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Abstract — A patient’s ability to recall and retrieve health 
information contributes to a better health management. 
HealthTalks was developed to address these issues by recording a 
summary of a medical appointment, uttered by the physician, 
and transcribing it. For each appointment, the user can also take 
free-text notes. Nowadays, search engines have become a 
ubiquitous part of everyone’s life and are expected on most 
applications. Here, we describe the development of a search 
engine for HealthTalks. The app’s characteristics demand a 
lightweight and offline engine, which requires a specific solution 
rather than an existing library or service. Our approach 
combines SQLite’s Full-Text Search 4 module, which includes n-
gram indexing, with traditional information retrieval techniques 
to rank the documents. We created a test collection with 
summaries of clinical appointments (our documents), 
information needs, search queries, and relevance assessments for 
an initial search engine evaluation. Using this test collection, we 
assessed performance using NDCG@10, the first rank position of 
a totally relevant result, and query latency. Results are 
promising, with an average NDCG of 0.97. The median rank 
position of the first relevant result varies between 1.9 and 1.95, 
depending on the use of 4-gram character tokenization, an aspect 
that did not significantly affect the results. We expect this work 
to be useful for future developments of full-text search engines in 
mobile environments.  

Keywords – mobile computing; lightweight search engine; 
health information. 

I.  INTRODUCTION 
Search is a regular asset nowadays in several environments, 

and mobile apps are no exception, given their ubiquity [1]. 
HealthTalks [2] is a mHealth app that aims at increasing the 
patients’ health condition by instigating in them a more active 
self-care. Using this app, patients can ask their physicians to 
dictate a summary of an appointment and permission to record 
it. The app will record this audio and automatically transcribe it 
to text in a favorable scenario. This transcription is later 
associated with more information about the medical concepts 
therein. These functionalities will allow patients to recall or 
retrieve information that can be helpful to a better 
understanding of medical information and better management 
of personal health information. Users may use the app for 
themselves or for someone they take care of. 

Although not mandatory, in HealthTalks, medical 
appointments can therefore be associated with a recording and 
respective transcription. Moreover, the app relates medical 

appointments with the physician’s name and specialty, the 
health establishment where the appointment happened, the 
date, and other parameters; those variables are meant to make 
an appointment easier to identify and locate. The user may also 
associate free-text notes, that is, notes without any constraint of 
format, to medical appointments. As the information available 
in the app grows over time, a search engine may be helpful to 
find information related to past appointments, especially 
regarding the free-text fields that the interface cannot display 
systematically. 

HealthTalks’ first search implementation was a simple 
query to the database with the CONTAINS operator. While this 
data retrieval implementation may be sufficient in situations 
where unstructured data is scarce, this type of data will grow 
with more frequent use of the app. Given this perspective, we 
decided to develop a full-text search engine in HealthTalks. 
Some of the benefits of a full-text search engine include 
retrieving results that do not explicitly contain the search terms 
but are related to the search query and ranking these results 
according to their relevance to the information need. Compared 
with a data retrieval approach, we also expect an increase in 
performance in searches done over big blocks of free text. 

Given the sensitive nature of the data, HealthTalks stores 
all its data only on the device for privacy reasons. For the same 
reasons, the search engine works completely offline with a 
local specific index that exists in, and only in, the app data 
directory. The search engine's offline nature also minimizes 
data usage on mobile devices. Another important aspect is to 
keep the application as lightweight as possible to accommodate 
a larger spectrum of mobile devices. In addition, although the 
search engine was implemented for Android, to be compatible 
with future implementations of HealthTalks in other operating 
systems, our approach is independent of the operating system. 
Given the specific domain of the app, both documents and 
queries will probably contain medical terminology. We have, 
therefore, introduced medical-specific features to our search 
engine, namely, query expansion using specialized medical 
synonyms and medical acronyms interpreters. We have also 
considered abbreviated and full formats of dates and 4-gram 
character tokenization on the users’ queries.  

Section II presents a brief state of the art about using search 
tools in mobile environments. Afterward, we describe our 
requirements for the search engine in Section III and its 
development in Section IV. In Section V, we report the results 



of a preliminary evaluation of the search engine. Finally, in 
Section VI, we conclude and present lines of future work. 

II. SEARCH TOOLS FOR MOBILE ENVIRONMENTS 
When it comes to open-source search engines, there are 

several options to choose from [3]. Given the offline 
requirement of our search engine, we only describe 
implementations that do not require a server-side module.  

Lunr 1  is an open-source search engine. It is built in 
JavaScript, is small, and can be used either on the client or 
server-side of web applications. ElasticLunr2 is based on Lunr 
and extends it to provide Query-Time boosting and field 
search. Lucene3 is a Java written library. It features ranked 
search, proximity queries, wild card queries, and indexing. Due 
to its requirements, any information stored in a database by the 
app would have to be duplicated. 

If the app uses a database, an alternative would be, if 
available, to use the full-text search capabilities of the database. 
These capabilities may change between different database 
systems, but we focus on this system given the popularity of 
SQLite in the mobile environment. SQLite is also the database 
used in HealthTalks. 

SQLite has 3 non-obsolete full-text search modules: FTS34, 
FTS44, and FTS55. These modules build an inverted index of 
terms from the inserted documents into a user-defined virtual 
table. FTS3/4 provide auxiliary functions such as snippet, 
offsets, and matchinfo. These functions are SQL scalar 
functions useful for full-text search. The first two allow the 
identification of queried terms in the retrieved documents. The 
matchinfo function provides metrics useful for relevance 
ranking. FTS5 has no matchinfo or offsets functions, and its 
snippet function is not as fully-featured as in FTS3/4. 
However, FTS5 has a built-in bm25 ranking function and has 
an API that allows the creation of custom auxiliary functions. 

The three FTS modules allow the use of both pre-built and 
custom tokenizers, including n-gram tokenizers that support 
substring matching instead of the usual token matching. N-
gram indexing helps counteract misspellings [12] and searches 
for similar words to those given in the query [11]. For example, 
the words indicator, indicative, and indication share the 
common 7-gram indicat.  

Regarding scientific literature, we found no articles 
describing the implementation of full-text search engines in the 
context of mobile applications. 

III. SEARCH ENGINE REQUIREMENTS 
Given the context of the HealthTalks, already described in 

Section I, our full-text search engine has to have the following 
characteristics:  

 
1 https://lunrjs.com/ 
2 http://elasticlunr.com/ 
3 https://lucene.apache.org/core/ 
4 https://www.sqlite.org/fts3.html 
5 https://www.sqlite.org/fts5.html 

• Offline – Work with a local specific index that exists 
in, and only in, the app data directory. 

• Lightweight – Be as light as possible to be compatible 
with a more extensive range of mobile hardware 
devices. 

• Interoperable – The implemented approach has to be 
compatible with operating systems other than Android. 

• Medical-specific – Given the specificities of the 
terminology of the documents, the search engine 
should expand queries with medical synonyms and 
acronyms. 

• Usable – The interface should be intuitive and 
straightforward for people with reduced technological 
skills. 

IV. SEARCH ENGINE DEVELOPMENT 
Given that the search engine should be as light as possible, 

that HealthTalks already uses SQLite, and that SQLite works 
locally, we decided to explore the full-text search capabilities 
of this database system. This way, no other system is required. 
We chose the FTS4 module for the availability of the 
matchinfo function, useful for the ranking stage. A summary of 
our implementation can be seen in Fig. 1. The code is available 
on an online repository6. 

In our context, a document is the concatenation of all the 
columns we define in our virtual table. The different columns 
are the doctor’s name, the location of the appointment, date, 
transcript, and associated notes. By default, the column 
containing the concatenation of all the columns has the same 
name as the virtual table. We query this column when we want 
to use the FTS4 index. The documents are user-specific and 
stored locally on their mobile device.  

We chose the ‘unicode61’ tokenizer of FTS4, which 
integrates the removal of diacritics in the process. This 
tokenizer allowed us to handle regular diacritics in some non-
English languages. Although occasionally, words may be 
distinguished by their accents, as users often enter queries 
without diacritics, we decided to equate all words to a form 
without diacritics. This process is applied to the documents 
when they enter the database. 

A. Query processing 
After receiving a query, we tokenize, process it, and 

perform a logical disjunction (‘OR’) search with every query 
term at the end of this stage. This way, we retrieve any 
document similar to the query’s terms, regardless of term order. 
Query tokenization is done using the same tokenizer we used 
for documents. Query processing is divided into three stages: 
date processing, query expansion, and 4-gram pseudo 
stemming. We detail these stages in the following subsections. 

1) Date Processing 
An essential feature within the context of HealthTalks is the 

ability to handle queries with date and time [4–7] properly.  

 
6 https://github.com/david-azevedo/Android-FTS-Offline 



 
Figure 1.  Search engine architecture 

Given that appointments occur in specific periods, notes are 
created in different periods and, in this context, we are likely to 
have the date mentioned in the summary and notes. 

Date-related data might be associated with different 
representations, such as “2022-01-01”, “January 6, 2022” or 
“Jan. 6, 2022”. Moreover, besides specific dates (e.g., a 
particular day of a year, a specific month of a year, or a 
particular year), temporal data may also include mentions of a 
single month or a weekday as in “… the appointment of June 
…” or “…last Monday…”.  

We devised a specific representation format for dates in 
documents and queries to accommodate different 
representation formats and commonplace descriptors of dates, 
such as “June”. We have considered using an international 
standard such as ISO 8601 for this. Still, the need to 
contemplate parts of dates possibly associated with several 
periods (e.g., “June”) pushed us away from this option. 

We used regular expressions to detect dates, namely, the 
day, month, year, and day of the week, considering both 
abbreviated and full formats. We concatenate the first letter of 
the variable’s name with the respective shortened value to 
represent the detected dates. For example, the date “1st of 
January 2022” or “01/01/2022” would result in the string “d1 
mJan y2022 wSat”. When new information is inserted into our 
database, we detect dates and store them in the format above. 
We do the same during query processing. With this, it is 
possible to match documents and queries having dates 

represented in different formats and to consider partial matches 
of a particular date, ranking the results by similarity. 

2) Query expansion  
Medical terms may be hard to retain for laypeople. Given 

the specific domain of the app, both documents and queries 
will probably contain medical terminology. We have, therefore, 
introduced medical-specific features to our search engine, 
namely, query expansion using specialized medical synonyms 
and medical acronyms interpreters. 

We used the Consumer Health Vocabulary (CHV) of the 
Unified Medical Language System (UMLS) Metathesaurus [8] 
to build a set of pairs containing a given medical term and the 
corresponding preferred layperson term, including acronyms 
and abbreviations. When a user performs a query, the system 
first checks the synonym database to find a correspondence 
(either for a medical or layman’s term). If a match occurs, we 
expand the query with the appropriate synonym. If the user 
introduces “stroke”, we expand the query to include the 
medical term “cerebrovascular accident” and the “CVA” 
abbreviation.  

3) N-gram pseudo stemming 
Stemming reduces “inflectional forms and sometimes 

derivationally related forms of a word to a common base form” 
[9]. There are many stemming algorithms [10], with Porter’s 
stemming algorithm being the most known and used.  

 



 
Figure 2.  Mockups for the new search engine. From left to right: the user opens the list of appointments; then they search for the term ”Mary” and the list of 

appointments updates to only include appointments related to that search; and lastly the user clicks on the appointment they were looking for to see.  

 

The downside of stemming algorithms is that they are 
language-specific; on the other hand, 4-gram tokenization has 
comparable performance to language-specific stemming 
algorithms in European languages, sometimes even surpassing 
them [11]. Based on these results, we implemented 4-gram 
character tokenization [12] on each token. 

B. Ranking 
Predicting situations where several results match the given 

query, we decided to rank the results using TF-IDF (Term 
Frequency - Inverse Document Frequency). The values are 
calculated for each term-document pair. For the inverse 
document frequency (IDF), we query the virtual table for the 
total number of documents (N) and the document frequency 
(DF) for each term. To compute the term frequency (TF), we 
use the matchinfo function of FTS4. This function returns a 
blob array with (1) the number of terms in the query, (2) the 
number of columns we have defined in the virtual table, and (3) 
the frequency of each query term in each document. This 
information allows us to calculate the TF-IDF values for all 
term-document pairs in our result. We store the results in arrays 
that contain the values of every term for each document. This 
data structure is then used to compute the cosine similarity [13] 
between each document and the query. 

C. User interface 
When developing a search interface for a solution that 

people with reduced technology skills might use, it is essential 
to use a familiar and straightforward interface. That was 
something we took into account when developing HealthTalks. 
Regarding search, we also aimed to make it seamless. Users are 
accustomed to more straightforward solutions such as those 
used in the major web search engines, which do not need any 

input besides the search terms to retrieve pertinent information. 
Hence, we decided to simplify the search interface since a 
more advanced search engine would permit less input from the 
user without compromising the search results. We only ask for 
the search terms; when the user writes them, we list the 
relevant results displayed in order of decreasing relevance. Fig. 
2 shows the mockups for this user journey. 

V. PRELIMINARY EVALUATION  
To evaluate the usefulness of our search engine 

implementation, we created a mock database with 105 
appointment summaries with date, physician, hospital, and 
transcription. These summaries always include a diagnosis or 
the results of an exam. Often, they included prescribed 
medication or recommended therapy.  

Although this number of documents may seem relatively 
low, especially compared to the usual collections in 
information retrieval scenarios, it is probably more extensive 
than the number of appointments a regular user will have. 
Based on these summaries, we created seven information needs 
based on the work of Borlund [14], ensuring the realism and 
control of the experiment. These information needs are 
presented in Table I. We assessed the relevance of every 
appointment summary on a 0 (not relevant) to 2 (totally 
relevant) scale for each information need.  

We then asked 13 volunteers to make queries, available in 
Table I, for each information need. Their ages ranged from 19 
to 62 years old (average 34); 8 were female and four were 
male; 69% (n=9) had a Master’s degree, 2 had Bachelor’s 
degrees, one had completed up to the 12th grade, and another 
the 9th grade. They had no prior access to the database we 
created.  



TABLE I.  INFORMATION NEEDS AND QUERIES SEPARATED BY SEMICOLONS. 

IN  Information Need Queries 

IN1 

You have had myocardial problems for a few years. Last June, you 
went to an appointment at Cliria where the doctor prescribed benuron 
and suggested a specific treatment. Now you will have a cardiology 
appointment with another doctor, and you need to tell him the 
benuron dosage and the recommended treatment. 

Benuron+dosage; benuron june 2018; Benuron dose by weight; benuron care; 
Consultation cairia cardiology benuron posology; Benuron dosage and 
recommendations myocardial problem; cliria myocardium; Benuron dosage; 
Cliria, benuron; appointment, cliria, benuron; Benuron cliria myocardium; Cliria 
benuron; benuron cardiomyopathy 

IN2 

Your name is Bruno. Last July, you had an appointment with Dr. 
Rita. You recall the appointment was on a Friday because, on the 
following day, you went on vacation with your family. At that 
appointment, the doctor explained to you, in some detail, the 
differences between neoplasm, tumor, and cancer. Now, out of 
curiosity, you would like to reread that explanation. 

Neoplasm+tumor+cancer; Dr Rita July; Tumor vs Cancer Rita; Difference 
between neoplasm, tumor and cancer; Dr Rita July sixth appointment neoplasm 
tumor cancer; Consultation Bruno Friday differences between diseases; cancer 
Friday; Difference between neoplasm tumor and cancer; July, appointments, Dr. 
Rita; appointment, July, rita; appointment rita cancer; Rita tumor; Dr. Rita tumor, 
cancer 

IN3 

Last summer, you had an appointment with Dr. Odete Orvalho in her 
private office. She analyzed your blood test results and referred you 
to the neurosurgeon Albina Afonso due to a cyst in your brain. You 
need to find that appointment to show it to another doctor and get a 
second opinion. 

Consultation+albina; Dr Odete Orvalho Albina Afonso; brain albina; Blood tests; 
appointment Albina Afonso neurology; Consultation dr Odete Orvalho cyst brain; 
brain analyses; Consultation Dr Odete Carvalho; Consultation, Dr Odete; 
appointment, odete; blood brain analysis; Odete Carvalho; Dr Odete orvalho 

IN4 

In June, you went with your son to an appointment with Dr. Roberto 
Pintassilgo at Hospital da Trofa. He was diagnosed with a disease 
whose name he cannot remember, only that it starts with "neuro". 
You want to know the name of that disease. 

Appointment +pintassilgo; Dr Roberto Pintassilgo Hospital da Trofa; Neuro 
pinta; Appointment June, Dr. Roberto; Consultation July child pintassilgo neuro*; 
Appointment June dr Roberto pintassilgo Hospital Trofa; neuro Trofa; 
Appointment dr pintassilgo; Dr. Roberto, neuro; appointment, June, roberto; 
Roberto trofa neuro; Neuro Trofa; Dr Roberto, Trofa, neuro 

IN5 Dr. Fernandes prescribed you amiodarone, and you forgot the dosage. 
You need to find that appointment to remember the dosage. 

Amiodarone+fernandes; Dr Fernandes amiodarone; Amiodarone dosage; 
Amiodarone; Consultation Fernandes amiodarone posology; Dr Fernandes 
posology amiodarone; Fernandes; Amiodarone dosage; Consultation, Dr. 
Fernandes, amiodarone; appointment, fernandes, amiodarone; amiodarone 
Fernandes; Amiodarone Fernandes; Dr Fernando, amiodarone 

IN6 You went to the hospital to see Dr. Pedro because of a bruise, and 
now you want to know what day that appointment was. 

Date+ appointment +Pedro; Dr. Pedro bruise; Pedro date; Consultation with Dr. 
Pedro; Day appointment bruise pedro; Day appointment dr Pedro bruise; hospital 
bruise; Appointment Dr Pedro; Consultation, Dr. Peter, bruise; appointment, 
pedro; hospital bruise pedro; Bruise ecchymosis Pedro; Dr Pedro bruise 

IN7 
After having a CVA, you went to see Dr. Carolina Cardoso on 
August 30th for a check-up. Now you need to know what her 
recommendations were at that appointment. 

Appointment +30th of August; CVA August 30th; Cardoso CVA; August 30; 
August 30 appointment recommendations; CVA recommendations dr Carolina 
Cardoso 08/30; CVA; Dr Carolina appointment; Appointment, Dr. Carolina; 
appointment, carolina; check-up Carolina cva; Carolina Cardoso August 30th; 
Cva, Dr Carolina Cardoso 

 

We submitted the 91 queries to the search engine and 
retrieved, on average, 28.69 results per query.  

To assess the performance of our search engine, we 
computed the Normalized Discounted Cumulative Gain 
(NDCG) [15], the first rank position of a totally relevant result 
with and without 4-gram character tokenization, and the query 
latency. Table II shows the results for these measures, 
aggregated for all the queries.  

TABLE II.  AGGREGATED VALUES FOR EVALUATION METRICS. MEDIAN 
FOR RANK POSITION AND AVERAGE FOR OTHER MEASURES.  

NDCG@10 
First rank position of a totally relevant 

result Query latency 
(ms) with 4-gram without 4-gram 

0.97 1.9 1.95 27.66 

 

The average NDCG@10 is 0.97, close to the ideal 1; only 
six queries in 91 (6.6%) had NDCG@10 values lower than 
0.90. Most of those were in cases where dates were used in 
non-abbreviated ways (e.g., “30th of August”). The 4-gram 
tokenization and TF-IDF ranking are probably causing this. In 
the previous example, they take “August” and match it with 
proper names such as “Augustine”, which, due to their rarity, 
have a higher IDF and appear on top of the results. This 
happens because, even though we normalize dates, we still 

treat them as regular tokens; a possible solution is to consider 
them exclusively as dates. 

We noted the position of the relevant documents for each 
information need in the list of results for the query. The 
average rank position of the first totally relevant result for each 
query is 1.90, which is not the ideal 1.00. However, we still 
consider it an excellent value, mainly considering the average 
number of retrieved results. By removing the 4-gram module, 
that result is slightly worse, going up to 1.95. There were some 
specific cases in which removing it was beneficial, especially 
when the query was small and generic (such as “analysis 
brain”). On the other hand, cases where the user misspelled the 
medication’s name would not have yielded results without the 
4-gram. A paired sample t-test showed no significant 
differences in using 4-gram (p-value = 0.05).  

Regarding the performance of each module, TF-IDF 
computation is the most demanding at an average of 9.05 
milliseconds in a total average of 27.66 milliseconds for the 
time interval between the arrival of the query and the 
generation of an answer, taking, as predicted, noticeably more 
time in longer queries. We believe each module we 
implemented should remain since the time they use is 
negligible.  



VI. CONCLUSIONS AND FUTURE WORK 
We described the implementation of a full-text search 

engine in the context of a mobile app that should be as light as 
possible and work offline. This implementation used SQLite’s 
Full-Text Search 4 module and traditional information retrieval 
techniques, some specialized in the medical domain. 

As the search engine will work offline with each user's 
collection of documents, the collection size will be small. Yet, 
an automatic search mechanism is advantageous even with few 
documents, as manually scanning transcriptions and notes 
associated with dozens of documents is time-consuming. 

We evaluated this search system with a straightforward 
experiment to understand its performance. Results show that 
we can still improve specific areas such as date processing for 
optimal performance. 

We noticed a prevalence in searching for the word “date” 
when their information need involved a date; or “appointment” 
when the goal was to retrieve an appointment. Query 
formulation habits in online search engines probably influence 
this behavior. In future developments of the search system, we 
envision treating these special terms as indicators of what the 
searcher is looking for and perhaps highlight the desired 
information on the results page.  

It would also be interesting to implement the BM25 ranking 
function available in FTS5 and compare it with the one 
implemented in this work. We found that 4-gram tokenization 
has not significantly affected the results. Therefore, we would 
like to compare its use with stemming and lemmatization 
approaches and evaluate their impact on the system's 
performance. 

At the moment, HealthTalks does not suggest words while 
the user is typing, but in the future, we want to suggest words 
based on parameters such as recent searches and terms in the 
index. 

This evaluation was probably more demanding than a real-
world situation would be. We have used more than 100 
documents, a number of documents that not every user will 
have. Moreover, the queries were formulated by people that did 
not have any prior knowledge of the appointments. This setup 
and results give us confidence in the system's good 
performance. Nevertheless, we plan to conduct an additional 
evaluation experiment, including real data and more users, to 
obtain further insights. The existence of real data will allow us, 
for example, to understand better what users are generally 
looking for and how many documents are likely to be indexed 
on average. 
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