
Proposal of a lightweight, offline, full-text search
engine for an mHealth app

Carla Teixeira Lopes
University of Porto / INESC TEC

Porto, Portugal
ctl@fe.up.pt

David Azevedo
University of Porto

Porto, Portugal
davidazevedo1996@gmail.com

João M. Monteiro
INESC TEC

Porto, Portugal
joaomiguelmonteiro@gmail.com

Abstract — A patient’s ability to recall and retrieve health
information contributes to a better health management.
HealthTalks was developed to address these issues by recording a
summary of a medical appointment, uttered by the physician,
and transcribing it. For each appointment, the user can also take
free-text notes. Nowadays, search engines have become a
ubiquitous part of everyone’s life and are expected on most
applications. Here, we describe the development of a search
engine for HealthTalks. The app’s characteristics demand a
lightweight and offline engine, which requires a specific solution
rather than an existing library or service. Our approach
combines SQLite’s Full-Text Search 4 module, which includes n-
gram indexing, with traditional information retrieval techniques
to rank the documents. We created a test collection with
summaries of clinical appointments (our documents),
information needs, search queries, and relevance assessments for
an initial search engine evaluation. Using this test collection, we
assessed performance using NDCG@10, the first rank position of
a totally relevant result, and query latency. Results are
promising, with an average NDCG of 0.97. The median rank
position of the first relevant result varies between 1.9 and 1.95,
depending on the use of 4-gram character tokenization, an aspect
that did not significantly affect the results. We expect this work
to be useful for future developments of full-text search engines in
mobile environments.

Keywords – mobile computing; lightweight search engine;
health information.

I. INTRODUCTION
Search is a regular asset nowadays in several environments,

and mobile apps are no exception, given their ubiquity [1].
HealthTalks [2] is a mHealth app that aims at increasing the
patients’ health condition by instigating in them a more active
self-care. Using this app, patients can ask their physicians to
dictate a summary of an appointment and permission to record
it. The app will record this audio and automatically transcribe it
to text in a favorable scenario. This transcription is later
associated with more information about the medical concepts
therein. These functionalities will allow patients to recall or
retrieve information that can be helpful to a better
understanding of medical information and better management
of personal health information. Users may use the app for
themselves or for someone they take care of.

Although not mandatory, in HealthTalks, medical
appointments can therefore be associated with a recording and
respective transcription. Moreover, the app relates medical

appointments with the physician’s name and specialty, the
health establishment where the appointment happened, the
date, and other parameters; those variables are meant to make
an appointment easier to identify and locate. The user may also
associate free-text notes, that is, notes without any constraint of
format, to medical appointments. As the information available
in the app grows over time, a search engine may be helpful to
find information related to past appointments, especially
regarding the free-text fields that the interface cannot display
systematically.

HealthTalks’ first search implementation was a simple
query to the database with the CONTAINS operator. While this
data retrieval implementation may be sufficient in situations
where unstructured data is scarce, this type of data will grow
with more frequent use of the app. Given this perspective, we
decided to develop a full-text search engine in HealthTalks.
Some of the benefits of a full-text search engine include
retrieving results that do not explicitly contain the search terms
but are related to the search query and ranking these results
according to their relevance to the information need. Compared
with a data retrieval approach, we also expect an increase in
performance in searches done over big blocks of free text.

Given the sensitive nature of the data, HealthTalks stores
all its data only on the device for privacy reasons. For the same
reasons, the search engine works completely offline with a
local specific index that exists in, and only in, the app data
directory. The search engine's offline nature also minimizes
data usage on mobile devices. Another important aspect is to
keep the application as lightweight as possible to accommodate
a larger spectrum of mobile devices. In addition, although the
search engine was implemented for Android, to be compatible
with future implementations of HealthTalks in other operating
systems, our approach is independent of the operating system.
Given the specific domain of the app, both documents and
queries will probably contain medical terminology. We have,
therefore, introduced medical-specific features to our search
engine, namely, query expansion using specialized medical
synonyms and medical acronyms interpreters. We have also
considered abbreviated and full formats of dates and 4-gram
character tokenization on the users’ queries.

Section II presents a brief state of the art about using search
tools in mobile environments. Afterward, we describe our
requirements for the search engine in Section III and its
development in Section IV. In Section V, we report the results

of a preliminary evaluation of the search engine. Finally, in
Section VI, we conclude and present lines of future work.

II. SEARCH TOOLS FOR MOBILE ENVIRONMENTS
When it comes to open-source search engines, there are

several options to choose from [3]. Given the offline
requirement of our search engine, we only describe
implementations that do not require a server-side module.

Lunr 1 is an open-source search engine. It is built in
JavaScript, is small, and can be used either on the client or
server-side of web applications. ElasticLunr2 is based on Lunr
and extends it to provide Query-Time boosting and field
search. Lucene3 is a Java written library. It features ranked
search, proximity queries, wild card queries, and indexing. Due
to its requirements, any information stored in a database by the
app would have to be duplicated.

If the app uses a database, an alternative would be, if
available, to use the full-text search capabilities of the database.
These capabilities may change between different database
systems, but we focus on this system given the popularity of
SQLite in the mobile environment. SQLite is also the database
used in HealthTalks.

SQLite has 3 non-obsolete full-text search modules: FTS34,
FTS44, and FTS55. These modules build an inverted index of
terms from the inserted documents into a user-defined virtual
table. FTS3/4 provide auxiliary functions such as snippet,
offsets, and matchinfo. These functions are SQL scalar
functions useful for full-text search. The first two allow the
identification of queried terms in the retrieved documents. The
matchinfo function provides metrics useful for relevance
ranking. FTS5 has no matchinfo or offsets functions, and its
snippet function is not as fully-featured as in FTS3/4.
However, FTS5 has a built-in bm25 ranking function and has
an API that allows the creation of custom auxiliary functions.

The three FTS modules allow the use of both pre-built and
custom tokenizers, including n-gram tokenizers that support
substring matching instead of the usual token matching. N-
gram indexing helps counteract misspellings [12] and searches
for similar words to those given in the query [11]. For example,
the words indicator, indicative, and indication share the
common 7-gram indicat.

Regarding scientific literature, we found no articles
describing the implementation of full-text search engines in the
context of mobile applications.

III. SEARCH ENGINE REQUIREMENTS
Given the context of the HealthTalks, already described in

Section I, our full-text search engine has to have the following
characteristics:

1 https://lunrjs.com/
2 http://elasticlunr.com/
3 https://lucene.apache.org/core/
4 https://www.sqlite.org/fts3.html
5 https://www.sqlite.org/fts5.html

• Offline – Work with a local specific index that exists
in, and only in, the app data directory.

• Lightweight – Be as light as possible to be compatible
with a more extensive range of mobile hardware
devices.

• Interoperable – The implemented approach has to be
compatible with operating systems other than Android.

• Medical-specific – Given the specificities of the
terminology of the documents, the search engine
should expand queries with medical synonyms and
acronyms.

• Usable – The interface should be intuitive and
straightforward for people with reduced technological
skills.

IV. SEARCH ENGINE DEVELOPMENT
Given that the search engine should be as light as possible,

that HealthTalks already uses SQLite, and that SQLite works
locally, we decided to explore the full-text search capabilities
of this database system. This way, no other system is required.
We chose the FTS4 module for the availability of the
matchinfo function, useful for the ranking stage. A summary of
our implementation can be seen in Fig. 1. The code is available
on an online repository6.

In our context, a document is the concatenation of all the
columns we define in our virtual table. The different columns
are the doctor’s name, the location of the appointment, date,
transcript, and associated notes. By default, the column
containing the concatenation of all the columns has the same
name as the virtual table. We query this column when we want
to use the FTS4 index. The documents are user-specific and
stored locally on their mobile device.

We chose the ‘unicode61’ tokenizer of FTS4, which
integrates the removal of diacritics in the process. This
tokenizer allowed us to handle regular diacritics in some non-
English languages. Although occasionally, words may be
distinguished by their accents, as users often enter queries
without diacritics, we decided to equate all words to a form
without diacritics. This process is applied to the documents
when they enter the database.

A. Query processing
After receiving a query, we tokenize, process it, and

perform a logical disjunction (‘OR’) search with every query
term at the end of this stage. This way, we retrieve any
document similar to the query’s terms, regardless of term order.
Query tokenization is done using the same tokenizer we used
for documents. Query processing is divided into three stages:
date processing, query expansion, and 4-gram pseudo
stemming. We detail these stages in the following subsections.

1) Date Processing
An essential feature within the context of HealthTalks is the

ability to handle queries with date and time [4–7] properly.

6 https://github.com/david-azevedo/Android-FTS-Offline

Figure 1. Search engine architecture

Given that appointments occur in specific periods, notes are
created in different periods and, in this context, we are likely to
have the date mentioned in the summary and notes.

Date-related data might be associated with different
representations, such as “2022-01-01”, “January 6, 2022” or
“Jan. 6, 2022”. Moreover, besides specific dates (e.g., a
particular day of a year, a specific month of a year, or a
particular year), temporal data may also include mentions of a
single month or a weekday as in “… the appointment of June
…” or “…last Monday…”.

We devised a specific representation format for dates in
documents and queries to accommodate different
representation formats and commonplace descriptors of dates,
such as “June”. We have considered using an international
standard such as ISO 8601 for this. Still, the need to
contemplate parts of dates possibly associated with several
periods (e.g., “June”) pushed us away from this option.

We used regular expressions to detect dates, namely, the
day, month, year, and day of the week, considering both
abbreviated and full formats. We concatenate the first letter of
the variable’s name with the respective shortened value to
represent the detected dates. For example, the date “1st of
January 2022” or “01/01/2022” would result in the string “d1
mJan y2022 wSat”. When new information is inserted into our
database, we detect dates and store them in the format above.
We do the same during query processing. With this, it is
possible to match documents and queries having dates

represented in different formats and to consider partial matches
of a particular date, ranking the results by similarity.

2) Query expansion
Medical terms may be hard to retain for laypeople. Given

the specific domain of the app, both documents and queries
will probably contain medical terminology. We have, therefore,
introduced medical-specific features to our search engine,
namely, query expansion using specialized medical synonyms
and medical acronyms interpreters.

We used the Consumer Health Vocabulary (CHV) of the
Unified Medical Language System (UMLS) Metathesaurus [8]
to build a set of pairs containing a given medical term and the
corresponding preferred layperson term, including acronyms
and abbreviations. When a user performs a query, the system
first checks the synonym database to find a correspondence
(either for a medical or layman’s term). If a match occurs, we
expand the query with the appropriate synonym. If the user
introduces “stroke”, we expand the query to include the
medical term “cerebrovascular accident” and the “CVA”
abbreviation.

3) N-gram pseudo stemming
Stemming reduces “inflectional forms and sometimes

derivationally related forms of a word to a common base form”
[9]. There are many stemming algorithms [10], with Porter’s
stemming algorithm being the most known and used.

Figure 2. Mockups for the new search engine. From left to right: the user opens the list of appointments; then they search for the term ”Mary” and the list of

appointments updates to only include appointments related to that search; and lastly the user clicks on the appointment they were looking for to see.

The downside of stemming algorithms is that they are
language-specific; on the other hand, 4-gram tokenization has
comparable performance to language-specific stemming
algorithms in European languages, sometimes even surpassing
them [11]. Based on these results, we implemented 4-gram
character tokenization [12] on each token.

B. Ranking
Predicting situations where several results match the given

query, we decided to rank the results using TF-IDF (Term
Frequency - Inverse Document Frequency). The values are
calculated for each term-document pair. For the inverse
document frequency (IDF), we query the virtual table for the
total number of documents (N) and the document frequency
(DF) for each term. To compute the term frequency (TF), we
use the matchinfo function of FTS4. This function returns a
blob array with (1) the number of terms in the query, (2) the
number of columns we have defined in the virtual table, and (3)
the frequency of each query term in each document. This
information allows us to calculate the TF-IDF values for all
term-document pairs in our result. We store the results in arrays
that contain the values of every term for each document. This
data structure is then used to compute the cosine similarity [13]
between each document and the query.

C. User interface
When developing a search interface for a solution that

people with reduced technology skills might use, it is essential
to use a familiar and straightforward interface. That was
something we took into account when developing HealthTalks.
Regarding search, we also aimed to make it seamless. Users are
accustomed to more straightforward solutions such as those
used in the major web search engines, which do not need any

input besides the search terms to retrieve pertinent information.
Hence, we decided to simplify the search interface since a
more advanced search engine would permit less input from the
user without compromising the search results. We only ask for
the search terms; when the user writes them, we list the
relevant results displayed in order of decreasing relevance. Fig.
2 shows the mockups for this user journey.

V. PRELIMINARY EVALUATION
To evaluate the usefulness of our search engine

implementation, we created a mock database with 105
appointment summaries with date, physician, hospital, and
transcription. These summaries always include a diagnosis or
the results of an exam. Often, they included prescribed
medication or recommended therapy.

Although this number of documents may seem relatively
low, especially compared to the usual collections in
information retrieval scenarios, it is probably more extensive
than the number of appointments a regular user will have.
Based on these summaries, we created seven information needs
based on the work of Borlund [14], ensuring the realism and
control of the experiment. These information needs are
presented in Table I. We assessed the relevance of every
appointment summary on a 0 (not relevant) to 2 (totally
relevant) scale for each information need.

We then asked 13 volunteers to make queries, available in
Table I, for each information need. Their ages ranged from 19
to 62 years old (average 34); 8 were female and four were
male; 69% (n=9) had a Master’s degree, 2 had Bachelor’s
degrees, one had completed up to the 12th grade, and another
the 9th grade. They had no prior access to the database we
created.

TABLE I. INFORMATION NEEDS AND QUERIES SEPARATED BY SEMICOLONS.

IN Information Need Queries

IN1

You have had myocardial problems for a few years. Last June, you
went to an appointment at Cliria where the doctor prescribed benuron
and suggested a specific treatment. Now you will have a cardiology
appointment with another doctor, and you need to tell him the
benuron dosage and the recommended treatment.

Benuron+dosage; benuron june 2018; Benuron dose by weight; benuron care;
Consultation cairia cardiology benuron posology; Benuron dosage and
recommendations myocardial problem; cliria myocardium; Benuron dosage;
Cliria, benuron; appointment, cliria, benuron; Benuron cliria myocardium; Cliria
benuron; benuron cardiomyopathy

IN2

Your name is Bruno. Last July, you had an appointment with Dr.
Rita. You recall the appointment was on a Friday because, on the
following day, you went on vacation with your family. At that
appointment, the doctor explained to you, in some detail, the
differences between neoplasm, tumor, and cancer. Now, out of
curiosity, you would like to reread that explanation.

Neoplasm+tumor+cancer; Dr Rita July; Tumor vs Cancer Rita; Difference
between neoplasm, tumor and cancer; Dr Rita July sixth appointment neoplasm
tumor cancer; Consultation Bruno Friday differences between diseases; cancer
Friday; Difference between neoplasm tumor and cancer; July, appointments, Dr.
Rita; appointment, July, rita; appointment rita cancer; Rita tumor; Dr. Rita tumor,
cancer

IN3

Last summer, you had an appointment with Dr. Odete Orvalho in her
private office. She analyzed your blood test results and referred you
to the neurosurgeon Albina Afonso due to a cyst in your brain. You
need to find that appointment to show it to another doctor and get a
second opinion.

Consultation+albina; Dr Odete Orvalho Albina Afonso; brain albina; Blood tests;
appointment Albina Afonso neurology; Consultation dr Odete Orvalho cyst brain;
brain analyses; Consultation Dr Odete Carvalho; Consultation, Dr Odete;
appointment, odete; blood brain analysis; Odete Carvalho; Dr Odete orvalho

IN4

In June, you went with your son to an appointment with Dr. Roberto
Pintassilgo at Hospital da Trofa. He was diagnosed with a disease
whose name he cannot remember, only that it starts with "neuro".
You want to know the name of that disease.

Appointment +pintassilgo; Dr Roberto Pintassilgo Hospital da Trofa; Neuro
pinta; Appointment June, Dr. Roberto; Consultation July child pintassilgo neuro*;
Appointment June dr Roberto pintassilgo Hospital Trofa; neuro Trofa;
Appointment dr pintassilgo; Dr. Roberto, neuro; appointment, June, roberto;
Roberto trofa neuro; Neuro Trofa; Dr Roberto, Trofa, neuro

IN5 Dr. Fernandes prescribed you amiodarone, and you forgot the dosage.
You need to find that appointment to remember the dosage.

Amiodarone+fernandes; Dr Fernandes amiodarone; Amiodarone dosage;
Amiodarone; Consultation Fernandes amiodarone posology; Dr Fernandes
posology amiodarone; Fernandes; Amiodarone dosage; Consultation, Dr.
Fernandes, amiodarone; appointment, fernandes, amiodarone; amiodarone
Fernandes; Amiodarone Fernandes; Dr Fernando, amiodarone

IN6 You went to the hospital to see Dr. Pedro because of a bruise, and
now you want to know what day that appointment was.

Date+ appointment +Pedro; Dr. Pedro bruise; Pedro date; Consultation with Dr.
Pedro; Day appointment bruise pedro; Day appointment dr Pedro bruise; hospital
bruise; Appointment Dr Pedro; Consultation, Dr. Peter, bruise; appointment,
pedro; hospital bruise pedro; Bruise ecchymosis Pedro; Dr Pedro bruise

IN7
After having a CVA, you went to see Dr. Carolina Cardoso on
August 30th for a check-up. Now you need to know what her
recommendations were at that appointment.

Appointment +30th of August; CVA August 30th; Cardoso CVA; August 30;
August 30 appointment recommendations; CVA recommendations dr Carolina
Cardoso 08/30; CVA; Dr Carolina appointment; Appointment, Dr. Carolina;
appointment, carolina; check-up Carolina cva; Carolina Cardoso August 30th;
Cva, Dr Carolina Cardoso

We submitted the 91 queries to the search engine and
retrieved, on average, 28.69 results per query.

To assess the performance of our search engine, we
computed the Normalized Discounted Cumulative Gain
(NDCG) [15], the first rank position of a totally relevant result
with and without 4-gram character tokenization, and the query
latency. Table II shows the results for these measures,
aggregated for all the queries.

TABLE II. AGGREGATED VALUES FOR EVALUATION METRICS. MEDIAN
FOR RANK POSITION AND AVERAGE FOR OTHER MEASURES.

NDCG@10
First rank position of a totally relevant

result Query latency
(ms) with 4-gram without 4-gram

0.97 1.9 1.95 27.66

The average NDCG@10 is 0.97, close to the ideal 1; only
six queries in 91 (6.6%) had NDCG@10 values lower than
0.90. Most of those were in cases where dates were used in
non-abbreviated ways (e.g., “30th of August”). The 4-gram
tokenization and TF-IDF ranking are probably causing this. In
the previous example, they take “August” and match it with
proper names such as “Augustine”, which, due to their rarity,
have a higher IDF and appear on top of the results. This
happens because, even though we normalize dates, we still

treat them as regular tokens; a possible solution is to consider
them exclusively as dates.

We noted the position of the relevant documents for each
information need in the list of results for the query. The
average rank position of the first totally relevant result for each
query is 1.90, which is not the ideal 1.00. However, we still
consider it an excellent value, mainly considering the average
number of retrieved results. By removing the 4-gram module,
that result is slightly worse, going up to 1.95. There were some
specific cases in which removing it was beneficial, especially
when the query was small and generic (such as “analysis
brain”). On the other hand, cases where the user misspelled the
medication’s name would not have yielded results without the
4-gram. A paired sample t-test showed no significant
differences in using 4-gram (p-value = 0.05).

Regarding the performance of each module, TF-IDF
computation is the most demanding at an average of 9.05
milliseconds in a total average of 27.66 milliseconds for the
time interval between the arrival of the query and the
generation of an answer, taking, as predicted, noticeably more
time in longer queries. We believe each module we
implemented should remain since the time they use is
negligible.

VI. CONCLUSIONS AND FUTURE WORK
We described the implementation of a full-text search

engine in the context of a mobile app that should be as light as
possible and work offline. This implementation used SQLite’s
Full-Text Search 4 module and traditional information retrieval
techniques, some specialized in the medical domain.

As the search engine will work offline with each user's
collection of documents, the collection size will be small. Yet,
an automatic search mechanism is advantageous even with few
documents, as manually scanning transcriptions and notes
associated with dozens of documents is time-consuming.

We evaluated this search system with a straightforward
experiment to understand its performance. Results show that
we can still improve specific areas such as date processing for
optimal performance.

We noticed a prevalence in searching for the word “date”
when their information need involved a date; or “appointment”
when the goal was to retrieve an appointment. Query
formulation habits in online search engines probably influence
this behavior. In future developments of the search system, we
envision treating these special terms as indicators of what the
searcher is looking for and perhaps highlight the desired
information on the results page.

It would also be interesting to implement the BM25 ranking
function available in FTS5 and compare it with the one
implemented in this work. We found that 4-gram tokenization
has not significantly affected the results. Therefore, we would
like to compare its use with stemming and lemmatization
approaches and evaluate their impact on the system's
performance.

At the moment, HealthTalks does not suggest words while
the user is typing, but in the future, we want to suggest words
based on parameters such as recent searches and terms in the
index.

This evaluation was probably more demanding than a real-
world situation would be. We have used more than 100
documents, a number of documents that not every user will
have. Moreover, the queries were formulated by people that did
not have any prior knowledge of the appointments. This setup
and results give us confidence in the system's good
performance. Nevertheless, we plan to conduct an additional
evaluation experiment, including real data and more users, to
obtain further insights. The existence of real data will allow us,
for example, to understand better what users are generally
looking for and how many documents are likely to be indexed
on average.

ACKNOWLEDGMENT
This work was developed under the project “NORTE-01-

0145-FEDER-000016” (NanoSTIMA) that is financed by the
North Portugal Regional Operational Programme
(NORTE2020), under the PORTUGAL 2020 Partnership
Agreement, and through the European Regional Development
Fund (ERDF). This work is also financed by National Funds

through the Portuguese funding agency, FCT - Fundação para a
Ciência e a Tecnologia, within project LA/P/0063/2020.

REFERENCES
[1] Pew Research Center, “Mobile Fact Sheet,” Pew Research Center, Tech.

Rep., 2021. [Online]. Available: http://www.pewinternet.org/fact-sheet/
mobile/

[2] J. M. Monteiro and C. Teixeira Lopes, “HealthTalks - A Mobile App to
Improve Health Communication and Personal Information
Management,” in Proceedings of the 2018 Conference on Human
Information Interaction&Retrieval - CHIIR ’18. New York, New York,
USA: ACM Press, 2018, pp. 329–332.

[3] C. Middleton and R. Baeza-Yates, “A Comparison of Open Source
Search Engines,” 2007. [Online]. Available: http://citeseerx.ist.psu.edu/
viewdoc/summary?doi=10.1.1.119.6955

[4] O. Alonso, J. Strotgen, R. Baeza-Yates, and M. Gertz, “Temporal
information retrieval: Challenges and opportunities,” in WWW2011
Workshop on Linked Data on the Web, Hyderabad, India, March 29,
2011, ser. CEUR Workshop Proceedings, C. Bizer, T. Heath, T.
Berners- Lee, and M. Hausenblas, Eds., vol. 813. CEUR-WS.org, 2011,
pp. 1–8. [Online]. Available: http://ceur-ws.org/Vol-707/TWAW2011-
paper1.pdf

[5] H. Joho, A. Jatowt, and B. Roi, “A survey of temporal web search
experience,” in Proceedings of the 22nd International Conference on
World Wide Web, ser. WWW ’13 Companion. New York, NY, USA:
Association for Computing Machinery, 2013, p. 1101–1108.

[6] N. Kanhabua, R. Blanco, and K. Nørva ̊g, “Temporal information re-
trieval,” Foundations and Trends® in Information Retrieval, vol. 9, no.
2, pp. 91–208, 2015.

[7] D. Lewandowski, “Date-restricted queries in web search engines,”
Online Information Review, vol. 28, no. 6, pp. 420–427, 2021/10/14
2004.

[8] National Library of Medicine, “CHV (Consumer Health Vocabulary) -
Synopsis,” https://www.nlm.nih.gov/research/umls/sourcereleasedocs/
current/CHV/index.html, accessed: 2021-10-15.

[9] C. D. Manning, P. Raghavan, and H. Schutze, Introduction to
information retrieval. Cambridge University Press, 2008. [Online].
Available: https://nlp.stanford.edu/IR-book/

[10] C. Moral, A. de Antonio, R. Imbert, and J. Ramírez, “A survey of
stemming algorithms in information retrieval,” Information Research,
vol. 19, no. 1, 2014. [Online]. Available: http://InformationR.net/ir/ 19-
1/paper605.html

[11] J. Mayfield and P. McNamee, “Single n-gram stemming,” in
Proceedings of the 26th Annual International ACM SIGIR Conference
on Research and Development in Information Retrieval, ser. SIGIR ’03.
New York, NY, USA: Association for Computing Machinery, 2003, p.
415–416.

[12] P. McNamee and J. Mayfield, “Character n-gram tokenization for
european language text retrieval,” Information Retrieval, vol. 7, no. 1,
pp. 73–97, 2004.

[13] J. Zobel and A. Moffat, “Inverted files for text search engines,” ACM
Computing Surveys, vol. 38, no. 2, pp. 6–es, jul 2006.

[14] P. Borlund, “The IIR evaluation model: a framework for evaluation of
interactive information retrieval systems,” Information Research, vol. 8,
no. 3, 2003. [Online]. Available: http://InformationR.net/ir/19-1/
paper605.html

[15] Y. Wang, L. Wang, Y. Li, D. He, and T.-Y. Liu, “A theoretical analysis
of ndcg type ranking measures,” in Proceedings of the 26th Annual
Conference on Learning Theory, ser. Proceedings of Machine Learning
Research, S. Shalev-Shwartz and I. Steinwart, Eds., vol. 30. Princeton,
NJ, USA: PMLR, 12–14 Jun 2013, pp. 25–54. [Online]. Available:
https://proceedings.mlr.press/v30/Wang13.html

