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Popular science summary of the thesis 
Our body consists of trillions of cells. We can think of cells as towns with buildings for 

different purposes, e.g. houses for accommodation, schools, and hospitals. All these 

buildings contribute to a town’s good functioning. To construct a building, though, is a 

process with multiple steps including: first, a blueprint with instructions about the room 

arrangement; second, a construction site to lay the foundations of the building; third, the 

actual building. By analogy, buildings inside cells are called proteins. The blueprint that 

holds information about how to produce proteins is called DNA and the construction site 

that sets the stage for protein is called RNA. Taken together, the building analogue in 

biology is a flow of information from DNA to RNA and, finally, to protein that is called the 

central dogma of molecular biology.  

Building a construction, however, is not without rules, but is regulated, among others, by 

the blueprint drawings and the engineering plans. Similarly, the central dogma is controlled 

by processes that dictate RNA and protein abundances inside cells like the DNA status. In 

science, we are now able to infer the control along the central dogma by measuring the 

total number of DNA, RNA and proteins using large amount of data called omics. The study 

of DNA, RNA and protein omics data is called proteogenomics. 

In this thesis, we used proteogenomics to study the central dogma regulation in human 

cells that are malfunctioning. These cells are proliferating in a fast and abnormal way at the 

expense of nearby cells forming mases called tumors and, eventually, causing a disease 

known as cancer: the second most common cause of death in humans. 

In Papers I and II, we studied two different types of cancers called breast cancer and acute 

lymphoblastic leukemia, respectively. Proteogenomics data suggested that an increase in 

DNA abundance by means of multiple DNA copies–a situation called copy number 

alteration–leads mainly to overproduction of RNA and, to a lesser extent, to 

overproduction of proteins. Interestingly, certain copy number alterations only affected 

RNA leaving protein levels unchanged. We found evidence that this compensation is 

related to the increased destruction of proteins that are interacting together to form 

structures called complexes. This phenomenon resembles building a block of flats where 

the area of one flat affects the area of its adjacent flat to maintain the symmetry of the 

overall construction. 

In Paper III, we studied a lethal type of cancer called non-small cell lung cancer. We found 

that lung cancer patients could be separated into six distinct groups based on their protein 

abundances in the cancer cells and in the surrounding cells of the tumor, namely the tumor 

microenvironment. The six groups were related to specific cancer-promoting processes 

like energy production or proliferation but were also characterized by unique proteins 

produced from previously inactive DNA. In the building analogue, these proteins are like 



exotic touristic attractions which are designed from previously low-profit architecture 

firms seeking new opportunities in prosperous times.  

Notwithstanding, a typical town consists less of exotic buildings and more of buildings with 

similar architecture. These buildings are based on the same blueprint but, for example, 

differ in color, neon signs or other decorations on the outside. In biology, these buildings 

relate to proteoforms, that is proteins that originate from the same DNA but differ in their 

final form. Paper IV describes a tool to detect proteoforms from omics data. The tool finds 

proteoforms by ‘demolishing’ proteins and inferring proteoforms from the remnants. We 

found that a few of the identified proteoforms belonged to ‘alternatively engineered’ RNA 

forms called splice variants. 

In summary, this thesis presents cancer proteogenomics data that track the central dogma 

of biology and its regulation. For a town mayor, it is more informative to know the 

architecture of the town than the building blueprints to intervene for the well-being of the 

citizens. Similarly for scientists, it is more informative to know proteins than DNA or RNA to 

intervene in a disease for the patients’ best interest. It seems that the future in cancer 

research is a matter of collaboration between doctors, architects, and engineers.  

 

 

  

 

 

 

 

 

 

 

 

 



 

 

Abstract 
The central dogma of molecular biology describes the one-way road from DNA to RNA and 

finally to protein. Yet, how this flow of information encoded in DNA as genes (genotype) is 

regulated in order to produce the observable traits of an individual (phenotype) remains 

unanswered. Recent advances in high-throughput data, i.e., ‘omics’, have allowed the 

quantification of DNA, RNA and protein levels leading to integrative analyses that 

essentially probe the central dogma along all of its constituent molecules. Evidence from 

these analyses suggest that mRNA abundances are at best a moderate proxy for proteins 

which are the main functional units of cells and thus closer to the phenotype. 

Cancer proteogenomic studies consider the ensemble of proteins, the so-called 

proteome, as the readout of the functional molecular phenotype to investigate its 

influence by upstream events, for example DNA copy number alterations. In typical 

proteogenomic studies, however, the identified proteome is a simplification of its actual 

composition, as they methodologically disregard events such as splicing, proteolytic 

cleavage and post-translational modifications that generate unique protein species –

proteoforms.  

The scope of this thesis is to study the proteome diversity in terms of: a) the complex 

genetic background of three tumor types, i.e. breast cancer, childhood acute 

lymphoblastic leukemia and lung cancer, and b) the proteoform composition, describing a 

computational method for detecting protein species based on their distinct quantitative 

profiles.  

In Paper I, we present a proteogenomic landscape of 45 breast cancer samples 

representative of the five PAM50 intrinsic subtypes. We studied the effect of copy number 

alterations (CNA) on mRNA and protein levels, overlaying a public dataset of drug-

perturbed protein degradation. 

In Paper II, we describe a proteogenomic analysis of 27 B-cell precursor acute 

lymphoblastic leukemia clinical samples that compares high hyperdiploid versus 

ETV6/RUNX1-positive cases. We examined the impact of the amplified chromosomes on 

mRNA and protein abundance, specifically the linear trend between the amplification level 

and the dosage effect. Moreover, we investigated mRNA-protein quantitative 

discrepancies with regard to post-transcriptional and post-translational effects such as 

mRNA/protein stability and miRNA targeting.  

In Paper III, we describe a proteogenomic cohort of 141 non-small cell lung cancer clinical 

samples. We used clustering methods to identify six distinct proteome-based subtypes. 

We integrated the protein abundances in pathways using protein-protein correlation 

networks, bioinformatically deconvoluted the immune composition and characterized the 

neoantigen burden.  



In Paper IV, we developed a pipeline for proteoform detection from bottom-up mass-

spectrometry-based proteomics. Using an in-depth proteomics dataset of 18 cancer cell 

lines, we identified proteoforms related to splice variant peptides supported by RNA-seq 

data.  

This thesis adds on the previous literature of proteogenomic studies by analyzing the 

tumor proteome and its regulation along the flow of the central dogma of molecular 

biology. It is anticipated that some of these findings would lead to novel insights about 

tumor biology and set the stage for clinical applications to improve the current cancer 

patient care. 
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1 Introduction 

1.1 The central dogma of molecular biology 

The central dogma of molecular biology describes the flow of information from DNA 

(deoxyribonucleic acid) to RNA (ribonucleic acid) to proteins through the processes of 

replication [1], transcription [2] and translation [3]. Yet, how information –encoded in 

DNA as genes (genotype)– flows across the different molecular levels to be ‘expressed’  

–decoded as observable characteristics (phenotype)– has been a matter of interest 

since the observation that inbred isogenic bean plants produced pods of varying size 

[4]. At the molecular level, phenotype can be ascribed to the protein composition, 

although a more precise definition will be endophenotype to clarify that proteins are 

still intermediates between gene expression and the actual phenotype [5] (Figure 1). 

A prerequisite to understand the emergence of cellular phenotypes is the ability to 

efficiently probe the primary molecular constituents of the central dogma. From the 

observational experiments of Gregor Mendel in 1860s, we have now reached high-

throughput data generation that profile the entirety of DNA, RNA and proteins (-omics 

data). Large scale efforts analyzing omics data led to the first draft sequence of the 

human genome in the beginning of 21st century [6,7]. The similar proteome draft lagged 

ten years [8,9], owing to the greater molecular complexity of proteins. These obstacles 

were surpassed by advances in sensitivity, standardization, and multiplexing in mass 

spectrometry (MS) proteomics methods [10–12].  

 

Figure 1. The central dogma of molecular biology. Information flow from DNA (genotype) to RNA to protein 
(phenotype). 

 

DNA RNA Protein
Transcription Translation
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1.2 Central dogma regulation  

Beyond its profound simplicity, the DNA to protein pathway is under extensive 

regulation –imprinted on the molecular structure of DNA, RNA, proteins and their 

interactions – via mechanisms acting:   

1) Transcriptionally: For example, DNA and histone modifications, Guanine-Cytosine 

(GC)-content, open/close chromatin state, topological associated domains (TADs), 

gene proximity to regulatory sequences (enhancer/silencer/promoter regions), 

composition of transcription factors, co-factors, chromatin modifiers and non-

coding RNAs, and RNA polymerase status (kinetic model of transcription initiation, 

elongation, and termination) [2].  

 

2) Post-transcriptionally: For example, 5’-end capping and 3’-end polyadenylation, 

splicing, nuclear export to cytoplasm, miRNAs and RNA-binding proteins, RNA 

modifications, and RNA decay [13,14].  

 

3) Translationally: For example, 5’ prime motifs, upstream open reading frames, mRNA 

length and secondary structure, Kozaq sequences, premature stop codons, miRNAs 

and RNA-binding proteins that dictate translational efficiency, codon-bias, 

translation initiation factor abundances, tRNA availability, as well as the abundance, 

composition, and phosphorylation status of ribosomes [15,16].  

 

4) Post-translationally: For example, C- and N-terminal peptide structure, eukaryotic 

linear motifs (ELMs), PEST sequences enriched in proline (P), glutamic acid (E), 

serine (S),and threonine (T), peptide  modifications (phosphorylation, acetylation), 

chaperone-assisted protein folding, intra- and extra-cellular transport and 

compartmentalization, and degradation via proteasome or lysosome [17].  

These regulatory processes (Figure 2) span all scales of biology–single molecules, 

pathways, subcellular structures, cells, tissues, organs, and organisms–to ensure 

cellular functionality with robust phenotypes under: 

1) Homeostatic conditions:  Cells need to maintain steady internal conditions. Proteins 

such as transcription factors and signaling genes need to be dynamically adjusted 

while housekeeping proteins, e.g. ribosomal and cytoskeletal proteins, should be 

kept at a constant concentration. In that manner, the biological role is reflected on 

protein abundance. 

 

2) Biological noise: Cells have to cope with external noise, e.g., cues that act on surface 

receptors , and with internal noise caused by stochastic transcription [18].  
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3) Metabolic constraints: Varying energy resources remodel cellular protein 

abundances by optimizing RNA translation, protein shuttling between organelles, 

protein degradation, and enzymatic reactions [19,20].  

 

4) Environmental and physiological changes: For example, these include adaptation to 

stress conditions and ageing [21], and monitoring of circadian rhythm [22]. 

 

5) Genetic variations. Germline and somatic DNA alterations perturb gene expression 

levels that in turn need to be re-adjusted [23]. 

 

Figure 2. Central dogma regulation accommodates perturbations to produce sustainable phenotypes. 

 

1.3 Central dogma quantification 

How protein abundance relates to upstream molecules, especially RNA, has been a 

question tracing the history of molecular dogma regulation. Based on previous studies 

(extensively reviewed in [24–26]), experimental settings can vary by: 

1) Experimental model: Bacteria, eukaryotic single-cell microorganisms, human cells, 

xenografts, and tissue samples in normal or disease state.  

 

2) Level of analysis: Bulk/cell-population level or single-cell level. 

 

3) State of the experimental system which can be divided into:  

a) Steady state, in which the sample’s condition remains constant. This 

category includes popular experimental methods such as single nucleotide 
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polymorphism (SNP) arrays, RNA-sequencing and mass-spectrometry for 

analysis of genomic, transcriptomics, and proteomic data, respectively.  

b) Dynamic state in which the sample’s condition changes. This includes 

modified experimental methods such as RNA-labeling, pulsed-SILAC and 

fluorescence microscopy, all of which capture time-dependent changes of 

labeled molecules due to degradation or synthesis.  

2) Computational method: Analyses of the relationship between genotype and 

phenotype can be based on correlations, linear and non-linear regression, 

expression and protein quantitative trait loci (eQTLs, pQTLs), kinetic models 

assuming synthesis and degradation rates for RNA or more complex models 

incorporating splice variants [27,28].  

3) Dimension of analysis, which fundamentally distinguishes two kinds of estimation:  

a) mRNA-protein covariation of quantified genes in a specific sample, assessing 

how inherent gene features regulate mRNA-protein relationship.  

b) mRNA-protein covariation for a specific gene across samples, assessing how 

sample-specific features regulate the mRNA-protein relationship (Figure 3). 

 

Figure 3. Correlation between mRNA and protein abundance for a gene across samples. Solid line is the 
expected protein abundance of a sample given its mRNA abundance. Displayed in black is a sample for 
which the gene’s measured protein abundance is deviating from its expected value. 

The above categorization suggests a framework to chronologically dissect previous 

mRNA-protein correlation studies.  
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1.3.1 Across-gene correlations 

Steady-state, across-gene correlations between mRNA and proteins in a systematic 

manner were calculated as early as 1999 with an estimate of ~0.4 in yeast studies [29]. 

Up to 2009, technical limitations in depth and accuracy of proteome and transcriptome 

quantification had precluded high mRNA-protein correlations. As an example, in 2008, 

the overall correlation coefficient across 150 signature genes in hematopoietic cell lines 

was found to be 0.59 [30]. Similarly, in haploid versus diploid yeast cells, a moderate 

correlation (R = 0.46 to 0.68) was observed after excluding outliers [31]. In 2010, relative 

abundances were only partially predicted by mRNA in bone osteosarcoma, squamous 

cell carcinoma and brain glioblastoma cell lines (overall Spearman correlation 0.63, 0.60 

and 0.58) [32], while at the same year, measurements in cellular lysate from the human 

Daoy medulloblastoma cell line yielded an estimate of 0.46 [33]; accounting for 

sequence features raised this correlation to 0.82, thus explaining two thirds of the 

protein variance. In 2011, Spearman’s correlation between transcript and protein 

abundance values of 8609 genes in HeLa cells reached a value of 0.6 [34]. In the same 

year, a seminal paper by Schwanhäusser et al. [35]  established a kinetic model of the 

central dogma of biology incorporating turnover rates for RNAs and proteins. RNA and 

protein levels were clearly correlated (R2 = 0.41) and that association markedly 

improved when accounting for translation rate constants (R2 = 0.95), although 

extrapolating their model to MCF7 cell lines explained 60% of the protein variance. Re-

analysis of the same dataset with different models raised that variance to about 56%–

84%, while the translation rate could only explain 9% of the protein abundance 

variability [36]. 

The year of 2014 was marked by the publication of the draft map of the human 

proteome based on mass spectrometry analysis by Wilheim et al. [8]. The authors 

compared RNA-seq data with their quantitative protein measurements of 12 human 

tissues reporting an average Spearman correlation of 0.41. Based on Schwanhäusser’s 

kinetic model and by using protein to mRNA ratios as proxy for translation rates, they 

argued that one could accurately predict protein abundances from the measured 

mRNA abundance given a transcript-specific constant rate in each tissue. However, 

these assertions were proven to be influenced by the Simpson paradox, conflating 

across-sample variability with across-gene variability [37,38].  

1.3.2 Across-sample correlations 

Steady state, across-sample correlations were investigated already in 2009 for 1066 

genes in 23 cell lines, with per gene correlations ranging from 0.25 to 0.52, depending 

on different experimental methods [39]. However, this type of analysis was mainly 

undertaken by subsequent quantitative trait loci (QTL) studies investigating how 

genetic variation affects RNA (eQTL) and protein abundances (pQTL) [40–50]. Despite 

the early MS instrumentation and low sample sizes, these studies demonstrated that:  
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1) Most protein associations lacked equivalent transcript associations or were 

estimated with reduced effect sizes  

 

2) Uniquely identified pQTLs could be attributed to post-transcriptional mechanisms 

 

3) Genomic variants affecting multiple transcript/proteins, the so-called hotspots, 

seemed to differ at the mRNA and protein level 

 

4) pQTLs captured protein-protein interactions and disease-associated variants and  

 

5) pQTLs could act as molecular fingerprints of environmental changes. In such cases, 

genomic information seemed to evade buffering and propagated at the protein 

level, imprinting unique phenotypic changes. 

1.3.3 Correlations in time and space 

As an extension to the analyses explained above, longitudinal studies explored time-

dependent mRNA and protein profiles during perturbations or developmental stages 

[51–60]. Compared with steady-state experiments, longitudinal studies incorporated 

dynamical modeling to: describe the role of protein synthesis and degradation in 

varying conditions, categorize dynamic changes as either acute or lagging, propose 

post-transcriptional regulatory mechanisms (such as RNA-binding proteins), and 

underscore rewiring of the protein interactome.  

On the spatial scale, single-cell analyses investigated location-dependent mRNA-

protein correlations elucidating the intratumor heterogeneity of the molecular dogma 

[61,62]. Gene co-variations, apparent from the RNA level, suggested early post-

transcriptional regulation by miRNAs, nuclear localization and complex membership 

[63].  

1.3.4 Meta-analyses 

Lastly, accumulated proteomics data in meta-analyses recapitulated that mRNA levels 

correlated moderately with protein abundances reaching an across-gene Spearman 

correlation of 0.58 (range: 0.43-0.66) and an across-sample correlation of 0.31 [64]. 

Consistently, in human tissue samples the explainable percentage of protein 

abundance by mRNA-protein ratios varied between ~55% to ~80%, indicating post-

transcriptional and autoregulatory mechanisms of gene expression [65]. 
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1.4 Central dogma in cancer 

The evidence above suggests that mRNA is at least a moderate proxy of protein 

abundances across the diverse experimental settings, and distinct molecular 

phenotypes can arise irrespective of upstream events in the central dogma. A 

particular phenotype of interest is cancer, where cells deviate from a physiological to a 

neoplastic state through the accumulation of specific traits called hallmarks [66–68].  

In this context, cancer can be conceptualized as a molecular phenotype that emerges 

from dysregulations of the central dogma. For example, cancer cells can highjack 

enhancers, generate alternative splice-variants, potentiate translation, and enhance 

proteasome degradation at the transcriptional, post-transcriptional, translational, and 

post-translational level, respectively. A genotype to phenotype view on cancer 

inevitably starts from DNA level with genome instability as one of the facilitating 

characteristics of cancer hallmarks to eventually describe the impact of DNA 

alterations –mutations, structural variants, and aneuploidy– on the proteome. 

1.4.1 Copy number alterations 

Aneuploidy, the abnormal chromosome stoichiometry in an organism, originates from 

chromosome missegregation or non-reciprocal translocations during mitosis. It 

manifests in 90% of solid tumors as whole chromosome, chromosomal arm-level, and 

somatic copy number alterations (CNAs) [69]. A typical solid tumor harbors 

approximately 3 gains and 5 losses of chromosome arms or longer chromosomal 

regions [70]. The consequences of aneuploidy, which can be detrimental or fitness-

promoting, are highly-context specific, depending on cell type, genetic make-up, tumor 

stage and tumor microenvironment [71].  

An initial distinction of the CNAs effects is whether local (in-cis) or distant (trans) 

effects are investigated. Chromosomal gains or losses can supposedly be linked to in-

cis over-expression of oncogenes and loss of tumor suppressors respectively with 

interesting exceptions of rescue mechanisms as seen in mutations for which 

sequence-related genes can assume the function of the mutant protein via 

transcriptional adaptation [72]. However, effects of broad CNAs can equally originate 

from trans-combinatorial gene alterations via changes of transcription factor 

abundances or epigenetic events, e.g. disruption of DNA methylation, increase of 

transcriptional noise, resource overload fueled by uninterrupted proliferative signaling, 

stoichiometric imbalance, promiscuous protein-protein interactions, and pathway 

modulation [73]. As observed in cancer cell lines, CNAs pervade the protein level albeit 

with less effect, suggesting existence of compensatory mechanisms (Figure 4). 
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Figure 4. In-cis effect of CNAs. Abundances of mRNA (left) and protein (right) for the same gene (gene A) 
across three different CNA statuses (loss, neutral, gain). Protein-level buffering for samples with copy 
number gains is displayed. 

 

1.4.1.1 CNA effect on protein complexes 

Compensatory mechanisms most likely take place post-translationally through protein 

degradation as shown in disomic yeast strains in which translation efficiency remained 

unaltered for the buffered proteins [74]. This finding contrasts with the proportional 

synthesis model which poses that complex formation is defined during translation [75]; 

suggesting that genetic perturbations shift the control of complex stoichiometry from 

translational to post-translational mechanisms along with degradation rate modulation 

[76].  

The studies above underscore the need of balanced expression of complex 

components for multi-subunit protein complexes in order to function properly [77]. 

Unbalanced production of proteins could impair specific cellular functions associated 

with the affected protein complexes as seen in yeast experiments in which lethality of 

β-tubulin gene gains is abrogated by additional gains of a-tubulin gene, thus restoring 

the stoichiometry of a/β-tubulin dimers. Consistently, fibroblasts from Down syndrome 

(trisomy 21) patients degrade complex members of the respective chromosome to 

maintain stoichiometry [78]. Meta-analysis in tumors found that CNAs are buffered by 

post-transcriptional regulation in protein complex members, further demonstrating 

that some complex subunits act as rate-limiting steps in complex assembly [79,80].  

1.4.1.2 Systems-level CNA effects 

Gene compensation due to protein complex formation represents a fragmented view 

of CNAs impact on cancer cells. A system-level view on cellular function suggests that 

aneuploidy compromises protein degradation by eliciting proteotoxic stress [81]. 

Proteotoxic stress describes the inability of the main cellular pathways of proteome 
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maintenance to fold proteins properly and control protein concentrations [82]. These 

pathways might be underloaded under normal conditions but are deployed during 

proteotoxic stress to cope with excessive protein degradation [83] and maintain the 

integrity of the proteome. Proteotoxic stress compensation pathways include: 

1) the heat shock chaperone network that contributes to proper protein folding. For 

example, in a large group of cancers, MYC oncogene activation was shown to rewire 

the chaperone network to support a pro-survival heat shock protein 

HSP90/HSC70-driven integrated protein-protein interactome [84,85]. 

2) the ubiquitin proteasome system (UPS), a multi-step process of attaching ubiquitin 

to soon-to-be-degraded proteins by a macro-molecular protein complex called 

proteasome [86]. This is exemplified by the widespread driver mutations of key 

enzymes that are responsible for protein degradation in cancer [87].  

3) autophagy-lysosome system [88]. Mechanisms by which autophagy promotes 

cancer include suppression of the p53 tumor suppressor protein and 

maintainenance of mitochondrial metabolic function [89].  

4) aggresome, a proteasome-independent, histone deacetylase 6 (HDAC6)-driven 

pathway that targets misfolded proteins to the lysosome or to the chaperone 

network for degradation or refolding respectively [90].  

In a pan-cancer context, aneuploidy has been shown to correlate with cell-cycle genes 

[91] in contrast to yeast models that showed decreased proliferation [74]. A general 

picture emerges that at the expense of an initial survival cost, aneuploidy educates cells 

to endure high levels of proteome imbalance and to sample mutations from a fitness 

landscape in order to assign heterogeneous roles in tumor cells [92]. How genetic 

alterations establish heterogenous molecular phenotypes is of great translational 

significance in clinical proteogenomics studies since compensating mechanisms can 

be pharmacologically targeted [93]. 

 

1.5 Clinical cancer proteogenomics studies  

Proteogenomics combines MS-based proteomics with additional omics-level evidence  

to probe gene expression regulation [94]. Beyond the regulatory principles discussed 

above regarding the canonical proteome, proteogenomic analysis can further lead to 

the discovery of novel protein-coding regions by using customized, DNA/RNA-based 

databases upon which spectra from an MS experiment can be mapped to. Refined gene 

models by improved spectra mappability has led to the identification of single 

nucleotide polymorphisms, allele-specific expression variations, large structural 

chromosomal variations, alternative spliced transcripts, alternative translation initiation 

sites, and novel open reading frame events [95,96]. Importantly, interrogation of post-
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translationally modified proteins, predominantly via phosphorylation, acetylation and 

methylation, highlighted the added value of investigating proteoform expression [97].   

Series of clinical cancer proteogenomic studies [98–137] have been published in recent 

years assessing: the impact of DNA alterations on protein abundance; genome-wide 

mRNA-protein correlations; proteome-centric sample subtyping and pathway re-

wiring. 

In-depth clinical onco-proteogenomics studies investigate how genetic variation of 

mutations and somatic CNAs in cancer change the proteome landscape by 

interrogating all three major molecular components –DNA, RNA, and proteins. Examples 

provided below demonstrate that these proteome-oriented multi-omics analyses 

indicate:  

1) Increased accuracy in predicting the impact of mutations on the proteome. In 

endometrial cancer, the effect of missense mutations remained undetected at the 

RNA level but changed protein concentration, as observed in high CTNNB1 and TP53 

expression and low PIK3CA and SYNE1 expression for samples with corresponding 

hotspot mutations [115]. Moreover, truncating mutations in driver genes ARID1A, 
INPPL1, JAK1, PTEN, and RBM27 led to decreased protein levels as expected. 

Conversely, in colon cancer, truncating mutations upregulated transcription factor 

SOX9 as most of the mutations occurred upstream of the ubiquitin-target site K398 

which is responsible for proteasomal degradation [106].  

 

2) Protein-level dampening of CNA-driven mRNA abundances: In colon cancer, focal 

amplifications had the strongest local cis-effects on both mRNA and protein level, 

suggesting that CNAs in regions of focal amplification nominate genes with high 

protein abundance [98]. However, many SCNA-driven events at the mRNA level 

were buffered at their protein counterpart attesting for limited phenotypic impact 

–results that were confirmed with more robust proteomics quantitation .  

 

3) Identification of driver- and survival-related genes from hotspots in the CNA-

protein correlation analysis. In high grade serous ovarian cancer, many hotspot-

protein-level alterations were uniquely enriched for proteins involved in driver 

events of cell invasion, migration and tumor immunity. In addition, most influential 

CNAs strongly predicted patient survival and shared known prognostic proteins 

such as CTNNA2, ARHGDIB, and PACSIN2 [99]. 

 

4) RNA-protein decoupling as a surrogate for proteome homeostasis: In 

medulloblastoma, two independent proteomic data sets revealed a subset of 

patients with lower than expected across-gene median Spearman correlation 

compared with the rest of the samples; suggesting that the low correlation group 
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differed in translation and/or proteostasis. Enrichment analysis underscored 

translation-related functions and post-translational functions regulating the 

ubiquitin proteasome system, while the RNA-processing/metabolism gene sets 

consisted primarily of RNA binding proteins (RBPs) [102,103].  

 

5) Fidelity of protein-protein interaction networks: In HPV-negative head and neck 

squamous cell carcinoma, although co-expression network analysis at the 

transcriptome and proteome identified the same functional modules (metabolic 

pathways and tumor microenvironment), the protein network increased prediction 

performance for KEGG pathways by above 10% compared with the corresponding 

mRNA network [125]. In rhabdomyosarcoma, protein-protein interaction networks 

linked upregulation of G2/M and unfolded protein response pathways to targeted 

therapy with HSP90 and WEE1 inhibitors [101].  

 

6) Alternative modes of pathway activation: Two different ways of EGFR activation 

were identified in HPV-negative head and neck squamous cell carcinoma that 

became evident at the phosphorylation level: EGFR-amplification-driven events 

that phosphorylated proteins involved in cytoskeleton organization, and EGFR-

amplification-independent events that resulted in increased pathway activity 

correlating with abundances of EGFR ligands rather than EGFR itself. This decoupling 

of EGFR copy number status from its actual activity argues that EGFR ligand 

abundances might be a better biomarker for anti-EGFR treatment; a finding 

revealed exclusively at the post-translational level that would be missed by 

genomic data [125]. 

 

7) Improved survival predictors: In prostate cancer, biomarkers generated from 

protein abundances were significantly superior in predicting biochemical relapse 

compared with CNAs, methylation status and mRNA levels [110]. In clear cell renal 

carcinoma, high tumor grade was associated with cell-cycle regulation and DNA 

repair at the mRNA level, while increased activity of proteins in the Krebs cycle and 

the electron transport chain (OXPHOS), and N-linked glycosylation were detected 

exclusively at the protein level [109].  

 

8) Unique subtype discovery with phenocopy effects: In clear cell renal carcinoma, 

proteome-based subtypes were discovered with immune composition in CD8 T-

cells related to metabolism and VEGF signaling pathway [109]. In pediatric brain 

cancer [120], pediatric craniopharyngiomas co-clustered with BRAF-mutated 

gliomas at the proteome level. Guilt-by-association principle suggests that a 

subgroup of craniopharyngioma patients could benefit from MEK/MAPK inhibitors 

that are currently considered beneficial for the mutated glioma cases. 
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The above findings suggest that overlaying multiple omics layers with proteomics can 

reveal unique cancer biology and indicate that while genomic and transcriptomic 

profiling is being incorporated in clinical decisions for cancer treatment [138], protein-

level profiling is needed to ensure genetic events propagate to the cancer phenotype.
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2 Research aims 
The aim of this thesis was to determine the genotype-to-phenotype relationship in 

cancer by integrating MS-based proteomics with other high-throughput omics data. 

The output of these analyses generated new hypotheses about the composition of 

cancer proteome under the influence of genetic and transcriptomic variation. 

Specifically, in: 

Paper I, we aimed to investigate the effects of copy number alterations on the mRNA 

and protein levels in breast cancer (BC) tissue samples. 

Paper II, we aimed to investigate the effects of aneuploidy on the mRNA and protein 

levels in B-cell precursor acute lymphoblastic leukemia (BCP-ALL) bone marrow and 

peripheral blood samples. 

Paper III, we aimed to identify proteome-based subtypes in non-small cell lung 

cancer (NSCLC), and determine their biology in conjunction with orthogonal data for 

potential clinical use in stratifying patients for treatment. 

Paper IV, we aimed to computationally identify proteoforms –peptide-level evidence 

of central-dogma regulated events– using mass-spectrometry bottom-up 

proteomics. 
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3 Materials and methods 

3.1 Ethical considerations 

Papers I, II, and III involve handling sample material from patients and ethical approvals 

were acquired.  

In particular, for Paper I, tumor and matched normal material were taken from operated 

breast cancer patients which have provided their written consent upon participating in 

the study. Ethical approvals were acquired from the regional committee for medical and 

health research, Regional Ethical Committee Southeast in Norway (approval number 

2007.1125, 2016/433). 

Paper II involved diagnostic samples from pediatric BCP-ALL cases that had been 

treated at Skåne University Hospital, Lund, Sweden. Informed consent was obtained, 

and the study was approved by the Ethics Committee of Lund University. 

In Paper III, two different patient cohorts (discovery and validation) were conducted.  

The discovery cohort comprised material from: 

• operable tumors from early-stage lung cancer patients that were surgically 

treated at the Skåne University Hospital in Lund, Sweden 

• biopsy material from inoperable lung cancer.  

The study was approved by the Regional Ethical Review Board in Lund, Sweden 

(registration no. 2004/762 and 2014/32) and all experiments were conducted with 

patient consent. Information about the study was available for all patients through 

advertisements in the local news media in the region. 

The validation cohort consisted of resected tumor samples from surgically treated lung 

cancer patients at the Oslo University Hospital in Oslo, Norway from 2006 to 2015 with 

signed informed consent. The study was approved by the Regional Ethical Committee 

for Medical and Health Research Ethics, South-East in Oslo, Norway (ref. S-06402b). 

No ethical approvals were required for Paper IV since it involves commercially available 

cell lines and the published patient cohort from paper III. 

All clinical studies adhered to the three fundamental principles of the Declaration of 

Helsinki regarding human research: respect of person’s autonomy by obtaining 

informed consents, Hippocratic principle of "do no harm" by minimizing adverse 

outcomes in the medical procedures involved, and fairness in the patient selection by 

medical criteria without preconceived bias. 
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3.2 Summary of clinical cohorts and respective cancer types 

Paper I, II and III are studies of three different cancer types. 

3.2.1 Breast cancer 

Paper I analyzed material from 45 patients with breast cancer chosen from a larger 

Norwegian cohort (OSLO2) [139]. 

Breast cancer is the most commonly diagnosed malignancy in women affecting the 

terminal lobular units of the collecting duct that are epithelial structures within the 

breast responsible for milk production during lactation. Histologically, breast cancer 

can be divided into preinvasive (in situ carcinoma) and invasive (lobular carcinoma and 

ductal carcinoma no special type). Overall survival has significantly improved over the 

past years due to an increased understanding of the molecular basis of the disease. 

Transcriptome-driven approaches have classified breast cancer into distinct intrinsic 

subtypes: luminal group A and B with estrogen receptor (ER) and/or progesterone 

receptor (PR) immunohistochemical positivity, HER2 enriched subtype (HER2) with 

amplification of the respective gene, basal-like tumors that are ER, PR, HER2 negative, 

and normal-like tumors that are well-differentiated tumors with low proliferation index 

[140]. Prognostic significance of the intrinsic subtypes has been shown by using an RNA 

microarray-based 50-gene signature called PAM50 [141]. PAM50 subtypes have been 

recently profiled by proteomics supporting the transcriptomic data [100,113,135]. 

Despite the established genetic predisposition of BRCA1 and BRCA2 mutations, breast 

cancer also demonstrates a rich landscape of copy number alterations with recurrent 

chromosomal  gains  and  losses of prognostic significance [142,143]. 

 

3.2.2 Pediatric B-cell precursor acute lymphoblastic leukemia 

Paper II describes a proteogenomic analysis of 27 acute lymphoblastic leukemia (ALL) 

pediatric patients. 

ALL is a malignancy of lymphoblasts –immature lymphocytes and their progenitors– 

that infiltrate the bone marrow and other lymphoid organs. ALL is the most common 

pediatric cancer with approximately 60% of all cases occurring in children and 

adolescents younger than 20 years. ALL cases are classified as B-cell precursor (BCP)-

ALL or T-ALL depending on the type of affected B- or T- lymphoblast, with BCP-ALL 

comprising most cases. Genomics stratifies BCP-ALL into genetic subgroups driven by 

gene fusions, mutations, and CNAs with prognostic and therapeutic differences. In BCP-

ALL, the genetic groups of the fusion gene ETV6/RUNX1 and high hyperdiploidy (>50 

chromosomes) are associated with favorable prognosis. The genomic landscape of high 
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hyperdiploid childhood ALL delineates a specific stable and clonal pattern of trisomies 

X, 4, 6, 10, 14, 17, and 18, and trisomy or tetrasomy 21, and lack of monosomies [144,145].  

 

3.2.3 Non-small cell lung cancer  

Paper III analyzed material from 423 non-small cell lung cancer (NSCLC) patients. 

Lung cancer is the most lethal cancer worldwide that arises from proliferating cells of 

unknown origin that progressively acquire cancer hallmarks to survive in an immune 

enriched microenvironment [146]. Histologically, lung cancer is divided to small-cell and 

non-small cell lung cancer, with the latter representing approximately 85% of all new 

diagnoses. NSCLC is further subdivided into adenocarcinoma, squamous lung cancer, 

and large cell carcinoma. Survival strongly depends on the tumor stage and the 

eligibility for surgical resection with 5-year overall survival ranging from 83% for stage 

IA to 10% for stage IV. Unfortunately, most patients are diagnosed at an advanced stage 

due to non-specificity of symptoms. Implicated genetic events include translocations 

of the anaplastic lymphoma kinase gene (ALK), gene activating mutations in the 

epidermal growth factor receptor (EGFR), and mutations of TP53, RB1, KRAS and STK11. 
Lung cancer cells foster a tumor-friendly microenvironment by secreting growth 

factors and avoiding immune recognition. Recent studies have elucidated this 

druggable tumor-microenvironment interaction [147,148]. 

 

3.3 Experimental methods 

3.3.1 Mass spectrometry-based proteomics 

Proteomics is the quantitative study of the protein complement of cells. A typical 

bottom-up proteomics experiment starts with protein extraction and sample 

preparation that digests proteins into peptides with a sequence-specific protease. To 

make peptide mixtures less complex, prefractionation based on peptides’ biophysical 

properties, such as the isoelectric point (pI) and pH, can be applied [95]. Further 

separation takes place by high-performance liquid chromatography (HPLC) systems 

with low flow rates. Mass spectrometers detect the presence and abundance of 

peptides using the mass and net charge of molecules [149]. Mass spectrometers 

consist of an ion source, a mass analyzer, and a detector. Initially, electrospray 

ionization (ESI) produces gaseous ions from peptides in the liquid phase. Then, mass 

analyzers separate ions by the mass-to-charge ratios (m/z) using the ions’ 

idiosyncratic trajectories in the electrical field. The first mass analyzer is usually 

accompanied by a ‘collision cell’ which is another mass analyzer that fragments ions. At 

the final stage, intact peptide ions or fragment ions enter the detector and produce 
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spectra called MS1 or precursor ion spectra in the former case, and MS2 or MS/MS or 

product ion spectra in the latter.  

Peptide ions had been typically analyzed by user-defined, rules such as m/z and 

intensity, to select as many peptides as possible for acquiring MS2 spectra, a method 

called data-dependent acquisition (DDA) [150]. However, this selection is semi-

stochastic as there are more peptides than time needed to analyze them. Instead, in 

data-independent acquisition (DIA) methods, the mass analyzer selects a window of 

m/z values capturing more peptides ions at the expense of generating more complex 

MS2 spectra; relying on subsequent deconvolution usually with the help of a spectral 

library (Figure 5). 

 

Figure 5. Typical MS/MS proteomics workflow with the two different modes of acquisition 

Peptide quantification can be divided into two categories: label-free and label-based 

[151–153]. In label-free quantification (LFQ), the MS signals of the peptides (usually at 

the MS1 level) are acquired from the raw data. Despite experimental flexibility, this 

strategy suffers from quantification variance and is sensitive to instrument 

performance. Instead, label-based approaches use stable isotopes to produce 

peptides of similar physicochemical behavior, but with expected mass differences. 

Metabolic introduction of the isotopes can probe protein dynamics, while chemical 

labelling–tandem mass tag (TMT) labelling being the most popular method–uncovers 

the isotope distribution in the tag only after fragmentation. Chemical labelling allows 
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sample multiplexing with low variance in quantitation at the cost of ratio compression 

due to peptide co-fragmentation.  

Mass spectrometers’ final outputs are MS1 and MS2 spectra.  Downstream processing 

involves matching the MS/MS spectra to peptide sequences using a reference 

database, algorithms to reconstruct proteins from peptides (‘protein inference 

problem’) [154], and peptide or protein-level quantification. Peptides are usually 

attributed to each respective protein by rule of Occam’s Razor, which infers the 

minimum set of proteins that can be explained by the totality of peptides. Recent 

algorithms have been developed to match peptides to proteins using the quantitative 

pattern of the peptides in order to detect proteoforms –peptides of unique amino acid 

sequence and/or post-translational modifications [155,156]. 

So far described methods for peptide identification rely on reference databases from 

the canonical proteome which includes proteins that are functional, widely expressed, 

and conserved across species. Proteomics analysis to detect protein species beyond 

the canonical proteome using orthogonal genomics information is called 

proteogenomics and involves three steps: database construction, peptide search and 

peptide annotation [94].  

Papers I, II, III and IV used TMT-labelled DDA LC-MS/MS proteomics coupled with pI-

based prefractionation called high-resolution isoelectric focusing (HiRIEF). In Paper III, 

label-free DIA data were generated using HiRIEF and high-pH peptide prefractionation 

spectral libraries. 

Papers I and III include a proteogenomics search using the IPAW pipeline [157]. 

Paper IV describes a tool to address the protein inference problem based on outlying 

peptide quantification profiles for proteoform inference. 

 

3.3.2 DNA analysis 

DNA analysis profiles the genotype –the DNA complement of a sample. DNA analysis 

can be divided into two broad categories: microarray-based and sequencing-based. In 

microarray-based analysis, a set of DNA probes are usually bound on a solid surface, to 

which sample DNA fragments can be hybridized. The probes are generally 

oligonoucleotides that are ‘ink-jet printed’ onto slides or synthesized in situ. Labelled 

single-stranded DNA or antisense RNA fragments from a sample are hybridized to the 

DNA microarray proportionally to their abundance and later introduced into a scanner 

for measurement of total signal intensity and B allele frequency (BAF), a measure of 

allelic content. 
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DNA sequencing can be performed genome-wide (whole genome sequencing, WGS), 

exome-wide (whole exome sequencing, WES) or in a targeted way (panel sequencing) 

for specific DNA loci. Sequencing steps include: 1. Shearing, where DNA of a sample is 

cut into small pieces of known length; 2. Library preparation by PCR amplification and 

barcoding of the sheared DNA; 3. DNA sequencing where the prepared library is loaded 

onto the sequencer. The sequencer obtains sequence information of the fragment to 

be tested by capturing a fluorescent signal. This signal is then in silico converted into a 

sequencing peak. 

Both microarray- and sequencing-based technologies are further analyzed 

downstream to correct for biases.  

In Paper I, microarrays–Genome-Wide Human SNP Array 6.0 (Affymetrix)–were used 

for copy number calls. Paper II included WGS, WES and SNP arrays. For mutation calling 

in Paper III, targeted sequencing with a custom-designed panel of 370 cancer-related 

genes was used. 

 

3.3.3 RNA analysis 

RNA analysis studies the transcriptome, the total amount of transcripts in a sample. Like 

DNA analysis, RNA can be profiled with microarray and sequencing methods. The steps 

are common, except that the starting material can be enriched in mRNA and 

subsequently converted into complementary DNA (cDNA) before further processing.  

Downstream analysis detects differentially expressed and/or spliced transcripts 

between sample groups. 

For transcriptome analysis, Papers I and III included RNA microarrays: Human Genome 

Survey Microarray version 2.0 (Applied Biosystem), and Illumina HT12 V4 microarrays 

(Illumina, San Diego, CA), respectively. Paper II and IV analyzed RNA sequencing data 

(ribosome-depleted and poly-A enriched, and ribosome-depleted, respectively). 

 

3.3.4 Methylation analysis 

Methylation analysis interrogates the methylation status of cytosines in the DNA of a 

sample. Broadly, methylation analysis is divided into microarray-based and 

sequencing-based methods. Both methods most commonly rely on bisulfite 

conversion of DNA to detect unmethylated cytosines. Bisulfite conversion changes 

unmethylated cytosines into uracils that can be identified by allele-specific 

oligonucleotides against thymines (after amplification) in the case of microarrays, and 

by sequenced thymine read counts in the case of sequencing. 
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For methylome analysis, a microarray-based technology–Illumina 

Infinium HumanMethylation450 BeadChip–was used in Paper III. 

 

3.4 Computational methods 

3.4.1 Consensus Clustering (CS) 

Clustering is an unsupervised method of grouping data. Consensus clustering applies a 

clustering algorithm of choice in iteratively resampled original data to assess the 

stability of the discovered groups in terms of sampling variability [158]. Perturbations of 

the original data by resampling techniques can generate different clustering outcomes, 

and the agreement (‘consensus’) among them can be evaluated. A consensus matrix is 

a matrix that stores, for each pair of items, the proportion of clustering runs in which 

two items are clustered together. Perfect consensus corresponds to a consensus 

matrix with all the entries equal to either 0 or 1. Deviation from the perfect consensus 

matrix indicates a lack of stability of the putative clusters. Thus, for each of a series of 

cluster numbers (K = 2, 3, ..., Kmax), a recipe for assessing the cluster stability requires to: 

1) construct a consensus matrix, 2) compare the resultant consensus matrices, and 3) 

select the cluster number corresponding to the ‘cleanest’ matrix (i.e., a matrix 

containing 0’s and 1’s only). The cleanest matrix can then be clustered on its own for 

the final group assignment. 

We used consensus clustering for subtyping patients in Paper I and Paper III. 

 

3.4.2 Dimensionality reduction 

Dimensionality reduction is a method of visualizing high-dimensional data by projection 

into a lower number of more intuitive dimensions.  

Principal Component Analysis (PCA) reduces data by projecting them onto lower 

dimensions called principal components (PCs) to find the best representation of the 

original data using a limited number of PCs. The first PC is chosen to minimize the total 

distance between the data and their projection onto the PC. By minimizing this 

distance, the variance of the projected points is maximized. Subsequent PCs are 

selected in a similar way, with the additional requirement that they be uncorrelated with 

all previous PCs (orthogonal). Finally, the original data can be reconstructed by linear 

combinations of PCs with arbitrary (positive or negative) sign [159]. 

A more intuitive way of projecting data is to define linear combination of projections 

with positive-only sign. Non-negative matrix factorization (NMF) algorithm extracts 

such desirable projections from positive matrices [160]. A key parameter, rank k of the 
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decomposed matrices, can be used in NMF algorithm to cluster samples. Cluster 

stability can be assessed by a consensus model selection, similar to that of consensus 

clustering, that exploits the stochastic nature of the NMF algorithm. 

Both previous methods rely on linear projections. Non-linear relationships can be 

visualized using advanced dimensionality reduction methods such as Unifold Manifold 

Approximation and Projection (UMAP) [161]. Intuitively, UMAP strives to approximate a 

low dimensional graph to be as similar as a high-dimensional graph based on the original 

data. Optimization to minimize the difference of the graph-based distances in the high 

and low dimensional space leads to better representations that capture both global 

and local relationships of the original data. 

NMF clustering, and PCA coupled to UMAP dimensionality reduction were used in Paper 

III. PCA analysis was used in Paper IV. 

 

3.4.3 Louvain Community Detection Algorithm 

Louvain community detection algorithm partitions networks into ‘meaningful’ 

communities in the sense that nodes are densely connected within the community but 

sparsely connected with the nodes outside [162]. Quality of the partitions can be 

assessed by the modularity metric; a scalar value between -1 and 1 that quantifies the 

density of links inside communities as compared to links between communities. 

Louvain algorithm optimizes modularity in two phases that are performed iteratively: 

• Assuming a network of N nodes, the first phase considers each node as a 

separate community. Then, for each node we evaluate the increase of 

modularity if we assign it to the community of its closest neighbor. The node is 

then assigned in the community for which the increase is maximum and positive. 

In case of no increase, the node remains in its original community. This process 

is applied repeatedly and sequentially for all nodes until no further improvement.  

• The second phase begins with a new network whose nodes are now the 

previously found communities in the first phase and the links between new 

nodes are the sum of the links of the constituent old nodes. Once this second 

phase is completed, the first phase is iterated until there are no more changes 

and a maximum of modularity is attained.  

An important caveat is that modularity optimization may fail to identify modules smaller 

than a scale which depends on the total size of the network and on the degree of the 

modules’ interconnectedness (resolution limit). 

Louvain community detection algorithm was applied in Paper III and Paper IV. 
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4 Results and Discussion 

4.1 PAPER I: Breast cancer quantitative proteome and proteogenomic 
landscape 

This paper presents a multi-omics analysis of 45 breast cancer tumor samples, 

representative of the five PAM50 intrinsic subtypes, with DNA, mRNA, protein, and 

metabolite quantification. At the protein level, tumors were clustered according to their 

respective intrinsic subtype. A finer clustering analysis found 6 core tumor clusters that 

subdivided basal-like and luminal B tumors by their immune composition. Network 

analysis with immunohistochemical validation pinpointed druggable EGFR and MET co-

expression in basal- and normal-like subtypes. Integrative multi-omics analysis 

identified high correlations between mRNA and proteins of PAM50 genes among 

genome-wide moderate correlations, and attenuated effects of somatic CNAs on 

protein abundances relative to mRNA abundances. Furthermore, tumor-specific 

peptides from novel coding regions and single amino variants were identified in 

individual patients. 

Specific to the thesis, we investigated the in-cis gene regulation across the CNA–

mRNA–protein axis using SNP and RNA microarrays, and TMT-labelled MS-based data, 

respectively. Genomic gains and losses were defined using allele-specific copy number 

analysis of tumors (ASCAT) tool for threshold estimation (sample-specific ploidy ± 0.6)  

[163]. The genome-wide copy number landscape of gains and losses across 41 samples 

resembled that of previous large cohorts [142,164] (Figure 6). At gene-level resolution, 

we split samples by the aberrant (gain/loss) and neutral copy number status and called 

significant CNA-mRNA and CNA-protein associations if they showed differential 

abundances using a Wilcoxon rank-sum test (Benjamini-Hochberg BH adjusted p-value 

≤ 0.1, top 5% log2 fold change). Enrichment analysis of the significant CNA associations 

highlighted the HER2 subtype-driven amplified Chr17q region (ERBB2 locus) and the 

basal subtype-driven loss of hormone signaling. Unexpected fold changes –increased 

abundances within genomic loss regions– were identified for six genes (IGFALS, 

ADAMTS12, KIF20A, MFGE8, MYO1E, CCNB1) suggesting compensatory routes of gene 

expression [165,166].  
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Figure 6. Somatic copy number alternation (CNA) landscape of gains and losses. A. Top, percentage of 
samples with gains/losses across the genome. Bottom, genome-wide significant mRNA and protein 
differential abundances for samples with copy number gains.  B. Venn diagram of significant differential 
expressed genes at the mRNA and protein level for copy number gains and losses. 

Furthermore, only ~20% of CNA-mRNA associations overlapped with the respective 

CNA-protein associations. We investigated this attenuated CNA effect on proteins by 

overlaying published protein ubiquitination data [167] as performed in a previous study 

[79]. Specifically, we defined genes with high CNA-mRNA and low CNA-protein 

abundance correlations as being highly attenuated using a Gaussian mixture model 

with two components (Figure 7). Proteins in the high attenuation group were 

ubiquitinated significantly more that the rest of the genes across different time-points 

of drug-induced proteasome inhibition in HCT116 cell lines. Given that specific 

ubiquitination events target proteins for proteasome-mediated degradation, these 

data suggest that the discrepancy of CNA effects on mRNA and protein abundances 

may partly be attributed to protein degradation.  

Figure 7. Scatter plot of per-gene CNA-RNA and CNA-protein Spearman correlations to identify CNA 
effects attenuated at the protein level. B. Boxplot of ubiquitination fold change after proteasome 
inhibition between bortezomib treated and untreated HCT116 cells.  
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In summary, the integrative analysis of CNA, mRNA and protein data recapitulated 

previous breast cancer genomic and proteogenomic landscape studies [100, 113] and 

attributed the dampened CNA effect along the gene expression axis to protein 

degradation.  Limitations of these analyses include: the small sample size that 

precluded detection of small effect sizes; investigation of in-cis rather than trans 

effects; simplified copy number status calls instead of finer levels such as homologous 

deletions and very high amplifications; focus on protein degradation disregarding 

alternative, putative overlapping mechanisms of protein abundance compensation. 
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4.2 PAPER II: Proteogenomics and Hi-C reveal transcriptional 
dysregulation in high hyperdiploid childhood acute lymphoblastic 
leukemia 

This paper presents a combined proteogenomics and chromatin conformation capture 

(Hi-C) analysis of primary samples from patients with high hyperdiploid and 

ETV6/RUNX1-positive pediatric acute lymphoblastic leukemia (ALL). To investigate 

ploidy effects, high hyperdiploid versus ETV6/RUNX1-positive comparisons at the 

mRNA and protein level showed reduced abundances of CTCF and cohesin complex 

subunits. These proteins participate in the hierarchical organization of the genome by 

establishing topologically associating domains (TADs), i.e., genomic regions that 

interact with each other much more frequently than with regions located in adjacent 

sequences. TAD borders were associated with genome-wide transcriptional 

dysregulation in the hyperdiploid group, for which selected cases displayed loss of TAD 

boundary strength and reduced insulation in Hi-C assays. At the chromosome level, 

cytogenetic analysis confirmed aberrant metaphase chromosome morphology in 

hyperdiploid cases. 

Related to the thesis, we studied the in-cis effect of CNAs on mRNA and protein levels. 

Contrary to breast cancer, which is characterized by both short (focal) and 

chromosome arm-length copy number alterations, hyperdiploid ALL displays whole 

chromosome gains. For regions with whole chromosome gains, we calculated 

differential mRNA and protein abundance using ETV6/RUNX1-positive samples as the 

non-aberrant control group. A proxy of differential abundance, Cohen’s d effect size, 

scaled linearly with the copy number status (Figure 8), with higher values for 

chromosomes X and 21 as demonstrated before at the mRNA level [145]. Despite the 

common trend, lower effect sizes were identified at the protein level suggesting protein 

compensation mechanisms. 

We used per-gene mRNA–protein Spearman correlation as a surrogate for protein-level 

regulation and compared correlation distributions in groups devised by mRNA and 

protein stability, miRNA targeting, subcellular localization as well as differential 

expression, differential ubiquitination, and degradation kinetic profiles (Figure 9). In 

particular, we found that differentially expressed genes at the mRNA and protein level 

between hyperdiploid and ETV6/RUNX1-positive samples had higher mRNA-protein 

correlation than non-differentially expressed genes suggesting functional significance 

as previously described [168]. Moreover, in line with the breast cancer study (Paper I), 

significantly ubiquitinated proteins had lower mRNA-protein correlations likely due to 

increased protein degradation. This was further illustrated when data of protein 

degradation kinetics were used to assign proteins into exponential and non-

exponential degradation profiles [76]. A part of proteins with non-exponential profiles 

are considered to belong to excessively produced protein complex subunits that are 
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degraded faster to maintain complex stoichiometry, and this tighter regulation at the 

protein level is depicted on their lower mRNA-protein correlations in this study. 

 

Figure 8. Cohen’s d effect size analysis. Comparisons of mRNA and protein levels between high 
hyperdiploid and ETV6/RUNX1-positive samples were performed for gained chromosomes. Cohen’s d 
effect sizes above 0.3 are called significant. Linear regression coefficient of determination is displayed. 

 

Figure 9. Protein-level regulation. A. Comparison of mRNA-protein correlation distribution for 
differentially abundant and non-differentially abundant mRNAs and proteins. B. Categorization of mRNA-
protein correlation into low (black) and high (grey) ubiquitination of the corresponding protein based on 
data from bortezomib-induced proteasomal inhibition. C. Comparison of mRNA-protein correlation 
distribution for proteins with an exponential (ED) and non-exponential degradation (NED) kinetic profile. 
Number of observations, medians, first and third quartiles, and whiskers extending to 1.5 times the 
interquartile range are displayed. Unpaired, two-sided Wilcoxon rank sum test was used to calculate P-
values. 

In summary, CNAs in hyperdiploid ALL samples resulted in increased mRNA and protein 

production akin to the ploidy status. Concordance between mRNA and protein levels 

was higher in differentially expressed genes and less ubiquitinated proteins with slower 

degradation rate. A limitation of this analysis is that these findings describe general, 

pervasive gene expression regulatory mechanisms without ALL specificity. 
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4.3 PAPER III: Proteogenomics of non-small cell lung cancer reveals 
molecular subtypes associated with specific therapeutic 
targets and immune-evasion mechanisms 

This paper presents a proteogenomics study of 141 early-stage tumors from non-

small cell lung cancer (NSCLC) patients layering data from targeted DNA 

sequencing, DNA methylation and RNA microarrays, and TMT-labelled proteomics. 

Clustering analysis identified six subtypes driven by histology and distinct immune 

microenvironment that was immunohistochemically validated. A mechanistic 

hypothesis for immune evasion was proposed for the subtype enriched in STK11 
mutations regarding the LAG3-FGL1 immune checkpoint receptor-ligand pair. 

Immune-cold tumors also displayed higher expression of protein species that could 

serve as potential neoantigens. Finally, using machine learning-based classification, 

we identified the proposed subtypes in external validation datasets.  

In the context of this thesis, we evaluated the unbiased grouping of the NSCLC 

proteome with unsupervised clustering algorithms. Spearman correlation-based 

consensus clustering on the overlapping proteome divided NSCLC proteomic 

samples into six subtypes (Figure 10).  

 

Figure 10. Heatmap of the consensus clustering analysis on the complete proteome of 141 NSCLC 
samples. Histology, mRNA subtypes, clinical parameters, tumor microenvironment signatures, 
common mutations and protein levels of selected markers are annotated. 

This division was corroborated by an alternative clustering method using non-

negative matrix factorization (NMF). For the discovered subtypes, available 

mutation data uncovered unique links between genotype and molecular 

phenotypes.  Specifically, mutation enrichment was identified for subtype 1 (EGFR), 

subtype 4 (STK11, KEAP1 and SMARCA1), subtype 5 (RB1), and subtype 6 (TP53). In 

line with the mutations, network analysis indicated increased abundance of proteins 

involved in epithelial-to-mesenchymal (EMT) transformation, metabolic pathways, 
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E2F1/MYC signaling, and p53 pathway for the respective subtypes. Moreover, in-
silico deconvolution of the tumor microenvironment identified decreased immune 

infiltration for most samples in these subtypes. This line of evidence indicates that 

enriched mutations may shape tumor composition by activating specific 

downstream oncogenic pathways. 

To further characterize tumor microenvironment composition beyond the mutation 

impact, we investigated the distribution of protein species identified as cancer-

testis antigens (CTAs) and non-canonical proteins/peptides (NCPs) across the 

subtypes. These protein species can be considered as potential neoantigens that 

allow cancer cells to be targeted by the immune system [169]. CTAs and NCPs were 

found to be overexpressed in the high-proliferative, low-immune infiltrated 

subtypes 4, 5 and 6, and were considered as high-scoring in the composite index 

for tumor neoantigen burden that incorporated the total number of mutations (TMB) 

(Figure 11). Abundances of CTAs and NCPs were negatively correlated with global 

methylation suggesting an epigenetic component in their expression regulation 

[170]. 

 

Figure 11.  Scatter plot of global methylation with respect to the number of CT antigens per sample 
(A) and the number of NCPs per sample (B) (n = 113 samples). (C). Heatmap of tumor neoantigen 
burden per subtype as a composite score of tumor mutational burden (TMB), Cancer testis antigens 
(CTAs) and non-canonical proteins/peptides (NCPs). 

In summary, we identified 6 NSCLC proteome-based subtypes with distinct 

genotype-phenotype interplay between enriched mutations and oncogenic 

pathways and tumor microenvironment composition. Subtype-specific non-

canonical phenotypes were also linked to the DNA methylation status. These 

findings need to be further evaluated to determine causal relationships between 

mutations and downstream effects and avoid confounders of bulk profiling with 

single-cell technologies. Moreover, the antigenicity of the tumor neoantigen burden 

should be tested in additional in silico and in vitro experiments. 

 

R = –0.34
P = 2.4 × 10–4

0

0.40 0.45 0.50 0.55

2.5

5.0

7.5

10.0

12.5

Methylation score

N
o.

 C
TA

s

Global methylation versus CTAs
n = 113

0

10

20

30

R = –0.19
P = 4.2 × 10–2

N
o.

 N
C

Ps

Global methylation versus NCPs
n = 113

0.40 0.45 0.50 0.55
Methylation score

Subtype
1
2
3
4
5
6

Tumor neoantigen burden (TNB)

CTAs
TMB NCPs

Subtypes
TMB

CTAs
NCPs

TNB

0.40.30.20.1
Minimum−maximum normalized values

1 2 3 4 5 6

A B C



 

 31 

4.4 PAPER IV: DEpMS: Differential Expression analysis of 
proteoforms from Mass Spectrometry-based bottom-up 
proteomics 

This paper presents a bioinformatics approach to discover proteoforms from 

bottom-up proteomics datasets. In typical proteomics analysis, the peptide 

association with its corresponding protein is lost during the protein digestion step. 

At the protein inference step, detected peptides are summarized under a common 

protein identifier using the minimum list of proteins that support all peptide 

evidence. By doing this, important information is lost for proteoforms, which 

comprise the complement of molecular forms a gene’s protein product can take. A 

solution to overcome this limitation and detect putative proteoforms is to use the 

peptide quantitative pattern –the vector of peptide abundances across samples– 

before the protein inference step [155,156,171]. Here, we build on this idea by 

developing a tool that selects peptides with outlying quantitative patterns across 

samples, groups them by their similarity, and finally, tests them between conditions 

or across their shared co-variance pattern. We call this method Detection of 

proteoforms from Mass Spectrometry-based bottom-up proteomics (DEpMS). 

We applied DEpMS in a TMT-labelled MS proteomics dataset of 18 cell lines profiled 

in triplicates with diverse embryonal origin to increase the proteoform diversity 

(ABMS, AntiBody validation using Mass Spectrometry dataset) (Figure 12). Group-

based DepMS from pairwise comparisons between cell lines identified 768 putative 

proteoforms that corresponded to 717 proteins (q ≤ 0.01). The majority of them were 

cell line specific (71.5%) with most proteins consisting of 2 proteoforms (93.4%). 

Splicing analysis of corresponding RNA sequencing data with the RMATS statistical 

tool [172] identified hundreds of splicing events predominantly of the exon skipping 

type (Benjamini-Hochberg BH p-value ≤ 0.01, |𝛥𝜓| > 0.1). Common events at the RNA 

and protein level were found for 55 unique proteins (7.7% of the total proteoforms). 

This indicates that RNA splicing events only partially explain the diversity of the 

identified proteoforms, suggesting alternative mechanisms of proteoform 

generation [173], technical artifacts [174] or gene expression regulation events [175]. 

We further applied DEpMS in the clinical cohort of non-small cell lung cancer 

patients described in Paper III. Unsupervised Principal component analysis (PCA) of 

the outlying peptides using the covariance pattern imprinted in the first two 

principal components separated squamous cell carcinoma (subtype 6) from the 

EGFR mutant-enriched adenocarcinoma lung cancer (subtype 1), and nominated 73 

proteoforms from 72 unique proteins (q ≤ 0.01). All of them except one case were 

identified in separate principal components. Highlighted in Figure 13 is an identified 

putative proteoform from collagen type VI alpha 3 chain (COL6A3) protein with the 

quantitative profile of its three associated peptides shown on top of the heatmap 
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(left) and the corresponding gene track (right). The peptides map to exon 6 of 

COL6A3, which has been recently shown to be a tumor-stroma-specific splice 

variant in multiple solid tumors in quantitative immunopeptidomics[176]. The 

analysis here suggests that a subgroup of EGFR-mutated lung cancer 

adenocarcinoma patients may not be eligible for T-cell receptor-based 

immunotherapy due to low protein abundance of the COL6A3 splice variant. 

 

Figure 12. DEpMS analysis on ABMS data. Left, bar plot of the identified proteoforms per cell line (q 
≤0.01). Right, pie chart of protein composition in significant proteoforms. Proteoforms are assigned 
to an isoform group if the constituent peptides support alternative gene models with RNA evidence. 

 

Figure 13. COL6A3 proteoform detection from PCA-based DEpMS on NSCLC data. Left, heatmap of 
COL6A3 peptides with the top three corresponding to a distinct proteoform (Profile P1).Right, gene 
track with the COL6A3 gene models and the P1 proteoform peptides overlapping splice variant-
specific exon 6. 

In summary, this study describes a tool for nominating proteoforms from MS-based 

bottom-up proteomics. Since the added proteoforms expand the identifications at 

the protein level and rely on outlying peptide profiles that could be generated from 

unreliable spectra, false discoveries are enriched. Orthogonal data or post-

processing inspection may be needed to assess the quality of the proteoforms [177]
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5 Conclusions 
In summary, herein presented work has investigated how cancer proteome integrates 

changes along the axis of the central dogma of molecular biology. Specifically:  

In Paper I, we studied the effect of CNAs on mRNA and protein abundances in breast 

cancer and found antithetic gene expression regulation: pervasive expression of the 

breast cancer driver gene ERBB2 in the amplified Chr17q region, but genome-wide 

dampened abundances for proteins targeted by the proteasome. 

In Paper II, we studied the gene expression regulation via post-transcriptional and post-

translational mechanisms in the aneuploidy setting of B-cell high hyperdiploid 

childhood acute lymphoblastic leukemia. We found concordant dosage effects of copy 

number gained chromosomes at both mRNA and protein level, but mRNA-protein 

deregulation due to differential ubiquitination and protein degradation kinetic profile. 

In Paper III, we investigated proteome composition and organization in NSCLC tumor 

samples that indicated six distinct immune microenvironment-related subtypes. The 

six subtypes displayed unique mutation enrichments and novel peptide expression 

associated with DNA hypomethylation.  

In Paper IV, we devised a bionformatics approach to dissect proteoform diversity from 

bottom-up proteomics datasets. We found that splice-variants represent ~8% of the 

total pool of proteoform identifications and showcase COL3A6 splice variant as an 

example of a proof-of-concept proteoform discovery in a NSCLC clinical proteomics 

cohort. 
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6 Points of perspective 
Proteogenomic studies have showed that mRNA measurements are at least moderate 

predictors of proteins and have moved the so far genomics-driven cancer biology field 

forward by uncovering new regulatory relationships between DNA, RNA and proteins. 

These findings can lead to novel cancer subtypes, potential biomarkers and druggable 

targets, but need to be validated in larger cohorts for clinical implementation. Thus, 

current clinical proteogenomic studies should be cautiously interpreted as hypothesis 

generating studies.  

Overcoming limitations in all aspects of MS-based experiments [178] –sample 

preparation, liquid chromatography, mass spectrometer instrumentation and 

downstream analysis– will enable faster, more accurate and in-depth proteomics 

output at a cohort scale similar to plasma proteomics [179]. Of particular interest is the 

problem of downstream analysis with unassigned spectra that might stem from post-

translationally modified peptides that are currently missed without modified database 

searches. Large consortia based on top-down proteomics that circumvent this 

problem by analyzing intact proteins will hold a pivotal role in the future for illuminating 

the human proteome diversity [173].  

With an eye on advances in RNA sequencing technologies and the way these have 

progressed from bulk samples to single-cell analysis, one may envisage that future 

proteogenomics studies would follow a similar way. Already single-cell proteomics 

technologies have been developed that enable the proteome-wide profiling of proteins 

[180] and team efforts are currently underway to study the spatiotemporal variation of 

the human proteome at the single cell level [181]. This could reveal exciting insights into 

tumor evolution across time and space including mechanisms of metastasis and drug 

resistance. In the near future, one might as well imagine single-cell methods for tracking 

protein degradation be combined with  genomic engineering methods to probe the 

direct effect of chromosomal aberrations on the proteome, unbiased from bulk 

measurements [182].  

From the bioinformatic perspective, data integration could move proteogenomic 

analyses beyond parsimonious linear correlations by analyzing data in an multi-

dimensional way accustomed to the omics at hand [183,184]. Among various 

sophisticated approaches, analysis based on graph neural networks seems the most 

promising for the proteogenomics field since gene regulation can naturally be cast as a 

graph of molecular interactions [185]. Such machine learning applications, though, 

should be used with caution avoiding biases of model misspecification and overfitting 

[186].  
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The potential of current and future proteogenomic studies for clinical translation seems 

particularly promising [187]. Proteogenomic findings could help bridge genomics with 

proteomics for personalized medicine [188] building upon the unique characteristics of 

proteins as integrators of upstream events in the central dogma and mediators of 

pharmacological actions. Within the drug therapy field, due to being closer to cancer 

phenotype, more rational drug combinations could be chosen to alleviate drug 

resistance or produce synergistic effects. Most importantly, identification of sample-

specific non-canonical peptides/proteins that are able to elicit immune responses 

could increase immunotherapeutic options with immune checkpoint inhibitors, 

neoantigen vaccines or engineered T-cells [189,190]. Finally, diagnostic, predictive and 

prognostic cancer biomarkers could be developed and validated by the high 

quantification accuracy of targeted MS proteomics [191]. 

In this thesis, proteogenomics investigated the interplay between DNA, mRNA and 

proteins in cancer suggesting proteomes of unique composition in protein species, 

sculpted by gene compensation mechanisms, and integrated as tumor-organ 

phenotypes. This body of evidence can help generate compelling hypotheses about 

tumor biology with clinical translational potential. 
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