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Abstract
Background: Robotic table tennis systems offer an ideal platform for pushing camera-
based robotic manipulation systems to the limit. The unique challenge arises from the
fast-paced play and the wide variation in spin and speed between strokes. The range
of scenarios under which existing table tennis robots are able to operate is, however,
limited, requiring slow play with low rotational velocity of the ball (spin).

Research Goal: We aim to develop a table tennis robot system with learning capabili-
ties able to handle spin against a human opponent.

Methods: The robot system presented in this thesis consists of six components: ball
position detection, ball spin detection, ball trajectory prediction, stroke parameter sug-
gestion, robot trajectory generation, and robot control.

For ball detection, the camera images pass through a conventional image processing
pipeline. The ball’s 3D positions are determined using iterative triangulation and these
are then used to estimate the current ball state (position and velocity).

We propose three methods for estimating the spin. The first two methods estimate spin
by analyzing the movement of the logo printed on the ball on high-resolution images
using either conventional computer vision or convolutional neural networks. The final
approach involves analyzing the trajectory of the ball using Magnus force fitting. Once
the ball’s position, velocity, and spin are known, the future trajectory is predicted by
forward-solving a physical ball model involving gravitational, drag, and Magnus forces.

With the predicted ball state at hitting time as state input, we train a reinforcement
learning algorithm to suggest the racket state at hitting time (stroke parameter). We use
the Reflexxes library to generate a robot trajectory to achieve the suggested racket state.

Results: Quantitative evaluation showed that all system components achieve results as
good as or better than comparable robots. Regarding the research goal of this thesis, the
robot was able to

• maintain stable counter-hitting rallies of up to 60 balls with a human player,
• return balls with different spin types (topspin and backspin) in the same rally,
• learn multiple table tennis drills in just 200 strokes or fewer.

Conclusion: Our spin detection system and reinforcement learning-based stroke pa-
rameter suggestion introduce significant algorithmic novelties. In contrast to previous
work, our robot succeeds in more difficult spin scenarios and drills.

Key words: Robotic table tennis, robot vision, reinforcement learning

iii





Kurzfassung
Hintergrund: Tischtennis bietet ideale Bedingungen, um Kamera-basierte Roboterar-
me am Limit zu testen. Die besondere Herausforderung liegt in der hohen Geschwindig-
keit des Spiels und in der großen Varianz von Spin und Tempo jedes einzelnen Schlages.
Die bisherige Forschung mit Tischtennisrobotern beschränkt sich jedoch auf einfache
Szenarien, d.h. auf langsame Bälle mit einer geringen Rotation.

Forschungsziel: Es soll ein lernfähiger Tischtennisroboter entwickelt werden, der mit
dem Spin menschlicher Gegner umgehen kann.

Methoden: Das vorgestellte Robotersystem besteht aus sechs Komponenten: Ballposi-
tionserkennung, Ballspinerkennung, Balltrajektorienvorhersage, Schlagparameterbestim-
mung, Robotertrajektorienplanung und Robotersteuerung.

Zuerst wird der Ball mit traditioneller Bildverarbeitung in den Kamerabildern lokali-
siert. Mit iterativer Triangulation wird dann seine 3D-Position berechnet. Aus der Kurve
der Ballpositionen wird die aktuelle Position und Geschwindigkeit des Balles ermittelt.

Für die Spinerkennung werden drei Methoden präsentiert: Die ersten beiden verfolgen
die Bewegung des aufgedruckten Ball-Logos auf hochauflösenden Bildern durch Com-
puter Vision bzw. Convolutional Neural Networks. Im dritten Ansatz wird die Flugbahn
des Balls unter Berücksichtigung der Magnus-Kraft analysiert.

Anhand der Position, der Geschwindigkeit und des Spins des Balls wird die zukünftige
Flugbahn berechnet. Dafür wird die physikalische Diffenzialgleichung mit Gravitations-
kraft, Luftwiderstandskraft und Magnus-Kraft schrittweise gelöst.

Mit dem berechneten Zustand des Balls am Schlagpunkt haben wir einen Reinforcement-
Learning-Algorithmus trainiert, der bestimmt, mit welchen Schlagparametern der Ball zu
treffen ist. Eine passende Robotertrajektorie wird von der Reflexxes-Bibliothek generiert.

Ergebnisse: In der quantitativen Auswertung erzielen die einzelnen Komponenten min-
destens so gute Ergebnisse wie vergleichbare Tischtennisroboter. Im Hinblick auf das
Forschungsziel konnte der Roboter

• ein Konterspiel mit einem Menschen führen, mit bis zu 60 Rückschlägen,
• unterschiedlichen Spin (Über- und Unterschnitt) retournieren
• und mehrere Tischtennisübungen innerhalb von 200 Schlägen erlernen.

Schlußfolgerung: Bedeutende algorithmische Neuerungen führen wir in der Spiner-
kennung und beim Reinforcement Learning von Schlagparametern ein. Dadurch meistert
der Roboter anspruchsvollere Spin- und Übungsszenarien als in vergleichbaren Arbeiten.

Schlagwörter: Tischtennisroboter, Robot Vision, Reinforcement Learning
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Publications
Parts of this thesis have been published elsewhere. This section lists all publications that
form part of this thesis and outlines my contribution to each of them. The publications
themselves can be found in the appendix. This thesis focuses on the papers 1. - 3.

1. Tebbe, J., Gao, Y., Sastre-Rienitz, M., and Zell, A. (2018). A Table Tennis Robot
System using an industrial KUKA Robot Arm. In Pattern Recognition. GCPR
2018, pages 33–45, Stuttgart, Germany

Ball detection and prediction were designed and implemented by me in
part using code from a previous Bachelor thesis by Eduard Hez. Robot
control was implemented by Marc Sastre-Rienietz under my supervi-
sion. Calibration and triangulation algorithms were designed by Yapeng
Gao. The main demonstration experiment was planned, recorded and
evaluated by me. Half of the manuscript was written by me and the rest
by Marc Sastre-Rienietz and Yapeng Gao. The research process was
supervised by Andreas Zell. I consider my contribution to this work to
be 50% of the total work. The manuscript is found in Appendix A.

2. Tebbe, J., Klamt, L., Gao, Y., and Zell, A. (2020). Spin Detection in Robotic
Table Tennis. In 2020 IEEE International Conference on Robotics and Automation
(ICRA), pages 9694–9700, Paris, France

The conventional image processing pipeline was implemented by me,
partly using code from a previous Bachelor thesis by Katharina Emde.
The CNN method was implemented by Lukas Klamt under my su-
pervision. The Magnus force fitting was designed and programmed
by me. The accuracy of all algorithms was analysed by me. The
demonstration on the robot was planned, recorded and evaluated by me.
The manuscript was mainly written by myself with contributions from
Yapeng Gao. The research process was supervised by Andreas Zell. I
consider my contribution to this work to be 70% of the total work. The
manuscript is found in Appendix B.
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3. Tebbe, J., Krauch, L., Gao, Y., and Zell, A. (2021). Sample-efficient Reinforcement
Learning in Robotic Table Tennis. In 2021 IEEE International Conference on
Robotics and Automation (ICRA), pages 4171–4178, Xian, China

The reinforcement learning algorithm was programmed by me based on
a first implementation by Lukas Krauch. All experiments were planned,
recorded and evaluated by me. The manuscript was mainly written by
me with contributions from Yapeng Gao. The research process was
supervised by Andreas Zell. I consider my contribution to this work to
be 70% of the total work. The manuscript is found in Appendix C.

4. Conference-Paper: Gao, Y., Tebbe, J., Krismer, J., and Zell, A. (2019a). Marker-
less racket pose detection and stroke classification based on stereo vision for table
tennis robots. In 2019 Third IEEE International Conference on Robotic Comput-
ing (IRC), pages 189–196
Journal-Paper: Gao, Y., Tebbe, J., and Zell, A. (2019b). Real-time 6d racket
pose estimation and classification for table tennis robots. International Journal of
Robotic Computing, 1(1), 23–39

The detection algorithm was programmed by Yapeng Gao. I helped on
planning and recording the experiments. The manuscript was mainly
written by Yapeng Gao with contributions from me. The part on com-
paring the main method to stroke classification using convolutional pose
machines was done by Julian Krismer and me. The research process
was supervised by Andreas Zell. I consider my contribution to this work
to be 20% of the total work. The manuscript is found in Appendix D.

5. Gao, Y., Tebbe, J., and Zell, A. (2021). Robust stroke recognition via vision andimu
in robotic table tennis. In International Conference on Artificial Neural Networks,
pages 379–390, Cham. Springer, Springer International Publishing

The stroke recognition networks were developed by Yapeng Gao. I
helped on planning and recording the experiments. The manuscript
was mainly written by Yapeng Gao with contributions from me. The
research process was supervised by Andreas Zell. I consider my con-
tribution to this work to be 10% of the total work. The manuscript is
found in Appendix E.
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Chapter 1

Introduction

The first large-scale commercial use of robotics was the use of industrial robotic arms
in manufacturing. Industrial robots of this type require factories and the manufacturing
process to be adapted accordingly. Although these robots are able to perform specific
tasks much faster, more safely, and in particular more cheaply than human workers,
materials and tools have to be perfectly prepared.

Today, robotic arms are being used for increasingly dynamic scenarios in combination
with camera systems for tasks such as picking up unorganized components on a conveyor
belt. In future, humans and machines will need to be able to cooperate. This will require
robots that are no longer strictly separated in safety cages, but are able to operate in
the direct vicinity of human workers. Successful cooperation will require efficient data
processing and rapid reactions.

A broad range of basic research on combining robotic arms and computer vision has
been undertaken. Since in many cases these systems do not have strict real-time require-
ments, the movement can be planned ahead of execution. Practical application such as
manufacturing usually have real-time requirements to some degree. To explore the lim-
its of what such systems are capable of requires more demanding applications. Robotic
table tennis provides a good research model for evaluating capabilities in a complex en-
vironment.

1.1 Robotic Table Tennis

Robotic table tennis presents dynamic robot systems with a number of challenges:

• Rapid reaction time. From the ball hitting the racket to its arrival at the opposite
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Chapter 1 Introduction

side of the table takes between just 0.1 and 1 second. During this interval, the
software has to analyze the trajectory of the ball and plan and execute a robotic
return stroke.

• Noisy measurements. The robot system has to deal with a number of sources of
noise in ball measurements, trajectory prediction, and arm movement.

• Hidden variables. Ball rotation (spin) is difficult to measure but essential to know.
Different types of strokes produce different types of spin. Even for a human player,
accurately estimating spin requires a lot of experience.

• Dynamic motion planning. The accuracy with which it is possible to predict the
ball’s future trajectory is heavily dependant on the number of measurements of the
ball’s position. For a successful stroke, the predicted trajectory needs to be updated
regularly and the movement of the robot arm readjusted each time.

• Human contact. The robot directly reacts to the actions of a human table tennis
player. In the case of cooperative play, consideration needs to be given to the fact
that human strokes constantly vary and that human players may be impatient for
the robot to adapt. In the case of competitive play, anticipating human strokes and
strategies is crucial.

Ever since Billingsley initiated a robot table tennis competition in 1983 (Billingsley,
1983), robotic table tennis has been a popular tool for research in image processing and
robot control. Various types of manipulators have been used. Huang et al. (2011) used
a 5-DOF robot with three linear axes plus a pan-tilt unit. Xiong et al. (2012) developed
two human-like robots, Wu & Kong. Both robots have 30 DOF in total, with two 7-
DOF arms, two 6-DOF legs, and 4-DOF for head and hip. Omron frequently showcases
its Delta robot at trade shows, with a table tennis racket attached after two additional
swivel joints (Asai et al., 2019). Büchler et al. (2020) have designed a completely new
pneumatic robot arm able to attain very high end effector speeds. Particularly popular are
industrial 6 or 7-axis articulated arm robots in which all joints are rotational and which
are relatively similar to the human arm (Muelling et al., 2013; Lin et al., 2020; Gao et al.,
2020). Our system also employs this type of robot, the Agilus KR6 R900 sixx made by
KUKA.

1https://industrial.omron.eu/en/news-events/news/hannover-messe-may-2019
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1.1 Robotic Table Tennis

(a) (b) (c)

(d) (e) (f)

Figure 1.1: A range of robots have been used for robotic table tennis. (a) Linear robot
[Reprinted from Huang et al. (2013), © 2013 IEEE] (b) Humanoid robot Wu [Reprinted
from Zhao et al. (2016), © 2016 IEEE] (c) Omron Delta robot [Taken from press release
video 1, © 2019 Omron] (d) Barrett WAM robot arm [Reprinted from Muelling et al.
(2013), © 2013 SAGE Publications ] (e) Pneumatic robot arm [Reprinted from Büchler
et al. (2020), unpublished] (f) Our KUKA Agilus robot.

A number of different approaches to developing table tennis robots are reported in
the literature, each with a different research focus. Many published papers are based
on simulations. Different methods for finding optimal policies have been tested, includ-
ing reinforcement learning with sparse rewards (Peters et al., 2010), simplified one-step
environments (Zhu et al., 2018) and evolutionary search for a CNN-based policy (Gao
et al., 2020).

Others mimic successful return patterns from human experts. Mahjourian et al. (2018)
captured human strokes in a virtual reality environment and used self-play to optimize
a policy based on these strokes. Muelling et al. (2013) recorded stroke movements by
physically controlling the robot (kinesthetic teaching). Human demonstrations were then
combined using dynamic movement primitives to produce a complete trajectory of the
robot arm.
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Chapter 1 Introduction

Research to date has produced some highly successful methods, though a number of
limitations remain. There is still much work to be done before we will be able to build a
robot able to compete with a human. Current research robots are only able to play table
tennis in very limited scenarios. Most robots fail to take account of the spin of the ball
or do so in theory only, while in demonstrations the spin varies very little.

1.2 Contributions

Our research is focused on removing some of these limitations. To this end, there are a
number of topics which are addressed throughout this thesis. The first is playing against
a human opponent. Previous research has mainly been tested against ball-throwing ma-
chines, which deliver a roughly similar ball every time. In games against humans, testing
has been limited to scenarios where the human player plays slow balls. In our paper

• Tebbe, J., Gao, Y., Sastre-Rienitz, M., and Zell, A. (2018). A Table Tennis Robot
System using an industrial KUKA Robot Arm. In Pattern Recognition. GCPR

2018, pages 33–45, Stuttgart, Germany

we presented a fast-reacting robot system which used the KUKA Agilus KR6 R900
sixx industrial robot arm. Our system achieved greater robustness and responsiveness
than systems described in other research papers. In a fast counter-attack game against a
human player, the robot achieved continuous rallies of up to 50 strokes.

The second topic is spin estimation. In table tennis, the spin of the ball has a number
of effects on the game. Through the Magnus effect it affects the trajectory of the ball
through the air. This is important for hitting the ball accurately, where a few centimetres
are crucial. The spin also exerts an effect during the impact with both table and racket.
The largest effect is exerted during the contact between ball and racket. The ball spins
into the rubber of the racket and bounces out again. A small change in spin generally
results in a large difference in the bounce angle.

Accurate spin detection is therefore essential for successful returns. In our publication

• Tebbe, J., Klamt, L., Gao, Y., and Zell, A. (2020). Spin Detection in Robotic
Table Tennis. In 2020 IEEE International Conference on Robotics and Automation

(ICRA), pages 9694–9700, Paris, France
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1.2 Contributions

we developed and compared three very different methods. In contrast to previous re-
search, we were able to show that our system is sufficiently robust to be able to return
both balls with topspin and balls with backspin from a human player within a single rally.

The majority of existing table tennis robots are unable to undergo further adaptation
after development. The algorithms do not improve during a game or do so only with
great difficulty. Our paper

• Tebbe, J., Krauch, L., Gao, Y., and Zell, A. (2021). Sample-efficient Reinforcement
Learning in Robotic Table Tennis. In 2021 IEEE International Conference on

Robotics and Automation (ICRA), pages 4171–4178, Xian, China

goes one step further. Our objective was, starting from zero with random stroke param-
eters, to teach the robot a successful table tennis stroke. Our method resulted in a very
successful return stroke being learned in multiple scenarios, with an error of less than
30 cm to a landing target on the table tennis table in less than 200 balls against a human
training partner.
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Chapter 2

Research Objective

The goal of the project associated with this thesis was the development of an adaptive
table tennis robot capable of playing real table tennis, in particular capable of dealing
with spin (e.g. topspin vs backspin).

The first step was to develop and build a basic robot system. Required components
were an algorithm to track the table tennis ball, a method for predicting future ball trajec-
tory and an algorithm for controlling the robot. The robotic platform for the project is an
industrial robot arm with six rotary joints, specifically the KUKA Agilus KR6 R900 sixx.
Five cameras were employed to sense the environment, four PointGrey Chameleon3
(1.3MP at 149 fps) and one PointGrey Grasshopper3 (2.3 MP at 163fps).

This is not the first such project, and several table tennis robots have been developed
in a number of countries. Until now, however, these robots (with the exception of one
industrial project by Omron) have been capable of playing against a human in very simple
scenarios only. Balls are served by a ball throwing machine or by a human with very little
spin and speed. In real table tennis, however, the spin of the ball is crucial. Placement
and speed variation also play a significant role. The next steps would therefore involve
developing the basic system to enable it to deal with these more challenging situations.
In particular the robot should be able to play competently against both a ball throwing
machine and a human opponent, against low and high spinning balls, and against variable
speed and placement. The robot should also learn to adapt, i.e. use advanced machine
learning techniques to improve over time.

How do we measure the outcome? Qualitative evaluation, even by non-expert ob-
servers, is simple. Does the robot hit the ball and does the ball come back to the original
side of the table? Is this behavior repeatable, even in different placement, speed and
spin scenarios? The system as a whole can be assessed quantitatively by means of the
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Chapter 2 Research Objective

success rate and, if we specify a target on the table, by calculating the error between
the ball’s landing point and the target. Additionally, it is also possible to analyze each
component separately. Ball detection can be evaluated by measuring the error for known
ball positions (e.g. a ball mounted on the robot’s end effector). Trajectory prediction can
be evaluated by comparing the prediction arrived at using only a part of the trajectory
against the recorded ground truth for a set of recorded trajectories.
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Chapter 3

Algorithmic Updates

This chapter presents algorithmic descriptions that were not included in the published
papers, because they were developed after publication.

3.1 Ball Detection

We start with ball detection. In our paper Tebbe et al. (2018) we used a combination of
frame difference and color thresholding to extract the pixels of the ball. A new version of
this method uses the difference on one channel followed by stricter filtering on contour
shapes in the final binary image. This version delivers faster, more accurate results.

Fig. 3.1 depicts the image processing pipeline for both the version described in the
above paper and the updated version. The approach used in the paper combines frame
difference with color thresholding. The images are converted to HSV color space for
more accurate color thresholding. This conversion takes up a large portion of the execu-
tion time. The newer approach computes the frame difference for the red channel of the
RGB images only. The red channel was chosen because our balls are orange.

The new method significantly shortens average execution time. The time for the whole
image (1280×1024) is reduced from 2.2 ms to 0.9 ms. During play, we restrict the region
of interest, as the expected next position can be deduced from previous ball positions. We
restrict our evaluation to a 160×160 pixel square centered on the expected position. This
reduces the execution time from about 0.8 ms to 0.15 ms.

As can be seen in the bottom row of Fig. 3.1, the new method produces a final binary
image containing larger white regions (blobs), due to the missing color information.
More rigorous filtering of the different blobs in the next step compensates for this appar-
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Chapter 3 Algorithmic Updates

reference frame (HSV) current frame (HSV)

difference color threshold

threshold bitwise AND

reference frame (RGB) current frame (RGB)

red channel difference

threshold

Figure 3.1: Ball detection image pipeline. Note that negative values in the difference
image are capped to zero/black. Left: Paper version. Right: New faster version.

ent shortcoming. We first assess a number of shape features of the blobs. The first step
is to remove contours which are the wrong size. The median color and other compu-
tationally expensive features are then extracted. This enables the most complex part of
the analysis to be restricted to a small portion of the image, specifically those elements
where a red color change of a specific size is detected. This approach speeds up the
process considerably.

The pseudo-code for the new blob filtering method can be found in Algorithm 1. We
first calculate multiple shape properties for a blob B. These calculations are computa-
tionally inexpensive. We use these shape features to remove blob candidates which are
not ball-like. For a feasible blob, we then calculate the median color of the blob both
in the original image and in the difference image. In addition, we calculate the minimal
B-enclosing circle. For a ball, the center of the circle gives an accurate sub-pixel posi-
tion estimate. We then calculate the distance between the center and the last found ball
position. The calculated values (shape descriptions, color value and distance) are ranked

12



3.1 Ball Detection

based on how likely it is that they belong to a detected table tennis ball blob. This ranking
was designed by a process of trial and error, based on ball blobs and misdetected blobs.
With the large range of properties, it is very easy to design a ranking which assigns low
values to shapes associated with something other than the ball, such as the robot. We
then simply choose the blob with the highest ranking. If this ranking exceeds a specific
threshold, the blob circle center is considered to be the ball position.

Algorithm 1 Blob filtering
Input: array B of white area blobs in the difference image
Output: ball pixels position p or not found

1: for each b ∈ B do
2: R← bounding rectangle for b
3: a← (height of R)/(width of R) . aspect ratio of R
4: A← area of b
5: e← A/(area of R) . extend value
6: c← (4πA)/(contour length of b)2 . circularity
7: if a,A,e or c not in predefined range then
8: continue
9: end if

10: d← median color of R in current frame
11: b← median color of R in difference image
12: C← minimal b-enclosing circle
13: p← center of C
14: ∆p← distance to previous ball center or 0
15: r← 0, initialization ranking value
16: for each property value v ∈ {a,A,e,c,d,b,∆p} do
17: r′← rank v for ball-likelihood from [0,1], worst 0 to best 1
18: r← r + r’
19: end for
20: save r and p for b
21: end for
22: b,r, p← best ranked blob with rank r and circle center p
23: if r > minimal acceptable rank then
24: return p
25: else
26: return not found
27: end if

13



Chapter 3 Algorithmic Updates

Ball detection accuracy is described in the Section 4.1. The original algorithm ex-
perienced problems with the moving robot, leading to many misdetection events. The
improvements in filtering have resolved all of these cases, resulting in more robust, more
accurate detection.

3.2 Trajectory Prediction

In Tebbe et al. (2018) we described a pure curve fitting approach. This method is not able
to take into account estimated spin values. The current prediction system instead first
estimates the ball state and then applies a physical force model to predict the trajectory.

The above paper also detailed an alternative approach using an extended Kalman filter.
The accuracy of the Kalman filter is highly sensitive to the initialization and the model
of process. In recent unpublished work, we therefore implemented additional state esti-
mation techniques, firstly fitting the state via polynomials and secondly optimizing the
state using Levenberg-Marquardt.

Here we introduce the model and the prediction method. The physical ball model is
defined by the following differential equation:

a = v̇ = p̈ =−kD ‖v‖v+ kM ω× v−




0
0
g


 . (3.1)

The first acceleration term represents the drag force (air resistance) acting in the opposite
direction to the flight of the ball. The second component includes the Magnus force
generated by the ball’s spin. This force is perpendicular to the axis of rotation and the
direction of flight. With the last term we include gravitation. The coefficients are

kD =−1
2

CDρaAm−1 (3.2)

kM =
1
2

CMρaArm−1. (3.3)

The following constants are used: the mass of the ball m = 2.7g, the gravitational con-
stant g = 9.81m/s2, the drag coefficient CD = 0.4, the density of air ρa = 1.29kg/m3, the
lift coefficient CM = 0.6, the radius of the ball r = 0.02m, and the cross-sectional area of
the ball A = r2π .
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3.2 Trajectory Prediction

Prediction Given estimates of the ball’s position p, velocity v and spin ω , we wish
to predict the ball’s future trajectory. The physical ball model from Eq. (3.1) defines
a second order ordinary differential equation (ODE). To make a prediction for the ball
curve in mid-air, we solve the ODE given an initial ball state. This is called an initial
value problem (IVP). We first reformulate the equation to give:

ṗ = v (3.4)

v̇ = fv(v) =−kD ‖v‖v+ kM ω× v−




0
0
g


 (3.5)

Defining the state as s = [p,v]T , we get a first order ODE:

ṡ =
˙[
p

v

]
=

[
v

fv(v)

]
= fs(s). (3.6)

We can now integrate the differential equation stepwise using an IVP solver. The naive
approach is the Euler method as used in Tebbe et al. (2018). A prediction of one time
step ∆t is

sn+1 = sn +∆t ∗ f (sn) (3.7)

The accumulated error compared to a perfect solution is in the range O(∆t). More ac-
curate solvers, such as classical fourth order Runge Kutta (O(∆t4)) are available. In our
case, this improves accuracy by only 0.1mm, which is much less than the error resulting
from state uncertainty. (See Table 4.6 in the results chapter.)

At the bounce point, the speed v and angular velocity ω are transformed by the fol-
lowing linear model:




vx

vy

vz

ωx

ωy

ωz




:=




αx 0 0 0 βx 0
0 αy 0 βy 0 0
0 0 −αz 0 0 0
0 γx 0 δx 0 0
γy 0 0 0 δy 0
0 0 0 0 0 δz







vx

vy

vz

ωx

ωy

ωz




(3.8)
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A derivation of the model can be found in Nakashima et al. (2010). The values used
in our experiments are αx = αy = 0.75, αz = −0.97, βx = βy = 0.0015, γx = −26,γy =

25,δx = 0.53, δy = 0.6, and δz = 0.9, taken from Zhang et al. (2014).

After the bounce we continue solving the ODE until the ball reaches a point 100 mm
before the end of the table (px = 100). This is the point at which we aim to have the
robot hit the ball.

Next, we will discuss the state estimation. We start by briefly recapping the EKF
introduced in Tebbe et al. (2018) and then explain our new approaches.

EKF The extended Kalman filter (EKF) uses a series of possibly noisy measurements
to iteratively update an estimate of an unknown variable in a non-linear system. We
define the state of the ball as s = [p,v], which is estimated by the EKF. For the algo-
rithm we need the state transition function and an observation model. Using the ODE
model from Eq. (3.6) we define the state transition as f (sn) = ∆t ∗ fs(sn). The obser-
vation h([pn,vn]) = pn is just the projection to the first positional part of the state. The
pseudocode is shown in Algorithm 2.

Algorithm 2 Extended Kalman filter
Input: array B of all ball positions and times T
Input: spin vector s
Input: physical prediction function f (t,(pos,vel),spin)→ (pos,vel)
Output: ball position and velocity at time tn

1: initialize process covariance matrix Q
2: initialize measurement covariance matrix R
3: initialize state vector x
4: initialize state covariance matrix P
5: for each p ∈ B and corresponding t ∈ T do
6: x← f (∆t,x,s)
7: A← jacobian f ′(∆t,x,s)
8: P← APAT +Q
9: H← (I3,03) . concatenation of 3×3 identity and zero matrix

10: K← PH(HPHT +R)−1

11: x← x+K(p−Hx)
12: P← (I−KH)P
13: end for
14: return (p,v) = x
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3.2 Trajectory Prediction

Polynomial State Fitting In this approach a second-degree polynomial is fitted to each
axis of the last 10 ball positions. This is similar to the curve fitting approach in Tebbe
et al. (2018), but instead of using the fitted curve for prediction, the position and velocity
are obtained by evaluating the polynomial function and its derivative at the current time.
The trajectory is then predicted using our physical model. The process is detailed in
Algorithm 3. For large time values, fitting via linear least squares leads to a numerical
error. Normalizing the data to mean 0 and variance 1 fixes this problem. One advantage
over the other approaches is that this approach is more robust and there are no hyperpa-
rameters requiring tuning.

Algorithm 3 Polynomial state fitting
Input: array B of the last n ball positions and times T
Output: ball position and velocity at time tn

1: for each a ∈ {x,y,z} do
2: Ba← a-axis values in B normalized by mean and variance
3: T ′← times points in T normalized by mean and variance
4: Pa← polynomial of degree 2 fitted to Ba with times T
5: Pa← rescaled Pa to remove normalization
6: end for
7: p← (Px(tn),Py(tn),Pz(tn))
8: v← (P′x(tn),P

′
y(tn),P

′
z(tn))

9: return p, v

State Optimization The third method involves using the physical ball model to esti-
mate the past trajectory for a specific position p and velocity v. We want to find p and v

minimizing the error between estimated trajectory and the measured ball positions. An
extremely fast optimization technique is the Levenberg-Marquardt (LM) algorithm. This
is a more robust, regularized variant of the Gauss-Newton method for solving non-linear
least squares problems. In proximity to a minimum it converges with quadratic speed.
Otherwise, it still exhibits linear convergence. LM requires the error function to be in
least squares form. We therefore sum squared errors over all measured positions and
axes:

E(p,v) =
n

∑
i=1
‖pi− f (−ti, p,v,ω))‖2 (3.9)
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Because the input dimension is low (6), the Jacobian matrix of the error function can still
be efficiently calculated numerically by finite differences. The pseudocode is shown in
Algorithm 4.

Algorithm 4 State Optimization
Input: vector B of the last n ball positions and times T
Input: spin vector s
Input: physical prediction function f (t, pos,vel,spin)→ pos
Output: ball position and velocity at time tn

1: p← last ball position bn
2: v← (Bn−Bn−1)/(tn− tn−1)

3: E(p,v)←
n−1

∑
i=1
‖Bi− f (−ti, p,v,s)‖2 . error function

4: p,v← argmin
p,v

E(p,v) . using Levenberg-Marquardt

5: return p, v

A comparison of the three state estimation methods is given in Section 4.3.
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Chapter 4

Results and Discussion

In this section, we evaluate the performance of our table tennis robot quantitatively and
qualitatively. We first examine the individual robot software components. Additionally,
we look at potential next steps to improve upon current limitations. We then assess the
robot system as a whole. Finally, we look at potential next steps to improve upon the
current robot setup.

4.1 Ball Detection

The camera setup uses PointGrey Chameleon3 cameras recording at a frame rate of 150
fps. To achieve real-time ball detection, execution speed is crucial. We therefore keep im-
age processing as simple as possible. First, the difference on the red channel between the
current frame and a previous frame is calculated. The difference image is then converted
into a binary image using thresholding. For each white region on the binary image, the
likelihood that that region corresponds to the ball is evaluated. This evaluation makes use
of the following properties, weighted accordingly: aspect ratio, area, perimeter, accuracy
of the minimum enclosing circle, distance from the previous ball, median color on the
current frame and on the difference image. The center of the most likely shape is treated
as the ball position on the camera image. An iterative triangulation method (Manuscript
1, Section 3.1) is applied to the ball’s pixel positions on the different cameras. This gives
us the coordinates of the 3D position in the coordinate system used by the reference
camera. These coordinates are then converted into the coordinate system defined for the
table tennis table. A sequence of positions can then be used for the trajectory prediction
algorithm. Section 3.1 covers the ball detection in depth.
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Table 4.1: Average results per image on a human-labeled dataset of balls.

Method Precision Recall Ball center Execution time
error (whole image)

rgb difference (paper) 99.5% 86.9% 1.32 px 0.8 ms (2.2 ms)
red diff + filtering (updated) 100% 92.8% 1.53 px 0.15 ms (0.9 ms)

shallow CNN 100.0% 95.6% 0.99 px 3.26 ms

Performance per camera image on a human labeled dataset of approximately 2500 im-
ages is shown in Table 4.1. The ball center error is defined as the distance (in pixels)
between the detected and labeled ball centers. This error is calculated using correctly
detected balls (true positives) only. The precision value is a measure of false positives.
False positives are especially problematic because the scene contains other moving ob-
jects of similar color. The ball is not the only orange object, as the robot, a player’s skin
and the red side of the racket can also appear orange under some lighting conditions.
More rigorous filtering based on shape, size and color features reduces the number of
misdetections during testing to zero. The recall value enables us to determine whether
the algorithm has failed to detect balls. A recall value in excess of 90% shows that most,
but not all, balls are detected.

The performance is in the range of other robots. Ji et al. (2018) showed multiple
methods with up to 90% accuracy and processing times starting from 15 ms. Qiao (2021)
got 89% accuracy. Zhang et al. (2010) detected 97.8% of the balls at 10 ms processing
time. Li et al. (2012) recognized 97-99% of 1000 balls at 15 ms latency. The time
reported did, however, also include image capturing and transmission. Our results are
slightly worse than the last two but we emphasized recording difficult balls in the dataset,
e.g. balls with net or robot contact, to improve our algorithm on these cases.

Failure cases Fig. 4.1 shows four examples of balls that were not detected. If the ball
is next to a moving object, such as the racket in the first example or the robot in the
second, the ball can appear to merge with that object in the binarized difference image.
This results in a shape which is no longer circular. A similar problem arises when the
ball is directly in front of a very bright area of background, such as the lines marking
the edge of the table. In these cases, the color difference between the white line and
the bright orange ball is too small. As a result, the blob in the binary image omits the
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Overlap with
racket

Overlap with
robot

Overlap with
table line

Overlap with
comparison ball

(a) (b) (c) (d)

Figure 4.1: Four examples of false negatives, where the ball was not detected. Images
are brightened to increase visiblity. In the top row, the ball is in front of a moving racket.
In the second row, part of the robot appears to merge with the ball. In the third row, the
ball is passing in front of the white line marking the edge of the table. The third row
shows a very slow ball after hitting the net. (a): the comparison frame ((n− 7)th). (b):
the current frame (nth). (c): subtraction of the red channel (a) from (b). (d): thresholding
of (c).

part of the ball in front of the line, resulting in a non-circular shape. The final example
shows a very slow ball. Because the balls in the current and comparison frames overlap,
only a small part of the ball appears on the binary image. Such very slow balls are rare
in normal play, but they do occur (as in this example) when the ball loses most of its
velocity after hitting the net. One third of our false negatives were due to net contact.
Most of the other cases occurred during the stroke, when the ball was next to a racket,
human hand or the robot.

To access the accuracy of our system, we compared our ball positions to positions
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obtained using the OptiTrack system, for which the company claims sub-millimeter ac-
curacy. The OptiTrack system uses infrared cameras, so we coated some table tennis
balls in infrared-reflective tape. Because these coated balls are a different color, the ball
centers were labeled manually for this evaluation. This experiment is therefore solely
a measure of triangulation accuracy. In addition we mounted a table tennis ball on the
end effector of our robot arm and used the internal calculated position values as ground
truth. In both cases we used a small number of balls to estimate a transformation be-
tween the different coordinate systems used by the different systems. Results are shown
in Table 4.2. The accuracy is comparable to similar setups: 9 mm by Zhang et al. (2015),
5 mm by Yu et al. (2013), and 19.9 mm by Gomez-Gonzalez et al. (2019).

Table 4.2: Average position error between our method and other systems. The first row
shows the error against the OptiTrack system for balls coated in reflective markers. The
second row evaluates against the robot’s internally calculated position for balls mounted
on the robot.

Evaluation 2 cameras 4 cameras
Error vs OptiTrack 6.8 mm 6.8 mm
Error vs robot arm 3.2 mm 2.0 mm

Further work Our ball detection system outputs the precise 3D position of a table
tennis ball and is robust and fast even at high frame rates (150 fps). The current algorithm
is, however, capable of tracking only a single ball. In experiments with our ball throwing
machine, the ball sometimes hits the machine or net and bounces back onto the table
when the next ball has already been played. The moving balls are then in the field of
view of the cameras and the correct ball cannot be identified. In addition, some human
players are impatient and serve the ball even when the previous ball is still on the table.
In these cases it would be helpful to be able to track several balls at the same time.
One impediment to distinguishing multiple balls is the large difference in viewing angle
between the individual cameras, which are mounted in the corners of the playing area.
As a result, a ball may be visible in different regions in each image or may be visible
from one camera only. Triangulation tests can help in deciding which blobs belong to
the same ball.

Combining pixel positions of different balls will in most cases introduce large repro-
jection errors. Tracking the different objects for each camera can help to filter out pos-
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sible candidates beforehand. Finally, we need to choose which ball to use for trajectory
prediction and robot movement. Selecting by velocity may be sufficient, as unimportant
balls will typically be moving much more slowly.

Cameras are another factor, as better models become available over time. In addition to
industrial cameras with higher frame rates or resolutions, new event-based cameras have
recently been developed. Rather than transferring the whole image, these cameras trigger
events reporting changes in brightness per pixel. For our stationary cameras, where the
difference between frames is minimal, event-based cameras could be a useful option.
These cameras would give us many more positions per second. However, the resolution
may be lower, leading to larger measurement errors. Synchronizing these cameras might
prove to be more challenging. For a real-time system it might be necessary to switch from
a standard image processing pipeline, since image operations usually have execution
times in the millisecond range, which would be too slow for frame rates higher than
1000 fps.

4.2 Spin Detection

To estimate the spin of the ball, we tried two fundamentally different approaches (Tebbe
et al., 2020). The first approach uses a Point Grey Grasshopper3 industrial high-speed
camera mounted on the ceiling above the center of the table. By limiting the region of
interest to an area of 400× 1920 px, we were able to achieve a frame rate of 400 fps.
This is fast enough to allow observation of the brand logo on the ball. To estimate ball
rotation from the brand logo position, we developed a conventional image processing
pipeline and a convolutional neural network (CNN) approach.

In the image processing pipeline, we first compare the cropped ball image with a
reference image of a logo-free ball, obtained by computing the pixel-wise median for a
sequence of 50 ball images. By thresholding the difference image, we are able to identify
pixels that have a high probability of forming part of the brand logo. The pixel center
of the logo is calculated by the median point and corrected for half-visible logos using
circular segment fitting. The center of the logo is then projected onto the unit sphere.
The movement of the logo on the unit sphere is used to estimate the rotation of the ball.

An alternative approach involves using a CNN to estimate the orientation of the ball
in each frame. As the network architecture a ResNet-18 (He et al., 2016) was used.
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The network was trained on a dataset of 4656 human-labeled images. Ball orientation
was identified by overlaying the ball image and a 3D ball model using the 3D modeling
program Blender (Blender Online Community, 2016).

Table 4.3 shows an evaluation on the test data of the dataset. All balls were celluloid
balls manufactured by Double Circle, featuring the same circular brand logo (see first
image sequence in Fig. 4.2). The vector angle error is the angle between the estimated
brand center vector and the ground truth on the unit sphere. The geodesic error is based
on the geodesic distance in SO(3) (Huynh, 2009). For two rotations it also includes the
rotation around the center point of the logo, which is difficult to estimate for a circular
brand logo. The execution times are measured on an Intel Core i7-8700K CPU and an
NVIDIA GeForce GTX 1080 Ti GPU, respectively.

Table 4.3: Average results per image on a human-labeled ball orientation dataset.

Method Geodesic angle Vector angle Execution time
error error per image

Image processing pipeline - 5.06◦ 0.3 ms (CPU)
Convolutional neural network 20.14◦ 4.23◦ 3.7 ms (GPU)

A third, fundamentally different, approach analyzes the trajectory of the ball. The
rotation of the ball influences the trajectory via the Magnus effect, named after German
experimental scientist Heinrich Gustav Magnus, who first came up with a physical ex-
planation for the phenomenon. The Magnus force acts perpendicular to the direction of
flight and axis of rotation of the ball. This effect only becomes apparent, however, when
the trajectory is observed over a longer period of time. In addition to the Magnus effect,
our physical ball flight model also models drag and gravity. To estimate the spin, we
first approximate the trajectory using third-degree polynomials to obtain smooth time-
parameterized functions for ball position and velocity. We then use these to calculate the
forces for a sequence of time points. The Magnus force at each time point can be used to
obtain a least squares solution for the spin.

Finally, we performed a comparison between the three spin detection algorithms. No
exact ground truth values for spin are available. We therefore evaluated how well the
algorithms perform in classifying the spin type. We chose three different magnitudes of
three different spin types (topspin, backspin, and sidespin) for a total of 9 settings. For
each setting, we recorded 50 trajectories served by a TTMatic 404 ball throwing machine.
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Table 4.4: Classification accuracy of all the algorithms.

Spin type Background Bg. sub. + CNN Trajectory
subtraction segment fit fitting

Backspin
Low 88.0% 94.0% 96.0% 100.0%
Medium 84.0% 92.0% 94.0% 58.0%
High 70.0% 86.0% 80.0% 60.0%

Sidespin
Low 94.0% 98.0% 98.0% 100.0%
Medium 68.0% 58.0% 74.0% 94.0%
High 60.0% 68.0% 66.0% 100.0%

Topspin
Low 84.0% 90.0% 88.0% 86.0%
Medium 78.0% 86.0% 88.0% 96.0%
High 90.0% 96.0% 96.0% 100.0%

Total 79.6% 85.3% 86.7% 88.2%

Table 4.5: Spin medians for the trajectory fitting. Spin around the x-axis (long table side)
is called corkscrew spin. Rarely, it occurs in serves or in the snake return.

Spin axis x y z
/ type Corkscrew Top/backspin Sidespin

rev/s rev/s rev/s

Backspin
Low 2.6 15.5 -5.0
Medium 3.2 19.8 -2.5
High 3.1 20.1 -2.4

Sidespin
Low 2.6 -4.7 -15.2
Medium 9.2 -7.5 -30.1
High 12.4 -9.0 -31.5

Topspin
Low 0.0 -19.2 -7.2
Medium -0.5 -25.1 -6.9
High -5.5 -28.9 -6.1
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The TTMatic 404 does not permit ball speed and rotation to be varied independently –
balls with more spin also have higher velocities. The spin detection methods are applied
for classification as follows. First, the three-dimensional spin value is determined for
each trajectory. Then, for each of the spin settings, the element-wise median is calculated
from the 50 spin values. Finally, for each trajectory spin value, we evaluated whether the
closest median belongs to the correct setting. Results by spin type are shown in Table 4.4.

Analyzing overall accuracy for each algorithm shows that adding circular segment
fitting improved the background subtraction method. CNN-based and trajectory fitting
are slightly better, but the difference between the three algorithms in terms of overall
accuracy is modest. As detailed below, each of the methods has lower performance for
some spin type. Combining logo observation and Magnus force fitting may improve
accuracy and reduce the number of spin detection errors.

Failure cases The logo-based variants are noticeably less accurate for sidespin. One
reason for this is that the logo often rotates about itself, so that there is little or no de-
tectable change in position (Fig. 4.2 top). The worst case is the opposite, where the
logo is stationary and facing away from the camera (Fig. 4.2 middle). With all other
spin types, there are cases where the brand logo is only just visible (Fig. 4.2 bottom).
In this case determining the axis of rotation is extremely challenging, as the majority of
logo movement is not visible to the camera. In these cases, logo observation is unable
to identify the spin and trajectory analysis is less error-prone. Conversely, Magnus force
fitting is poor at distinguishing between different backspin variants, where the median
values for medium and high backspin were almost identical (Table 4.5). The human eye
is, however, able to discern a difference between the trajectories for these two variants,
as ball velocity differs. A clearer example taken from two balls played by humans is
shown in Fig. 4.3. Visually, the two trajectories are similar before the bounce, as shown
by the fact that the topspin values obtained using trajectory fitting are very similar. There
is, however, a large difference in trajectory after the bounce, showing that the balls have
different spin.

Further work Estimates of spin made using the trajectory method depend on the num-
ber of ball positions available and the accuracy of the curvature information. The more
ball positions are available and the more accurate the curvature information, the better
the spin estimate. The accuracy, especially for the early estimates, could be improved by
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Figure 4.2: Sequences of ball images in which the brand logo rotates about itself (top),
is not visible at all (middle) or is barely visible (bottom).

Figure 4.3: Trajectory curves viewed from the side for a ball with heavy topspin and
with nearly no spin. Note that both balls have very similar movement along the axis, not
shown in the plot.
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using faster cameras, as suggested in the section on future work on ball detection. An-
other idea would be to start with a heuristic spin value. Spin types usually correlate with
some other features of the ball trajectory such as initial height and velocity. A machine
learning model trained on these features could generate a rough estimate of spin. This
spin value could then be used to improve early trajectory predictions.

4.3 Trajectory Prediction

Trajectory prediction is performed in two phases. In the first phase, all measured 3D ball
positions are used to estimate the current ball state (position, velocity and spin). The
spin value is determined by the spin detection. We implemented three different position
and velocity estimation algorithms. The first fits a parabola for each coordinate axis to
the last 10 balls. Position and velocity are determined by evaluating and deriving the
parabolic function at the most recent time point. The second algorithm iteratively feeds
all measured balls positions into an extended Kalman filter (EKF). The state transition
of the EKF is based on the physical ball model. The third algorithm estimates the state
through optimization. The physical ball model is used to calculate state-dependend tra-
jectories. The objective of optimization is to minimise the error between the calculated
and measured trajectories. The Levenberg-Marquardt algorithm is applied to find the
position and velocity with minimal error.

In the second phase, the estimated ball state is used to predict the ball’s future tra-
jectory. This is achieved by forward-solving the ordinary differential equation for the
physical ball model. On hitting the table (pz < 0), the ball state is modified using a linear
bounce model. When the predicted x-position of the ball (along the long side of the table)
exceeds a set x-value (10 cm from the end of the table), the iterative process is stopped,
as this is the position at which the robot will hit the ball. The details are presented in
Section 3.2

To evaluate the accuracy of the three state-estimation algorithms, we used the spin de-
tection dataset described above. This dataset contains three spin magnitudes for topspin,
backspin and sidespin. We recorded 50 balls for each of the nine combinations of spin
type and magnitude served by a TTmatic 404 ball-throwing machine. All of the ball
positions up to the point at which the ball arrives in the middle of the table are fed into
the algorithms. The algorithms then predict the point at which the ball will reach the
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Table 4.6: Hitting point prediction error for all three state estimation algorithms. The
positional error (in mm) is denoted by pos and the time error in ms by t.

Spin type Polyn. state fit Optimization EKF
pos t pos t pos t

Topspin
Low 46.2 21.3 39.4 25.0 15.0 30.8
Medium 33.7 13.7 23.2 15.7 31.1 22.7
High 46.2 7.2 22.6 10.0 39.0 17.6

Backspin
Low 72.6 30.8 61.2 25.7 91.6 15.2
Medium 42.3 18.4 29.0 11.3 19.8 21.1
High 95.9 11.1 85.5 13.4 98.8 21.9

Sidespin
Low 32.5 18.6 23.7 18.2 103.0 24.2
Medium 30.5 19.4 29.2 21.7 170.1 34.2
High 38.5 25.4 36.5 24.4 176.0 35.5

hitting plane, 10 cm before the end of the table. The results are shown in Table 4.6. The
optimization method is slightly more accurate than the polynomial state fit. The EKF is
especially worse at estimating the velocity for sidespin balls.

Trajectory prediction can also be found in various literature, with similar error values.
The results are, however, not directly comparable between different papers. The accuracy
highly depends on the difficulty of the dataset. In Huang et al. (2011), the hitting point
of 12 trajectories with a spin of up to 100 rad/s was predicted with a precision of at least
40 mm. Zhang et al. (2014) reported an average error of 27.8 mm for the hitting point
prediction, but they included only 15 trajectories, which had side spin of up to 200 rad/s.
Zhao et al. (2017) predicted 85% of hitting points within a range of 50 mm error. The
evaluation was done on approximately 900 balls, but the rotational velocity was always
below 30 rad/s. In our case, we recorded 450 balls with different spin types rotating with
up to 300 rad/s. In our approach we, thus, generalize over a wide range of spinning balls.

Limitiations Overall, trajectory prediction is pretty accurate, though it is somewhat
sensitive to outliers. To correct for this, outlier detection is incorporated into the prepro-
cessing step. Erroneous results occur in cases where one camera has a synchronisation
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problem resulting in a sudden shift in timestamps, but this happens very rarely (less
than once for every 100 balls) or spin detection returns an incorrect spin value (see Sec-
tion 4.2).

4.4 Stroke Parameter Suggestion

Successfully returning the ball depends entirely on the state of the racket (pose and ve-
locity) at hitting time. We therefore decided to first determine the racket state at hitting
time, then use a path planner to generate an appropriate robot trajectory to achieve that
state. During the early stages of robot development, we specified a human-engineered
linear heuristic for each scenario, e.g. counter-hitting. This approach is very inflexi-
ble. Because it was developed using a limited number of trials, it works only for a very
limited group of ball types.

Our most recent paper (Tebbe et al., 2021) presents a self-learning policy using one-
step reinforcement learning. We use a modified deep deterministic policy gradient (DDPG,
Lillicrap et al. (2016)) based actor-critic model. The critic returns reward parameters
rather than the calculated reward, reducing complexity. The actor is trained with the gra-
dient of the composition of the critic and the reward function. We evaluated this method
on the real robot for a number of scenarios of increasing difficulty:

• Simple backhand serves.

The human always plays the same serve and the robot has to return to the middle
of the table (target: [2000,0]).

• Serve and human I-play.

The human begins with a serve and the rally is continued along the mid-line of the
table (target: [2400,0]).

• Serve and human V-play.

The human begins with a serve and is required to alternate ball placement between
the left and right sides of the table, so that the ball traces an inverted ’V’ (target:
[2400,0]).

• Serve and human X-play.
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The human begins with a serve. In the following ball exchange the robot and the
human place the ball alternately on both sides of the table, so that the ball traces
an ’X’ (target: [2200,−300] and [2200,300]).

The target positions for each scenario are given in the table coordinate system. x = 0
/ 1370 / 2740 are the robot’s table end / net line / human’s table end, respectively, and
y =−762 / 0 / 762 are the left side / middle line / right side of the table (in millimeters).
The table is an ITTF standard size table (9 ft × 5 ft = 2740 mm × 1524 mm ). The
target positions are shown in Fig. 4.4.
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Figure 4.4: Coordinate system and target positions in the four scenarios.

31



Chapter 4 Results and Discussion

The learning process of the scenarios is presented in figure 4.5. Balls returned from a
ball machine with the same action each time deviate by 124mm on average. That gives
us an idea of how accurate our robot can be. The serve-only scenario is close to that,
with an average error of 136mm (x: 114mm, y: 47mm) to the goal. In I-play, the rally
continues after the serve, making it more challenging. With 269.2mm accuracy in the last
50 episodes, performance is worse. However, the x-error of 243.3 mm and the y-error
of 78 mm indicate accurate returns to the middle of the table. V-play is more diverse in
human play since the ball placement alternates. In this case, the goal error is 329mm (x:
177mm, y: 126mm). It’s even more complex in the X-play setting in which the goal error
is 393mm (x: 282mm, y: 238mm).

Table 4.7 shows a performance comparison with table tennis robots from other pub-
lications. We aim to play the ball as close to the target position as possible. In this
respect, our approach achieves a high level of accuracy compared to other papers. It
should be noted, however, that most papers only record the proportion of balls success-
fully returned to the opponent’s half of the table. The return rate is largely dependent on
the robot control reliably reaching balls played to the extreme left and right of the table,
and is much less dependent on hitting pose and velocity. Our robot nonetheless achieves
high return rates. The robot described in Muelling et al. (2013) was the only robot to
achieve a better return rate for balls served by an oscillating ball machine.

Limitations With so little data, the algorithm will fail if the served balls are too dif-
ferent from each other. Accuracy improves marginally if trained for much more than
200 balls. This is probably related to the measurement and prediction errors of the other
system components. The robot performs poorly if trained first on one scenario, and then
changing the type of play. Resolving this issue would require a more dynamic explo-
ration strategy, which is one of the challenges we would like to address in addition to
those detailed below.

Further work (Continuous Learning) The reinforcement learning approach achieved
precise, successful returns in a range of scenarios. In each of these scenarios, the robot
was trained from scratch. In a human-like learning process, we would learn continu-
ously with each new experiment. This type of learning would use significantly more
data, which might improve overall performance, especially in generalising between dif-
ferent stroke types. There are two main hurdles to overcome for a continuous learning
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Figure 4.5: Results of training on the real robot in four scenarios. The experiments
always started with a warm-up phase of 30 random actions. The green line represents
the running average over the 30 episodes.

Table 4.7: Comparison with other table tennis robots.

Method Robot Stroke # of Return Error
model type balls rate to target

our KUKA Agilus Fixed BM 50 98% 118mm
Büchler et al. (2020) Muscular Robot Fixed BM 107 75% 769mm
Zhang et al. (2011) Lab-made Fixed pos. - 80% -

our KUKA Agilus Osc. BM 50 88% 209mm
Zhao et al. (2016) Custom humanoid Osc. BM 732 71% -
Koç et al. (2018) Barrett WAM Osc. BM 200 80% -

Muelling et al. (2013) Barrett WAM Osc. BM 30 97% 460mm
our KUKA Agilus I-play 50 96% 269mm

Muelling et al. (2013) Barrett WAM I-play - 88% -
our KUKA Agilus Serve 50 100% 135mm
our KUKA Agilus V-play 50 88% 329mm
our KUKA Agilus X-play 50 92% 393mm
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Chapter 4 Results and Discussion

approach:

Outlier detection. Sometimes the ball hits the edge of the table or net, resulting in an
anomalous trajectory. In addition, if the ball hits the edge of the racket, the return will be
entirely uncontrolled. The problem becomes even more severe in combination with spin,
which can also cause significant deviations when hitting the racket. We do not want to
discard these events, however, as the robot needs to be able to handle them.

Another challenge is uneven stroke distribution, which results in very unbalanced data
points. Although some stroke and spin types occur very rarely, the robot still needs to
learn to handle them. Some ball speeds, for example, will occur much more frequently,
but very slow and very fast balls will be underrepresented in the data. In a continuous
learning process, the robot’s ability to handle balls with a lot of spin should not dete-
riorate following a sequence of 500 balls with very little spin. Further data imbalance
will be introduced as changes in the robot system alter the dynamics of the problem.
We have made regular changes to the robot control algorithms. The robot’s racket has
also been replaced on several occasions. Class imbalance in classification tasks can be
effectively solved using under/oversampling, but this approach is not possible for our
regression-type tasks. It is difficult to assess if a data point is underrepresented or an
outlier.

4.5 Robot Control

The robot used in our system is a floor-mounted KUKA Agilus KR6 R900 sixx. It is
capable of linear velocities of over 4m/s. Unfortunately, the KUKA KR-C4 robot con-
troller is designed for industrial use, and not for a dynamic environment like table tennis.
In our setup, we continuously receive target pose and velocity values from the stroke
parameter suggestion. The robot needs to start moving to the current suggested hitting
position even though the final target pose and velocity are unknown. As the suggestion
becomes more and more accurate, this movement needs to be constantly corrected.

There are two methods of communicating with the robot, neither of which perfectly
achieves the control described. The first is the KUKA Ethernet KRL Interface (EKI).
Target pose and velocity are written to variables in the KUKA robot language (KRL) us-
ing TCP requests. A KRL program on the robot controller then executes motions based
on these variables. The fastest movements can be achieved using point-to-point (PTP)
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commands. Basic PTP movements cannot, however, be corrected during execution. This
can be improved by using approximated PTP commands, which involve the robot check-
ing for the next target after executing half of the motion. If no new PTP target is defined,
it will complete the motion, otherwise it will continue to the next target and the process
is repeated. Control in this strategy is limited, because each PTP correction increases the
total execution time, since the robot is always performing half the motion. In Tebbe et al.

(2018) we nonetheless achieved reasonable precision with only two to four corrections.

The second interface is the KUKA robot sensor interface (RSI), used in Tebbe et al.

(2021). RSI allows movements to be corrected in real-time using UDP messages. We
send a new target position every 4 ms. This gives optimal control in terms of dynamic
corrections, but each target position must be attainable within the 4 ms cycle time with-
out exceeding any robot limitations (maximum joint velocity, acceleration, torque, etc.).
Should any of the robot limits be exceeded, the robot will stop and terminate the program.
With the exception of maximum joint velocity, none of these limits are documented,
which makes generating a compliant trajectory difficult. This is the biggest disadvantage
of RSI communication.

Ultimately, using RSI we need to iteratively generate the complete robot trajectory.
Trajectory planners typically consider the target position only. In our case, however,
we also need to achieve a specific velocity. We therefore use the Reflexxes Type IV
library (Kröger, 2011). This library allows a target velocity to be specified and guarantees
trajectory generation within 100 microseconds. The library can be used in both Cartesian
space and joint space.

We performed three experiments to compare the different communication and control
systems. First, we tested movements to predefined target end positions. We then set
out to attain both a target position and a non-zero velocity simultaneously. Finally, we
investigated how well each method copes with dynamic correction.

In the first experiment, the robot moves to three target positions (Fig. 4.6) with an
end velocity of zero. Humans use this type of movement for blocks, to return balls with
high velocity and spin. We measured the execution time of the movement, i.e., the time
between sending the first command and the robot reaching a position with a positional
error of less than 3 mm and an orientational error of less than 1 deg compared to the
target pose. Results are shown in Table 4.8. The EKI had the shortest execution times
in comparison to both RSI methods. The velocity profiles for motions to the second
target are plotted in Fig. 4.7. The EKI interface generates a smooth motion that is syn-
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Figure 4.6: Target positions for the three movements. The starting position for all move-
ments is labeled Start, the other positions represent Target 1, 2, and 3.

chronized between the joints. The RSI interface controlled in joint space produces a
similar movement but with greater jerks. For the RSI in Cartesian space, the velocity
profile is highly irregular. Nevertheless, the KUKA controller achieves these Cartesian
movements without excessive velocities in joint space.

Table 4.8: Average execution times for the three movements over 5 trials, with standard
deviations in parentheses. Cartesian RSI and Joint RSI denote control with the RSI
interface using robot trajectories generated by the Reflexxes library in Cartesian and
joint space, respectively.

Control method Target 1 Target 2 Target3
time in ms time in ms time in ms

EKI 319.9 (0.3) 342.4 (4.7) 405.6 (3.1)
Cartesian RSI 460.6 (1.3) 471.9 (0.1) 484.0 (0.1)

Joint RSI 412.7 (1.3) 423.9 (0.1) 531.0 (0.1)

The second experiment evaluates non-zero velocities. The end effector should move
to Target 2 while attaining a specific velocity in the x-direction. The desired velocities
were between 0.2 and 1 m/s toward the opponent’s half of the table. Table 4.9 shows
the results. The target velocity is specified in the first column. The Cartesian-controlled
RSI provides the most accurate velocities, but the maximum attainable speed is limited.
The achievable velocities in joint-space RSI depend on the configuration of the robot.
At Target 2, a higher maximum velocity can be reached, but the velocity control is less
accurate than with the Cartesian RSI. The EKI is only position-based. A heuristic com-
putes two positions, one before and one after the target position, so that the robot attains
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the target velocity in between. Even though the heuristic allowed us to increase or lower
the velocity, accurate velocity control was not possible.

For the target velocity 0.6 m/s, we plotted the robot paths viewed from the top in
Fig. 4.8. Both RSI paths hold the desired direction over a much longer time than the EKI
interface. That is advantageous since the robot normally hits the ball earlier or later than
planned.

In the last experiment, the movements are corrected multiple times. The final target
is Target 2. The algorithms are fed with an initial position 100 mm away from Target
2. Over the next 350 ms the target are gradually updated. The results show, that the
EKI system is better for only a few corrections, but the execution time increases with the
number of corrections. The performance of both RSI methods is nearly independent of
corrections, as is expected for methods recomputing the trajectory every 4 ms.

Limitations In the current setup, each method has some drawbacks. The EKI inter-
face provides the fastest motions, and since the KUKA controller computes them, the
execution never fails. This method was used for papers Tebbe et al. (2018, 2020). One
drawback is that correcting the movement afterwards results in longer trajectories. Veloc-
ity control can only be achieved by executing multiple positions according to a heuristic.
In terms of reaching the target velocity, the used heuristics were inaccurate.

In Tebbe et al. (2021), we controlled the robot in Cartesian space with the RSI inter-
face. This ensures that the final movement velocity is controllable. At times, however,
movements may exceed the robot’s velocity, acceleration, or torque limits. In this case,
the robot stops immediately. Positions on the far right or left of the table near workspace
limits are affected by this. Large changes in orientation are equally problematic, making
backspin strokes impossible to execute. Because the robot limits primarily depend on
the joint configuration, we would expect RSI control using joint coordinates to perform
better. Unfortunately, it is harder to control the trajectory between start and end poses
using joint coordinates. Occasionally, trajectories are generated that would hit the table.
Currently, this prevents reliable use of the joint-space RSI on the robot. However, we
intend to switch to it in the long run.

Further work Robot control is probably the area that offers the greatest scope for
improvement. A current weakness of the EKI communication lies in the velocity con-
trol. We need to identify better position sequences to achieve the specified velocity
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Figure 4.7: Velocity profiles for movement to Target 2.

Table 4.9: Average Cartesian velocities in x direction (m/s). The target position is Target
2 and the target velocity is specified in the left column.

Target EKI Cart. RSI Joint RSI

1 0.58 0.75 0.96
0.8 0.42 0.75 0.69
0.6 0.27 0.61 0.52
0.4 0.14 0.43 0.33
0.2 0.01 0.25 0.13

Figure 4.8: Path profiles for movements with 0.6 m/s target velocity. The x-axis is along
the short side of the table and the y-axis along the long side towards the opponent’s half
of the table.
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Figure 4.9: EKI and RSI execution times depending on the number of corrections aver-
aged over 5 trials. The initial target and the final corrected target position are 100 mm
apart and the execution time is tracked until 3 mm accuracy.

in-between. A realistic simulation of the robot behavior such as KUKA.Sim could be
employed to optimize the sequences. Alternatively, position sequences might be learned
on the real robot, similar to the RL approach from the previous chapter.

The RSI interface allows arbitrary trajectories to be sent to the robot. We currently
provide it with trajectories exclusively in Cartesian space or joint space generated by the
Reflexxes library. For accurate executable motions, we should consider both Cartesian
and joint space. In our research group, Mario Laux has developed a path planner (Laux
and Zell, 2021) to use both spaces in a combined metric and solve for a straight path on
this metric using geodesic differential equations. Since the algorithm outputs paths only,
it is not possible to set an intended racket velocity. However, we can transform a path
with the appropriate final direction via the correct time parameterization into a trajectory
that satisfies the velocity constraint.

A more direct method is trajectory optimization. The problem is typically solved with
nonlinear programming, which tends to be too slow for real-time control. A near-optimal
initial guess provided by the Reflexxes library is expected to accelerate the optimization
process. The challenge is to formulate the optimization problem in a way that yields
accurate and fast results.
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4.6 Qualitative Video Comparison

In this chapter, we compare our robot system qualitatively to other state-of-the-art table
tennis robots. This is especially important as qualitative results in this field are biased,
because it is not possible to use a common dataset in robotic table tennis. There is signifi-
cant variation in the balls received by each robot depending on the ball throwing machine
or human serving the ball to the robot. Here we give an overview of video demonstra-
tions for other robots. Note that comments are based on the videos and corresponding
papers. It is possible that robots are able to cope with other scenarios not shown in the
video footage.

MPI Tübingen The first robot we looked at was Mülling et al. (2011) at the Max-
Planck-Institute in Tübingen. Human demonstrations are first obtained using kinesthetic
teaching. By using a mixture of the demonstrated robot movements, the robot is able to
learn to return the ball in only 60 trials. In the video1 the robot faces a human player and
has rallies with up to 7 ball contacts. Although the robot is able to learn with very few
trials, the demonstration scenario is tightly constrained. Balls are played slowly, with no
spin and to only one side of the table. The robot has more time to move, as it plays the
ball from a point beyond the end of the table.

MPI Muscular Robot Muscular Robot is another robot developed at MPI Tübingen
(Büchler et al., 2020). This is a custom-made pneumatic robot able to perform fast
movements with up to 12 m/s. For fast learning they used a mixture of simulated balls
and real movement trials. The robot and learning procedure are very novel, but robot
performance is limited. The return rate is below 90% even though the ball is always
served to the same spot by a ball throwing machine2. The robot is, however, able to
smash balls with high velocity, a unique skill not possessed by other table tennis robots.

Zhejiang University Xiong et al. (2012) have built two humanoid robots, Wu and
Kong, able to play against each other or a human. The robots were able to have long
rallies with over 100 strokes3, with the ball played to the middle of the table. In a
second video4 they show the robots receiving balls with side spin from a ball throwing

1https://youtu.be/SH3bADiB7uQ 2https://youtu.be/GQtpSMEpn5A
3https://youtu.be/t_qN3dgYGqE 4https://youtu.be/endPn8YaL10
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machine (Zhao et al., 2017). The robots use a wooden racket with no rubber, which
makes returning balls with spin easier. Results against topspin and backspin would be of
more interest, as these spin types are more common in matches against human players.

Various companies have also undertaken industrial table tennis robot projects, often
for marketing purposes and to showcase their technologies. These tend to play more
realistic table tennis than research projects.

SIASUN SIASUN demonstrated their table tennis robot at the China International In-
dustry Fair5. The robot arm is mounted on a linear unit for a greater range. The robot
is therefore able to return human strokes played all over the table. The returns are very
consistent, but all balls shown have very little spin.

Omron Omron’s delta robot is arguably the world’s best table tennis robot. Different
versions have been shown at various trade fairs worldwide. The robot returns balls played
by humans with some spin all around the table very reliably6. The only negative point is
that the robot seems to be using a racket with no or antispin rubbers. The effect of spin
at hitting is much smaller than with standard rackets.

Our robot We now offer a comparison between two demonstrations of our robot and
the above robots. The first video7 clearly shows that the robot is able to return both
topspin and backspin strokes. The movements for these two spin types need to be very
different, as we use a traditional rubber with high friction. This means that the angle at
which the ball bounces off the racket is highly dependent on the spin. The ability to return
balls with different types of spin sets our robot apart from almost all other robots. The
only robot to perform better in this area is the Omron industrial robot, but it is unclear if it
would be able to achieve the same using a racket with normal high-friction rubbers. One
drawback in our demonstration is that all balls are played down the middle of the table.
However, in our second video demonstration8, we show that the robot can learn to play a
series of increasingly challenging table tennis drills in less than 200 balls. The first drill
is relatively simple, but the robot is able to play a long rally with as many as 64 successful

5https://youtu.be/Ov8jwAKucmk
6https://youtu.be/kZzL2rDNSJk and https://youtu.be/EzXxUWQ7H48
7https://youtu.be/SjE1Ptu0bTo 8https://youtu.be/uRAtdoL6Wpw
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returns. In the last, most difficult drill, in which both the robot and human play the ball to
both sides of the table, the robot is still able to return consistently. Other robots were also
able to successfully learn from only a small number of balls. In contrast to these robots,
we do not use any prior knowledge from demonstrations or simulations. The scenarios
we evaluated were also more challenging, in that our robot was programmed to play the
ball to different points on the table, rather than just to the middle of the table, while at the
same time adapting to balls played to different points by the human opponent. Overall
our robot achieved state-of-the-art robot table tennis skills, in that it adapted to spinning
balls, played long rallies and achieved data-efficient learning of robotic return strokes.
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Conclusion

Over the course of this thesis, we developed a fully operational table tennis robot. The
system comprises six connected components: ball tracking, spin detection, trajectory
prediction, stroke parameter suggestion, trajectory generation and robot control. The
research project was focused on two areas. Firstly, we aimed to develop a robot able to
play table tennis under more realistic conditions than existing robots. In keeping with
the trend towards intelligent systems, we wanted our robot to also be able to learn and to
adapt to previously unseen playing styles.

Details of the basic system were published in Tebbe et al. (2018). This system in-
cluded ball detection, trajectory prediction and simple robot control. We achieved robust
cooperative play against a human opponent without spin. When playing rallies, the robot
achieved up to 64 returns in a row.

When humans play table tennis, spin is a crucial factor. For a more realistic playing
style the robot therefore needs accurate, reliable spin detection. Tebbe et al. (2020)
examined different approaches to spin detection. Two of the methods examined were
based on detecting the movement of the logo printed on the ball. A third method involved
analysing the ball’s trajectory to determine the Magnus effect. All three methods were
able to identify the spin type with over 80% accuracy. We performed a demonstration
in which we incorporated the Magnus force fitting method into our robot system. This
system was able to return real balls with spin served by a human player. Combining these
methods might offer a good foundation for returning balls with heavy spin, as played by
professional players.

Table tennis also shows the flexibility of human learning. Even basic strokes require
complex hand-eye coordination. With some supervision, beginners can learn to return
the ball consistently in only a few training sessions. This is a skill we want to imitate
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on the robot. To reduce the complexity of the task, we do not input the whole ball
trajectory, but only the predicted position and velocity of the ball at the time of hitting.
A reinforcement learning method returns the desired racket state at the time of hitting
(Tebbe et al., 2021). An appropriate robot trajectory is then generated to achieve that
state. Using this method, the robot was able to learn a number of common table tennis
drills after training with only 200 balls. Evaluations of table tennis robots in the literature
typically involve simpler scenarios. Our robot was able to outperform existing robots for
accuracy and consistency in these scenarios.

In Chapter 4, we discussed current limitations of each of the components of our system
and presented possible improvements. The ultimate goal, of a robot able to beat even the
best human athletes at table tennis, remains a long way off. Nevertheless, this thesis
represents a major step in the right direction.
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Abstract. In recent years robotic table tennis has become a popular re-
search challenge for image processing and robot control. Here we present
a novel table tennis robot system with high accuracy vision detection and
fast robot reaction. Our system is based on an industrial KUKA Agilus
R900 sixx robot with 6 DOF. Four cameras are used for ball position
detection at 150 fps. We employ a multiple-camera calibration method,
and use iterative triangulation to reconstruct the 3D ball position with
an accuracy of 2.0 mm. In order to detect the flying ball with higher
velocities in real-time, we combine color and background thresholding.
For predicting the ball’s trajectory we test both a curve fitting approach
and an extended Kalman filter. Our robot is able to play rallies with a
human counting up to 50 consequential strokes and has a general hitting
rate of 87%.

Keywords: table tennis robot · ball detection · trajectory prediction

1 Introduction

In March 2014 KUKA was very successful with a commercial video of the best
german table tennis player Timo Boll facing a KUKA Agilus R900 sixx robot [8].
As the robot could not really play table tennis, the producers used modern video
editing to give ”a realistic vision of what robots can be capable of in the future.”
Shortly afterward another video [11] went viral, showing a self-built robot arm
playing table tennis in a garage. Several inconsistencies pointed to manipulation
of the video. With the same KUKA robot as in the first video we want to test
the current limits of real robotic table tennis.

1.1 Related Work

Robotic table tennis has been attracting many researchers in the domain of
image processing and robot control since Billingsley [5] in 1983 announced a
robot table tennis competition with 20 rules for improving the successful hitting
rate. Following these rules, Anderson [3] developed the first robot able to play
with human ping-pong players. He employed four cameras to detect the incoming
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ball and a 6-DOF PUMA 260 arm to return the ball. Other early robot systems
were designed to continue this work with some limitations like using low frame
rate camera or playing just in a well defined environment [7,1,16].

In recent years, there have been multiple robots of different accuracy defining
the current state of the art. Xiong et al. [28] developed two humanoid robots
named Wu & Kong, which can rally with each other more than 100 rounds. Each
humanoid robot has 30 DOF in total, which are composed of two 7-DOF arms,
two 6-DOF legs, and 4-DOF for head and waist. Every robot was equipped with
four cameras to detect the ball. Muelling et al. [17,18,19] learned a generalized
stroke motion from different elementary hitting movements taught by a human
tutor. They used an anthropomorphic 7-DOF robot arm, which could generate
smooth hitting movements capable of adapting to the changes in ball speed and
position. Nakashima et al. [21,22,20] designed the joint trajectory of a 7-DOF
robot arm which hits a back-spin ball to target points at the speed of 2-3 m/s.
The success hitting rate was 70% in 20 trials. Li et al. presented a robot sys-
tem in [14] consisting of two high-speed cameras and a universal 7-DOF robot
arm. He applied a novel two-phase trajectory prediction to determine the hitting
position, and finally achieved a success rate of 88%. Silva et al. [25] attached a
light card-board racket and an onboard camera to a quadrotor drone and utilized
imitation learning adopted from [19] to reach hitting rates of 30% in simulation
and 20% with a real quadrotor. There are also some industrial companies fol-
lowing the same work. Omron [12] has shown an impressive demonstration at
various robotics fairs. The Forpheus robot repurposed from an Omron 5-axis
parallel robot, seems to have the best hitting accuracy at the moment and as a
robotic tutor it can evaluate the ability level of its opponent with deep learning.
SIASUN [24] exhibited its table tennis robot named Pongbot. It can predict the
hitting position within 4 ms with 20 mm error using a high-speed stereo camera,
and they developed a 6-DOF flexible robot arm to hit the ball back with an
intelligent strategy.

1.2 Our System

In this paper, we present a novel table tennis robot system (Figure 1) with high
accuracy vision detection and fast robot reaction. Four PointGrey Chameleon3
cameras which are mounted in the corners of the ceiling are used for ball position
detection. A table tennis paddle is rigidly fixed at the end-effector of a 6-DOF
KUKA Agilus robot, and two Sick S300 laser scanners mounted on the floor are
used in a safety system for area protection and access prevention. The whole
system is controlled by one host computer with a 4 x 3.3GHz Intel i5-4590
CPU and 16GB RAM. We implement the proposed approaches using the Robot
Operating System(ROS) [23] nodes with message communication between each
other and OpenCV [6] for image processing.
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Fig. 1. Table tennis robot system with KUKA Agilus robot. The cameras, which are
mounted on the ceiling, are not visible.

2 Methods

2.1 Ball Detection

There is a ROS ball detection node which outputs the 3D ball positions. The
method adopted in this paper is fusing multiple features including motion, color,
area and shape, which are used in [14,29]. To improve the robustness of image
segmentation, we transfer the raw images read from the cameras into HSV color
space. Multiple CPU threads are generated for each camera to accelerate the
processing. Figure 2 shows the ball detection process using motion and color
features for three examples cropped to the regions of interest. The top row
depicts a position close to racket and player’s hand. The middle row details a
state on the table and in the last row the ball is crossing the net.

We want to avoid the crescent shaped ball shown in [34] when using adjacent
frame difference because of a slow ball and high frame rate. Therefore we store
the images in a queue and compare the current (n-th) to the n−7th image, which
is shown in Figure 2(a)-(c). The binary shown in Figure 2(d) uses thresholding
according to the following equation:

Binaryn(u, v) =

{
255 if L 6 HSV n(u, v)−HSV n-7(u, v) 6 U

0 otherwise
(1)

HSVn(u,v) is the vector of HSV values of the pixel (u,v) in the nth image and
comparison is done component-wise. L and U are the lower and upper HSV
boundary values which are selected manually.

Restricting the setup to orange table tennis balls we are able to get the benefit
of color thresholding the nth frame, which results in Figure 2(e). By means of
computing the bitwise conjunction of (d) and (e) in Figure 2(f), we can extract
the orange moving objects including balls and possibly skin regions, the moving
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(a) (b) (c) (d) (e) (f)

Fig. 2. Ball detection process using motion and color features: (a): the (n−7)th frame.
(b): the nth frame. (c): subtracting frame (a) from (b). (d): color thresholding of (c).
(e): color thresholding of (b). (f): bitwise AND operation between (d) and (e).

bat and the robot. To extract the correct blob belonging to the ball, we exploit
size and shape features to filter out non-ball objects described as follows:





10px 6 Area 6 800px
0.5 6 AreaExtent 6 1

1/1.4 6 AspectRatio 6 1.4
(2)

where Area is the contour area extracted from the Figure 2(f) in pixels. AreaEx-
tent is the ratio of Area to the area of the minimal containing up-right bounding
box. AspectRatio is the aspect ratio of the bounding box. In rare cases this pro-
cess results in multiple candidates because of other moving objects with similar
properties existing. Therefore we select the one with the largest area as the
detected ball.

Once a ball is recognized in the current frame, a region of interest (ROI) will
be computed around the ball’s center. Then we can track the next ball in this
ROI within 5 ms/image. Processing in parallel gives real-time performance for
a frame rate of 150fps.

The balls central pixel positions in multiple images are undistorted and tri-
angulated to a 3d position according to calibration and triangulation described
in section 3.1.

2.2 Ball Trajectory Prediction

Given the observation of the positions of the ball until the current time, we
need to predict the future trajectory of the ball to plan the hitting stroke of our
robot. The flying ball is exposed to three forces: Gravity, air resistance, and the
Magnus force (caused by spin) as depicted in Figure 3. Even for humans this
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flight direction

rotation axis

gravitation Fg

air resistence Fd

Magnus force Fm

Fig. 3. Acting forces on a ball: gravitation pointing downwards, air resistance in the
opposite direction of flight and Magnus force perpendicular to the spin axis and flight
direction.

prediction is difficult and requires years to get a good estimation of balls with
heavy spin. This is in particular due to the difficulty of measuring spin. Various
research has been done on this topic. In [18] a physical model was used. The
model in [32] could learn its parameters using a neural network. Many systems
use an extended or unscented Kalman filter [18,31,30,27] or curve fitting [34,14].
For our system we employed both an extended Kalman filter and a curve fitting
approach.

Curve Fitting For the curve fitting approach the 3d trajectory points are sepa-
rated for every axis. In our case the x-axis is along the large side of table, the
y-axis is parallel to the net and the z-axis gives the height of a point. A quadratic
polynomial P (t) = at2+bt+c is fitted to the data for each axis, where the input is
the time and the output is the ball’s position on the specific axis. Its coefficients
can be easily solved as this is a linear least squares problem. These polynomials
describe the flight before bouncing on the table. With the roots of the z-axis
polynomial we have the bounce time tbounce. For the post-bounce trajectory we
derive another set of polynomials Q. For the x-axis we define factors sx and
ax for the change of velocity and acceleration in x-direction after the bounce.
Without considering spin on the bounce we assume the post-bounce polynomial
Qx satisfies

Qx(tbounce) = Px(tbounce) (3)

Q′x(tbounce) = sx ∗ P ′x(tbounce) (4)

Q′′x(tbounce) = ax ∗ P ′′x (tbounce). (5)

Analogously we have conditions for the other polynomials. With these conditions
we can find unique solutions. The hitting point defined by the intersection with
the plane x = 0.1 (in meters) can be solved from the post-bounce polynomials.
The values used in our experiments are sx = sy = 0.73, sz = −0.85, ax = ay =
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0.3 and az = 0.92. Note that sz is negative to affect for bouncing off the table
in the opposite direction.

A disadvantage of the curve fitting approach is the large error for the first
estimations, where only 5-10 ball positions have been recorded. To overcome this
we suggest to use Tikhonov regularization for least-square solving the polynomial
while regularizing the curvature. For a linear least squares problem Ax = b we
have an optimal solution

x̂ = (ATA)−1AT b. (6)

In Tikhonov regularization one defines a Tikhonov matrix Γ and

x̂ = (ATA+ ΓTΓ )−1AT b. (7)

For a typical Tikhonov matrix λIn the solution minimizes the error while reg-
ularizing the norm of the solution. In our case we only want to regularize the
acceleration P ′′(t), so we use the matrix

Γ =




0 0 0
0 0 0
0 0 λ


 . (8)

Using the z-polynomial as an example we approximate (zi − apriort2i )i with the
Tikhonov matrix Γ . In this case the curvature a of the polynomial has a penalty
to differ from 0. Therefore replacing the curvature a by a′ = a + aprior results
in a polynomial with a curvature near aprior approximating the values (zi)i. We
use the curvature from prior experiments which includes an approximation for
gravity and air drag. This can significantly improve the first predictions. With
a smaller λ for more ball position measurement the curve fitting is drawn less
to the prior curvatures and more to the real one. Using Tikhonov regularization
we could lower the average bounce point error after 5 balls from unreasonable
values to 70 mm, which is acceptable for initially moving the robot arm in the
right direction.

EKF approach Relative to the balls speed v and angular velocity ω the gravi-
tation force Fg, drag force Fd and Magnus force Fm in Figure 3 are defined by
the formulas

Fg = (0, 0,−mg)T . (9)

Fd = −1

2
CDρaA ‖v‖ v (10)

Fm =
1

2
CMρaAr(ω × v). (11)

The constants appearing are drag coeficienthe mass of the ball m = 2.7g, the
gravitational constant g = 9.81m/s2, the drag coefficient CD = 0.4, the density of
the air ρa = 1.29kg/m3, the lift coefficient CM = 0.6, the ball radius r = 0.02m,

55



A Table Tennis Robot System using an industrial KUKA Robot Arm 7

and the ball’s cross-section A = r2π. A discrete motion model is defined by

pt+1 = f(pt) =




x+ vx∆t
y + vy∆t
z + vz∆t

vx − kD∆t ‖v‖ vx + kM∆t(ωyvz − ωzvy)
vy − kD∆t ‖v‖ vy + kM∆t(ωzvx − ωxvz)

vz − kD∆t ‖v‖ vz + kM∆t(ωxvy − ωyvx)− g∆t



. (12)

Here we shorten the coefficients to kD = 1
2CDρaA and kM = 1

2CMρaAr. The
state is defined as pt = (x, y, z, vx, vy, vz) and can be estimated by an extended
Kalman filter [31]. Using the estimated state we can predict the future trajectory
using the discrete model. At the bounce point the speed and angular velocity
from directly before the bounce denoted by ∗− are transformed to ∗+ as follows

v+x = αxv
−
x + βxω

−
y (13)

v+y = αyv
−
y + βyω

−
x (14)

v+z = −αzv
−
z (15)

ω+
x = γxω

−
x + δxv

−
y (16)

ω+
y = γyω

−
y + δyv

−
x (17)

ω+
z = γzω

−
z . (18)

The values used in our experiments are αx = αy = 0.75, αz = −0.97, βx = βy =
0.0015, γx = 0.53, γy = 0.6, γz = 0.9, δx = −26 and δy = 25 according to [31].

A dataset is recorded with 50 balls played in by a human player with low
spin, similar to the ones shown in the video. Our results on the data are shown in
Table 1 and 2. For the accuracy after the first quarter (first half) 14.5 balls (32.2
balls) are used on average. For this data we are not considering spin, which
is difficult to measure and is part of further research, such that the angular
velocity ω used in the EKF is zero. In the future a constant spin value measured
by another system can be integrated.

In evaluation the EKF and curve fitting are on par with each other. If only
ball position from the first quarter are given the EKF gives better results and
with positions from the first half the curve fitting is more accurate. The EKF
may have the advantage to use a physical model, but ball positions early in
time are getting out of the scope. In contrast, the curve fitting uses all available
data to fit the curve. Therefore, it gets more accurate with more ball positions.
It can also cope with small amounts of spin as such a trajectory can also be
approximated by a parabola.

2.3 Robot Control

The robotic arm in the system (KUKA Agilus Kr6 R900 sixx) is a high speed
industrial robot with six DOF, mounted on the floor and capable of achieving
linear velocities of over 4m/s.

Appendix A A table tennis robot system using an industrial kuka robot arm
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Table 1. Bounce and hitting point errors on balls measured until the first quarter of
the table and until the first half of the table

After first quarter After first half

/mm Error Stddev Error Stddev

Bounce point curve fitting 72.7 32.3 19.9 13.7
Bounce point EKF 46.6 29.4 27.8 15.2
Hitting point curve fitting 69.9 25.6 18.3 11.1
Hitting point EKF 55.3 22.8 34.7 13.2

Table 2. Bounce and hitting time errors on balls measured until the first quarter of
the table and until the first half of the table

After first quarter After first half

/ms Error Stddev Error Stddev

Bounce time curve fitting 21.8 5.5 6.5 2.7
Bounce time EKF 26.8 5.0 15.3 3.9
Hitting time curve fitting 64.9 9.2 8.4 7.3
Hitting time EKF 45.4 24.3 27.1 9.6

The robot is controlled by its own computer, integrated in the KR-C4 con-
troller, which provides an interface to the user. The user of the robot can then
move it manually at low velocities or move it via a program written in the KRL
programming language. While we could not use the industrial controller for fre-
quent dynamic trajectory changes, we used approximate movements described
below for a similar effect for up to 3 end-effector target point changes.

We can establish a connection to the controller PC via the network using the
KUKA EthernetKRL package, which allows to read or write KRL variables
from an external PC via an Ethernet connection. Figure 4 shows a diagram
of the communication system. The delay in sending or receiving data via the
EthernetKRL connection depends on the amount of read/write function calls
on the robot side (about 4 to 12 ms per call). In order to minimize the delay, we
put all the data of a message in a single array so that we only need one function
call on the robot computer.

We use two kinds of motions: exact and approximate. Exact motions move the
robot exactly to a specified point, whilst approximate motions move the robot in
the direction of the specified point, as if it were an exact motion, but changing
direction to the next point in the trajectory when a certain limit distance to
the initial point is achieved (see Figure 5). Approximated motions allow for the
trajectory of the robot to change before it arrives to the initial target. Thus we
are able to send an initial guess of the hitting point ahead of time and then send
corrections with more precise information of the hitting point as we get to see
more of the actual trajectory of the ball.
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MotionServer

KRL Global Variables

MotionDriver

Robot Computer

KR6MotionDriver

Main

Program

External Computer

EthernetKRL

(4~12 ms delay)

Fig. 4. To control the robot, two programs run on the robot controller: the
MotionServer, which runs on the Submit Interpreter, handles the connection and is
responsible for reading or writing the data that the connected PC requests, while
the other program called MotionDriver, running with higher priority, is the one that
executes all movement commands. On the external PC side, the C++ class called
KR6MotionDriver communicates with the MotionServer on the robot side.

3 Experiments

3.1 Multi-camera Calibration

To achieve high accuracy for ball position detection, we propose a method for
multi-camera calibration. Our multi-camera calibration is different from [13]
where they divided four cameras as two camera pairs and reconstructed the ball’s
3D position from one pair. Our system can estimate the 3D position from more
than two cameras which has the same idea as [15]. We first estimate the camera
intrinsics, distortion coefficients based on [33] with a 4 × 11 asymmetric circle
grid pattern. We use the stereo calibration method in [9] to initialize the extrinsic
camera parameters, which denote the coordinate system transformations from
three slave cameras to the master camera. To optimize these extrinsic matrices
simultaneously, we place the pattern at different locations and orientations in
overlapping fields of view of all cameras in order to extract the same centers
of circular blobs for every camera. Then, we employ a modified sparse bundle
adjustment approach [26], which minimizes the following error function:

E(P,X) =

m∑

i=1

n∑

j=1

‖PjXi − xij‖2 + λ

m∑

i=1

| ‖Xi+1 −Xi‖ −D|2 (19)

where Pj is the estimated projection transformation composed of the camera
intrinsics and extrinsics. Xi is the center’s position in the 3D scene, which is
reprojected to the image plane by Pj . xij is the observed 2D image coordinate.
The second error term accounts for the 3D distance D between two circular
blobs, which is not used in the normal bundle adjustment. A factor λ is added
to account for the different units (pixels, mm). This equation is solved by the
Ceres Solver library [2].

If a ball is found in every camera image, we need to find its 3d position. We use
an iterative N-view triangulation method, as in [10], instead of the linear least-
squares triangulation, which is performed in OpenCV [6]. For every camera, the
linear triangulation solves the homogeneous equation α(u, v, 1)ᵀ = PX, where
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Fig. 5. On the left side we can see the difference between the spatial trajectories
of the robotic motion when the point p1 is reached exactly vs. approximately. On
the right side, we plot two real trajectories between the points p0 = (500, 0, 200),
p1 = (450,−400, 250) and p2 = (650,−300, 350). When p1 is reached using exact
positioning, the robot lowers the velocity extremely near p1 giving the impression that
it stays still for a little moment and reaching the point p2 about 175 ms later than
with approximate positioning.

α is an unknown scale factor and (u, v)ᵀ are the ball’s pixels in the image, and
P is the projection matrix of the camera. This is the same as solving:

uP3X = P1X, vP3X = P2X, α = P3X (20)

where Pi denotes the i-th row of P. So in linear least square triangulation
the u-error eu = uP3X = P1X is minimized and similar the v-error. Ideally we
would like to minimize the error e′u = u − P1X/P3X where P1X/P3X is the
reprojection of X to the image plane. To come nearer to the ideal solution [10]
iteratively solves X = Xi from the error function e′u = ev/wi where w0 = 1 and
wi = P3Xi. Likewise, it is done for v and all other cameras.

The system’s accuracy is evaluated by mounting a table tennis ball on the
end-effector and comparing against the robot’s end-effector localization including
the difference vector from end-effector to fixed ball. In this fashion we capture 40
static locations of the ball with both systems resulting in two 3D points sets. The
two systems operate in different coordinate systems and a coordinate transfor-
mation is estimated using the two 3D points sets according to [4]. The camera
calibration errors are shown in Table 3, which includes two tests using both
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two and four cameras. Adopting our multi-camera calibration and linear least-
squares triangulation we achieve an error of 2.5 mm for four cameras. Iterative
triangulation improves the error to 2.0 mm.

Table 3. Calibration errors comparison in mm

Stereo Calibration Multi-View Calibration Iterative Triangulation

Two Cameras 11.0 3.2 3.2
Four Cameras 15.0 2.5 2.0

3.2 Cooperative play against a human

Even without considering spin we were able to play consistent rallies against
a human player. In the experiment the player plays a simple stroke using the
counter-hitting technique. For predicting the table tennis ball trajectory we use
the extended Kalman Filter. An initial position near the base line is sent to the
robot at 400 ms before the predicted hitting time. The actual stroke is sent 300
ms before hitting. It consists of a two movements, first to a preparation position
and then to the hitting point. In that way we can cope with the lack of velocity
control and hit the ball at the predicted hitting point with an approximated
velocity between 2 and 4 m/s. On a total of 315 strokes our robots was able to
return 87% of the balls back to the table. A video of several such rallies can be
found on our YouTube channel (https://youtu.be/AxSyXMbV3Yg).

4 Conclusion and Future Work

In this paper we present a new table tennis robot system. Against balls played
from a human with little topspin or no spin, the robot is very successful. In
a next step we need to adapt to different spin types. Using a fifth high-speed
camera we already started to detect the rotation of the table tennis ball using its
logo brand. In the future we will use the system to make the robot play different
types of strokes depending on the ball’s spin.
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Spin Detection in Robotic Table Tennis*

Jonas Tebbe1, Lukas Klamt1, Yapeng Gao1, and Andreas Zell1

Abstract— In table tennis, the rotation (spin) of the ball plays
a crucial role. A table tennis match will feature a variety of
strokes. Each generates different amounts and types of spin.
To develop a robot that can compete with a human player, the
robot needs to detect spin, so it can plan an appropriate return
stroke. In this paper we compare three methods to estimate
spin. The first two approaches use a high-speed camera that
captures the ball in flight at a frame rate of 380 Hz. This camera
allows the movement of the circular brand logo printed on the
ball to be seen. The first approach uses background difference
to determine the position of the logo. In a second alternative,
we train a CNN to predict the orientation of the logo. The
third method evaluates the trajectory of the ball and derives
the rotation from the effect of the Magnus force. This method
gives the highest accuracy and is used for a demonstration. Our
robot successfully copes with different spin types in a real table
tennis rally against a human opponent.

I. INTRODUCTION

One of the most difficult tasks when playing table tennis
is judging the amount of spin on a ball. To achieve the goal
of beating human players of different levels, a table tennis
robot needs to be able to accurately predict spin. A lot of
prior knowledge is required to assign the right spin to a
shot. The major factor used by human players to judge spin
is the opponent’s stroke. It is, however, difficult to detect
stroke movement with a camera. Such an approach would
also require training with a number of different people and
rackets.

German table tennis professional Timo Boll has excellent
eyesight and claims to see the rotation of the ball from the
movement of the brand logo [1]. By recording the ball with
high-speed cameras, it is possible to identify markers on
the ball and detect its rotation. This is the most common
approach in the literature. Tamaki et al. [2] use black lines
on the ball for tracking. Zhang et al. [3], [4] use the logo
printed on the ball.

Another promising approach is to use measurements of
the ball’s trajectory to determine spin. Huang et al. [5] used
a similar approach, involving a physical force model which
included the Magnus force, to determine the rotation of the
ball. Zhao et al. [6], [7] replace the norm of the velocity
necessary to calculate the air resistance. Thus, a differential
equation can be solved and one can fit the speed and spin
values. Blank et al. [8] capture stroke motion using an IMU
mounted on the bat to predict the rotation of the ball. Gao et

*This work was supported in parts by the Vector Stiftung and KUKA
1Jonas Tebbe, Lukas Klamt, Yapeng Gao and Andreas Zell are

with the Cognitive Systems group, Computer Science Department,
University of Tuebingen, 72076 Tuebingen, Germany [jonas.tebbe,
yapeng.gao, andreas.zell]@uni-tuebingen.de,
lukas-raphael.klamt@student.uni-tuebingen.de

Fig. 1. Spin Detection used to return balls with high rotation on a real
robot. Supplementary Video: https://youtu.be/SjE1Ptu0bTo

al. [9] track the table tennis bat using stereo cameras and use
a neural network to classify the different types of strokes.

Our goal is to develop a table tennis robot that can
successfully return spin strokes from a human opponent.
To achieve this we introduce and evaluate three different
methods for spin detection using the movement of the ball’s
logo or its trajectory. Our key contributions are summarized
by the following:
• State of the art spin detection using logo extraction is

improved by circular segment fitting.
• A CNN is trained on ball images outperforming stan-

dard logo extraction methods. For training and evalua-
tion of the CNN a dataset of 4656 images with manual
logo orientation label is created.

• Fitting the different forces to the ball trajectory gives a
robust spin estimation independent of the ball’s logo.

• The trajectory fitting is employed on a real robot
system and gives convincing results playing against a
human opponent, featuring a diversity of strokes (and
corresponding spin types) from both human and robot.
To our knowledge this level of stroke adaption has not
yet been shown by any other robot.

Going beyond the topic of this research work, these
methods could have an impact on spin detection in other
research areas, especially research focusing on sports with
fast flying and strongly rotating balls, like tennis, baseball
or football. As well as developing robots for these sports,
spin detection can also be used for match analysis or
for evaluating and improving player technique. There are
various general robotic applications where it is necessary
to determine the rotation of objects. In the case of table
tennis, processing time is the key factor in determining
whether or not the application will be successful. In modern
highly-dynamic robotic systems, time-optimized object pose
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detection is essential, e.g. when grasping objects in human-
robot collaboration or during autonomous driving in high-
speed traffic.

II. SPIN ESTIMATION FROM THE BRAND LOGO BY
BACKGROUND SUBTRACTION

A PointGrey Grasshopper3 camera is mounted on the
ceiling above the center of the tablet tennis table. The camera
can achieve 162 fps at full resolution (1920 x 1200). A very
high ball spin exceeds 100 revolutions per second. In this
case the ball’s brand logo could be visible only every second
frame. Therefore, we selected a ROI of 1920 x 400 and
record at 380 fps, which is possible with this camera type.
The exposure time was 0.25 ms.

A. Ball Detection

The ball is extracted from the image using a frame differ-
ence method taken from [10]. Figure 2 presents two example
sequences of cropped ball images showing the movement of
the brand logo.

Fig. 2. Top row: A sequence of ball images in which the rotation of the
brand logo is fully visible. Bottom row: The logo is also visible throughout
the sequence, but the movement at the edge of the ball’s image is more
difficult to see.

B. Logo Contour Detection

Ball detection yields an image containing only the ball at
a size of around 70 x 70 pixels. The process of marking all
the pixels that belong to the brand logo is described in figure
3. For all pixels of the logo contour, we want to know the
3D positions on the ball.

(a) (b) (c) (d) (e) (f)

Fig. 3. logo detection process using motion and color features: (a) current
frame, (b) ball without logo, (c) color threshold of a, (d) difference of a
and b (e) binary threshold of d, (f) bitwise or of (c) and (e)

C. 3D Projection

The ball extraction also gives the radius of the ball in
pixels. This is calculated by fitting a circle to the ball blob.
For each contour pixel, we first calculate its position relative
to the ball’s center. The x and y components are then divided
by the ball’s radius. Since our 3D point must lie on the unit
sphere, the z component can be derived from

1 = x2 + y2 + z2.

D. Brand Logo Center

The next step involves calculating the logo center. In our
first approach, we simply normalize the average of all 3D
contour points. This does not take into account the fact that
contour points closer to the ball’s center in the image are
more frequent. The centroid can also be calculated iteratively
using Ritter’s bounding sphere [11] on the 3D contour points.
Normalization projects the centroid onto the unit sphere. As
this did not significantly boost accuracy, we used the first
approach, which was faster.

Fig. 4. Left: 3d projected logo contour for a partially visible ball seen
from the top. Right: Schematic representation of a circular segment

On the camera images only one side of the ball is visible.
Therefore, brand logos may be only partially in view when
they are located at the edge of the shown area. The left
of figure 4 shows a contour transformed into the 3D ball
coordinate space for such an edge case. In this case the
contour does not form a circle but a 2D circle segment, so
the center position cannot be obtained as before.

We approximate the area A as π times the average distance
from the contour (green crosses in figure 4 left) to the
centroid. We know the actual radius r of the logo from
measurements. We can therefore derive the distance from
the centroid c to the real center x from the area A [12]:

A =
r2

2
(2α− sin(2α))

d(x, c) =
4r sin3(α)

3(2α− sin(2α)) .

To get the real 3D center we rotate the centroid c by
angle β = 360◦d(x, c)/2πr around the axis (0, 0, 1). The
circular segment fitting stabilizes the spin detection for the
challenging edge case compared to the original approach of
Zhang et al. [3].

E. Fitting Rotation

After processing 10 to 30 images captured every 1/380s
from the ball’s trajectory as described above, we can estimate
the ball’s spin. For this purpose, we fit a plane through the
center points. The fitted plane should minimize the distance
to the points. Additionally, the distance of the points to
the circle created by intersecting the plane with the ball,
represented as the unit sphere, should be minimized. The
normal of the plane corresponds to the axis around which
the ball rotates. An example is shown in figure 5.

To get the angular velocity, we project the logo positions
onto the plane and calculate the angle ω between two
consecutive logo positions. If the logo was not found on
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Fig. 5. Detected logo positions are labeled in chronological order. The
fitted plane is visualized by a grid of lines. In green one can see the its
normal, which represents the rotation axis of the ball.

two or more successive images, the ball has made a half
revolution. The rotation is therefore described not by the
short angle ω between the points before and after but by the
large angle 360◦−ω. At the end we have a sequence of the
accumulated angles and fit a regression line to the sequence.
The gradient of that line gives us the angular velocity.

III. SPIN ESTIMATION BY CNN ON BALL IMAGE

Our second approach uses a Convolutional Neural Net-
work (CNN) to estimate the visibility of the logo and the
3D pose of the ball. We then use the same algorithm as in
section II-E to estimate the rotation axis and angular velocity.

A. Dataset

To train and test the network, a total of 4656 images were
recorded using our PointGrey Grasshopper3 camera. The
images were cropped around the table tennis ball to have
a fixed size of 60 x 60 pixels. 46.7% were labeled as having
no visible brand logo. The ball’s pose was labeled with the
help of a 3D scene containing a ball with realistic logo
texture. The 3D scene was modeled with the open-source
3D computer graphics software Blender [13]. Each real ball
image was placed transparently over the scene. Next, the 3D
ball model can be optimized to fit the actual image and the
pose can be read out by the Blender Python API.

B. Network Architecture

Related work on pose detection with neural networks [14],
[15] favours the residual network architecture from He et al.
[16]. To use the information for our robot, the model has to
run approximately in real-time. Therefore we use the smallest
of the ResNet architectures from [16] having 18 layers.

Expanding the idea of Mahendran et al. [14] we tested
networks with two additional fully-connected layers (FC)
with 512 neurons each right before the final regressor. This
modification should improve the transformation from feature
space to pose space. The effectiveness of the additional layers
at various dropout rates can be observed in table I.

C. Network Output

There are several mathematical representations of a rota-
tion. One can use rotation matrices, Euler angles, axis angles

representation, or quaternions. Matrices do not fit as output
of our network, as more parameters need to be estimated
and one needs to ensure that the result is within the matrix
subgroup SO(3) of rotation matrices. With Euler angles it
is difficult to represent continuous rotations. As a result,
we trained networks to predict the pose of the table tennis
ball in either axis angle representation or in quaternions. For
either representation, the output is concatenated with a real
number for the visibility of the brand logo. The range of the
visibility value is [−1, 1] to match the z-positions away from
the camera. In the dataset non-visible logos are labeled as
−1.

D. Loss Functions
The proposed neural network has to learn two tasks

simultaneously. It needs to classify whether the brand logo of
the ball is visible and predict the pose of the ball. If the logo
is not visible, the pose cannot be determined. In this case,
the network should not learn any incorrect poses. Hence, we
define a conditional loss function that splits the loss into the
two tasks:

L = Lclassification + tv Lorientation

where tv denotes the binary ground truth visibility value. For
a visible logo, the value is 1. Otherwise it is 0. Therefore,
we call it conditional loss.

When outputting in axis angle or quaternion represen-
tation, we adjust the pose losses for ambiguity. In both
representations, the negative value gives the same orientation
since the rotation in the opposite direction about the negative
axis corresponds to the original rotation. We tested both L1

and L2 norms to get the following conditional losses:

L1 = (ov − tv)2 + tv min

(
n∑

i=0

(oi − ti)2,
n∑

i=0

(oi + ti)
2

)

L2 = |ov − tv|+ tv min

(
(

n∑

i=0

|oi − ti|,
n∑

i=0

|oi + ti|
)

where o = (o1, · · · , on, ov) is the output vector of the
network and t = (t1, · · · , tn, tv) is the target vector.

A more complex, but fairly exact measurement of the
accuracy of rotations is the geodesic distance in SO(3). For
two rotations this metric returns the angle (from axis-angle
representation) of the rotation aligning them both. If R1, R2

are rotation matrices the geodesic distance is calculated as

dGD(R1, R2) = arccos

(
tr
(
RT

1 R2

)
− 1

2

)

For quaternions q1, q2 the geodesic distance is computed by

dGD(q1, q2) = 2arccos(| < q1, q2 > |)
where | · | denotes the absolute value and < ·, · > is the inner
product of 4-dimensional quaternion vectors. As before, we
define a new loss function

LGD = |ov − tv|+ tv dGD (o, t) .

The best performance was achieved by training quater-
nions with the conditional L2 loss (see table II).
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GAP FC dropout train. loss test loss classification geodesic vector angle
cond.-L1 cond.-L1 accuracy in deg. in deg.

1 - - 0.0309 0.3028 0.974 33.97 7.72
- 3 - 0.0342 0.3212 0.975 36.32 8.01
- 3 0.5 0.2674 0.4288 0.974 49.86 19.81
- 3 0.8 0.1347 0.3162 0.974 34.55 13.74
1 3 - 0.1006 0.2199 0.975 24.01 5.08
1 3 0.5 0.0976 0.2215 0.974 23.90 5.16
1 3 0.8 0.1022 0.2161 0.974 23.06 4.89

TABLE I
ALL MODELS ARE RESNET ARCHITECTURES. THE CLASSIFICATION COLUMN SHOWS THE ACCURACY OF THE BINARY CLASSIFICATION TASK.

GEODESIC DESCRIBES THE GEODESIC DISTANCE BETWEEN GROUND TRUTH LABEL AND PREDICTION. VECTOR ANGLE DENOTES THE METRIC FROM

CHAPTER III-D. THE BEST RESULTS ARE MARKED IN BOLD.

loss rotation geodesic vector angle
function representation in deg. in deg.
cond.-L1 quaternions 23.06 4.89

axis angle 27.40 9.93
quaternions 27.92 6.69

cond.-L2 axis angle 30.90 11.20
quaternions 43.38 13.54

L2 axis angle 37.63 17.90
Geodesic quaternions 23.49 5.97

TABLE II
NETWORK METRICS EVALUATED ON NETWORKS TRAINED WITH

DIFFERENT LOSS FUNCTIONS AND ROTATION REPRESENTATIONS.

E. Metrics

The most difficult part of the rotation for the networks
to determine is the logo’s orientation about its center. We
therefore also want to evaluate the accuracy of the network’s
prediction of the position of the logo on the ball only, i.e.
without considering whether it is rotated in itself. For that
we need an additional metric not affected by the orientation.
We convert the rotation of the ball to logo positions, rep-
resented by points on the unit sphere, by rotating the base
logo position (0, 0, 1). The metric is then the vector angle
describing the angle between two positions.

The network is used on several images of the ball trajec-
tory. For the final spin estimation the poses outputted from
the networks are converted to logo positions as described in
the previous paragraph. We then use the same algorithm as
in section II-E to estimate rotation axis and angular velocity.

F. Training Setup

The dataset from section III-A was split into training and
test set with a 4 : 1 ratio. As a result, 3725 images were
used for training and 931 for testing. The networks were
trained with Tensorflow using an Nvidia GeForce GTX 1080
Ti graphics card.

G. Inference Time

In our scenario it is not just accuracy that matters -
time for the evaluation (inference time) is also important.
From the camera we get images at 380 Hz. This gives
us a processing time of 2.6 ms per image for real-time

performance. Segmenting the ball out and cropping takes
0.5 ms, leaving 2.1 ms for the network. The best network
has an inference time of 3.7 ms on a GTX1080 Ti graphics
card. We solve the problem by processing in batches of 5
images, taking only 5.5 ms in total due to reduced overhead.

Our best performing network is an 18-layer ResNet plus
global average pooling and two fully connected layers trained
to output quaternions with conditional L2 loss. Augmenting
the data with 90◦ rotations and Gaussian noise with standard
deviation of 5% achieves the following result:

class. acc. geodesic vector angle
0.96 20.14◦ 4.23◦

IV. SPIN ESTIMATION FROM THE TRAJECTORY

In this section we introduce a way of estimating the spin
from the trajectory of the ball. We utilize the fact that the
rotation of the ball acts on the ball via the Magnus force.
Similar work on the topic has been done by Huang et al. [5].

flight direction

rotation axis

gravitation Fg

air resistence Fd

Magnus force Fm

Fig. 6. The graphic visualizes the three forces acting on the ball: gravitation
pointing downwards, air resistance or drag force in the opposite direction
to the flight, and Magnus force perpendicular to the spin axis and flight
direction.

The forces are depicted in figure 6. The gravitational force
Fg is directed towards the ground. The drag force coming
from the air resistance acts in the opposite direction to the
flight of the ball. The Magnus force is perpendicular to the
rotation axis and the flight direction. The acceleration of the
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ball is therefore calculated by

v̇ = −kD ‖v‖ v + kM ω × v −



0

0

g


 . (1)

The notation is shortened with kD = − 1
2CDρaA/m and

kM = 1
2CMρaAr/m, where the constants are the mass of

the ball m = 2.7g, the gravitational constant g = 9.81m/s2,
the drag coefficient CD = 0.4, the density of the air ρa =
1.29kg/m3, the lift coefficient CM = 0.6, the ball radius
r = 0.02m, and the ball’s cross-section A = r2π. For a
ball with medium to heavy spin the forces all have similar
magnitudes, as can be seen in figure 8.

A. Fitting
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Fig. 7. The top diagram shows the height or z-positions for an example
trajectory. For the same trajectory the z-velocity, calculated between each
pair of neighbouring points, is shown below.

Given 3D observations b1, ..., bn of the ball with ball posi-
tions bi = (xi, yi, zi) at times t1, ..., tn we need to estimate
velocity and acceleration of the ball to derive the Magnus
force. Calculating the velocity between two points is error
prone as seen in figure 7. The problem is solved by fitting
a third degree polynomial P (t) = (Px(t), Py(t), Pz(t)) for
each axis using a standard least-squares algorithm. At time
step t the velocity is approximated by P ′(t) and the total
acceleration by P ′′(t). Rewriting equation (1) with these
approximations yields

kM ω × P ′(t) = P ′′(t) + kD ‖P ′(t)‖P ′(t) +



0

0

g


 .

Here we assume that the rotation vector ω is constant within
the time of flight. We get this equation for each t = t1, ..., tn.
All the equation can be transformed into the equation system
Mω = a with a m × 3 matrix M and an m-dimensional
vector of accelerations a. We then get a least-squares solution
for ω. Note that the acceleration caused by drag force is
perpendicular to the Magnus acceleration on the left. As an
effect our fitting of ω does not depend on the coefficient
kD but only on kM in contrast to other work [5], [7]. In
figure 8 the forces in each step are displayed for an example
trajectory.
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Fig. 8. In the diagram the three involved forces for the Magnus fitting are
displayed for an example trajectory of a topspin ball.

B. Preprocessing: Outlier filtering
The process is error prone to outliers. Even for a slight

impact for the fitted trajectory these outliers can produce
unrealistic fitted spin values. Especially at the beginning of
the trajectory incorrect recognitions can occur when a part
of the human body, e.g. the hand, is detected instead of the
ball due to its roughly circular shape. For the first 20 balls
we select the last 5 balls to form a queue Q and make a
polynomial fit as above. The polynomial is used to predict
ball #14. If the positional error is above a specific threshold,
we mark ball #14 as an outlier. Otherwise, we change Q by
adding #14 to the front and removing the last element (i.e.
#20). Then we continue to test ball #13. Repeating this
process we remove detected objects which do not belong to
the trajectory at the beginning.

With the position b = P (tn), speed v = P ′(tn) and spin
ω we predict the future trajectory. The improvement for the
prediction can be seen in table III. We tested backspin, side
spin and topspin at three different speed settings with our
TTmatic ball throwing machine. For comparison a Kalman
filter is used to only predict position and speed without
considering the angular velocity of the ball. The statistic
includes 90 trajectories in total divided into 10 trajecto-
ries each. The estimated spin values significantly improves
bounce estimation. In contrast to the first two approach using
the ball’s logo, the spin can used for predicting the future
trajectory without adjusting the Magnus coefficient CM . As
we divide by it for spin estimation we multiply again for
prediction. For the other methods, we found no constant CM

independent of the spin type, which gave good results.

With fitted spin Without spin value
in mm Error Stddev Error Stddev

Backspin Low 10.28 5.09 36.78 6.57
Medium 27.02 11.22 125.76 17.08
High 43.37 32.14 170.75 25.15

Sidespin Low 9.68 5.56 43.15 7.99
Medium 16.35 10.47 82.74 13.82
High 27.99 9.80 108.24 11.23

Topspin Low 19.01 5.62 90.10 16.96
Medium 23.36 11.24 167.17 14.76
High 86.84 52.70 338.28 31.00

TABLE III
RESULTS ON BOUNCE POINT PREDICTION FOR BALLS SERVED FROM A

BALL THROWING MACHINE WITH DIFFERENT SETTINGS. FOR EACH

SETTING WE RECORDED 10 TRAJECTORIES.
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V. COMPARISON

In this paper, we looked at three algorithms to detect the
spin of a table tennis ball. The first two can be compared
by evaluating the angular error between the actual and the
predicted logo position. The original background subtraction
method gives an angular error of 5.77◦. We improved it
to 5.06◦ by using circular segment fitting. Our best con-
volutional neural network reached an error of only 4.23◦.
However, both background subtraction methods are faster,
with an average processing time of 0.3 ms, compared to the
network inference at 3.7 ms per image. Batch processing
accelerates inference slightly (section III-G).

For the final spin prediction there are no ground truth
values available. Therefore we evaluate how good the al-
gorithms are for the classification of spin types. Using a
TTmatic ball throwing machine we recorded 50 trajectories
each for 3 spin types and 3 different powers, 9 settings in
total. Unfortunately the machine does not allow the speed
and rotation of balls to be set independently. Faster spin is
therefore accompanied by a higher velocity. The median spin
is calculated for each algorithm and setting. This 3D vector
defines a cluster in three-dimensional space. Each spin value
is then assigned to the nearest cluster center. The accuracy
values in table IV show how many of the trajectories were
correctly classified for each setting.

Surprisingly, the algorithms are similar in accuracy,
slightly in favor of the trajectory fitting. A drop in per-
formance is noticeable for balls with a lot of side spin.
For this spin type the logo often rotates around itself at
the top and hardly changes position. Then the first two
variants reached their limit. For the same case appearing
on the invisible side the logo cannot be seen and evaluated
with these methods. The third algorithm does not suffer
from brand logo dependence. However, it had difficulty
distinguishing between the medium and high backspin. For
these, the trajectories were not different enough leading to
two median values relatively close to each other. All in
all, a good classification can be achieved with all methods.
An improvement would probably achieved by combining an
approach using the brand logo with the Magnus force fitting.

Spin type Background Bg. sub. + CNN Trajectory
subtraction segment fit fitting

Backspin
Low 88.0% 94.0% 96.0% 100.0%
Medium 84.0% 92.0% 94.0% 58.0%
High 70.0% 86.0% 80.0% 60.0%

Sidespin
Low 94.0% 98.0% 98.0% 100.0%
Medium 68.0% 58.0% 74.0% 94.0%
High 60.0% 68.0% 66.0% 100.0%

Topspin
Low 84.0% 90.0% 88.0% 86.0%
Medium 78.0% 86.0% 88.0% 96.0%
High 90.0% 96.0% 96.0% 100.0%

in total 79.6% 85.3% 86.7% 88.2%

TABLE IV
CLUSTERING ACCURACY OF ALL THE ALGORITHMS.

VI. EVALUATION ON A TABLE TENNIS ROBOT

The success of spin detection is demonstrated on a KUKA
Agilus KR6 R900 robot arm. The table tennis robot system
has to respond to different spin types generated by a human
opponent. For this demonstration, we decided to go with the
trajectory Magnus force fitting. It is more accurate, easier
to set up and uses fewer resources. No additional camera
hardware is necessary since the ball’s positions are already
captured to predict the trajectory.

We originally developed a table tennis robot system to
play without spin [10]. In short, the ball position is extracted
from a multi-camera system using color and movement
information. Then the ball’s 3D position is triangulated. To
track the position and velocity of the ball we use an extended
Kalman filter. The future trajectory is predicted from this
using the force equation (1). As soon as we roughly know,
where to hit the ball, we move the robot to this position with
predefined bat orientation and velocity using a custom driver
software and the KR-C4 controller.

In the new spin scenario, the return strokes use a different
bat orientation. It is given in Euler angles in the order zyx.
The z- and x-angle are still only dependent on the y-position
of the hitting point. However, the y-angle β is linearly
dependent on the y-component βspin of the fitted rotational
velocity of the ball. For a topspin or backspin ball with
βspin = ±360◦/s, we use a β of 28◦ and −40◦, respectively.
For other values of βspin, we interpolate linearly. At the
time of hitting the table tennis racket has a velocity of
approximately 1 m/s in the direction of the human opponent.

A video demonstration of the experiment is available
online1. The rubber of the bat is a professional table tennis
rubber with high friction. A lot of spin therefore acts on the
ball after contact with the bat and our robot is still able to
return the ball consistently. As far as we are aware, no other
table tennis robot has yet achieved the feat of returning the
ball under such challenging conditions.

VII. CONCLUSION AND FUTURE WORK

Three methods for spin detection of a table tennis ball
were introduced or further enhanced. These approaches were
compared. Yielding the best accuracy, the trajectory fitting
method is used to generate consistent returning strokes
with our KUKA Agilus robot in cooperative, but highly
challenging spin-play against a human opponent.

In future, we plan to go from cooperative to competitive
strokes. Although our robot control approach is effective
for cooperative spin play, it clearly has limits in terms of
adaptability. Only the angle of the bat while hitting is adapted
using a basic linear model. In a next step, the predicted spin
may help to train the speed and orientation of the bat in a
more sophisticated way using reinforcement learning.

1https://youtu.be/SjE1Ptu0bTo
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Sample-efficient Reinforcement Learning in Robotic Table Tennis*

Jonas Tebbe1, Lukas Krauch1, Yapeng Gao1, and Andreas Zell1

Abstract— Reinforcement learning (RL) has achieved some
impressive recent successes in various computer games and
simulations. Most of these successes are based on having large
numbers of episodes from which the agent can learn. In typical
robotic applications, however, the number of feasible attempts
is very limited. In this paper we present a sample-efficient RL
algorithm applied to the example of a table tennis robot. In
table tennis every stroke is different, with varying placement,
speed and spin. An accurate return therefore has to be found de-
pending on a high-dimensional continuous state space. To make
learning in few trials possible the method is embedded into our
robot system. In this way we can use a one-step environment.
The state space depends on the ball at hitting time (position,
velocity, spin) and the action is the racket state (orientation,
velocity) at hitting. An actor-critic based deterministic policy
gradient algorithm was developed for accelerated learning.
Our approach performs competitively both in a simulation
and on the real robot in a number of challenging scenarios.
Accurate results are always obtained within under 200 episodes
of training. The video presenting our experiments is available
at https://youtu.be/uRAtdoL6Wpw.

I. INTRODUCTION

Reinforcement learning (RL) is, next to supervised and
unsupervised learning, one of the three basic machine learn-
ing areas. RL is a technique in which an artificial agent or a
robot learns an optimal decision-making policy in a specific
environment by trial and error. In recent times, reinforcement
learning has come to great success in various video and
board games such as Atari-Games [1], [2] and Go [3]. After
OpenAI introduced new robotic environments [4], [5], strong
results were also achieved for simulations of various robotic
scenarios [6], [7], [8].

This suggests that these learning algorithms might also be
used to control real robots. It could shorten the development
process for new control algorithms and thus bring robotics
into other previously unavailable application areas. However,
it is not possible to adapt these successful methods directly
[9]. Millions of attempts are often required to solve a task
such as playing an Atari game. On a real robot this is not
feasible in a reasonable amount of time. In addition, ex-
haustive exploration strategies are often not suitable without
damaging the robot and its environment.

In this paper we present a reinforcement learning algo-
rithm for a table tennis playing robot, in which we address
various problems of realistic reinforcement learning applica-
tions in robotics:

*This work was supported in parts by the Vector Stiftung and KUKA.
1Jonas Tebbe, Lukas Krauch, Yapeng Gao and Andreas Zell are

with the Cognitive Systems group, Computer Science Department,
University of Tuebingen, 72076 Tuebingen, Germany [jonas.tebbe,
yapeng.gao, andreas.zell]@uni-tuebingen.de,
lukas.krauch@student.uni-tuebingen.de

Fig. 1. Table tennis robot system with a KUKA Agilus robot. The goal is
to learn the orientation and the velocity of the racket at hitting time.

• Sample efficiency.
In every scenario learning is possible with only a small
dataset of fewer than 200 ball returns.

• Robustness.
The robot is facing multiple sources of noise in ball
measurements, trajectory predictions and arm move-
ments.

• Robot safety.
Exploration is only used sparsely to avoid dangerous
and unreachable configurations.

II. RELATED WORK

A. Reinforcement Learning in Robotics

RL is particularly successful in applications for which
information, such as the dynamics, would otherwise be
necessary to solve the task [10], [11], [12]. In those cases
thousands of episodes could be generated, which is often
not possible in the field of robotics. Different approaches
are needed to overcome this drawback. Often most of the
learning phase is done in simulation and afterwards applied
to the real world [13], [14], [15]. Using multiple robots
in parallel can increase efficiency, for example in a door
opening task [16] or to collect grasping attempts [17]. To
accelerate learning a difficult task one often includes human
knowledge into the RL algorithm. This can mean shaping
the reward function [18] directly or including human feed-
back within the reward signal [19], [20], [21]. Often expert
demonstrations are used for initialization or within training
[22], [23], [24]. Building upon and improving conventional
controllers can make learning in real world scenarios possible
[25], [26]. The RL-algorithm of this paper is embedded into a
robot software environment. This way prior knowledge of the
system is utilized to simplify the learning problem. By using
data from a prediction algorithm and passing the resulting
robot target state to a trajectory planner, we could reduce
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complexity and learn in very few examples, i.e. playing only
200 balls with our table tennis robot.

B. Learning in Robotic Table Tennis
Robotic table tennis is a challenging field for learning

algorithms needing accurate control in a fast-changing noisy
environment. Most of the research is done in simulation. [27]
showed that their Relative Entropy Policy Search method
works in a simulated table tennis environment using only a
sparse reward. Using a one-step DDPG approach similar to
ours [28] could learn very precise policies by simulation up
to 200,000 balls. In [29] a 8-DOF robot was controlled in
joint space with an evolutionary search CNN-based policy
training. [30] developed a trajectory-based monotonic policy
optimization and applied it to learning to hit a simulated
spinning table tennis ball. [31] used a virtual reality envi-
ronment to collect human example strokes and self-train a
policy on top of these.

Applying these techniques on a real robot is another
challenge and approaches are much fewer. In [32] a drone
is equipped with a cardboard racket and learns to hit a
table tennis ball use Dynamic Motion Principles. One key
element was also playing the ball in a flat manner. [33] have
their robot learn a table tennis stroke as a combination of
movement primitives. The motion of the opponent’s racket
is used in [34] to predict the aim of the opponent and adjust
movement timing and generation accordingly. [35] even
developed a new pneumatic robot arm capable of moving
with high accelerations and taught it to smash table tennis
balls using PPO.

All these approaches brought promising results, but could
only play table tennis in a very limited scenario, such as
against a ball throwing machine or using really slow balls.

III. THE LEARNING PROBLEM

Our goal is to teach a KUKA Agilus industrial robot (see.
Fig. 1) how to play table tennis. Two high-speed cameras are
mounted on the ceiling of the robot laboratory to determine
the position of the ball. The robot arm is to perform the
table tennis stroke in such a way that the ball then hits a
target point on the other side of the table with the highest
possible precision. An end-to-end learning model using the
raw images from the cameras can only be realized with an
extremely large number of examples and would need a lot
of processing power. We have therefore already developed a
tracking system that predicts the trajectory of the ball up to
the moment of impact on the bat [36]. As only the point of
hitting between ball and racket is essential, we parameterize
the stroke movement by position, speed and orientation of
the racket at the point of impact with the ball. The position
is estimated by our trajectory prediction algorithm. Speed
and orientation are outputs of the reinforcement learning
problem. Finally, we use them to iteratively plan the arm
trajectory using the Reflexxes Library [37].

A. Interpretation as a Reinforcement Learning Problem
Following the usual practice in reinforcement learning,

we define our problem as a Markov decision process
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Fig. 2. The figure shows several simulated ball tracks with different starting
angles, viewed from the side. The ambiguity is evident by the two black
trajectories with the same achieved goal position.

(S,A, p, γ, r). To reduce complexity, episodes have length 1,
i.e. the transition function p : S×A×S maps all states with
probability 1 to the end state e. The state space S ⊂ R9∪{e}
is a 9-dimensional interval plus end state e. Its elements are
the vectors concatenating the 3D position, velocity and spin
of the table tennis ball just before the stroke. The action
space A ⊂ R2 contains elements (α, β) consisting of the
Euler angles α, β of the bat at hitting time. For episodes of
length 1 the discounting factor γ does not come into play.

B. Reward

The reward should depend on the distance between
achieved goal position and target goal. However, this makes
the optimal solution ambiguous. By only changing one angle
of the racket orientation we can get two ball trajectories with
the same achieved goal reached as illustrated in Figure 2.
One of the trajectories belongs to a very high ball, which is
undesirable as it gives the opponent a good opportunity to
smash the ball. Thus, we also penalize the height of the ball
and define the reward by

r = −|gt − ga| − α · h
where gt is the targeted goal position on the table, ga is
the achieved goal position, h is the height value of the ball
halfway to the goal and α is the coefficient that weights the
influence of the height value.

IV. THE ENVIRONMENTS

A. Simulation

To verify the functionality of the learning algorithm and
for hyper-parameter optimization a simulation was designed
(see. Fig. 3). The ball trajectory is calculated by forward
solving the following differential equation using a forth order
Runge-Kutta method. The underlying equation model [36] is

v̇ = −kD ‖v‖ v + kMω × v −



0
0
g


 . (1)

Here kD is the coefficient for the drag force (air resistance),
kM the coefficient for the Magnus force coming from the
angular velocity (spin) of the ball, g is the gravitational
constant, and v(ω) are the translational (angular) velocity of
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Fig. 3. Simulated example trajectory. The racket is represented by the blue
plane.

the ball. With this we can estimate the trajectory in midair.
For the bounce at the table we apply an elastic collision
model, where the weight of the ball is negligible in relation to
the weight of the table, i.e. mb � mt. In this case we obtain
the new z component of the velocity vector by vb′z = −vbz .
Analogously we proceed for the collision between ball and
racket. Again, the racket connected to the robot arm is much
heavier, mb � mr. First we transform the velocity vectors
vb and vr so that the z axis is in the direction along the
normal of the racket plane. We refer to this transformation
as T . Then by one-dimensional elastic collision we have

(Tvb)
′
z = 2 ∗ (Tvr)z − (Tvb)z.

While the flight model is rather realistic, the bounce models
are now oversimplified. Still, the simulation provides a
solid, repeatable test-bed for performance evaluation of the
algorithms.

B. Robot

On the real robot we use the Robot Operating System
(ROS). The trained actor network is evaluated in a Python
ROS node. The process is illustrated in figure 4. We use
a stereo system with two PointGrey Chameleon3 cameras
to record the table tennis ball. The ball tracking node finds
the ball on each camera using traditional image processing
and triangulates the pixel positions to output the position of
the ball in 3D [36]. In the high-level node the sequence of
positions is stored. After an outlier removal the sequence is
used to predict the state of the ball at the time it hits the
racket. The velocity and the position are estimated using an
extended Kalman filter [36]. The spin is derived from the
trajectory by using our Magnus force fitting approach [38].
Each new prediction is forwarded to the stroke parameter
node where the actor is evaluated. It outputs the desired
state of the racket at hitting time which is then sent to the
trajectory generation node. Using the Reflexxes library [37]
the trajectory of the robot arm is calculated and finally sent to
the KUKA Agilus KR6 R900 robot using the Robot Sensor
Interface (RSI).

To give the robot more time for the movement execution
we begin with actions computed from early hitting state
predictions and gradually refined as more accurate measure-
ments become available. For the purpose of training only the
last, most accurate, values are used.

Cameras
2 x PointGrey Chameleon3

Framerate: 149 fps
Resolution: 1280 x 1024 

Ball Tracking Ros Node

Output: 3D Ball Position

High-Level Ros Node

Predict Hitting Point Define Robot Stroke

Stroke Parameter Node

In: Ball State at Hitting Out: Racket State at Hitting

Kuka Agilus Robot Arm

Trajectory Generation Node

In: Racket State at Hit

Out: Next Robot Position

Fig. 4. Process on the real robot.

V. THE ALGORITHM

Our algorithm uses an actor-critic model similar to DDPG
[6] / HER [7]. The training of the critic is adapted in such
a way that a parameter vector independent of the target goal
is learned instead of the reward. Together with the target
goal the corresponding reward can be calculated. Using the
gradient of this function, the output of the actor is trained to
maximize the reward. The approach is depicted in figure 5
and it will be denoted by APRG (accelerated parametrized-
reward gradients).

The deterministic actor-critic model consists of two com-
ponents. A supervised trained critic network and an actor
model outputting the learned policy trained with the help of
the critic’s gradient (see Fig. 5).

Action

Actor

Critic

Ball State Goal

Achieved Goal Height

Reward

Fig. 5. Modified actor-critic model using a parameterized reward.

A. Critic

In our scenario the critic receives the ball state (predicted
position, velocity and spin at hitting time) and the action
(orientation and velocity of the bat) as input and outputs
the achieved goal position and average ball height above the
table estimated for the specified state and action. The L2-loss
is used for training. Learning reward parameters and not the
reward itself has several advantages. The critic does not need
the desired goal as input and the parameters are less complex
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Algorithm 1 Training algorithm
Randomly initialize critic network Q(s, a|θQ) and actor µ(s, g|θµ) with weights θQ and θµ.
Initialize replay buffer B
Initialize a random process N for action exploration (with large variance in warm-up phase)
for episode = 1, E do

Receive observation state se and desired goal ge
Select action ae = µ(se, ge|θµ) +Ne according to the current policy and exploration noise
Post-optimize action ae using the gradient of the reward function R:

∇aR(Q(s, a|θQ), g)|s=se,a=ae,g=ge
Execute action ae and observe reward parameters re
Store episode (se, ae, re) in B
if after warm-up phase then

for training_step = 1, S do
Sample a random minibatch of N episodes (si, ai, ri) from the replay buffer B
Update critic by minimizing the loss: L = 1

N

∑
i(ri −Q(si, ai|θQ))2

Update actor policy using the sampled policy gradient:

1

N

∑

i

∇θµR(Q(s, µ(s, g|θµ)|θQ), g)|s=si,g=gi

end for
end if

end for

than the complete reward function. This helps to reduce
complexity. Also, the outputs are easier to be understood
by a human which helps in debugging.

B. Actor

The actor is fed with the ball state and the target goal
position and should return the action. To train the actor
we assume the critic weights fixed and derive the reward
with respect to the actor weights. Using this gradient in the
optimization step, the actor will use actions which maximize
the reward calculated from the critic’s output. The training
procedure is written down in algorithm 1.

C. Exploration

Exploration on the real robot is not suitable for the whole
action space. Part of the search space might include robot
configurations which are not reachable at all or in the
available time. We decided to start recording actions with
small Gaussian noise added to a safe action. With enough
samples the gradient of the critic is roughly pointing in the
correct direction for improvements, and we can start training.
In most cases the actions are then changing in a way using
only feasible configurations.

A one-step DDPG approach was already proposed for
robotic table tennis [28]. Unfortunately they only showed
performance for between 10, 000 and 200, 000 training ex-
amples generated in simulation. Our approach is tested also
on a real robot and most experiments are conducted on as
few as 200 episodes. It is also differing from classical DDPG
by the following modifications:
• The critic is to output the parameters needed to calculate

the reward instead of the reward.
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Fig. 6. Comparison against the baseline algorithms. Showing the five
results for the best parameters from 100 tested trials using the Optuna
hyperparameter optimization framework.

• We post-optimize the actions via SGD.
• We start with a warm-up phase of random actions

instead of ε-random action in-between learning.

VI. EXPERIMENTS IN SIMULATION

To get a set of effective hyperparameters we have con-
ducted a parameter search on our simulation with the Optuna
framework [39]. For comparison, we also train policies
using the state-of-the-art algorithms from the stable baseline
repository [40] ([41], [42], [6], [7], [43], [8], [44], [45]).
For a fair evaluation we did hyperparameter optimization for
each of the baseline models. As the learning process seems
to have a high variance, we decided to average over five tries
for each set of parameters. With the Optuna framework we
tested 100 parameter configurations for each method. Figure
6 shows results for the best parameters, respectively. It is
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Fig. 7. Result for training on the real robot in four scenarios. The experiments always started with a warm-up phase of 30 random actions. The green
line represents the running average over the 30 episodes.

evident, that DDPG-based methods (APRG, PRG, DDPG,
TD3, and HER) are performing better.

Our APRG algorithm stays at the top with an average
goal error of 40.6mm. It also shows that post-optimization
(APRG) gives better results than unoptimized parametrized
reward gradients (PRG), but one can get faster inference time
with PRG at the expose of a little accuracy.

For be fair, we must mention that the difference between
the algorithms becomes smaller when learning over 2000
episodes or more. However, performance on a smaller num-
ber is more relevant, because in table tennis, rapid adaption
plays a major role. In cooperative play with the real robot,
human players quickly became impatient when they could
not see any improvement in the robot returns.

VII. EXPERIMENTS ON THE ROBOT SYSTEM

To show that our method also works on the real robot we
conducted several experiments of increasing complexity.

A. System noise

In a first experiment we want to find out how much noise
the learning process has to cope with on the real robot. For
this purpose we let the ball machine TTMatic 404 serve the
ball 200 times in the same way and let the robot return the
ball with unchanging, predefined action parameters. In fact,
the balls have the same hitting position with an accuracy of
46.6mm and an average speed deviation of 0.92m/s. The
deviation of the achieved target positions for the resulting
robot returns is much larger with an average accuracy of
123.9mm. We assume that to be the limit achievable in the
best case. This shows how challenging the scenario is.

B. Human play in regular exercises

In our main experiment we deducted experiments against
a human player on four increasingly challenging exercise
scenarios. The player is playing the ball in a predefined
sequence. In this way we can judge the performance for
increasing difficulty. But these types of exercises are a regular
part of table tennis training for amateurs as well as profes-
sionals. So a robot capable of learning these could augment
human training procedures. The algorithm is starting from
scratch using a warm-up phase of 30 random actions and a
total of 200 episodes/ball contacts.

The following scenarios are tested:

• Simple backhand serves.
The human is always playing the same serve and the
robot has to return to the middle of the table (Goal:
[2000, 0]).

• Serve and human I-play.
The human begins with a serve and the rally is contin-
ued along the mid-line of the table (Goal: [2400, 0]).

• Serve and human V-play.
The human begins with a serve and has to alternate the
ball placement between the left and right side of the
table, on success forming a V-shape (Goal: [2400, 0]).

• Serve and human X-play.
The human begins with a serve and in the following
ball exchange the robot and the human place the ball
alternately on both sides of the table, forming a X shape
if successful (Goals: [2200,−300] and [2200, 300]).

The goal coordinates are specified in the coordinate system
of the table, where x = 0/1370/2740 is the robot’s table end
/ net line / human’s table end and y = −762/0/762 is the left
end / middle line / right end of the table. The odd numbers

Appendix C Sample-efficient Reinforcement Learning in Robotic Table Tennis

76



are coming from the standard table size of 9ft×5ft×2.5ft.
The results are presented in figure 7. To put the result

into perspective, consider the limit of 124mm of the fixed
action evaluated by the first experiments. So for the serve-
only scenario an average of 136mm (x: 114mm, y: 47mm)
to the goal for the last 50 balls is coming very close to
that. In the I-play scenario the rally is continued after the
serve making it more challenging. A result of 269.2mm
accuracy in the last 50 episodes is worse, but the x-error
is 243.3mm and the y-error is 78mm showing that the ball
is still playing accurately to the middle of the table. The
V-play has more deviation from the human player, as each
ball is played differently. In this exercise we could achieve
a goal error of 329mm (x: 177mm, y: 126mm). Even more
challenging is the X-play achieving a goal error of 393mm
(x: 282mm, y: 238mm).

C. Human play with different opponents

The experiments from the last section were all conducted
with a player very familiar with the robot and its behavior.
To test the robot also against different play styles, we invited
three players of the local table tennis club. They were just
instructed to play cooperatively with the robot.

Results are presented in figure 8. Performance losses are
visible when players have tried new strokes or placements.
But the error always converged to an acceptable value.
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Fig. 8. Result for training on the real robot against three human players.
The experiments always started with a warm-up phase of 30 random actions.
The lines represent the running average over the last 50 episodes.

D. Using a ball throwing machine

While our main focus is playing against a human op-
ponent, we also did a learning experiment with a ball
throwing machine. This scenario is particularly suitable for
comparisons, as this is the most common test for table tennis
robots in the literature. At first the machine should place
the ball only on one spot, analogous to the system noise
experiment. The robot should learn the action for returning
the ball to the middle of the table (Goal:[2400, 0]). This
results in a very accurate return with a goal error of 118mm
(x: 85mm, y: 63mm) over the last 50 of 200 episodes in
total. Secondly we change the ball throwing machine to
distribute balls evenly on the side of the robot. Here we have
an accuracy to the target of 209mm (x: 172mm, y: 88mm).

A comparison of our results to other table tennis robots
in the literature can be found in table I. Since most papers

only record the return rate of balls successfully played
to the opponent half of the table we also included these.
It is clearly visible that our approach is achieving state-
of-the-art performance. Only [46] has a better return rate
for an oscillating ball machine distributing on an area of
0.7mx0.4m. But the area of our ball throwing machine is
larger with 1mx0.3m covering more extreme angles on both
right and left side of the table, making our scenario slightly
more challenging.

robot stroke sample hitting return error
model type size rate rate to goal

KUKA Agilus
KR6 [our] serve 50 100% 100% 135mm

[our] I-play 50 98% 96% 269mm
[our] V-play 50 100% 88% 329mm
[our] X-play 50 98% 92% 393mm
[our] occ. BM 50 98% 88% 209mm
[our] fixed BM 50 98% 98% 118mm

Barrett WAM
[47] occ. BM 200 - 80% -

Barrett WAM
[46] occ. BM 30 - 97% 460mm

[46] I-play - - 88% -
Muscular

Robot [35] fixed BM 107 96% 75% 769mm

Wu/Kong [48] occ. BM 732 - 71% -
lab-made [49] fixed pos. - - 80% -

TABLE I
COMPARISON AGAINST OTHER TABLE TENNIS ROBOTS.

VIII. CONCLUSION AND FUTURE WORK

In this research work a RL algorithm was developed for
sample efficient learning in robotics. Extensive experiments
were conducted to test it in a real robotic environment.
It should determine the parameters for the optimal return
of a table tennis ball. The results are measured by the
accuracy with respect to a defined target on the table. The
learning process is integrated into an existing robot system
using a KUKA Agilus KR 6 R900 robot arm. The robot
could learn an accurate return in under 200 balls. This
demonstrates robust and effective learning in a very noisy
environment. Comparing the success rate of the returns, our
algorithm beats the previous research approaches. Beyond
the application for robotic table tennis, our method can be
used in all cases where the trajectory of a robot can be
represented by a lower-dimensional parameter vector, as in
our case orientation and speed at the hitting point.

On the way to competitive play against top human players
there is still a lot to do. In the future we plan to let our robot
learn in even more challenging match realistic scenarios. This
requires generalization for many more domains like serve/no
serve, topspin/backspin/sidespin, short/long balls etc. The
goal parameters should also include speed and spin, which
will be needed for a successful strategy capable of beating
advanced human players.
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For table tennis robots, it is a significant challenge to understand the opponent’s move-
ments and return the ball accordingly with high performance. One has to cope with

various ball speeds and spins resulting from different stroke types. In this paper, we

propose a real-time 6D racket pose detection method and classify racket movements into
five stroke categories with a neural network. By using two monocular cameras, we can

extract the racket’s contours and choose some special points as feature points in image

coordinates. With the 3D geometrical information of a racket, a wide baseline stereo
matching method is proposed to find the corresponding feature points and compute the

3D position and orientation of the racket by triangulation and plane fitting. Then, a
Kalman filter is adopted to track the racket pose, and a multilayer perceptron (MLP)

neural network is used to classify the pose movements. We conduct two experiments to

evaluate the accuracy of racket pose detection and classification, in which the average
error in position and orientation is around 7.8 mm and 7.2 by comparing with the ground

truth from a KUKA robot. The classification accuracy is 98%, the same as the human

pose estimation method with Convolutional Pose Machines (CPMs).

Keywords: racket pose detection; pose classification; stereo matching; table tennis robot.

1. Introduction

Racket sports such as tennis, table tennis and badminton are popular worldwide.

From a robotic point of view these sports pose several challenges, which should

be addressed in real-time, for example, human motion analysis [1], racket 3D pose

detection [2], flying ball position estimation [3] and robot trajectory planning [4].

With motion tracking technology for players or rackets, the robots can achieve

an anticipatory action predicted from the human’s movements, so that there is

more execution time left for hitting movements. Tracking human motions or racket

motions also allows robots to imitate the human motion to learn how to play human-

like table tennis. When a ball flying towards the robot is recognized, a precise hitting

1
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Fig. 1. Table tennis robot system with KUKA Agilus robot. There are four PointGrey Chameleon3

cameras mounted on the ceiling corners far away from each other to occupy more scenario, where
two cameras opposite to human are used to detect the racket and another pair is for table tennis

ball detection. A table tennis racket is rigidly fixed at the end effector of robot in a type of penhold

grip. The robot coordinate is set as the world coordinate and the center of racket is defined as the
tool coordinate center.

position will be estimated by combing ball position and spin together using a curve

fitting algorithm [5] or an extend Kalman filter [6]. Finally, the robot will strike

the ball back with an optimal human-like action determined by large amounts of

training data.

With various racket movements generating different spin categories, racket

sports are full of fun and challenges. To detect the 3D racket pose (position and

orientation), much research has been done with sensors and markers. Ohya et al.

[7] positioned four stationary cameras in order to cover a large field of view. By

assuming the tennis racket to be modeled as ellipse shape, they estimated the 3D

racket position with the fundamental matrix, which had ten to forty percent more

success rate than only using one camera. Elliott et al. [8] employed a markerless

approach with a master camera fixed and a slave camera dynamically located at 21

different positions to detect a set of tennis racket silhouette views. With single view
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fitting techniques, the 3D racket position was estimated with a spatial accuracy of

1.9 ± 0.14 mm. Chen et al. [9] established a high-speed monocular vision system

to track a table tennis racket labeled with some special marker lines in the form

of a black rectangle in the middle and a white line parallel to one of the black

lines. They can be extracted into several corners as feature points and the pose is

computed based on perspective-n-point and orthogonal iteration algorithms. Blank

et al. [10] attached inertial sensors into table tennis rackets to detect and classify 8

different stroke types from 10 amateur players. The success rates for detection and

classification did reach 95.7% and 96.7%, respectively. Zhang et al. [2] fused inertial

measurement unit (IMU) data with the method [9] based on an extended Kalman

Filter for obtaining an accurate and robust racket pose. The racket position was

computed from cameras and its orientation was estimated from both cameras and

IMU resulting in an average angle error of 1.1.

In this paper, we present a novel approach for table tennis racket pose detec-

tion without markers or IMU based on stereo vision in a table tennis robot system

[11]. The system is shown in Figure 1. As the black side of a table tennis racket

is nearly invisible against our very dark field enclosure, the current system is re-

stricted to detect the red side only. It can be extracted as a binary contour using

a color thresholding method similar to the table tennis ball detection in [11]. To

accelerate the detection process, we use bucket fill to find a connected component

starting from the estimated point with the specified color threshold that determines

the amount of connectivity. By ellipse fitting this contour, we can extract isolated

point features located at the intersection area of ellipse and contour. Combing the

epipolar constraint with the 3D geometrical size of the racket, we can match the

corresponding feature points from two cameras. Triangulation results in 3D points,

which are used for fitting the orientation of the plane going through the racket cen-

ter. A Kalman filter is used to track the 3D pose and smooth the trajectories. Next,

we classify these trajectories into five categories using a neural network in order to

determine with which kind of spin the ball is played back. In the experimental re-

sults, we evaluate the poses against ground truth from a KUKA robot and compare

our classification with a different method using human pose estimation.

The subsequent part of this paper has the following structure: Section 2 intro-

duces related work. The proposed method is presented in Section 3. The evaluation

and comparison are examined in Section 4. This paper is concluded in Section 5.

2. Related Work

2.1. Feature Extraction

Feature extraction involves a detector in the form of points, lines, blobs, or shapes,

and a descriptor to generate a unique vector representing these features. ORB (ori-

ented FAST and rotated BRIEF) is one such descriptor [12], which is currently

popular. It incorporates the FAST key point detector with modified BRIEF de-

scriptor to provide a fast and efficient alternative for SIFT, SURF, KAZE and
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BRISK. However, there is an inherent disadvantage in the point-based method in

low-textured scenarios in that it will fail due to the lack of reliable feature points.

Consequently, line based methods are a possible solution since there are many sur-

faces like desks, doors and walls in low-textured scenarios, which are rich in line

features. In [12], a proposed method with line segments for indoor visual localiza-

tion is employed to handle low-texture images with a wide baseline, which is far

better than other point based methods. In our case, the racket lacks both texture

and lines, so that the above methods are not suitable to extract features from the

racket face.

2.2. Stereo Matching

Stereo matching defines the correspondence problem, in which we find the corre-

sponding points in two camera images. It is is divided into feature based stereo and

area based stereo [13] . Following the feature extraction, feature based stereo utilizes

the L1 norm or L2 norm for string based descriptors (SIFT, SURF, KAZE etc.)

or Hamming distance for binary descriptors (ORB, BRISK etc.) to differentiate

features in corresponding pairs [14]. Area based algorithms depend on the epipo-

lar constraint for rectified images to search the corresponding points in the same

image rows including local (NCC, SAD) and global methods (dynamic program-

ming, graph cuts). A well known approach for real-time stereo vision is Semi-Global

Matching (SGM) [15], which approximates a global 2D matching cost aggregation

by minimizing the energy function from 8 or 16 different directions through the

image. It can obtain the same accuracy as global matching but with lower runtime.

Recently, end-to-end deep stereo gas become very popular to solve the stereo match-

ing problem with CNNs models, consisting of embedding, matching, regularization

and refinement modules [16]. However, they currently cannot yet fulfill real-time

requirements.

2.3. Pose Classification

Player motion analysis is beneficial because the motion of the player determines the

motion of the racket, and consequently the speed and spin of the ball. Chu et al.

[17] extracted histogram of oriented gradient (HOG) features from badminton videos

and employed a support vector machine (SVM) to classify a player’s stroke into six

types (clear, drive, drop, lob, smash), which resulted in 83.33% average accuracy.

Srivastava et al. [18] developed a sports analytics engine based on an IMU to detect

the tennis shot with a modified Pan-Tompkins algorithm, and proposed a time-

warping based hierarchical shot classifier by using Dynamic Time Warping (DTW)

at the first level (forehand, backhand and serve) and Quaternion Dynamic Time

Warping (QDTW) at the second level (slice and non-slice). The accuracy at DTW

and QDTW were 99.6% and 90.7% for professional players, 99.3% and 86.2% for

novice players. With CNNs, Bearman et al. [19] addressed the human joint location

as a regression problem and used weight initialization from a trained AlexNet to
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classify human activity into 20 categories with the accuracy of 80.51%. In our work,

a neural network including two hidden layers is utilized to train the racket pose

trajectories and classify them into five types to achieve an accuracy of 98.7% on

strokes of the same player.

3. Approach

3.1. Racket Detection

Fig. 2. Racket detection process with dynamic window from the right camera. Motion detection:

subtract the background from current frame. Color Threshold : compute the binary image from

RGB space. Racket Contour : bitwise AND operation from previous step. Refinement : bucket fill
results.

To lower the impact on lighting variations, we choose the HSV color space instead

of RGB and adopt the color thresholding algorithm similar to [11] with different

boundary values to detect the red side of the racket. Multiple features of the racket

are fused to extract the whole racket contour, like area and aspect ratio. Fig. 2

illustrates the pipeline of racket detection in the right camera, which includes four

steps.

We primarily find the moving objects using a static frame difference method by

subtract the background from current frame. The lighting between current frame

and background is slightly different because we use the auto-exposure mode that
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dynamically adjusts parameters including gain, shutter time and white balance.

Performing thresholding and morphology operations , we can get the binary images

in the Color Threshold step resulting in the racket contour processed by bitwise

AND operation.

Considering the property of the racket contour, we can determine it based on

the following conditions:

200px ≤ Area ≤ 3000px (1)

1/3 ≤ AspectRatio ≤ 3 (2)

0.3 ≤ AreaExtent ≤ 1 (3)

where Area is the contour area in pixels. AspectRatio is the contour aspect ratio of

the minimal containing up-right bounding box. AreaExtent is the ratio of Area to

the bounding box. The contour with the largest area satisfying the condictions is

chosen. Its center is used to triangulate the racket’s center 3D position.

Once the racket is recognized in both current and previous frames, we first

predict the position of the racket in the next frame by adding the current position

with the position difference of the last two frames. Then, we exploit a region of

interest (ROI) around the predicted position to crop the full image into a dynamic

window in order to accelerate the detection process. Secondly, a multithreading

technique supplied by C++ is used to execute image processing concurrently for

the left and right camera images. The third acceleration method called bucket fill

is applied to find a connected component spreading from the seed point until the

color value is out of specified range computed as follows:

C(x, y)H − LH ≤ C ′(x, y)H ≤ C(x, y)H + UH (4)

C(x, y)S − LS ≤ C ′(x, y)S ≤ C(x, y)S + US (5)

C(x, y)V − LV ≤ C ′(x, y)V ≤ C(x, y)V + UV (6)

where H,S, V are the components from HSV model. C(x, y)H is the H component

value at the seed point (x, y). C ′(x, y)H is the repainted H component domain

presenting the new racket contour. L or U is maximal lower or upper color difference

between the seed point and one of its neighbours. Fig. 2 shows that bucket fill yields

better results than color thresholding with a runtime decreasing from 6.5 ms to 2

ms.

3.2. Racket Matching

When the 2D pixel coordinates of the racket’s center are available from the two

cameras, we can reconstruct these points as the racket 3D position by triangulation.

The 3D orientation can be defined as the unit normal vector of the racket plane.

Matching the left and right contours directly is difficult because of their random

and uncertain shapes.Therefore, we want to find some corresponding feature points

on the edge of the racket to recover the 3D plane in point-normal form.
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3.2.1. Features Extraction

(a) Contour (b) Ellipse (c) Features

Fig. 3. Features (c) extraction from the intersection area between contour (a) and ellipse (b).

Since the racket plane is low-textured and the two cameras are far away from

each other, features detection and description is difficult. The strong edge around

the racket contour is used to extract the feature points in the undistorted images,

which will not be rectified due to wide baseline and large rotation angle.

We approximate the edge by three ellipse fitting methods supported by [20]

including normal least squares (LS), Approximate Mean Square (AMS) and Direct

least square (Direct) aimed at finding the best one which has the largest degree of

overlapping D between the edge and ellipse formulated as following:

D =
Noverlapping

Nedge
(7)

where Noverlapping and Nedge are the pixel numbers of the intersection area and the

edge. We calculate D for a sequence of images and show the comparison in Table 1.

The direct method is adopted for ellipse fitting because of its performance. Then,

we choose the points on the intersection area as feature points, shown in Fig. 3.

Table 1. Comparison of ellipse fitting models.

Methods LS AMS Direct

Degree 53.77% 56.60% 58.33

3.2.2. Stereo Matching

Next, we do not intend to match the two sets of feature points to each other, but

find the corresponding points in another contour’s edge. Depending on the epipolar

geometry, we can narrow down the choice of candidates of corresponding points
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on the epipolar line. The points lying on both edge and epiline are the potential

corresponding points of the feature points. Fig. 4 gives an example where PR and P ′R
are the intersection of edge and epiline related to the left point PL. By means of the

racket size, we can find the correct corresponding point from these two candidates

described as:

P1 = Triangulate(PL, PR) (8)

P2 = Triangulate(PL, P
′
R) (9)

75 ≤ |Pos− Center| ≤ 90 Pos ∈ [P1, P2]. (10)

Here 75 mm and 90 mm are the length of the minor and major semi-axes. Center

is the 3D position of the racket. Therefore the inequality should be satisfied for a

correct edge point. The algorithm chooses the point having the shortest distance

by ( ||Pos− Center| − 75+90
2 | ).

Fig. 4. Finding the potential candidates PR and P ′R in the right camera corresponding to PL. OL

and OR are the optical centers of the cameras lenses. The epipolar line in the right camera passes

through the epipole ER, the image points PR and P ′R.

3.2.3. Outliers Removal

The feature matching method aforementioned can produce many corresponding

pairs consisting of inliers and outliers. Because of these pairs on same surface, a

homography matrix H for removing outliers can be derived as a 3x3 matrix but

with 8 DoF estimated by:

s



xi

′

yi
′

1


 = H



xi

yi
1


 =



h11 h12 h13

h21 h22 h23

h31 h32 1





xi

yi
1


 (11)
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(a) (b)

(c) (d)

(e) (f)

Fig. 5. Feature matching results including six examples in the left and right cameras. The grip
type in (a)-(c) is penhold grip. (d)-(f) use the shakehand grip. The corresponding pairs are labeled

with same color in order to distinguish the correct pairs.

where s is a scale factor. [xi, yi] and [x′i, y
′
i] are the ith pixel coordinates from left and

right cameras. According to this transformation, we can minimize the re-projection

error function after projecting points from one image into another given by:

∑

i

(x′i − x̂i)
2

+ (y′i − ŷi)
2

(12)

where x̂i = h11xi+h12yi+h13

h31xi+h32yi+1 , and ŷi = h21xi+h22yi+h23

h31xi+h32yi+1 . They are the reprojected

image coodinates.

However, using the whole pairs for matrix estimation will lead to a poor re-

sult. We utilize the Random SAmple Consensus (RANSAC) [21] to estimate the

homography matrix by randomly selecting different subsets of the corresponding

pairs and select the subset with the minimal re-projection error. Here, the outliers

will be removed if the reprojection error is more than 3 pixels.
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The final matching results are shown in Fig. 5 including 3 penhole and 3 shake-

hand types. Each corresponding features pair in the left and right cameras is labeled

with the same color to be distinguished clearly.

3.2.4. Plane Fitting

Reconstructing the corresponding pairs by triangulation, we can get a series of 3D

points [xi, yi, zi]
T that can be used to estimate the equation of the racket plane

ax + by + c = z. The centroid of these points is defined by the 3D racket center.

The normal vector [a, b, c]T is described as:




x0 y0 1

y1 y1 1

...

xn yn 1






a

b

c


 =




z0
z1
...

zn


 (13)

This can be written in the form AX = B. A common method to solve X is Singular

Value Decomposition (SVD) by which A is decomposed as:

An×3 = UnSn×3V
T
3×3 (14)

where U and V are orthogonal matrices, S is a diagonal matrix, and n is the

number of corresponding pairs. Then, the last column of V indicates the value of

normal vector [a, b, c]T . Normalizing this vector, we can get the unit norm vector

representing the racket’s orientation. We measure the processing time for racket

detection and matching shown in Fig. 6. The stereo matching needs around 8 ms.

The total time for racket pose estimation needs about 10 ms, which means we can

estimation the racket 6D pose at 100 FPS.

Fig. 6. Processing time for racket detection and matching.
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3.3. Tracking

Tracking the racket pose offers two advantages. We can use the estimated pose

when there is an occlusion or the racket is disappearing. Also it can provide a much

smoother estimation of the racket pose. In this paper, we employ a discrete Kalman

filter that is very efficient and powerful for estimating the pose [x, y, z, a, b, c]T . We

define the racket state Xt with 15 variables:

Xt = [xt, yt, zt, ẋt, ẏt, żt, ẍt, ÿt, z̈t, at, bt, ct, ȧt, ḃt, ċt] (15)

A simple motion model is used to compute the next expected state Xt+1:

pt+1 = pt + ṗt ∗∆t +
1

2
p̈t ∗∆t2 (16)

ṗt+1 = ṗt + p̈t ∗∆t (17)

θt+1 = θt + θ̇t ∗∆t (18)

where p ∈ [x, y, z] and θ ∈ [a, b, c]. Then, we can project the next state and error

covariance ahead from current time and update them with current measurement.

From Fig. 7, we note that in 30 frames, the estimated pose appears considerably

smoother than the original one without Kalman filter.

3.4. Classification

Realizing the exact pose trajectory is not possible for humans, but people can still

play table tennis really well due to their ability to recognize different stroke types.

For robots, it is important to know not only what the exact pose is, but also which

strike type is generated. There are many different types of stroke, but we can divide

them into five basic categories: 1) Counter Hit. It is used to stop an aggressive,

attacking stroke from your opponent by moving the racket and keeping it at the

same angle. 2) Left Spin. It will be imparted when the racket moves to the left,

which make the ball to bounce off in the same direction. 3) Right Spin. It is the

opposite of left spin. 4) Top Spin. It is produced by starting the racket below the

ball and hitting the ball in an upward and forward direction, which causes the ball

to jump forwards after bouncing off the table and the opponent need to return with

the racket face closed. 5) Back Spin. It is the opposite of top spin, with a downward

stroke of the racket. If the opponent does not reply with a back spin or a strong

top spin himself, the ball will drop down and into the net.

We stored the previous 30 frames to extract the trajectories of the racket pose

once the ball flying towards robot is detected. To distinguish which spin type these

trajectories belong to, we created a classifier based on a neural network containing

two operations and two hidden layers able to predict in testing set:

3.4.1. Flatten operation

The input shape is 30 × 6, which means each frame from the previous 30 frames

includes six values (x, y, z, a, b, c). This layer converts the 30 × 6 matrix into a 1D
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Fig. 7. Kalman filter tracking in 30 frames for racket position (x, y, z) and orientation (a, b, c).
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feature vector 1 × 180 used in the artificial neural network (ANN) classifier. To

simplify the dataset and make training more robust, we use the relative position

to the last position in the 30th frame instead of the absolute value, and normalize

them into unit vectors.

3.4.2. Dense layer

It is also called fully connected layer and first performs a linear operation in which

every neuron from the previous layer is fully connected to this layer by a weight

matrix kernel as following equation:

output = ReLU(input · kernel + bias) (19)

where the shape of output adopted in this paper is 128-dimensional. As activation

function ReLU (Rectified Linear Unit) is used to introduce non-linearity. bias is a

bias vector created by this layer.

3.4.3. Dropout operation

By randomly setting a rate of input units to zero during the training phase of this

set of units, we can reduce the over-fitting of training data. Here, rate is assigned

to 20%.

3.4.4. Dense layer

This layer performs classification on input units into five categories. We choose the

softmax function to activate the Dropout layer.

For each spin type, we recorded 200 videos to generate the racket trajectories

and human pose, respectively. Among them, 80% of the dataset are used to learn the

classification model, and the remaining 20% are used as test dataset. In training, we

use the Adam optimizer and a loss function with sparse categorical cross-entropy.

Then we can train the model for a specified number of epochs. To compare the

classification difference of pose, position and orientation, we experiment with them,

respectively. From Table 2, we can find the best performing is the 6D pose. The

accuracy with 3D orientation is much better than the 3D position

Table 2. Classification accuracy comparison.

6D Pose 3D Position 3D Orientation

Training Set 98.7% 51.58% 94.8%

Testing Set 98.2% 50.63% 93.6%
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4. Experiments

In this section, we conduct two experiments to evaluate the performance of our

proposed methods. All processes are executed on one host PC with an Intel i5-4590

CPU, 16GB RAM and a GeForce GTX 1050 Ti GPU.

We first use a pair of cameras facing the robot to detect the pose of the racket

mounted at the robot end effector shown in Fig. 1, and compare it with the ground

truth data read from the robot controller. Then, we adopt an existing 2D human

pose estimation model, Convolutional Pose Machine [22], to extract human joints

as feature points. We compare this deep neural network with the classified network

presented before. The comparison results are shown in the following subsections.

4.1. Evaluation on the KUKA robot

We have already transferred the 3D coordinates from camera to robot by employing

a least-squares fitting method with two 3D point sets in our table tennis robot

system [11]. The tool coordinate system in the robot was moved from the end

effector to the racket center. In our work, the unit norm vector uT of the red side

on the racket in tool coordinates is always [−1, 0, 0]T by the negative direction of

the x axis shown in Fig. 8. Next, we transform this vector to robot coordinates

(namely, world coordinates).

Fig. 8. The tool coordinate system.

The values [X,Y, Z,A,B,C] can be read from the KUKA controller, where

X,Y, Z are the racket’s 3D position and A,B,C are the Z-Y -X Euler angles. The

3× 3 rotation matrices about X,Y, Z axes are written as: RX , RY , RZ .

RX =




1 0 0

0 cosC − sinC

0 sinC cosC


 (20)
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RY =




cosB 0 sinB

0 1 0

− sinB 0 cosB


 (21)

RZ =




cosA − sinA 0

sinA cosA 0

0 0 1


 (22)

Then, the norm vector uW in world coordinate is derived by:

uW = RZRY RX ∗ uT (23)

Now, the [X,Y, Z] and uW are the ground truth data from the robot. To know

the exact racket pose error, we manually control the robot to achieve 50 different

poses with various position or Euler angles, and compute the racket pose from robot

and cameras. Those angle between two norm vectors from the robot and cameras

are defined as the orientation error. As shown from Fig. 9 , the position error is

below 13 mm with an average of 7.8 mm and the orientation error is under 15 with

7.2 average value.

Fig. 9. Racket pose evaluation.

4.2. Comparison with human pose estimation

We directly apply the Convolutional Pose Machines (CPMs) to extract the human

body keypoints including ear, eye, nose, neck, shoulder, elbow, wrist and hip (14

keypoints in total) in the left camera. A Kalman filter is used to track these key-

points. Human poses are calculated and stored as matrices to express which parts

of the body are connected to each other. The visualization is shown in Fig. 10.
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By means of the same dataset and classification approach with different input

shape 30 frames × 14 keypoints, we can obtain the test accuracy of 98.4% , which

is similar to the proposed method 98.7%.

However, CPMs has a crucial issue of hardware consumption. It can not satisfy

the real-time requirement in table tennis. Meanwhile, it just provides the approxi-

mate pose information that can not be used to calculate the exact 3D position or

orientation. In contrast, our proposed method can be run in 10 ms (100 FPS) and

give the opportunities to train the robot having a human-like movement.

Fig. 10. Human pose estimation in image sequences.

5. Conclusions

In this paper, we have presented a novel table tennis racket pose detection method

based on stereo vision. Through the color and motion segmentation, we can extract

the racket contours, then feed them into the proposed wide baseline stereo match-

ing method to generate the 6D pose. With a multilayer perceptron (MLP) neural

network, the pose trajectories can be classified into five kinds of spin types. Finally,

two experiments are performed to evaluate the accuracy of pose detection and clas-

sification. In the future, we will teach the KUKA robot to mimic a human-like

movement by imitation learning aiming to cope with various spin.
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Abstract. Stroke recognition in table tennis is a challenging task, due to
the variety of the movements. Many different sensors have been adopted
in robotic table tennis, with the goal of detecting the players’ movements.
In this paper, we propose a two-stage approach to directly recognize the
table tennis racket’s movement. A bounding box around the racket can
be extracted from an RGB image in the first stage. An efficient and
lightweight CNN architecture is then developed to regress the racket 3D
position by fusion of the cropped image and the 3D rotation data from an
IMU in the second stage. Together with the rotation data, a robust 6D
racket pose is available at a frame rate of 100 Hz. In the experiments, two
datasets are collected from our KUKA table tennis robot for evaluation
and comparisons, which show a position error of 4.7 cm at a range of 6
m. One behavior cloning experiment is performed in order to reveal the
potential of this work.

Keywords: Racket Pose Estimation · Sensor Fusion · Table tennis Robot.

1 Introduction

Human activity detection has spawned a large amount of research in many ap-
plications, such as gesture recognition, video surveillance, health care and sports
performance analysis. Typically, it includes two steps: feature extraction and
action classification. In recent years, a variety of sensors have been applied to
obtain the human pose, thereby resulting in different kinds of techniques.

Vision-based methods extract the 2D human joints [6], hand keypoints [18]
or 3D human pose [16] as features from RGB cameras. To get more accurate
information, the depth maps from RGB-D sensors are included to derive the full
3D human pose [29]. Motion sensor based methods adopt low-cost accelerom-
eters, gyroscopes, and sometimes magnetometers to detect the human’s linear
acceleration and angular velocity [28] as features. With the fusion of multiple
inertial measurement units (IMUs) and a single camera, one can recover accurate
3D human pose in the wild [14].

To understand the performance of the players and provide them with a guide
to tactics and skills, some systems with different sensors have been designed for

? Supported by the Vector Stiftung and KUKA.
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Fig. 1: Playing with our KUKA table tennis robot. A wearable IMU is mounted
at the bottom of the player’s racket handle. The quaternion value qIMU streamed
from it, is defined as the racket orientation in the IMU frame. One of the station-
ary cameras fixed on the ceiling is used to capture the human player movements
from above (Fig. 2 left). By fusing the images with IMU signals, we can take
them as inputs and regress the 3D racket position robustly with the proposed
approach. The camera and the IMU are synchronized with a software trigger.

sports. An AI Coach system for athletic training [23] is built with a single camera.
They design a binary player detector to extract a single player as bounding box
in the first frame. To accelerate the detection step, a tracking model based on
the detected bounding box is used from the second frame to the last frame. After
knowing each player’s tubelet, the player 2D pose can be regressed by a pose
estimation model. In order to estimate and track player’s 3D pose, Bridgeman et
al. [5] calculate the correspondences between 2D poses in different camera views.
The 2D pose associations can be used to generate the player 3D skeletons.

In robotic table tennis we face many challenges, especially due to the move-
ment of the human opponent, also including some deceptive actions. Each move-
ment creates different types of spin and speed. Therefore, instead of recognizing
the human 2D or 3D pose, the main focus in this paper is the table tennis racket
pose estimation. This gives our table tennis robot (shown in Fig. 1) the ability
to recognize the human stroke pose and consequently mimic the human motion
with imitation learning. To achieve this we use a single camera fused with an
IMU and develop a novel approach for robustly recognizing human strokes. The
main contributions of this paper are as follows:

– We propose a novel two-stage position estimation network for table tennis
rackets via vision and IMU. Together with the 3D rotation data retrieved
from the IMU, a robust 6D racket pose is available at a frame rate of 100Hz
without any special markers.

– The training dataset is created based on simulated views of a racket CAD
model. The evaluation dataset is collected from our KUKA robot, which
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can be annotated automatically with the pre-calibrated transformation ma-
trix between the robot and the camera. Therefore, manually labeling is not
needed in our work.

– The experiment shows that our approach achieves the best performance with
a position error of 4.7 cm at a range of 6 m. To reveal the goal of this work,
we perform an experiment to operate the robot in a human-like way, which
is a clone of the human movements.

2 Related work

Image-based 6D object pose estimation is one of the trendiest topics in computer
vision. Recent state-of-the-art methods have shown huge success in detecting the
6D pose of objects in close range to the camera. PoseCNN [26] directly estimates
the 6D object pose with an end-to-end network from a single image. Sundermeyer
et al. [20] present an implicit method for 3D orientation estimation based on
Augmented Autoencoders (AAEs), which is trained on synthetic images. The
3D translation is then computed according to the pinhole camera model. A
pixel-wise voting network (PVNet) [17] localizes 2D keypoints on the object
using RANSAC and aligns them with 3D keypoints to obtain the 6D pose. The
Coordinates-based Disentangled Pose Network (CDPN) [11] uses a Dynamic
Zoom In (DZI) technique to compensate the 2D object detection error, which
achieves accurate and robust results. However, if the object is too small in the
camera or, like the racket, has a texture-less surface and very thin paddle, it is
prone to failure using these methods, because of insufficient features.

By labeling special markers on the racket, Zhang et al. [27] could use color
thresholding to extract them from two cameras, and the initial racket pose is
then computed by the perspective-n-point (PnP) method. To generate a robust
pose, they employed an IMU sensor and fused all of the data by means of an
extended Kalman filter (EKF), which lead to a 1.1° rotation error. They don’t
test the position error since there is no dataset available. Gao et al. [8] employ
a markerless method by segmenting the racket red side contours from stereo
cameras. A stereo matching method is used to align the points on the contours.
The final position error is 7.8 mm and the rotation error is 7.2°. Omron [10] puts
9 small and round markers on each racket side for their Forpheus robot, which
can accurately predict the moving direction of the racket based on a high-speed
camera. However, these methods are neither convenient nor robust, since they
are sensitive to the color and brightness and need to be manually adjusted to
find the better color thresholding values.

Inspired by the aforementioned methods, we decompose the 6D pose into
position and rotation components. A wireless IMU mounted at the bottom of the
racket handle is continuously streaming rotation data. By deeply fusing the IMU
information and the camera images, a novel CNN-based method is proposed.
The output is the racket 3D position and it is trained fully based on a synthetic
dataset.
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3 Methodology

3.1 Overview

IMUs are widely used in wearable devices to measure human activity in real-
time and with high accuracy. In this paper, we mount a MetaMotionR (MMR)
IMU [15] at the bottom of the racket handle, as shown in Fig. 2. With Bosch
sensor fusion technology [4], the MMR sensor can provide robust linear acceler-
ation and quaternion values via Bluetooth 4.0 at 100 Hz. Kristen Beange [3] has
assessed the MMR sensors, which have a robust performance at 1° error in all
axes when considering the absolute angle orientation. They compare the IMU
with an optical motion capture equipment (Vicon Motion Systems) during con-
trolled, repetitive sinusoidal motion at frequencies of 20 cpm and 40 cpm (i.e.,
0.33Hz and 0.67 Hz, respectively). Therefore, we mainly focus on the 3D racket
position estimation by fusing the IMU and camera in this part.

To estimate the racket position of the human player, we propose a novel ap-
proach, as shown in Fig. 2. Compared to the single-stage object pose estimation,
two-stage methods usually comprise one step for object detection and another
for pose regression, which leads to a very fast inference time and is well suited
for the real-time operation in sports. The first stage can be easily replaced with

qcam
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2D object
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MLP
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64×64
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u
v
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Fig. 2: CNN architecture for the racket position estimation during testing in our
scenario. The rotation qIMU is read from a wireless IMU as a 4D quaternion in
the IMU frame. It is transformed to the camera frame as qcam. The images with
640 × 512 pixels are first fed into a pre-trained 2D object detector in order to
find the racket bounding box objboxand its position [xc, yc, h, w] in pixels. A new
region of interest bbROI , [x ′

min , y
′
min , h

′,w ′], is computed to compensate the 2D
object detection error by Eq. (2). Then quaternions and bbROI together with the
image crops are fed into different network layers in order to extract the global
and local features, respectively. The last fully-connected layers output the racket
depth Z and the 2D projection point [u, v] of the racket 3D centroid. Finally, X
and Y positions can be reconstructed with Eq. (1).
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any state-of-art method along the development of the 2D object detection in the
future.

The outputs of our architecture are the depth component Z and the local 2D
projection point [u, v] of the racket 3D centroid. Then we can indirectly derive
the entire 3D position [X,Y, Z] with the equation below:

X =
(x′min + u− cx)Z

fx
, Y =

(y′min + v − cx)Z

fy
(1)

where x ′
min , y

′
min are the left upper corner in bbROI . fx, fy are the focal lengths

in pixels, [cx, cy] is a principal point. Here [u, v] is different from [xc , yc ] which is
provided from the object detector, since the later one is not the exact centroid
but the center of the detected bounding box. This will affect the [X,Y ] a lot
when having a large depth Z (from 2.6 m to 5.3 m in our case). Therefore, the
position regression problem is decomposed into the following two sub-tasks.

3.2 Racket Centroid Extraction

In order to detect the racket in images, we employ a self-pretrained YOLOv4
[2] model, which is a very fast and accurate one-stage object detector. It can
generate a 4-D vector objbox localizing the racket as a 2D bounding box. The
objbox is composed of the rectangle center xc , yc , height h and width w in image
coordinates. To tolerate detection errors and make the subsequent estimation
more robust and accurate, we dynamically adjust the objbox to a new region of
interest bbROI = [x ′

min , y
′
min , h

′,w ′] during training. The bbROI is computed by
the following equations:





s = max(h,w)
N = randint(−αs, αs)

(h′, w′) = (βs+ s, h′)
(x′c, y

′
c) = (xc, yc) +N

(x′min, y
′
min) = (x′c, y

′
c)− 0.5(h′, w′)

(2)

where s is the maximum value in h and w. α and β are coefficients to control the
center noise N and corner offsets, which are equal to 0.2 and 1.5, respectively. N
is a 2D vector of integers, randomly chosen from −αs to αs during training and
evaluation, while is set to zero during testing. The resulting objbox has a square
size and keeps the same aspect ratio as before.

Finally, it is scaled to the size of 64×64 as the input for the ResNet (see
Fig. 2). This Dynamic Resize technique is based on the Dynamic Zoom In (DZI)
in [11]. In contrast to the DZI that enlarges the crops, here we simply shrink
them, since the texture-less surfaces on the racket contain many similar features
and it has little influence to the centroid regression. An example with a synthetic
image for training is shown in Fig. 3. Then a ResNet18 [9] is deployed to extract
the deep features, followed by two dense layers with 512 and 2 units, respectively
as shown at the bottom of Fig. 2.
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Resize

64×64objbox

Fig. 3: An example for Dynamic Resize during training. Left: The detected
bounding box (red) from YOLOv4 and the dynamically computed ROI can-
didates (cyan). The bounding box center [xc , yc ] and the racket centroid [u, v]
are marked as blue and green circle, respectively Middle: the randomly selected
bbROI for training. Right: the final resized crop.

3.3 Depth Regression

Next, we propose a novel deep fusion approach for the depth Z regression. Intu-
itively, if we know the bounding box positions in images, the racket 3D position
could be estimated by the given camera intrinsics [fx, fy, cx, cy]. However, these
positions will change with different orientations and especially if there are oc-
clusions or truncations. To avoid these problems, [25] runs a RetinaNet [12] on
the input images and concatenates the generated RoIAlign features and bound-
ing box information as joint features, which are used for translation regression.
RoIAlign features are only for predicting rotation. It is a one-stage vehicle pose
method, and not sufficiently fast and accurate for sports.

ResNet

FPN

→ → → →

→ → →
→ → →

→→

→ → →

→

1
2
x1

4
x 1x

concatenate

Fig. 4: ResNet-FPN (Feature Pyramid Network).

Inspired from it, we consider the combination of the rotation value qcam and
bbROI as the global features, which are fed into a 4-layer MLP network with 256,
1024, 1024, 128 units separately. The local features indicating the racket local
pixel position, size and occlusions, are concatenated with the global network
(via

⊕
in Fig. 2). A Resnet-FPN network (in Fig. 4) is used for extracting

local features, since it includes multi-scale features and can recover the scale
ratio information when resizing the ROI crops to 64×64. Finally, the depth Z
is retrieved as output of a 128-D dense layer.
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To train the whole networks, we design a joint position loss function Lpos to
optimize the centroid detection and depth regression as follows:

Lpos = γ1 · |Z − Ẑ|+ γ2 ·
∥∥∥Cpos − Ĉpos

∥∥∥
1

(3)

where Z and Ẑ are representing the estimated and ground-truth depth. Cpos

and Ĉpos are the estimated and true centroid pixel positions. γ1 and γ2 are used
to balance the different errors.

4 Experiments

4.1 Dataset

To train the proposed model, we create a synthetic dataset which can be labeled
automatically. A racket CAD model is first reconstructed from a real racket
with the free, open-source reconstruction software Meshroom [24], based on the
structure from motion (SfM) technique. This results in a reconstructed 3D mesh
in Fig. 5 left. Then post-processing is used to remove the background, fill the
holes, smooth the surface, blend vertex color, scale the model size, and change
the coordinates in Meshlab [7]. The final high-quality 3D model is shown in Fig.
5 right.

X

Y

Z

Fig. 5: Left: Reconstructed mesh with background from multiple views using
Meshroom software. Right: the final CAD model with its coordinates.

By using domain randomization (DR) [22], we can generate a set of synthetic
images as well as their 6D pose. The racket CAD model is placed in a simulated
scene at random positions and rotations. Then, each one is projected into the
image plane as the foreground, with a known bounding box. The images from
the Pascal VOC dataset are embedded as the background. Each synthetic image
is rendered with a random light source position and diffuse reflection. Other
techniques, like Gaussian noise, motion blur, ping pong ball and occlusions,
are included to reduce the ”reality gap”. A few examples are presented in Fig.
6(a). Meanwhile, the annotations, including the bounding box positions, racket
centroids in pixels and the racket 6D pose, are collected from the simulated
3D scene as the ground truth tags, which are then used to train the object
detector and the position regression model, respectively. 50,000 training patterns
are collected finally. The resulting range of the depth Z is [2.6m, 5.3m].
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For evaluation dataset collection, a usual way that we tried was mounting
multiple reflection markers on the racket and then capturing the human player
motions with an OptiTrack systems. However, the markers must be placed at
the surface in a critical requirement, which would result in many occlusions in
images. Therefore, one convenient method is to make use of our KUKA robot
that has a racket at the end-effector. This racket differs slightly from the rendered
CAD model such that this can also test the robustness against multiple rackets.
Another stationary camera opposite to the robot is used to take the images.
By moving the robot to given positions and rotations, we collect an evaluation
dataset of 208 images (Fig. 6(b)). To obtain the correct pose with respect to the
camera coordinate frame, we first calculated the transformation matrix between
the robot and the camera by the hand-eye calibration method [21]. The resulting
range of the depth Z is from 2.8 m to 5.2 m. To simulate a fast moving racket,
we manually apply motion blur (Fig. 6(c)) with a 7× 7 kernel on each image for
the following comparisons. Due to the high frame rates and fast shutter speed
of the cameras, motion blur is actually imperceptible in our case.

(a) Training dataset from synthetic images

(b) Evaluation dataset using another racket in our KUKA robot

(c) Applying motion blur with a 7× 7 kernel

Fig. 6: Cropped examples for training and evaluation of the racket position esti-
mation.

4.2 Training and Inference

As shown in Fig. 2, we need to train two separate models one by one for the
different stages. To make the first stage (Yolov4) faster, we resize the network
input to 512x512 and change the trained model from darknet [2] to the tkDNN
[13] framework. The activation function used in the second stage is ReLU [1].
The last two 128-D dense layers for depth Z regression are activated by leaky
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ReLU, with a negative slope 0.02. The outputs Z and [u, v] are activated by the
logistic sigmoid function. All the inputs are normalized for better performance.
To avoid overfitting, we freeze the parameters in the first 4 residual blocks of the
ResNet during the beginning 40 epochs. The other hyperparameters are given
in the table below:

Table 1: Hyperparameters separately for different models.

optimizer epochs batch size learning rate

2D object detector Adam 100 16 3e-3

Position regression RAdam 100 4 1e-4

The training is processed by a host computer with an NVIDIA RTX 2080Ti
GPU, a 3.0GHz Intel i7-97000 CPU and 32GB RAM. Each bounding box is
extracted by Yolov4 in 7.8 ms, then the depth Z and the centroid [u, v] can be
regressed in 1.7 ms. The overall inference rate is around 100 Hz.

4.3 Evaluation

The mAP (mean Average Precision) by Yolov4 is 86.9% for an IoU threshold
of 0.5 in the evaluation dataset. To evaluate the position estimation accuracy,
we use two metrics: position error Etrans, and ≤5cm. In the ≤5cm metric, a
pose is considered correct if the position error is within 5cm. Due to some other
approaches having large position errors, we extend ≤5cm to a third metric:
≤10cm.

Table 2: Evaluation for racket position estimation.

Sensors Etrans ≤5cm ≤10cm

Zhang et al. [27] camera,IMU,marker - - -

Gao* et al. [8] stereo cameras 2.8 cm 91.8% 100.0%

AAEs [20] single camera 39.1 cm 6.7% 17.3.0%

CDPN [11] single camera 36.6 cm 7.5% 21.8%

R. Staszak [19] single camera 23.5 cm 10.6% 25.0%

OUR (no FPN)
single camera, IMU

6.8 cm 48.6% 85.1%
OUR (with motion blur) 5.2 cm 60.1% 93.2%
OUR 4.7 cm 65.0% 95.5%

In Table 2, we compare our method with current research in which different
sensors are used. Zhang et al. [27] did not show the position error, since they did
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not have a dataset for evaluation and their method is not compatible with our
dataset. The remaining methods are trained and evaluated in our dataset. In
order to use stereo cameras in Gao et al. [8], we expand the evaluation dataset
by the second well-calibrated camera. Instead of using the color thresholding
method to detect the red surface, we extract the racket center either on the
red side or on the black side by our centroid regression model. The * indicates
it is used with modifications. The resulting performance is the best one. How-
ever, it will take twice as much time as ours’ and can not extract the rotation
value robustly and accurately. Moreover, it needs more effort to pre-calculate
the transformation matrix between these two cameras. To get a fair comparison,
we replace the rotation head with the true value and only use the translation
head in [11, 19, 20]. Among them, [20] and [11] obtain the 3D position under
two assumptions: the bounding box size is linearly affected only with respect to
the depth Z, and is therefore never changed when having the same Z. These
assumptions lead to a large position error when the object is far away from the
camera (6m distance in our case). Although [19] has a bit better results, they
still did not take the global pixel positions of the bounding box into considera-
tion. In comparison, our method achieves a more robust performance with the
second best accuracy.

Furthermore, two additional experiments, with motion blur (in Fig. 6(c)) and
without FPN layers, are performed to simulate a moving racket and do an ab-
lation study, respectively. Fig. 7 shows four examples with different movements.
To demonstrate this work, we apply the human movements to our KUKA robot
with coordinate transformation. The robot uses the penhold grip while playing
since it is more flexible and controllable than the shakehand style in our scenario,
as shown in the video https://youtu.be/U2YPh_ZwQxQ

Fig. 7: Four stroke movements for the racket pose estimation.
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5 Conclusion

In this paper, we proposed a novel approach for stroke recognition via a cam-
era and IMU. We generated several datasets for training and evaluation. The
experiment has shown the proposed method gives a robust performance. With
the main goal of improving the capabilities of our table tennis robot in mind, we
are planning to apply our approaches to human stroke examples and make the
table tennis robot hit the ball by imitating the human movements. In addition,
we could also predict the ball’s flying trajectory by analyzing the racket pose,
since our approach can be run at 100 Hz.

However, our approach is going to fail if the detected bounding box is wrong
in the first stage. For example, the player’s left hand could also be recognized
as a racket if there are some circle patterns in the background, as shown in the
demo video. In this case, we could utilize the tracking method to identify the
coherent relations between frames.
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