3.1 Class labels (pathologies) and attribute names . . . . . . . . . . . . . . . . . . . 19
3.2 Number of cases with Pathology overlap . . . . . . . . . . . . . . . . . . . . . . 24
3.3 Dataset general dimensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.4 Number of samples of each pathology . . . . . . . . . . . . . . . . . . . . . . . 25
3.5 Number of samples of individual attributes for each pathology . . . . . . . . . . 26
3.6 Values used for the Hyper Parameters . . . . . . . . . . . . . . . . . . . . . . . 27

4.1 Average and standard deviation results of the runs of each pathology were evalu-
ated in their accuracy, area under the ROC curve, and F1 score. The last column
is the time it took the model to complete running . . . . . . . . . . . . . . . . . 30

4.2 Average and standard deviation results of the runs of each attribute in each pathol-
ogy, evaluated in their accuracy, area under the ROC curve, and F1 score. The last
column is the time it took the model to complete running. . . . . . . . . . . . . . 31

5.1 Atelectasis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
5.2 Cardiomegaly . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
5.3 Consolidation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
5.4 Edema . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
5.5 Enlarged Cardiomediastinum . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
5.6 Fracture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
5.7 Lung Lesion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
5.8 Lung Opacity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
5.9 Pleural Effusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
5.10 Pleural Other . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
5.11 Pneumonia . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
5.12 Pneumothorax . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
5.13 Atelectasis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
5.14 Cardiomegaly . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
5.15 Edema . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
5.16 Lung Lesion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
5.17 Pleural Other . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
5.18 Pneumonia . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

xiii



xiv LIST OF TABLES



Abbreviations

ADT Abstract Data Type
AI Artificial Intelligence
ANDF Architecture-Neutral Distribution Format
ANN Artificial Neural Networks
AP Anterior-Posterior
API Application Programming Interface
AUC Area Under ROC Curve
API Application Programming Interface
BMU Best Matching Unit
CAD Computer-Aided Design
CASE Computer-Aided Software Engineering
CNN Convolutional Neural Networks
CORBA Common Object Request Broker Architecture
CPU Central Processing Unit
CRISP-DM Cross-Industry Standard Process for Data Mining
CSV Comma-Separated Values
DIP Digital Image Processing
DL Deep Learning
DM Data Mining
GAN Generative Adversial Networks
GPU Graphics Processing Unit
HSB Hue, Saturation and Brightness
HSI Hue, Saturation and Intensity
HSV Hue, Saturation, and Value
JSON JavaScript Object Notation
KDD Knowledge Discovery in Databases
K-NN K-Nearest Neighbour
LSTM Long Short Term Memory Networks
ML Machine Learning
MLP Multilayer Perceptrons
MM Mathematical Morphology
PA Posterior-Anterior
RBFN Radial Basis Function Networks
ReLUs Rectified Linear Units
RGB Red, Green, and Blue
ROC Receiver Operating Characteristic
RNN Recurring Neural Networks
SAS Statistical Analysis System
SEMMA Sampling, Exploring, Modifying, Modeling, and Assessing
SOM Self Organizing Maps
SVM Support-Vector Machines
UNCOL UNiversal Compiler-Oriented Language

xv





Chapter 1

Introduction

Lung disease identification through X-ray imaging is still an exclusively manual procedure.

This means it is prone to human error, such as distraction, inexperience, or fatigue from the radi-

ologist. A tool that could work as a support to the medical professionals, giving them a "second

opinion,” pointing to details that could have been missed, could lead to a significant increase in

diagnosis success. Because it would help reduce uncertainty, it could also accelerate the diagnosis

process and help initiate the treatment of the patient sooner.

Deep learning models have been proven a powerful tool for medical data analytics. They can

identify some implicit features that cannot be easily described. This capacity will be used in this

thesis, in which the model must learn to distinguish several lung pathologies based on the features

found in the dataset images. The results will be analyzed in the final stage of the project.

1.1 Context

Chest X-ray medical radiographies are a globally adopted tool for medical imaging examina-

tion [20]. They are cost-effective compared to other diagnostic tools and hold critical informa-

tion regarding various diseases. However, in these images, there is often an overlap between the

pathology and other lung irregularities. Data mining techniques have been proven helpful in simi-

lar medical image classification studies, such as association rule mining for image categorization

and neural networks. This work will use convolutional neural networks (CNN), a deep learning

algorithm that is very effective for image classification problems [9].

A tool that could automatically identify diseases in X-ray images would be handy for a medical

professional, so a positive result could indicate that it is a genuine possibility in the future and a

relevant advance in diagnosis technology.

The automation of X-ray image analysis is a complex process. This process involves process-

ing the images, which can be unclear and contain different medical conditions overlapping each

other; building deep learning algorithms to correlate the samples with the previously assigned

pathologies; and ending up with a model capable of detecting the pathologies autonomously.

1



2 Introduction

1.2 Goals

This dissertation aims to provide some insight into the performance of deep learning models

when seeking to identify diseases in chest X-ray images and to hypothesize the motives behind

possible difficulties in this task.

The dataset used on this project is CheXpert. It has appropriate dimensions and consists of

almost 230 000 samples belonging to approximately 65 000 patients, with relevant labels and 14

observations corresponding to pathologies or the absence of disease [20].

1.3 Structure of the Document

This report contains four additional chapters. In Chapter 2, we present an overview of the

relevant context and state-of-the-art of the necessary tools and concepts for this thesis. Next,

in Chapter 3, we describe the methodology adopted for the set of experiments. In Chapter 4,

we present and interpret the experimental results. Finally, the conclusions and future work are

described in Chapter 5.



Chapter 2

Data Mining and Computer Vision

The technological development over the last few years allowed an increased computation-

al/processing power. As the cost of manufacturing powerful computers decreased, it became pos-

sible to execute processes so far done manually, which was time-consuming and costly. This

resulted in the emergence of new tools and possibilities, like the ability to process large amounts

of data, store large amounts of high-resolution images, such as medical images, useful for science

studies, or automatically extract data from different kinds of written resources. The areas of com-

puter science in which these possibilities are advantageous are data mining, computer vision, and

text mining.

In this chapter, there will be an overview of the basic concepts of data mining, computer

vision, and text mining. There will be a description of the state of the art and the main objective

of applying these tools to the matter.

2.1 Data Mining

"Data mining is the process of discovering meaningful correlations, patterns and

trends by sifting through large amounts of data stored in repositories. Data min-

ing employs pattern recognition technologies, as well as statistical and mathematical

techniques." (Gartner Group[17])

Nowadays, there is an incredible amount of data in various platforms and fields. Data collec-

tion has suffered massive growth, as have computing power and storage capacity. The urgency

to develop fresh tools and methods to back analysts in the process of obtaining valuable knowl-

edge from this dramatic growth of digital data led to the development of the field of knowledge

discovery in databases (KDD) and, consequentially, of data mining [15].

However, there is not enough human capacity to analyze all of this data, and there is no soft-

ware capable of doing so with without human input. In order to do this data mining correctly,

there has to be an insight of the structures in which the software is supported, which are based on

mathematics and statistics.

3



4 Data Mining and Computer Vision

Data mining, when done correctly, can accomplish various tasks, such as the description of pat-

terns or trends within data, estimation models, prediction of future events, classification of target

variables based on different predictors, clustering of the data set, and association of attributes. The

resulting DM models should aim for transparency in the sense that one can intuitively interpret.

2.1.1 KDD

"Knowledge Discovery in Databases (KDD) is an automatic, exploratory analysis

and modeling of large data repositories. KDD is the organized process of identifying

valid, novel, useful, and understandable patterns from large and complex data sets."

(A. Adhikari et al[6])

KDD and DM are frequently mentioned interchangeably. A. Adhikari et al. state

The KDD process involves various approaches to extracting knowledge from data, "[...] in-

cluding how the data are stored and accessed, how algorithms can be scaled to massive data sets

and still run efficiently, how results can be interpreted and visualized, and how the overall man-

machine interaction can usefully be modeled and supported". (Fayyad et al [15]).

There are nine steps within this process, which can be skipped or repeated, iteratively:

1. Understand the application domain, the knowledge already present, and determine the

objective of the KDD process from the client’s point of view;

2. Create a target data set

3. Clean and preprocess data

4. Reduce and project data

5. Apply a particular DM method

6. Select the method(s) to be applied to find data patterns and choose the DM algorithm

7. Data mining

8. Interpret the mined patterns

9. Act on the discovered knowledge

The Figure 2.1 was extracted from Fayyad et al.’s "From Data Mining to Knowledge Discovery

in Databases"[15] and illustrates the steps of the KDD process.
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Figure 2.1: An Overview of the Steps That Compose the KDD Process

2.1.2 SEMMA

SEMMA(Sampling, Exploring, Modifying, Modeling, and Assessing) is a widely applicable

data mining method. It consists of five steps, which can be adapted to the analysis by being

removed or repeated in an iterative process. The following process flow diagram of Figure 2.2,

illustrating this process, can be found on the SAS Help Center website:

Figure 2.2: SEMMA steps

On the same page, there is also a short description of each step:

1. Sample the data by creating one or more data tables. The samples should be large

enough to contain the significant information, yet small enough to process

2. Explore the data by searching for anticipated relationships, unanticipated trends, and

anomalies in order to gain understanding and ideas

3. Modify the data by creating, selecting, and transforming the variables to focus the

model selection process



6 Data Mining and Computer Vision

4. Model the data by using the analytical tools to search for a combination of the data

that reliably predicts a desired outcome

5. Assess the data by evaluating the usefulness and reliability of the findings from the

data mining process [5].

2.1.3 CRISP-DM

CRISP-DM is a standard process to include data mining in problem-solving strategies. This

standard is unrestricted to applications, industries, or tools. The concept is that there is a life cycle

in each data mining project, which consists of six phases. The sequence between stages is not

rigid, which means that the results obtained in a step will determine what the next step will be,

which originates an iterative process [21]. The six phases are the following:

1. Business/Research understanding phase

(a) Enunciate the project objectives and requirements clearly

(b) Translate the objectives and restrictions into the formulation of a data mining

problem definition

(c) Prepare a preliminary strategy for achieving these objectives.

2. Data understanding phase

(a) Collect the data

(b) Use exploratory data analysis to familiarize yourself with the data and dis-cover

initial insights

(c) Evaluate the quality of the data

(d) If desired, select interesting subsets that may contain actionable patterns.

3. Data preparation phase

(a) Prepare from the initial raw data the final data set that is to be used for all subse-

quent phases

(b) Select the cases and variables you want to analyze and that are appropriate for

your analysis

(c) Perform transformations on certain variables, if needed

(d) Clean the raw data so that it is ready for the modeling tools.

4. Modeling phase

(a) Select and apply appropriate modeling techniques

(b) Calibrate model settings to optimize results

(c) Remember that often, several different techniques may be used for the same data

mining problem

(d) If necessary, loop back to the data preparation phase to bring the form of the data

into line with the specific requirements of a particular data mining technique.
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5. Evaluation phase

(a) Evaluate the one or more models delivered in the modeling phase for quality and

effectiveness before deploying them for use in the field

(b) Determine whether the model in fact achieves the objectives set for it in the first

phase

(c) Establish whether some important facet of the business or research problem has

not been accounted for sufficiently

(d) Come to a decision regarding use of the data mining results.

6. Deployment phase

(a) Make use of the models created: Model creation does not signify the completion

of a project

(b) For businesses, the customer often carries out the deployment based on your

model

2.2 Computer Vision

Computer Vision is a field that aspires to mimic biological vision and visually perceive the

world [10]. It consists of various techniques to process, interpret and perceive images and real-life

high-dimensional data to create digital information [13].

2.2.1 Digital Image Processing

A digital image contains a limited number of elements (pixels). It can be defined as a 2-

dimensional function, f (x,y) where f is the intensity at the point of coordinates (x, y). Image pro-

cessing consists of manipulating these digital images to extract information from them. The funda-

mental steps in the processing of images involve image acquisition, enhancement and restoration,

color processing, compression, morphological processing, segmentation, feature extraction, rep-

resentation and description, and recognition [18].

Regarding the conversion from a continuous image to a digital one, the continuous image is

sampled using a discrete partition of the continuous plane. These partitions can be constituted only

by one of three regular polygon types: triangular, square, and hexagon. These are represented in

Figure 2.3.
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Figure 2.3: Partitioning polygons[23]

In this conversion process, there is also sampling and quantization. The first process will give

us the number of samples evaluated as spatial resolution. The second one provides us with the

number of intensity levels, then classified as intensity resolution.

Variations in spatial resolution will result in more or less pixelated images, depending on

whether the number of samples is lower or higher. Variations in intensity resolution will affect the

accuracy of the tones, so increasing the number of intensity levels will result in a more accurate

image shading. These images are monochromatic. Monochromatic images, or 2D images, can be

defined with the following equation:

FM = { f (i, j), i = 1,2, ...N; j = 1,2, ...M} (2.1)

were f(i,j) is the gray-level of a pixel with spatial coordinates (i, j). Polychromatic images, or

3D images, on another hand, can be developed from that and defined with the following equation:

FP = {FM(Red);FM(Green);FM(Blue)} (2.2)

Regarding color images, these can have the following representations: RGB and HSV / HSI /

HSB [23].

H – Hue

S – Saturation

V – Value

I – Intensity

B – Brightness

To go from digital image processing (DIP) to computer vision, a spectrum can be partitioned

into low, mid, and high-level processes. Low-level processes include basic operations such as

noise reduction, enhancement of features, an increase of contrast, edge enhancement, binarization

or compensation of geometrical deformations, and both the input and output of the operation

are images. These processes are often described as pre-processing, and other techniques include

intensity transformations, linear filtering, and non-linear filtering. In mid-level processes, the

input is also an image, but the output consists of attributes resulting from operations like object
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recognition and segmentation. Finally, high-level processes take these attributes as input and return

understanding as output and ideally perform cognitive functions associated with human vision,

such as scene understanding and autonomous navigation [12]. Other techniques for processing

images include intensity transformations, linear filtering, and non-linear filtering [7]. The way

these concepts are related is represented in Figure 2.4.

Figure 2.4: DIP levels and how they relate to computer vision[23]

2.2.2 Image Segmentation

Segmentation methods can be classified into two categories, according to pixel properties:

feature-based and image-based segmentation. The first one includes thresholding or histogram-

based methods and clustering methods. The latter includes region-based, edge-based, and point,

line, edge, and corner detection methods.

There are issues within the images that complicate the process of analyzing them. These issues

include non-uniform illumination and out-of-focus areas.

2.2.2.1 Thresholding

This technique turns a greyscale image into a binary image. The threshold value can be calcu-

lated manually or by applying specific methods.

2.2.2.2 Region Growing

This is an iterative, flexible approach for the sequential extraction of objects starting from an

initial set of points (seeds). Seeds are obtained using a highly selective detection criterion. In each

iteration, a pixel is aggregated if it belongs to the neighborhood of pixels that were previously

detected or aggregated and if it verifies a less demanding condition, the aggregation criterion [25].
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2.2.2.3 Feature Detection and Matching

These are essential components of many computer vision applications. The first kind of feature

is noticing specific locations in the images, often called keypoint features (invariant features) or

interest points. Other features are corners and edges. Edges can be grouped into longer curves

and contours or straight lines segments. Feature matching consists of the comparison of features

between two images. There is also feature tracking, which is finding the most similar feature from

an image in another image [24].

2.2.2.4 Morphological Filtering

Morphological filters are local, non-linear operators resulting from the implementation of

Mathematical Morphology concepts. Mathematical Morphology (MM) is a theory for analyz-

ing spatial structures; it aims to explore objects’ shape and form based on set theory, integral

geometry, and lattice algebra. Morphological operations simplify images while quantifying and

preserving the main shape characteristics of image objects.

2.3 Machine Learning

Machine Learning is an area of computational algorithms built to emulate human reasoning

and apply it in future choice situations by gathering knowledge from the available data. This

area has plenty of possible applications, such as computer vision and computational biology, both

relevant to this thesis. Some machine learning tools and classification algorithms are decision

trees, rule induction, support vector machine, and K-Nearest neighbor (K-NN) [34].

2.3.1 Decision Trees

Decision trees are very intuitive. They start with a decision regarding an attribute, an internal

node, and its possible results are called branches. When a branch no longer splits, it becomes a

decision, or leaf. They are computationally fast, easily interpretable, and can be converted directly

to rules. There are Classification Trees and Regression Trees, but the former classifies individual

classes, and the latter evaluates continuous values [35].

2.3.2 Random Forest Classifier

This is an algorithm used for classification and regression that obtains the outputs of a set of

decision trees generated from random samples within the dataset.

The algorithm starts by picking random samples from the training set and making a decision

tree, which can be displayed, for each sample, using an attribute selection indicator such as gain

ratio, Gini index, or information gain. The output of each tree is a prediction result. This part

is done for the number of trees chosen. Then, when the goal is classification, the number of

predictions for each class is gathered, and the final prediction will be the one with the most "votes,”
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which means that it is an essential feature for the classifier; it is also possible to get the probability

of that feature besides the quality itself. In the case of regression, this final result is the average of

all predictions.

This means that the algorithm is more robust and more accurate the more trees it comprises, but

the slower it is in generating a result, considering that for each final prediction, all trees must gen-

erate their predictions. However, this does not mean it is not a good algorithm for large datasets.

Because of the "divide and conquer" nature of the voting process, which cancels out the bias,

Random Forests do not suffer from overfitting. They can handle datasets with a large number

of features and entries. Also, when missing values exist in the dataset, their proximity-weighted

average can be calculated for classification, or a median value can be used in the case of regres-

sion. A difficulty when using the Random Forest Classifier is regarding the interpretation, which

is much more complex than a single decision tree. However, this can be facilitated by visualizing

individual trees within it[28].

2.3.3 Support-Vector Machines

An algorithm appropriate for analyzing limited amounts of samples, such as in text classifica-

tion, in two-group classification problems, although it can also be used for regressions. It consists

of finding a hyperplane in a multi-dimensional space with as many dimensions as the number of

features that divides the data points between the two specified groups with the maximum mar-

gin possible. This maximization is supported by a support vector, which comprises the data points

closest to the hyperplane and influences its position and orientation. The calculation of this margin

includes computing the hinge loss function with an added regularization parameter which balances

maximization and loss. When the predicted value is the same as the actual value, the cost is 0;

when the opposite happens, the cost is the calculated loss. After the definition of the loss function,

partial derivatives are taken regarding the chosen weights to find the gradients. If the model makes

an incorrect prediction, these gradients are updated in the regularization parameter along with the

loss; if it makes a correct prediction, the loss is not included[16].

2.4 Deep learning

Deep learning is a type of machine learning. It is an approach to AI that tackles problems that

humans solve intuitively. Because overlapping other learned notions support the human intuitive

knowledge, a visual representation of it would look like a deep, layered image of concepts. With

deep learning, a computer can use simple concepts to formulate more complex ones[19]. This

means that, based on the characteristics of the human brain, artificial neural networks (ANN) will

be capable of processing extensive amounts of information.
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2.4.1 Artificial Neural Networks

These neural networks consist of stacks of nodes, which are artificial neurons. These nodes

are stacked into three layers: an input layer, an output layer, and one or more hidden layers in

between. First, the information is carried to a node as input. Then, there are calculations made

inside this node, which include operations with random weights and added bias. The result of

these calculations is applied activation functions, such as Rectified Linear Units (ReLUs), sigmoid

functions, or tanh, which determines the nodes that will be fired and those that won’t.

Deep Learning algorithms learn from examples to train a machine. During training, these

algorithms find features, group objects, and valuable data patterns in the input data. To achieve

this multi-level process, they need the support of artificial neural networks. There are a few types

of ANNs, and they can be distinguished on a fundamental level as recurring (forming a cycle) or

feedforward (no cycle formed)[11].

2.4.1.1 Recurring Neural Networks

The structure of these networks is recurring because the outputs can be fed immediately back

as inputs, forming directed cycles. Some examples of RNNs’ applications are natural-language

processing, handwriting recognition, and image captioning.

2.4.1.2 Multilayer Perceptrons

This is a feedforward neural network type, meaning that the connections between the neurons

do not form a cycle. The multiple layers of these networks are constituted by perceptrons (binary

classifiers) and are fully connected in a graph, forcing a direction in the signal. MLPs can be used

as a base for image or speech recognition software.

2.4.1.3 Long Short Term Memory Networks

This is a type of Recurring Neural Network, and it has a chain-like structure in which four

layers will interact and communicate. Due to their ability to retain past information over time,

LSTMs can be helpful for pharmaceutical development and speech recognition.

2.4.1.4 Generative Adversial Networks

These networks contain two key components: the generator and the discriminator. The gener-

ator receives input from the network and produces fake data based on it. Then, the discriminator

learns to distinguish between the artificial and the actual data, and the cycle restarts. GANs are

especially useful in generating realistic images and remastering low-resolution textures into high-

resolution ones.
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2.4.1.5 Self Organizing Maps

SOMs aims to solve the human limitation regarding visualizing high dimensional data by

reducing its dimensions using self-organizing Artificial Neural Networks. First, the weights are

loaded, and a vector from the training data is chosen randomly. Secondly, there’s an analysis of

each node to find the Best Matching Unit (BMU). This step is repeated in any number of iterations.

The SOM sees the BMU’s neighborhood as a sample vector and assigns a winning weight to that

sample vector. The weight of each node and how much it learns will vary inversely to the distance

from the BMU. With each iteration, the BMU’s neighborhood decreases.

2.4.1.6 Radial Basis Function Networks

This type of feedforward neural network uses Radial Basis Functions in the hidden layer as

activation functions. When the network receives inputs, it will compare them to examples in

the training set and find their weighted sum. Then, the input vector goes to the hidden layers

containing the transfer functions. Their output is inversely proportional to the distance from the

node’s center. Finally, the output layer is built of several nodes, one for each data class. RBFNs

are helpful for classification, time-series predictions, and regressions.

2.4.1.7 Convolutional Neural Networks

In this thesis, the Deep Learning algorithm known as Convolutional Neural Network (also

known as CNN or ConvNet) will be of great importance. Inspired by the visual cortex structure,

in which visual fields overlap and comprise the entire visible area, it takes an input image and

initial weights and learns to differentiate them. This network takes less pre-processing than other

classification algorithms and can retain filters that, in different methods, must be input by hand.

The convolution operation consists of the application of several filters, and it happens in the Con-

volution Layer. Then, the elements pass through a Rectified Linear Unit (ReLU), resulting in a

Rectified Feature Map. This feature map is pooled in the Pooling Layer, which means that it is

downsampled to two-dimensional arrays, and then flattened into a continuous linear vector (flat-

tened matrix), which allows the algorithm to classify the images or objects, resulting in a final

Fully Connected Layer. This algorithm is capable of reducing the images while keeping critical

features to guarantee results, which allows for great scalability[11].

2.4.2 Machine Learning, Deep Learning and Programming Tools

Some tools to be explored in the following steps of this thesis will be TensorFlow, Keras, and

Jupyter Notebook.

TensorFlow is a machine learning platform that includes tools to process and load data, utilize

pre-trained models, create new models, deploy them on different interfaces and automate and track

model training[1].
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Keras is a Python Deep Learning application programming interface (API) built on top of

TensorFlow 2 . It is known for its flexibility across platforms and its beginner-friendly nature. It

is also reliable enough to be used by many scientific organizations worldwide[2].

Jupyter Notebook is an open-source, interactive development environment. It is a web applica-

tion, has a modular design, supports more than 40 programming languages, allows the production

of interactive outputs and the usage of big data tools, and the notebooks can be shared across the

web. These notebooks are in JSON-based document format and can store the code outputs and

user sessions along with the code. It can be deployed with Anaconda Navigator, a graphical user

interface with which a user can create separate virtual environments. These environments allow

the same computer to run code on different versions of different python packages, providing great

flexibility in program development[3].

2.4.3 DL Model Hyper-Parameters

The most important values to be defined when building a model are the data size, the number of

epochs, batch size, and the learning rate. The data size is the number of samples in the dataset. The

number of epochs is the number of times the entire dataset is run through the model[38]. Generally,

the larger the number of epochs, the better. The batch size is how many samples are processed at

the same time[27]. It is equivalent to a step, which means that a larger batch size equals making

more significant jumps between groups of samples, increasing the training process’s speed. The

learning rate is a parameter that defines the step size in minimizing a loss function to avoid both

slow learning and system divergence[39].

2.4.4 DL Model Evaluation

The models trained in this work will be evaluated regarding their Logarithmic Loss, Accuracy,

Area Under ROC Curve, and F1 Score. They are binary classifications and have values between 0

and 1[33]. Then, the results’ standard deviation and average will also be calculated.

2.4.4.1 Logarithmic Loss

Log Loss is a classification metric based on probabilities that increases when the model’s

prediction diverges from the correct value.

2.4.4.2 Accuracy

Accuracy is the proportion between the number of correct predictions and the total number of

input samples.

Accuracy =
CorrectPredictions
TotalPredictions

(2.3)

This metric should only be used in balanced data because if the number of samples belonging

to each class differs, this ratio will be misleading.
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2.4.4.3 Area Under ROC Curve

The Area Under Curve is a metric used in binary classification, which is the case in the models

of this thesis. This curve is the result of the plot where x is the False Positive Rate, and y is the True

Positive Rate. The False Positive Rate is the ratio between negative data points wrongly classified

as positive and all the data points as negative.

FalsePositiveRate =
FalsePositive

TrueNegative+FalsePositive
(2.4)

The True Positive Rate is the ratio between correctly classified positive data points and all

positive data points. It is also known as Sensitivity or Recall.

TruePositiveRate =
TruePositive

FalseNegative+TruePositive
(2.5)

2.4.4.4 F1 Score

The F1 Score evaluates a classifier by combining Precision and Recall metrics and computing

their harmonic mean.

F1 = 2× 1
1

Precision +
1

Recall

(2.6)

Precision is the ratio between the number of True Positives and the total positive predictions

of the classifier. Recall or Sensitivity has already been described.

Precision =
TruePositives

TruePositives+FalsePositives
(2.7)

2.5 Summary

This chapter contextualized the concepts needed for this work, the tools deemed appropriate

to complete it, and the methods for evaluating the algorithm’s performance. After this research, it

was possible to move on to the next step, planning the experiment.
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Chapter 3

Methodology

3.1 Problem Description

This work tackles the problem of classifying chest X-ray images according to the pathologies

they include. From a software point of view, the challenge is for the program to analyze the radio-

graphy, identifying a set of features that allow for the intended differentiation between diseases.

Contemporary machine learning techniques successfully have been proven to complete similar

problems as the one in this thesis, so they were deemed more appropriate than the traditional

image analysis and classification methods.

3.2 Setup description

This experiment was conducted with the support of Jupyter Notebook embedded in the Ana-

conda software, in a laptop with only a CPU in the early stages, and then on machines with

GPU. The samples are from the CheXpert dataset and were stored on an external hard drive. This

dataset was obtained through an email link after registration on the Stanford ML Group website.

This email offers two download options according to the images’ resolutions. The low-resolution

zip file has 11GB, and the high-resolution zip file has 439GB. For this thesis, the low-resolution

set was deemed the most appropriate, regarding the time and available setup limitations.

3.3 Dataset Technical Parameters

The dataset consists of JPG (JPEG) images and two CSV (Comma-Separated Values) format

files. The images are chest X-Rays, and the CSV file contains information about every picture.

The directories are organized as seen in Figure 3.1.

17
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Figure 3.1: Directory tree of the dataset

This means that the dataset is divided into two sub-datasets with different dimensions but the

same structure. There is a folder for each patient, which contains several studies, each with its

directory. The images are inside these directories. The images may have two different angles,

frontal and lateral, as seen in Figure 3.2.

(a) Frontal (b) Lateral

Figure 3.2: Example of the two views in images of a healthy patient

As mentioned before, this dataset is available in two CSV format files. Each file has the

following information on the dataset’s attributes: the first column contains the path to each image.

The following columns contain data about the patient’s sex and age, if it is a frontal or lateral view,

if it’s an AP (Anterior-Posterior, taken facing the back of the patient) or PA (Posterior-Anterior,

taken facing the front of the patient, usually when they need to be lying down) projection, if

nothing was detected in the X-Ray, and if the patient had any support devices. The remaining

twelve columns have the value 1 or 0, signaling the existence or absence of the related pathology,

respectively. Table 3.1 shows the existing pathologies. A single example from a patient can have

more than one pathology identified.
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Table 3.1: Class labels (pathologies) and attribute names

Pathology Classes Attribute Names

Atelectasis Path
Cardiomegaly Sex
Consolidation Age

Edema Frontal
Enlarged Cardiomediastinum Lateral

Fracture AP
Lung Lesion PA
Lung Opacity Support Devices

Pleural Effusion
Pleural Other
Pneumonia

Pneumothorax
No Finding

Atelectasis is a condition in which a part of the lung has collapsed and does not hold air, while

the rest of the lung looks normal; it is commonly caused by mucus blocking the airways [31]. An

example of the aspect of this condition can be seen in Figure 3.3.

(a) Frontal (b) Lateral

Figure 3.3: Atelectasis pathology example

Cardiomegaly is the increase in the size of the diameter of the heart; it is a symptom of another

condition, which commonly is myocardial infarction or ischemia, but it can be caused by autoim-

mune diseases, toxins, and pregnancy, among others [8]. An example of this condition is in Figure

3.4.
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(a) Frontal (b) Lateral

Figure 3.4: Cardiomegaly pathology example

Consolidation is also a symptom of other diseases, such as pneumonia; in an X-ray, this con-

dition makes the lung considerably blurry and conceals the details such as blood vessels, which

indicates that a major portion of the air in the lungs was replaced by another fluid, such as blood

[29]. Figure 3.5 shows an example of this condition.

(a) Frontal (b) Lateral

Figure 3.5: Consolidation example

Edema is a condition in which there is a build-up of extravascular fluid in the lungs, and it can

be caused by heart failure or injury [26]. An example of the condition is in Figure 3.6.
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(a) Frontal (b) Lateral

Figure 3.6: Edema pathology example

An enlarged cardiomediastinum means that the silhouette of the heart is larger than it should

be; this condition can be seen both from a frontal and lateral X-ray, and it usually means that the

patient suffers from cardiomegaly, even though this is not the only cause [4]. Example of this

condition in Figure 3.7.

(a) Frontal (b) Lateral

Figure 3.7: Enlarged cardiomediastinum example

A fracture happens in the ribs and leads to a series of complications. First, the pain the patient

suffers when the rib is moving leads to shallow breathing, which predisposes to atelectasis. Sec-

ondly, an impact with enough force to cause a rib fracture will also cause a contusion in the lung,

which involves bleeding and death of the tissues. Finally, if the force is also enough to cause a

part of the chest wall to be destabilized, known as a flail segment. That destabilization provokes

pressure in the opposite way of the normal intrapleural pressure, which means that this section will

move inversely to the rest of the lung, shifting inward when the rib cage expands. This impedes

the lung underneath the flail from expanding completely and thus leads to shallow breathing and

deficient oxygenation of the tissues [22]. Figure 3.8 shows an example of a fracture.



22 Methodology

(a) Frontal (b) Lateral

Figure 3.8: Fracture example

Lung lesions are usually tumors that can be benign or malign, and they are often referred to as

nodules [36]. These nodules can be seen in Figure 3.9.

(a) Frontal (b) Lateral

Figure 3.9: Lung lesion example

Lung opacity, often referred to as ground-glass opacity, happens when the portion of the lungs

that contains air becomes partially filled with a denser substance, creating opacity in the image.

This opacity, however, is not severe enough to conceal pulmonary vessels, at which point it would

become consolidation [14]. This opacity is represented in Figure 3.10.

(a) Frontal (b) Lateral

Figure 3.10: Lung opacity example
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Pleural effusion is a condition in which there is an abnormally high amount of fluid in the

pleura, which is the membrane that connects the lungs to the chest walls [32]. Figure 3.11 is an

example of this.

(a) Frontal (b) Lateral

Figure 3.11: Pleural effusion example

Pleural other refers to other conditions regarding the pleural space. This is the most heteroge-

neous label. An example of these other conditions is represented in Figure 3.12.

(a) Frontal (b) Lateral

Figure 3.12: Pleural other example

Pneumonia is an infection that fills the lung’s alveoli with fluid. In a chest X-ray, it is usually

associated with the presence of pleural effusion [37]. Figure 3.13 is an example of pneumonia.
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(a) Frontal (b) Lateral

Figure 3.13: Pneumonia example

Pneumothorax consists of an accumulation of air in the pleural space, where the air is not

supposed to enter. Pneumothorax can happen spontaneously, with or without another underlying

lung disease, or during menstruation. Or due to trauma caused by other medical procedures or an

impact that can be blunt or piercing [30]. This condition is represented in the Figure 3.14.

(a) Frontal (b) Lateral

Figure 3.14: Pneumothorax example

These labels are not exclusive, meaning a patient can be diagnosed with more than one pathol-

ogy. That is the case for more than a third of the samples as can be seen in Table 3.2.

Table 3.2: Number of cases with Pathology overlap

>1 pathology 88572 39.6%
≤ 1 pathologies 135077 60.4%

Total 223649 100%
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The total dimensions of this dataset are described in Table 3.3.

Table 3.3: Dataset general dimensions

Rows Columns Patients

Train 223 414 19 64 540
Valid 235 19 182
Total 223 649 19 64 722

The dimensions of each pathology are not uniform. The number of samples per pathology can

be seen in Table 3.4. These variations can be visually compared with the help of the histogram in

Figure 3.15.

Table 3.4: Number of samples of each pathology

Pathology Train Samples Valid Samples Total Samples

Atelectasis 2651 467 3118
Cardiomegaly 2269 400 2669
Consolidation 1065 187 1252

Edema 4422 780 5202
Enlarged Cardiomediastinum 1298 229 1527

Fracture 1690 298 1988
Lung Lesion 877 154 1031
Lung Opacity 4246 747 4993

Pleural Effusion 5181 913 6094
Pleural Other 336 59 395
Pneumonia 459 80 539

Pneumothorax 3798 670 4468
No Finding 18963 3343 22306
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Figure 3.15: Distribution of the number of samples for each pathology

There is also, for each pathology, a varying number of samples for each non-pathology at-

tribute. These attributes are view, projection and sex. These values are displayed in the Table

3.5.

Table 3.5: Number of samples of individual attributes for each pathology

Pathology Frontal
View

Lateral
View

Anterior-
Posterior
Proj.

Posterior-
Anterior
Proj.

Male Female

Atelectasis 2301 387 2688 432 1899 1221
Cardiomegaly 1443 573 2016 657 1551 1119
Consolidation 978 129 1107 147 717 537
Edema 4761 189 4950 255 3051 2151
Enlarged Cardiom. 918 294 1212 318 969 558
Fracture 1029 486 1515 477 1335 654
Lung Lesion 492 288 777 255 618 417
Lung Opacity 3446 750 4197 798 2931 2064
Pleural Effusion 3495 1278 4773 1323 3666 2430
pleural Other 108 150 258 141 252 144
Pneumonia 192 171 363 180 327 216
Pneumothorax 3531 504 4035 435 2703 1767
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3.4 Deep Learning Algorithm

The Deep learning algorithm chosen for the models was the Convolutional Neural Networks.

It is the most adequate for this work, considering its success in image analysis without needing an

external attribute classifier such as decision trees, random forests, or support-vector machines.

3.5 Experimental Planning

The experimental part of this work aims to train one DenseNet model for each label, consisting

of a binary "Pathology vs. No Finding" that will serve as a baseline. The following step is to

experiment with parameter variations and analyze the results. For every case study, different

hyperparameter values will be applied to the models to try and find the best results. The sample

size will differ depending on the number of examples per sub-dataset. These hyper-parameters

and their values are contained in the Table 3.6.

Table 3.6: Values used for the Hyper Parameters

Ner of Epochs Batch Size Learning Rate

20 20 1E-4
40 24 1E-5
50 40 1E-6
60

3.5.1 Ideal Results

According to the CheXpert website, the best results in this multi-labeling classification have

an AUC of 0.930. Although this is not a fair comparison, considering those results were obtained

with a multi-label classification and these models will be binary, this value will be taken into

account as a reference, and the results obtained will be compared to it.

3.5.2 First Experiment and Base Values

The first experiment will be an algorithm that trains the models to differentiate each pathology

in a binary fashion, "Pathology vs. No Finding.” The original dataset will be filtered to include

only the pathology in question. This means that samples with pathology overlap will not be con-

sidered, which is around 39.6% of the entire CheXpert dataset, leaving 135 077 relevant examples,

according to Table 3.2. Then, because the "No Finding" sub-dataset is larger in samples than any

other pathology sub-dataset, it will be downsampled to each of the dimensions of the respective

disease sub-dataset to have balanced data, which means an equal number of samples. The number

of samples per disease sub-dataset can be seen in Table 3.4. Each disease sub-dataset was divided

into "train" and "test" datasets. These were scrambled into three groups for variability to have
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three different main runs. The results of these models will work as a baseline for the variations

implemented in the following experiment.

3.5.3 Second Experiment and Variations

In the following experiments, single attributes within each disease will be isolated. The at-

tributes chosen are the following:

• Projection: AP (Anterior-Posterior) vs PA (Posterior-Anterior)

• View: Frontal vs Lateral

• Sex: Female vs Male

The goal is to analyze if the model has varying results depending on an attribute (Projection,

View, Sex) and if it is possible to obtain satisfactory results with less data. Since these attributes

are inherently binary, one of the two possibilities has better results.

This means there are six subsets for every pathology, divided into three groups of two. These

single-attribute subsets will then be randomly distributed into three subsets each to increase the

variability of the models. The attributes sub-sets are presented in the Table 3.5. In total, there will

be 5832 models. The total number of models is calculated below.

There are 12 possible pathologies, six individual attributes per pathology, and three sub-

datasets per attribute:

12pathologies ×6attributes ×3sub−datasets/attribute = 216 (3.1)

For each one of these models, the three hyper-parameters "number of epochs,” "learning rate,"

and "batch size" are cycled and combined among three values each:

216×3epoch−values ×3learning−rate−values ×3batch−size−values = 5832models (3.2)

3.6 Summary

The practical aspect of this project was defined in this chapter. There was an understanding of

the size of the entire dataset and each sub-dataset, the algorithm is chosen, and the desired results.

The next stage will be a report on the outcome of the experiments and their possible interpretations.



Chapter 4

Experiments

Two python scripts were made to perform the experiments defined in the previous chapter, one

for each experiment. The first one had a cycle that selected each pathology label, and for each

label, it iterated the three hyper-parameters among three values each. All of this happened three

times, one for each sub-dataset. This means that there were 81 models for each label. Each dataset

was divided into a train (70%) and a test (30%) sub-dataset.

The first python script had the structure represented in the Algorithm 1. Writing hierarchical

cycles allowed the desired input variability and covered all possible cases for the experiment in

only one run.

Algorithm 1 Pseudo-code for the first experiment

for PATHOLOGY LABELS = [Atelectasis,...,Pnemothorax] do
for EPOCH VALUES = [20, 40, 50] do

for BATCH SIZE VALUES = [20, 40, 60] do
for LEARNING RATE VALUES = [1E-4, 1E-5, 1E-6] do

1 - run model with "epoch value", "batch size value" and
"learning rate value" currently in the cycle

2 - Store performance values

3- Update best and worst performance values
end for

end for
end for

end for
RETURN Best and Worst models performances

The model had the same structure for the second experiment, but it went one level deeper

because it also iterated the attribute. Hence, there were six more models for each pathology, 486

in total per pathology. The python script for this second part of the experiment had a similar

structure to the first but with one more level for the individual attributes. This is represented in the

Algorithm 2.
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Algorithm 2 Pseudo-code for the second experiment

for PATHOLOGY LABELS = [Atelectasis,...,Pnemothorax] do
for ATTRIBUTE LABELS = [AP, PA][FRONTAL, LATERAL][FEMALE MALE] do

for EPOCH VALUES = [20, 40, 50] do
for BATCH SIZE VALUES = [20, 40, 60] do

for LEARNING RATE VALUES = [1E-4, 1E-5, 1E-6] do
1 - run model with "attribute label", "epoch value", "batch size value" and
"learning rate value" currently in the cycle

2 - Store performance values

3- Update best and worst performance values
end for

end for
end for

end for
end for
RETURN Best and Worst models performances

The best results for the first experiment are displayed in Table 4.1. The best results for the

second experiment are represented in Table 4.2, where each attribute is presented in a table for each

pathology. Unfortunately, only a portion of the results was obtained due to practical limitations.

Table 4.1: Average and standard deviation results of the runs of each pathology were evaluated in
their accuracy, area under the ROC curve, and F1 score. The last column is the time it took the
model to complete running

Pathology Accuracy AUC F1 Time (s)
avg (stdev) avg (stdev) avg (stdev) avg(stdev)

Atelectasis 0.9893 (0.0080) 0.9965 (0.0041) 0.9844 (0.0073) 239 (10)
Cardiomegaly 0.9891 (0.0091) 0.9966 (0.0040) 0.9844 (0.0073) 205 (13)
Consolidation 0.9910 (0.0081) 0.9971 (0.0035) 0.9844 (0.0073) 85 (5)

Edema 0.9878 (0.0081) 0.9960 (0.0042) 0.9844 (0.0073) 417 (18)
Enlarged Cardiom. 0.9906 (0.0087) 0.9971 (0.0030) 0.9844 (0.0073) 102 (8)

Fracture 0.9901 (0.0083) 0.9968 (0.0041) 0.9844 (0.0073) 117 (12)
Lung Lesion 0.9917 (0.0085) 0.9970 (0.0032) 0.9844 (0.0073) 84 (5)

Lung Opacity 0.9878 (0.0080) 0.9961 (0.0047) 0.9844 (0.0073) 388 (27)
Pleural Effusion 0.9878 (0.0081) 0.9958 (0.0047) 0.9844 (0.0073) 306 (63)

Pleural Other 0.9868 (0.0299) 0.9937 (0.0175) 0.9777 (0.0284) 27 (4)
Pneumonia 0.9863 (0.0276) 0.9945 (0.0138) 0.9783 (0.0272) 40 (3)

Pneumothorax 0.9883 (0.0081) 0.9964 (0.0040) 0.9844 (0.0073) 357 (15)
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Table 4.2: Average and standard deviation results of the runs of each attribute in each pathology,
evaluated in their accuracy, area under the ROC curve, and F1 score. The last column is the time
it took the model to complete running.

Pathology Accuracy AUC F1 Time (s)
avg (stdev) avg (stdev) avg (stdev) avg

Atelectasis 0.9893 (0.0080) 0.9965 (0.0041) 0.9844 (0.0073) 239 (10)
AP 0.8003 (0.2324) 0.8328 (0.2194) 0.7950 (0.2364) 240 (12)
PA 0.7644 (0.2004) 0.7980 (0.2003) 0.7596 (0.2059) 35 (3)

Frontal 0.8136 (0.1880) 0.8479 (0.1655) 0.8096 (0.1922) 273 (10)
Lateral 0.7807 (0.1882) 0.8143 (0.1891) 0.7757 (0.1942) 40 (2)
Male 0.8254 (0.1820) 0.8601 (0.1625) 0.8216 (0.1862) 185 (4)

Female 0.7956 (0.2022) 0.8261 (0.1920) 0.7884 (0.2078) 118 (4)1

Cardiomegaly 0.9891 (0.0091) 0.9966 (0.0040) 0.9844 (0.0073) 205 (13)
AP 0.8278 (0.1910) 0.8631 (0.1701) 0.8233 (0.1935) 137 (3)2

Edema 0.9878 (0.0081) 0.9960 (0.0042) 0.9844 (0.0073) 417 (18)
AP 0.8738 (0.1365) 0.9073 (0.1090) 0.8701 (0.1390) 475 (7)
PA 0.7579 (0.1974) 0.7933 (0.1990) 0.7547 (0.2028) 17 (2)

Frontal 0.8933 (0.1101) 0.9305 (0.0783) 0.8910 (0.11129) 471 (8) 3

Lung Lesion 0.9917 (0.0085 0.9970 (0.0032) 0.9844 (0.0073) 84 (5)
AP 0.7564 (0.2117) 0.7846 (0.2176) 0.7491 (0.2187) 8 (1)
PA 0.7122 (0.1967) 0.7516 (0.2000) 0.7061 (0.2034) 11 (2)

Frontal 0.7712 (0.2098) 0.7981 (0.2099) 0.7653 (0.2175) 21 (2)
Lateral 0.7252 (0.1969) 0.7582 (0.2030) 0.7161 (0.2053) 10 (2)
Male 0.7461 (0.2130) 0.7712 (0.2210) 0.7385 (0.2211) 54 (1)

Female 0.7496 (0.2028) 0.7778 (0.2028) 0.7420 (0.2106) 10 (2)

Pleural Other 0.9868 (0.0299) 0.9937 (0.0175) 0.9777 (0.0284) 27 (4)
AP 0.6941 (0.1916) 0.7218 (0.1999) 0.6853 (0.1961) 8 (1)
PA 0.6740 (0.1747) 0.7119 (0.1862) 0.6645 (0.1789) 10 (1)

Frontal 0.7543 (0.1932) 0.7838 (0.2024) 0.7443 (0.2013) 21 (1)
Lateral 0.6924 (0.1852) 0.7202 (0.1957) 0.6827 (0.1895) 10 (1)
Male 0.7459 (0.1871) 0.7796 (0.1935) 0.7379 (0.1968) 22 (2)

Female 0.7248 (0.1946) 0.7598 (0.2036) 0.7179 (0.2013) 10 (1)

Pneumonia 0.9863 (0.0276) 0.9945 (0.0138) 0.9783 (0.0272) 40 (3)
AP 0.7370 (0.1914) 0.7774 (0.1923) 0.7302 (0.1994) 17 (1)
PA 0.7175 (0.2033) 0.7484 (0.2097) 0.7092 (0.2090) 16 (1)

Frontal 0.7445 (0.1972) 0.7739 (0.2037) 0.7364 (0.2050) 32 (2)
Lateral 0.7042 (0.1983) 0.7357 (0.2088) 0.6963 (0.2039) 15 (1)
Male 0.7505 (0.1980) 0.7818 (0.2052) 0.7432 (0.2074) 30 (1)

Female 0.7260 (0.1956) 0.7581 (0.2056) 0.7191 (0.2047) 19 (3)
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4.1 Conclusions

The results were satisfactory, with an AUC above 0.7 in almost all models.

Regarding the first experiment, Enlarged Cardiomediastinum and Consolidation were the eas-

iest conditions for the model to identify, with an AUC of 0.9971. This might indicate that these

pathologies present clearer features, with more contrast than a healthy chest X-ray. The "Pleu-

ral Other" category had the worst performance, with an AUC of 0.9937, which is understandable

considering that it contains heterogeneous, unspecified diseases, meaning there were not many

evident characteristics in the images for successful classification.

The second experiment presented a general decrease in performance of approximately 30%,

except for Edema and Cardiomegaly, in which this decrease is reduced to approximately 15%. In

all cases, the Anterior-Posterior projection got better results than the Posterior-Anterior, and the

frontal view got better results than the lateral view. The male patients were also usually easier to

identify, except for Lung Lesions. The worst performance was the PA projection for the "Pleural

Other" category, with an AUC of 0.6645, and the best value was the AP projection for Edema,

with an AUC of 0.9073.

The most probable reason for such favorable results is that the dataset was filtered so that the

input cases did not have super-positioning of labels, so there was no more than one pathology per

image. This narrowed the learned characteristics of each label and led to a more precise outcome.



Chapter 5

Conclusions and Future Work

This study provided an overview of the possibility of using deep learning models to aid medical

professionals in identifying diseases visible in lung X-rays. The experimental phase was divided

into two phases, one for pathologies with all associated attributes and another for isolated attributes

within each pathology. a second set of experiments where each value of each binary attribute was

used to filter out the dataset. This filtering enabled us to evaluate if using just frontal X-rays

(against using frontal and lateral) would degrade the model’s performance. With this second set of

experiments, we assessed if a more straightforward dataset could achieve the same performance

as the whole set of attributes and values. The worst result of the first phase was in the Pleural

Other category, with an AUC of 0.9937. The best ones had an AUC of 0.9971 for Enlarged

Cardiomediastinum and Consolidation classes. The worst results of the second phase, for the

isolated attributes, were for the Posterior-Anterior projection of the Pleural Other category, with

an AUC of 0.6645. The best was for the Anterior-Posterior projection of the Edema category, with

an AUC of 0.9073. Overall the results were very positive, which indicates a promising possibility

for medical diagnosis assisted by artificial intelligence, leading to faster, more precise results and

more successful treatments. Although we got very promising results, let us recall that we have

used simplified datasets where instances with multiple classes were discarded.
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Appendix A - Experience 1 Results
This appendix displays the best and worst result of each one of the three runs that were done

for each pathology.
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Table 5.1: Atelectasis

Loss Accuracy AUC F1 Ner Epochs Batch Size Learning Rate

Run 1 Best 4.74E-4 0.9956 1 0.9916 20 60 1E-5
Worst 9.35E-7 0.9862 0.9832 0.9744 20 20 1E-4

Run 2 Best 3.37E-3 0.9940 1 0.9873 40 40 1E-6
Worst 2.45E-6 0.9684 0.9851 0.9743 40 20 1E-4

Run 3 Best 6.78E-3 0.9982 1 0.9916 50 60 1E-6
Worst 1.51E-6 0.9856 0.9851 0.9744 20 20 1E-4

Table 5.2: Cardiomegaly

Loss Accuracy AUC F1 Ner Epochs Batch Size Learning Rate

Run 1 Best 2.98E-4 0.9961 1 0.9916 20 60 1E-5
Worst 1.64E-9 0.9725 0.9846 0.9744 50 20 1E-4

Run 2 Best 9.03E-3 0.9990 1 0.9916 50 60 1E-6
Worst 4.68E-11 0.967 0.9867 0.9744 50 20 1E-4

Run 3 Best 4.39E-4 0.9922 1 0.9916 20 60 1E-5
Worst 2.74E-5 0.9725 0.9804 0.9744 50 20 1E-4

Table 5.3: Consolidation

Loss Accuracy AUC F1 Ner Epochs Batch Size Learning Rate

Run 1 Best 2.21E-4 0.9958 1 0.9916 40 60 1E-5
Worst 5.23E-9 0.9792 0.9861 0.9744 50 20 1E-4

Run 2 Best 4.47E-4 0.9976 1 0.9916 50 60 1E-5
Worst 5.02E-8 0.9652 0.9876 0.9744 50 20 1E-4

Run 3 Best 3.94E-3 1 1 0.9916 20 60 1E-5
Worst 3.92E-5 0.9708 0.9841 0.9744 40 20 1E-4
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Table 5.4: Edema

Loss Accuracy AUC F1 Ner Epochs Batch Size Learning Rate

Run 1 Best 3.87E-3 0.9970 1 0.9916 40 60 1E-6
Worst 2.1E-24 0.9667 0.9785 0.9744 50 20 1E-4

Run 2 Best 3.48E-3 0.9970 0.9998 0.9916 40 60 1E-6
Worst 5.18E-8 0.9723 0.9818 0.9744 50 20 1E-4

Run 3 Best 1.27E-3 0.9951 1 0.9916 50 60 1E-6
Worst 2.12E-8 0.9820 0.9875 0.9744 40 20 1E-4

Table 5.5: Enlarged Cardiomediastinum

Loss Accuracy AUC F1 Ner Epochs Batch Size Learning Rate

Run 1 Best 1.25E-4 0.9944 1 0.9916 50 60 1E-5
Worst 2.93E-6 0.9931 0.9860 0.9744 20 20 1E-4

Run 2 Best 9.38E-5 0.9963 1 0.9916 50 60 1E-5
Worst 2.87E-7 0.9724 0.9877 0.9744 50 20 1E-4

Run 3 Best 8.04E-4 0.9981 1 0.9916 40 60 1E-5
Worst 5.54E-7 0.9750 0.9898 0.9744 40 20 1E-4

Table 5.6: Fracture

Loss Accuracy AUC F1 Ner Epochs Batch Size Learning Rate

Run 1 Best 1.31E-2 1 1 0.9916 50 60 1E-6
Worst 6.99E-6 0.9763 0.9831 0.9744 20 20 1E-4

Run 2 Best 1.49E-3 0.9958 1 0.9916 20 60 1E-5
Worst 3.35E-11 0.9645 0.9831 0.9744 40 20 1E-4

Run 3 Best 9.63E-3 1 1 0.9916 50 60 1E-6
Worst 3.8E-5 0.9863 0.9804 0.9744 40 20 1E-4
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Table 5.7: Lung Lesion

Loss Accuracy AUC F1 Ner Epochs Batch Size Learning Rate

Run 1 Best 5.20E-4 0.9976 1 0.9916 40 60 1E-5
Worst 6.26E-7 0.9667 0.9864 0.9744 50 20 1E-4

Run 2 Best 7.57E-4 1 1 0.9916 40 60 1E-5
Worst 2.09E-8 0.9725 0.9869 0.9744 50 20 1E-4

Run 3 Best 3.14E-6 0.9976 1 0.9916 20 60 1E-4
Worst 7.39E-7 0.9833 0.9909 0.9744 50 20 1E-4

Table 5.8: Lung Opacity

Loss Accuracy AUC F1 Ner Epochs Batch Size Learning Rate

Run 1 Best 3.84E-3 0.9978 1 0.9916 40 60 1E-6
Worst 1.96E-13 0.9647 0.9815 0.9744 50 20 1E-4

Run 2 Best 1.28E-4 0.9938 1 0.9916 20 60 1E-5
Worst 1.7E-11 0.9750 0.9816 0.9744 40 20 1E-4

Run 3 Best 1.87E-3 0.9917 1 0.9873 40 40 1E-6
Worst 1.75E-11 0.9696 0.9828 0.9744 40 20 1E-4

Table 5.9: Pleural Effusion

Loss Accuracy AUC F1 Ner Epochs Batch Size Learning Rate

Run 1 Best 8.99E-4 0.9930 0.9998 0.9873 50 40 1E-6
Worst 2.72E-11 0.9724 0.9814 0.9744 40 20 1E-4

Run 2 Best 2.10E-3 0.9991 1 0.9916 40 60 1E-6
Worst 2.18E-9 0.9746 0.9832 0.9744 40 20 1E-4

Run 3 Best 5.90E-3 0.9965 0.9998 0.9873 20 40 1E-6
Worst 5.67E-9 0.9645 0.9841 0.9744 50 20 1E-4
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Table 5.10: Pleural Other

Loss Accuracy AUC F1 Ner Epochs Batch Size Learning Rate

Run 1 Best 6.70E-3 1 1 0.9916 50 60 1E-5
Worst 0.2416 0.9750 0.9868 0.9664 40 60 1E-6

Run 2 Best 1.39E-3 1 1 0.9916 20 60 1E-4
Worst 0.5920 0.7583 0.8455 0.7647 20 60 1E-6

Run 3 Best 6.15E.4 1 1 0.9916 20 60 1E-4
Worst 0.3145 0.9500 0.9849 0.9412 20 60 1E-6

Table 5.11: Pneumonia

Loss Accuracy AUC F1 Ner Epochs Batch Size Learning Rate

Run 1 Best 1.08E-2 1 1 0.9873 20 40 1E-5
Worst 0.5739 0.8111 0.8930 0.8011 20 60 1E-6

Run 2 Best 7.39 1 1 0.9916 50 60 1E-5
Worst 0.4731 0.8444 0.9317 0.8347 20 60 1E-6

Run 3 Best 6.05E-6 1 1 0.9916 40 60 1E-4
Worst 1.86E-6 0.9850 0.9857 0.9744 40 20 1E-4

Table 5.12: Pneumothorax

Loss Accuracy AUC F1 Ner Epochs Batch Size Learning Rate

Run 1 Best 3.41E-3 0.9994 1 0.9916 40 60 1E-6
Worst 2.21E-12 0.9693 0.9840 0.9744 50 20 1E-4

Run 2 Best 4.93E-3 0.9982 1 0.9916 40 60 1E-6
Worst 2.09E-6 0.9779 0.9864 0.9744 50 20 1E-4

Run 3 Best 1.13E-3 0.9948 0.9991 0.9873 50 40 1E-6
Worst 3.53E-12 0.9639 0.9853 0.9743 40 20 1E-4



Appendix B - Experience 2 Results
This appendix displays the best and worst result of each one of the three runs that were done

for each attribute of each pathology
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Table 5.13: Atelectasis

Loss Accuracy AUC F1 Ner Epochs Batch Size Learning Rate

AP

Run 1 Best 1.84E-2 0.9879 0.9978 0.9881 50 60 1E-5
Worst 0.4472 0.5259 0.5410 0.5181 20 60 1E-6

Run 2 Best 1.93E-2 0.9902 0.9980 0.9887 50 60 1E-5
Worst 0.4536 0.5161 0.5355 0.5065 20 60 1E-6

Run 3 Best 1.35E-2 0.9919 0.9977 0.9899 50 60 1E-6
Worst 0.4484 0.5080 0.5332 0.4984 20 60 1E-6

PA

Run 1 Best 2.70E-3 0.9917 0.9959 0.9916 40 60 1E-4
Worst 0.5034 0.4931 0.4971 0.4752 20 24 1E-6

Run 2 Best 6.22E-4 0.9833 0.9979 0.9916 50 60 1E-4
Worst 0.5246 0.500 0.4648 0.4725 20 20 1E-6

Run 3 Best 1.22E-3 0.9917 0.9979 0.9916 40 60 1E-4
Worst 0.5532 0.4792 0.4508 0.46664 20 60 1E-6

Frontal

Run 1 Best 1.81E-2 0.9863 0.9988 0.9886 50 60 1E-5
Worst 0.4309 0.5274 0.5589 0.5175 20 60 1E-6

Run 2 Best 1.14E-2 0.9902 0.9983 0.9896 50 60 1E-5
Worst 0.4382 0.5289 0.5592 0.5245 20 60 1E-6

Run 3 Best 1.09E-2 0.9905 0.9983 0.9911 50 60 1E-5
Worst 0.4306 0.5357 0.5745 0.5301 20 60 1E-6

Lateral

Run 1 Best 1.98E-3 0.9867 0.9967 0.9916 40 60 1E-4
Worst 0.4961 0.5133 0.5009 0.5042 40 60 1E-6

Run 2 Best 5.01E-4 0.9900 0.9984 0.9916 40 60 1E-4
Worst 0.5046 0.5500 0.5291 0.5256 20 20 1E-6

Run 3 Best 1.57E-3 0.9900 0.9983 0.9916 40 60 1E-4
Worst 0.4486 0.5481 0.5402 0.5270 40 24 1E-6

Female Run 1 Best 1.39E-4 0.9967 0.9973 0.9916 40 60 1E-4
Worst 0.4841 0.5133 0.5261 0.5020 20 60 1E-6

Male

Run 1 Best 2.81E-2 0.9847 0.9986 0.9839 50 60 1E-5
Worst 0.4791 0.5063 0.5247 0.5000 20 60 1E-6

Run 2 Best 2.05E-2 0.9903 0.9995 0.9881 50 60 1E-5
Worst 0.4465 0.5549 0.5816 0.5469 20 60 1E-6

Run 3 Best 2.68E-2 0.9868 0.9980 0.9853 50 60 1E-5
Worst 0.4531 0.5368 0.5620 0.5280 20 60 1E-6
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Table 5.14: Cardiomegaly

Loss Accuracy AUC F1 Ner Epochs Batch Size Learning Rate

AP
Run 1 Best 0.0191 0.9889 0.9997 0.9879 50 60 1E-5

Worst 0.4500 0.5444 0.5715 0.5350 20 60 1E-6

Run 2 Best 0.0241 0.9873 0.9984 0.9857 50 60 1E-5
Worst 0.4862 0.5059 5060 0.4963 20 60 1E-6

Table 5.15: Edema

Loss Accuracy AUC F1 Ner Epochs Batch Size Learning Rate

AP

Run 1 Best 5.93E-3 0.9886 0.9985 0.9896 50 60 1E-5
Worst 0.3733 0.5889 0.6573 0.5880 20 60 1E-6

Run 2 Best 9.98E-3 0.9911 0.9979 0.9902 40 60 1E-5
Worst 0.3720 0.5933 0.6607 0.5910 20 60 1E-6

Run 3 Best 1.5E-2 0.9842 0.9982 0.9872 40 60 1E-5
Worst 0.3665 0.5918 0.6635 0.5885 20 60 1E-6

PA

Run 1 Best 3.95E-2 0.9722 0.9972 0.9645 20 24 1E-4
Worst 0.5559 0.4653 0.4970 0.4539 20 24 1E-6

Run 2 Best 1.02E-4 1 1 0.9916 50 60 1E-4
Worst 0.5225 0.4214 0.4484 0.4103 20 20 1E-6

Run 3 Best 2.08E-3 0.9917 1 0.9916 40 60 1E-4
Worst 0.6407 0.5000 0.4851 0.4958 20 60 1E-6

Frontal
Run 1 Best 4.91E-3 0.9926 0.9980 0.9911 50 60 1E-5

Worst 0.3255 0.6775 0.7508 0.6747 20 60 1E-6

Run 2 Best 2.01E-3 0.9922 0.9977 0.9916 50 60 1E-5
Worst 0.3225 0.6723 0.7608 0.6704 20 60 1E-6
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Table 5.16: Lung Lesion

Loss Accuracy AUC F1 Ner Epochs Batch Size Learning Rate

AP

Run 1 Best 0.0297 0.9611 0.9978 0.9630 50 20 1E-5
Worst 0.4987 0.4556 0.4574 0.4454 40 24 1E-6

Run 2 Best 2.15E-4 0.9944 0.9973 0.9916 50 60 1E-4
Worst 0.5199 0.4583 0.4450 0.4312 20 24 1E-6

Run 3 Best 0.0268 0.9667 0.9981 0.9715 50 20 1E-5
Worst 0.5192 0.4944 0.4857 0.4738 20 24 1E-6

PA

Run 1 Best 0.0243 0.9889 0.9938 0.9916 50 60 1E-4
Worst 0.5060 0.5056 0.5192 0.4930 50 60 1E-6

Run 2 Best 4.38E-3 0.9944 0.9972 0.9916 50 60 1E-4
Worst 0.5520 0.4611 0.4274 0.4482 50 60 1E-6

Run 3 Best 4.52E-3 1 0.9972 0.9916 50 60 1E-4
Worst 0.4749 0.4630 0.4753 0.4397 50 24 1E-6

Frontal

Run 1 Best 0.0136 0.9732 0.9959 0.9725 50 20 1E-5
Worst 0.5047 0.4833 0.4697 0.4762 40 60 1E-6

Run 2 Best 0.0189 0.9767 0.9957 0.9770 50 24 1E-5
Worst 0.5100 0.5133 0.5092 0.5025 20 60 1E-6

Run 3 Best 8.47E-5 0.9900 0.9959 0.9916 50 60 1E-4
Worst 0.4687 0.5100 0.5086 0.4906 20 20 1E-6

Lateral

Run 1 Best 1.64E-3 0.9889 1 0.9916 50 60 1E-4
Worst 0.6960 0.3722 0.3670 0.3641 20 60 1E-6

Run 2 Best 0.0125 0.9778 0.9991 0.9860 40 60 1E-4
Worst 0.5417 0.4583 0.4350 0.4309 40 24 1E-6

Run 3 Best 3.23E-3 0.9944 1 0.9916 50 60 1E-4
Worst 0.5241 0.5111 0.4835 0.4986 50 60 1E-6

Female

Run 1 Best 5.29E-4 0.9967 0.9967 0.9916 40 60 1E-4
Worst 0.4929 0.4900 0.4989 0.4718 20 20 1E-6

Run 2 Best 1.10E-3 0.9967 0.9951 0.9916 40 60 1E-4
Worst 0.5265 0.4967 0.4530 0.4874 50 60 1E-6

Run 3 Best 0.0503 0.9600 0.9953 0.9641 50 20 1E-5
Worst 0.5331 0.4872 0.4794 0.4550 20 24 1E-6

Male

Run 1 Best 2.29E-3 0.9905 0.9976 0.9916 40 60 1E-4
Worst 0.5367 0.4762 0.4762 0.4682 20 60 1E-6

Run 2 Best 8.89E-4 0.9976 0.9976 0.9916 40 60 1E-4
Worst 0.5169 0.4714 0.4691 0.4610 20 60 1E-6

Run 3 Best 1.10E-3 0.9881 0.9977 0.9916 40 60 1E-4
Worst 0.4883 0.4772 0.4638 0.4476 20 20 1E-6
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Table 5.17: Pleural Other

Loss Accuracy AUC F1 Ner Epochs Batch Size Learning Rate

AP

Run 1 Best 5.57E-3 1 1 0.9916 50 60 1E-4
Worst 0.5973 0.3333 0.2963 0.3077 20 20 1E-6

Run 2 Best 6.09E-2 0.9833 1 0.9916 40 60 1E-4
Worst 0.5489 0.4583 0.4703 0.4397 20 24 1E-6

Run 3 Best 0.0105 0.9833 1 0.9916 50 60 1E-4
Worst 0.5615 0.500 0.4189 0.4872 40 20 1E-6

PA

Run 1 Best 1.61E-4 0.9900 0.9857 0.9744 40 20 1E-4
Worst 0.6981 0.4833 0.4650 0.4874 20 60 1E-6

Run 2 Best 4.08E-3 0.9800 0.9990 0.9744 40 20 1E-4
Worst 0.6861 0.5000 0.4161 0.4874 20 60 1E-6

Run 3 Best 4.32E-4 0.9800 0.9952 0.9744 50 20 1E-4
Worst 0.5755 0.4600 0.4450 0.4308 20 20 1E-6

Frontal

Run 1 Best 1.09E-3 1 0.9973 0.9916 50 60 1E-4
Worst 0.5513 0.4667 0.4750 0.4594 40 60 1E-6

Run 2 Best 3.48E-3 0.9833 1 0.9916 50 60 1E-4
Worst 0.5226 0.5179 0.5094 0.4985 20 24 1E-6

Run 3 Best 5.42E-4 0.9889 1 0.9916 40 60 1E-4
Worst 0.5723 0.4611 0.4055 0.4387 20 20 1E-6

Lateral

Run 1 Best 5.79E-3 0.9792 0.9946 0.9787 40 24 1E-4
Worst 0.5923 0.4500 0.4276 0.4370 20 60 1E-5

Run 2 Best 1.28E-3 1 0.9881 0.9744 50 20 1E-4
Worst 0.5903 0.4500 4475 0.4103 50 20 1E-6

Run 3 Best 1.67E-4 0.9700 1 0.9744 50 20 1E-4
Worst 0.5750 0.4479 0.3812 0.4149 40 24 1E-6

Female

Run 1 Best 0.0202 0.9833 0.9992 0.9916 50 60 1E-4
Worst 0.5932 0.5000 0.4875 0.5042 20 60 1E-6

Run 2 Best 0.0118 1 1 0.9916 50 60 1E-4
Worst 0.8334 0.4167 0.4310 0.4202 40 60 1E-6

Run 3 Best 2.07E-4 0.9688 0.9950 0.9787 50 24 1E-4
Worst 0.5455 0.4792 0.4393 0.4574 20 24 1E-6

Male

Run 1 Best 1.67E-3 0.9944 0.9973 0.9916 40 60 1E-4
Worst 0.4768 0.4944 0.5035 0.4786 50 20 1E-6

Run 2 Best 8.95E-4 0.9833 0.9973 0.9916 40 60 1E-4
Worst 0.5441 0.5056 0.4828 0.4843 20 20 1E-6

Run 3 Best 2.63E-3 0.9833 0.9973 0.9916 40 60 1E-4
Worst 0.5014 0.4889 0.5090 0.4672 40 20 1E-6
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Table 5.18: Pneumonia

Loss Accuracy AUC F1 Ner Epochs Batch Size Learning Rate

AP

Run 1 Best 2.99E-4 0.9833 1 0.9916 50 60 1E-4
Worst 0.5036 0.4931 0.5165 0.4752 50 24 1E-6

Run 2 Best 5.76E-3 1 0.9959 0.9916 50 60 1E-4
Worst 0.5145 0.4750 0.4517 0.4706 40 60 1E-6

Run 3 Best 3.92E-3 0.9833 0.9999 0.9916 40 60 1E-4
Worst 0.5206 0.5556 0.5271 0.5319 20 24 1E-6

PA

Run 1 Best 8.27E-4 1 1 0.9916 50 60 1E-4
Worst 0.5704 0.4500 0.4635 0.4396 20 20 1E-6

Run 2 Best 0.0260 0.9917 0.9947 0.9916 40 60 1E-4
Worst 0.5246 0.5000 0.4658 0.4689 20 20 1E-6

Run 3 Best 0.0135 1 0.9957 0.9916 40 60 1E-4
Worst 0.5141 0.4583 0.4227 0.4359 40 20 1E-6

Frontal

Run 1 Best 3.08E-4 0.9875 0.9980 0.9916 50 60 1E-4
Worst 0.5357 0.5042 0.4960 0.4958 40 60 1E-6

Run 2 Best 4.05E-4 0.9917 0.9980 0.9916 50 60 1E-4
Worst 0.5580 0.4625 0.4410 0.4496 20 60 1E-6

Run 3 Best 3.88E-4 0.9833 1 0.9916 50 60 1E-4
Worst 0.4883 0.4848 0.4678 0.4603 40 24 1E-6

Lateral

Run 1 Best 1.33E-3 0.9917 1 0.9916 50 60 1E-4
Worst 0.6160 0.4250 0.3986 0.4202 20 60 1E-6

Run 2 Best 9.51E-4 0.9917 1 0.9916 50 60 1E-4
Worst 0.5583 0.4857 0.4556 0.4615 20 20 1E-6

Run 3 Best 2.02E-3 0.9833 1 0.9916 50 60 1E-4
Worst 0.5569 0.500 0.4989 0.4874 40 60 1E-6

Female

Run 1 Best 0.0148 0.9917 0.9952 0.9916 50 60 1E-4
Worst 0.5792 0.4583 0.4452 0.4454 40 60 1E-6

Run 2 Best 5.24E-4 0.9833 0.9973 0.9916 50 60 1E-4
Worst 0.5724 0.4583 0.4716 0.4498 20 24 1E-6

Run 3 Best 0.0167 0.9917 0.9997 0.9916 40 60 1E-4
Worst 0.6188 0.4236 0.4602 0.4113 20 24 1E-6

Male

Run 1 Best 1.27E-3 0.9917 0.9979 0.9916 40 60 1E-4
Worst 0.5000 0.4875 0.4799 0.4638 20 24 1E-6

Run 2 Best 4.05E-3 0.9917 0.9978 0.9916 40 60 1E-4
Worst 0.4815 0.5000 0.4988 0.4766 50 24 1E-6

Run 3 Best 1.54E-3 0.9875 0.9979 0.9916 40 60 1E-4
Worst 0.5401 0.5250 0.4910 0.4979 20 24 1E-6
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