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Impacts of extension
dissemination and technology
adoption on farmers’ e�ciency
and welfare in Ghana: Evidence
from legume inoculant
technology

Sadick Mohammed and Awudu Abdulai*

Department of Food Economics and Consumption Studies, University of Kiel, Kiel, Germany

Examining the welfare impact of agricultural development interventions that

incorporate di�usion of improved production technologies to farmers within

extension delivery programs can be very challenging, because of the di�culty

in disentangling the individual impacts of the production technology and

the extension delivery program. Using recent farm level survey data from

extension dissemination program of legume inoculant technology of 600

farmers in Ghana, we employ a recentmethodological approach to investigate,

simultaneously, the impact of the inoculant technology adoption and the

extension program participation on farmers’ productivity, e�ciency and

welfare. We decompose each of these impact measures into subcomponents

whose causal paths can be traced to both the adoption of the production

technology and the extension delivery program. We find that, in terms of yields

and net revenue, direct contribution of improved technology adoption alone

is 34 and 64%, respectively, and 35 and 66% indirectly due to improved farmer

e�ciency, leading to 36 and 74% improvement in farmers’ welfare, respectively.

On the other hand, direct contribution of extension delivery program

participation alone is 66 and 36%, respectively, with 66 and 34% indirectly due

to improved farmer e�ciency, resulting in 64 and 26% improvement in farmers’

welfare, respectively. Based on the findings, we recommend that policymakers

should invest in research and development to produce yield enhancing

agricultural technologies suitable for poor and degraded soil conditions in

developing countries which can contribute immensely to poverty and food

insecurity reduction. The development of new agricultural technologies must

be pursued with vigorous provision of extension services to farmers to be able

to exploit the full potentials of the new technologies.

KEYWORDS

mediation analysis, treatment e�ect, impact assessment, legume inoculant
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Introduction

The increasing global food demand calls for adoption of

new agricultural technologies to increase food production.

Similar concerns in the past led to the introduction of the

green revolution, a policy that advocated for intensifying

the use of high yielding varieties, mineral fertilizers and

tractors among smallholder farmers in developing countries

(Pingali, 2012). Although the policy led to an increase in

agricultural productivity and food supply, it also contributed

to worse environmental impacts such as degraded lands and

impoverished soils (Pingali, 2012; Zhang et al., 2015). Increase in

food production cannot be achieved without sufficient nitrogen

supply, as nitrogen allows farmers to increase crop production

per unit area of land (Zhang et al., 2015). Tomitigate the effect of

pollution from reactive nitrogen while ensuring sufficient food

production, a new paradigm shift is required (Mutuma et al.,

2014; Zhang et al., 2015).

The Integrated Soil Fertility Management (ISFM) is one

of such new approaches employed to promote soil fertility

enhancing technologies for resource-poor farmers in developing

countries (Crowley and Carter, 2000). A technology promoted

under the program among smallholder soybean farmers in

northern Ghana is the legume inoculant technology. Soybean

is targeted due to its potential to undergo sustainable

intensification, its industrial value and nutritional quality (Foyer

et al., 2018; van Heerwaarden et al., 2018). The inoculant

technology is an organic input containing isolates of an elite

strain of bacterial (Bradyrhizobium spp.) and organic carrier

material (Lupwayi et al., 2000). The inoculant technology is

seen as cost-effective alternative to rehabilitating poor soils by

enhancing the build-up of biological nitrogen fixation (BNF)

organisms in the soil (Giller, 2001). Evidence of the potential

productivity gains from inoculant has been documented in

the literature (e.g., Rurangwa et al., 2018; van Heerwaarden

et al., 2018; Mohammed and Abdulai, 2022). Notably, grain

yield of soybean from inoculated fields increased by 20–29%

in Mozambique (Chibeba et al., 2018) and 12–19% in the

northern region of Ghana (Ulzen et al., 2016), relative to

uninoculated fields. Yield response to inoculant significantly

varies across agro-ecological zones in Africa and depend on

agronomic practices and varietal promiscuity to the strain of

the Rhizobia in the inoculant (van Heerwaarden et al., 2018). To

improve efficiency, organizations involved in the dissemination

of the inoculant technology employ several innovative extension

methods1 to train farmers on good agronomic and crop

management practices on the inoculant technology. However,

the important issues that require investigations are: to what

1 The extension channels employ are video documentaries, radio

listening clubs, on-farm and o�-farm trials, field days, brochures, use of

community volunteers.

extent has the inoculant or the extension improved the efficiency

of farmers, and differential impacts of the inoculant and

extension provision on efficiency improvement, as well as the

impact of the efficiency gain on farmers’ welfare. Our goal in

this study is to simultaneously assess the impact of the inoculant

technology adoption and the extension participation on farmers’

productivity and efficiency. Usually, agricultural development

programs such as the inoculant dissemination program often

have dual goals of inducing an upward shift in the production

frontier and the promotion of better management practices,

which incorporates two potentially endogenous treatments

in a single program (Bravo-Ureta, 2014). That is, treatment

of farmers to new superior technology and the building of

human capital, each having the potential to influence both

the technology frontier function and the inefficiency function

independently (Huang and Liu, 1994; Kumbhakar and Tsionas,

2009).

However, empirical studies often overlook the double

treatment endogeneity, most often addressing one of them,

and subsuming the other into distributional assumptions of

the model. For instance, in Dinar’s et al. (2007) study on the

impact of extension services in Greece, extension participation

is analyzed as performing a dual role, an input in the production

function and a factor narrowing the technology gap, exerting

direct and indirect effects in the production process. Their

approach implicitly assumed homogeneous technology and fail

to account for selection bias in the extension participation. In

the event that farmers self-select into an extension program or

adopt a superior production technology, the direct and indirect

effects due to heterogeneity in technology or enhanced farmer

capacity will be unaccounted for and the full impact will be

miss measured. Other studies following the seminal work of

Dinar et al. (2007) employed a mixed multi-stage approach to

address the issue of selectivity and technology heterogeneity

(e.g., Bravo-Ureta et al., 2012, 2020; Villano et al., 2015; Abdulai

and Abdulai, 2016; De los Santos-Montero and Bravo-Ureta,

2017; Abdul-Rahaman and Abdulai, 2018). Even though the

mixedmulti-stage approach accounts for selection bias, it fails to

account for the direct and indirect impacts that heterogeneous

production technologies may have on both the production

frontier and the efficiency function. The mixed multi-stage

approach also attempts to address technology heterogeneity

among production units by estimating group-specific frontiers

for different groups of production units and further use the

group frontiers to obtain the meta-frontier for comparison.

However, because the maximum likelihood estimates of the

predicted group-specific frontier is neither known a prior nor

estimated relative to the same frontier, some degree of biasness

in this approach is unavoidable and difficult to ascertain (Huang

et al., 2014). Moreover, as indicated by Triebs and Kumbhakar

(2018), the approach subsumes observed variables like extension

service with the potential to augment the farmer’s managerial
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ability in the inefficiency parameter of the model. On the

contrary, the managerial ability does not only influence the

inefficiency function but also the technology frontier, resulting

in non-neutrality of the production function (Huang and Liu,

1994; Triebs and Kumbhakar, 2018). Also, the endogeneity

issues addressed in the mixed multi-stage approach center

mainly on the feedback between the technology choice and

the production model residuals, but not on accounting for

endogeneity, which could separately and simultaneously affect

the technology frontier and the production inefficiency function

(Chen et al., 2020).

The present study attempts to fill the gap and contribute

to the above literature on impact assessment and technical

efficiency, using survey data of 600 farm households from

northern Ghana. Specifically, we employ the stochastic frontier

model with endogenous treatment and mediator effect (Chen

et al., 2020), to estimate the impact of dual purpose

development interventions, and to decompose the impact

into direct and indirect effects. This recent approach brings

together mediation analysis2, treatment effect and that of

the stochastic frontier models in a single framework.3 Using

this approach, we are able to disentangle the dual purpose

inherent in agricultural development interventions’ impact

into four components. That is, the direct effects on the

technology frontier, the indirect effects on the technology

frontier that go through the mediator, the direct effects

on the technical inefficiency, and the indirect effects on

the technical inefficiency that go through the mediator.

Our approach departs from the conventional approaches in

the literature (e.g., Bravo-Ureta et al., 2012, 2020; Villano

et al., 2015; Abdulai and Abdulai, 2016; De los Santos-

Montero and Bravo-Ureta, 2017), in which a conventional

SPF (stochastic production frontier) model that corrects for

sample selection bias is estimated. In particular, we estimate a

treatment effect model using the stochastic frontier regression

framework, while addressing endogeneity from selection bias,

endogenous treatment and mediator variables. We also account

for treatment heterogeneities among production units. An

important requirement for successful implementation of this

approach is the existence of good and valid instruments

for identifying both the mediation and the treatment effects,

something that may be considered a limitation, just like any

instrumental variable approach.

2 The mediation analysis is also known as the Baron and Kenny (1986)

models in the applied statistics literature.

3 Caveat: please note that the approach employed in this paper

is not a conventional production function, rather, a combination of

mediation and treatment e�ect analysis, and therefore relaxes the

stringent assumptions underpinning conventional production functions

approach.

The rest of the paper is organized as follows: In Sections

Conceptual and empirical framework and The identification

strategy, we present the conceptual and empirical framework

and empirical identification of causal impact, respectively,

Section Empirical specification and estimation discusses the

empirical specification and the estimation procedure, while

Section Study area, data and descriptive statistics describes the

data and descriptive statistics. The Empirical results and the

Conclusions and policy implications are presented in the last

two sections.

Materials and methods

Conceptual and empirical framework

In agriculture, new production technologies such as high

yielding varieties and complementary inputs like fertilizer (or

as in our case, the legume inoculant technology) have the

potential to shift the production frontier upwards (Huang

and Liu, 1994; Kumbhakar and Tsionas, 2009; Triebs and

Kumbhakar, 2018). Also, farmers who receive extension services

or technical training on the new technology may experience

further shift in the production frontier upwards by reducing

production inefficiencies (Mohammed and Abdulai, 2022a). The

two shifts involve two potentially endogenous treatments in a

single agricultural development intervention that incorporates

dissemination of new production technologies and training

of farmers. First, adoption of a new superior technology that

affects both the production frontier function and the inefficiency

function (Kumbhakar and Tsionas, 2009), and second, extension

training that builds human capital with the potential to influence

both the production frontier function and the inefficiency

function (Huang and Liu, 1994; Triebs and Kumbhakar, 2018).

To represent both frontiers, let Y denote individual farmer i

observed output under a given production technology andX be a

vector of observed covariates. We express the farmer’s observed

output in a conventional stochastic frontier form (Kumbhakar

and Lovell, 2000) as;

Y = Y∗ − u, u ≥ 0 (1)

where Y∗, is the unobserved stochastic frontier that may be

influenced directly by the new technology and indirectly by

extension training, and u ≥ 0, is the unobserved production

inefficiency assumed to be randomly distributed, whichmay also

be influenced directly by extension training and indirectly by the

new technology. The expression in Equation 1 indicates that Y∗

and u are two distinct unobserved random components, which

can be separately identified. In line with Chen et al. (2020),

we stochastically express each unobserved function in terms of
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observed covariates4 in a system of equations as follows;

Y =

{

Y∗ = h
(

X, βh
)

+ v

u = g
(

X, βg
)

+ ũ
and (2)

E
[

Y∗
∣

∣X
]

= h
(

X, βh
)

and E [u|X] = g
(

X, βg) , E [v|X]

= 0, E
[

ũ|X
]

= 0

where X is a vector of covariates, h(.) is the frontier function

with parameter vector βh and g(.) is a non-negative inefficiency

function with parameter vector βg , while v and ũ are error terms

assumed to be independently and identically distributed. E[.] is

the expectation operator which identifies the conditional mean

expectations of the equations in the system. To relate the effect of

the production frontier and the inefficiency to observed farmer-

specific potential outcome, given his observed characteristics

and inputs, we express Equation 1 in terms of its conditional

mean representation in Equation 2 as follows;

E [Y|X] = h
(

X, βh
)

− g
(

X, βg) (3)

By letting Y1 to be the potential outcome of a farmer who

adopts the technology (i.e., the inoculant technology) and Y0 be

the potential outcome, if the same farmer did not adopt, then,

the average treatment effect on the treated (ATT) for adopters

can be specified as;

ATT = E (Y1 − Y0|D = 1) = E (Y1|D = 1) − E(Y0|D = 1) (4)

where D is a binary adoption indicator, with D = 1 if the farmer

adopts and D = 0, otherwise.

The identification strategy

In observational data situation like ours, evaluating the

impact of the inoculant dissemination program on farmers’

welfare and the shifts in the production technology and

inefficiency functionsmay suffer serious identification problems,

resulting in biased estimates. However, with the availability of

good and valid instruments, it is possible to categorize the whole

population into well identified mutually disjoint sub-population

of adopters who are compliers of the instruments (Imbens and

Angrist, 1994; Angrist et al., 1996).

In our setting, we use rural electrification as the most

likely exogenous instrument that can identify various sub-

population of inoculant adopters. Given that the rhizobia in

the inoculant survive within a temperature limit of about 25◦C,

4 The frontier h(.) and the ine�ciency g(.) functions allow for same

or di�erent covariates in both functions, however, for notational

convenience, we use a general X.

it requires a controlled temperature storage facility. Hence, it

is expected that farmers who live in communities connected

to the national grid of electricity supply may have easy access

to the technology, compared to their counterparts who live in

communities without electricity supply. If we let Z1 represent

an instrumental variable (IV) that takes a value of 1, if the

farmer’s village is connected to national electricity grid, and 0

otherwise, the propensity of a farmer adopting the technology

can be specified in a latent variable adoption decisionmodel (i.e.,

D∗) as follows:

D∗ = γz1Z1 + γxX + UD, with D =

{

1, if D∗ ≥ 0

0, otherwise
and

D = 1(γz1Z1 + Xγx + UD ≥ 0) (5)

where D is a discrete adoption decision indicator, with D = 1 if

the farmer adopts the inoculant technology and 0 otherwise, X is

a vector of covariates, γ is the parameter of interest and U is the

error term.

Naturally, it is expected that the effect of extension

service participation, which improves the managerial skills of

the farmer, is mainly observed after the farmer adopts the

technology on which the extension training is based on. That

is, when the farmer uses or adopts the inoculant technology.

As such, extension functions as a post-adoption mediator and

can be modeled as a function of adoption. With a potentially

endogenous binary mediator, such as the extension service

participation in this case, the mediation effect can be identified

with a continuous exogenous variable with known distribution

and whose level differs with adoption status (Frölich and Huber,

2017; Chen et al., 2020). In this circumstance, we rely on farmer’s

distance to the nearest extension office as a possible exogenous

continuous instrument. We expect that farmer’s propensity

to participate in extension service programs would increase

as the distance decreases and then decrease as the distance

increases. If we let Z2 be a continuous instrumental variable

(IV) whose distribution5 and level decreases as mediation

takes the value of 1, and increase as mediation goes to

0, then, the propensity of a farmer to participate in the

extension program and also adopt the technology can be

expressed in a latent variable mediation model (i.e., M∗)

as follows:

M∗ = αdD+ αz2Z2 + Xαx + UM ,with

Mi =











1,

if M∗ ≥ 0

0, otherwise

and

M = 1(αdD+ αz2Z2 + Xαx + UM ≥ 0) (6)

5 See Figure A1 in the Supplementary material for the plot of the

distribution of the continuous IV Z2, showing both properties of increasing

and decreasing propensities, as a necessary condition for identification.
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where M is a binary mediation indicator, with M = 1

if the farmer participates in the extension program and 0

otherwise, D is the adoption status indicator, X is a vector of

covariates, α is the parameter of interest and U is the error

term. Considering Equations 5 and 6, (which identify both the

potentially endogenous adoption and extension decisions), the

post-mediation potential outcome Y is a function of D and

M, assuming that the post-mediation potential outcome can

be represented as Y(D,M(D)), where M(D) is the mediator

function, whose effect depends on the adoption status of

the farmer.

Given a binary adoption indicator [i.e., D(1), D(0)] and a

binary IV (Z1 ∈ {0, 1}), four potential outcomes representing

four mutually disjoint sub-population of farmers can be

identified as follows (Imbens and Angrist, 1994; Angrist et al.,

1996);

(D (1) ,D (0)) =



















(1, 1) , always takers,

(1, 0) , compliers (C) ,

(0, 1) , defiers,

(0, 0) , never takers.

(7)

where C is an indicator of instrument compliers, who are

induced to adopt the technology based on the instrument. It

is assumed that a randomly chosen farmer in the complier

sub-population, no matter the circumstance, does not change

adoption status other than the assigned status by the instrument

(Angrist et al., 1996). Due to this known property of the

compliers, their potential impact better approximates that

of causal estimates from a full compliance experimentation.

Therefore, by conditioning on the observed covariates X and the

complier status C of the farmers, the average treatment effect on

the treated as expressed in Equation 4 can be identified (Chen

et al., 2020) as follows:

CLATE = E [Y (1,M (1))|X = x,C]

−E[Y(0,M (0))|X = x,C] (8)

where CLATE is the conditional local average treatment effect.

Also, because the levels of the continuous instrumental variable

for identifying the mediation effect varies with adoptions status,

it is possible to decompose the unconditional local average

treatment effect into direct and indirect effects as in Chen et al.

(2020):

CDLATE = E [Y (1,M (1))|X = x,C]− E[Y(0,M (1))|X = x,C] (9)

CILATE = E [Y (0,M (1))|X = x,C]− E[Y(0,M (0))|X = x,C](10)

where CDLATE is the conditional direct local average treatment

effect and the CILATE is the conditional indirect local

average treatment effect. Conversely, the unconditional average

treatment effect can also be derived from the conditional local

average treatment effects, by conditioning on only the sub-

population of farmers who are compliers as follows;

LATE = E
[

CLATE(X)
∣

∣C
]

= E [Y (1,M (1))|C]

−E[Y(0,M (0))|C] (11)

DLATE = E [Y (1,M (1))|C]− E[Y(0,M (1))|C] (12)

ILATE = E [Y (0,M (1))|C]− E[Y(0,M (0))|C] (13)

where LATE is the local average treatment effect which captures

the total effect, while DLATE and ILATE are direct and indirect

local average treatment effects respectively, that capture the

impact due to the adoption of a superior technology and

mediation role of extension participation.

Empirical specification and estimation

A farmer’s propensity to participate in extension services

(i.e., the potential mediation model) may correlate with his

inoculant adoption decision (i.e., the potential treatment model)

either due to observed or unobserved factors. We assume that

the error terms are independently and identically distributed

and follow a bivariate normal distribution. In line with Chen

et al. (2020), we specify the joint extension participation

and inoculant adoption decisions as a bivariate probit model,

with a bivariate normal distribution and CDF FUM,D (., ., ρmd)

as follows:

P (M,D|Z1,Z2,X, η) , and
[

UM

UD

]

|(Z1,Z2,X) ∼ N

([

UM

UD

]

,

[

1 ρmd

ρmd 1

])

(14)

where η ≡ (αd,αz2 ,αx, γz1 , γx, ρmd) is a maximum likelihood

estimator of a vector of parameters. In a first-stage estimation, a

bivariate probit model is estimated to control for selection bias

from both observables and unobservables. To unify the impact

assessment and mediation analysis within the stochastic frontier

analysis framework, we represent the frontier function of Aigner

et al. (1977) andMeeusen and van den Broeck (1977) in the form

of Chen et al. (2020), for d, d
′
∈ {0, 1}6, as follows:

Y
(

d,M
(

d
′
))

= h̆
(

d,M
(

d
′
)

,X,βh
dj

)

− ğ
(

d,M
(

d
′
)

,X,β
g
dj

)

+ UY (v
(

d,M
(

d
′
))

+ ũ
(

d,M
(

d
′
))

) (15)

6 The observed binary adoption decision indicator d varies as d
′
, taking

the value of 1, if a farmer adopts the inoculant technology and 0,

otherwise.
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where h̆
(

d,M
(

d
′
)

,X
)

and ğ
(

d,M
(

d
′
)

,X
)

are potential

frontier and non-negative potential inefficiency functions,

respectively; X is a vector of covariates; β is a parameter of

interest; while v
(

d,M
(

d
′
))

and ũ
(

d,M
(

d
′
))

are potential

random error terms. The binary adoption indicator is D =

d, d
′
∈ {0, 1} and j = M

(

d
′
)

is the mediator function whose

distribution varies with adoption status. The conditional mean

expectation of Equation 15 combines the potential outcome and

mediator models as;

E
[

Y(d,M
(

d
′
))

|X,C] = h
d
′

(

X,αm,β
h
dj

)

− g
d
′

(

X,αm,β
g
dj

)

and (16)

E
[

v
(

d,M
(

d
′
))
∣

∣

∣
X,C

]

= 0,E
[

ũ
(

d,M
(

d
′
))
∣

∣

∣
X,C

]

= 0, and E[M
(

d
′
)

|X,C] = m
d
′ (X,αm)

wherem
d
′ (.) is a non-negative function of the potential mediator

model in {0, 1} with a parameter vector αm. To reflect variations

in the distribution of the non-negative potential mediator

model, as the adoption indicator takes the value within {0, 1}

in the estimated parameters of interest, we rewrite Equation 16

as follows:

E
[

Y(d,M
(

d
′
))

|X,C] = h
d
′

(

X,αm,β
h
d1,β

h
d0

)

−g
d
′

(

X,αm,β
g
d1
,β

g
d0

)

(17)

We estimate the parameters in Equation 17 using a two-

stage weighted non-linear least squares (WNLS) method7. Let

the individual farmer’s observed outcome (Y), extension service

participation (M), inoculant adoption (D) and covariates (X)

be a weighted random vector W ≡ (Y ,M,D,X) with sample

size N, and βd ≡ (βh
d1
,βh

d0
,β

g
d1
,β

g
d0
) be an arbitrary vector

space of a weighted non-linear least squares estimator (WNLSE)

observed as bd ≡ (bh
d1
, bh

d0
, b

g
d1
, b

g
d0
). The parameter space can

be expressed as theminimizer of the weightedmean square error

(MSE) of the observed outcomes of interest (Frölich and Huber,

2017; Chen et al., 2020), which we expressed as follows;

βd ≡ argminbd∈β d

∑

d
′
=0,1

E[w(d, d
′

,αw)(Y − hd′
(

X,αm, b
h
d1, b

h
d0

)

+ gd′ (X,αm, b
g

d1
, b

g

d0
))2]

(18)

7 The two-stages are: in the first-stage, the adoption and themediation

[i.e., d and M
(

d
′
)

] decisions are jointly estimated via a recursive binary

probit model to obtain the propensities, conditional on the instrument

compliance status, for a farmer to receive adoption and mediation. In

the second-stage, the predicted propensities are used to construct the

weights use to estimate the potential outcomes via a WNLSE.

where w
(

d, d
′
,αw

)

≡ w(1,1, αw), w(1,0, αw), w(0,1, αw),

and w(0,0, αw) is a weighted function of (D,Z1,Z2,X), with a

parameter vector αw obtained from the first-stage estimation.

The weighting functionw(d, d
′
,αw) accounts for heterogeneities

within the production units that may be due to observed

and unobserved firm-specific factors influencing production (or

outcomes, which in our case is yield and farm net returns).

The WNLS is estimated using the generalized method of

moment (GMM) approach. The generalized moment-based

approach overcomes the restrictive imposition of distributional

functional form assumptions on traditional parametric family of

production functions (e.g., Cobb-Douglas, Translog, and others)

(Giannakas et al., 2003; Vidoli and Ferrara, 2015; Ferrara and

Vidoli, 2017; Ferrara, 2020).

Study area, data and
descriptive statistics

The study area is Northern Ghana. Prior to this study, the

Northern Ghana constituted three regions namely; Northern,

Upper East and Upper West regions. However, following the

creation of new regions by the Government of Ghana in 2019,

the Northern Ghana currently constitutes five regions, which

include Northern, North-East, Savanna, Upper East and Upper

West regions. Specifically, the study area was in the former

Northern region. The northern region comprises twenty-six

(26) districts, of which the study sampled eight (8) districts,

in order to conduct a survey for this study (see Figure 1 for

Map of study area northern region and the sampled districts).

The region covers an area of about 70,384 square kilometers

and is considered the largest region in Ghana in terms of

land mass. The Northern region shares boundaries with the

Upper East and the Upper West regions to the north, the

Brong-Ahafo and the Volta regions to the south, Togo to

the east, and Cote d’Ivoire to the west. The Black and White

Volta Rivers and their tributaries such as the Nasia and

Daka rivers drain the region [Ghana Statistical Service (GSS),

2013].

The climate of the region is relatively dry, with a single rainy

season that begins in May and ends in October. The amount

of rainfall recorded annually varies between 750 millimeters

and 1,050 millimeters. The dry season starts in November and

ends in March/April with maximum temperatures occurring

toward the end of the dry season (March–April) and minimum

temperatures in December and January. The harmattan

winds, which occur from December to early February, have

considerable effect on temperatures in the region, making

them vary between 14◦C at night and 40◦C during the day.

Humidity is very low, aggravating the effect of the daytime

heat. The main vegetation is grassland, interspersed with guinea

savannah woodland, characterized by drought-resistant trees

[Ghana Statistical Service (GSS), 2013].
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FIGURE 1

The map of study area.

The main occupation of the people in the region is

agriculture (70.6%), who live in predominantly rural areas.

Degradable soil conditions present major challenge to food

productivity and farm livelihoods in the area. To maintain the

productive capacity of soils in the region, scientific research

organizations such as the International Institute of Tropical

Agriculture (IITA) and the Council for Scientific and Industrial

Research-Savannah Agricultural Research Institute (CSIR-

SARI) and their partner organizations introduced the Rhizobia

inoculant technology to smallholder grain legume farmers. The

inoculant technology is an organic input containing isolates of

an elite strain of bacterial (Bradyrhizobium spp) and an organic

carrier material (Lupwayi et al., 2000). The inoculant technology

is seen as a cost-effective alternative to rehabilitating poor soils

by enhancing the build-up of biological nitrogen fixation (BNF)

organisms in the soil (Giller, 2001). The inoculant technology

is also expected to sustainably increase smallholder farmers’

productivity, while minimizing cost of production, compared to

inorganic inputs such as mineral fertilizers, which is sometimes

priced out of reach for most smallholder farmers.

The inoculant dissemination program was centered in the

three regions (Northern, Upper East and Upper West) of

northern Ghana, due to their soybean production potential in

the country as well as the high incidence of extreme poverty

situation in these parts of the country. The northern region

is second poorest (30.7%) region in the country in terms

of extreme poverty incidence followed by the Upper East

region (27.7%), with the Upper West region (45.2%) ranking

first in the country [Ghana Statistical Service (GSS), 2018,

2019]. With soybean being a cash crop, it is expected that

increase in productivity will lead to increase in the household

income, which can contribute to poverty reduction for the poor

households who depend on agriculture for income as well as

food and nutrition security.

The present study uses farm level data obtained from

the survey conducted in the northern region of Ghana

from June to August 2018. The sample was drawn using a

multi-stage sampling technique. Based on the proportion of

beneficiary communities (78%) in the inoculant dissemination

program and intensity of soybean production in Ghana,

northern region was purposively selected. Cluster sampling

technique was used to zone the region into two clusters,

consisting of eastern corridor zone (ECZ) and western

corridor zone (WCZ). Based on dissemination program

participation status of districts and intensity of soybean

production at the district level within the clusters, eight

(8) districts, comprising four (4) from each cluster were

purposively sampled. From the ECZ: Yendi, Saboba, Chereponi

and Karaga districts were selected, while in the WCZ: East

Mamprusi, East Gonja, Savelugu and Kumbungu districts

were selected. In consultation with the field officers and

agriculture extension agents (AEAs) in the selected districts,

5–7 communities were proportionally sampled, based on

the extension channel received, dissemination program
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participation, and farmer population. One farmer-based

organization (FBO) was randomly selected from a list of FBOs

that were exposed to the inoculant technology and another

randomly selected from a list of unexposed FBOs for each

community. Using a lottery approach, we randomly drew

five farmers from each FBO. After a preliminary interview

session with each of the selected farmers, using a computer

assisted personal interview (CAPI), a list of the farmers’

information network members (INMs) was compiled. The

CAPI random number generator then used farmers’ unique

identification numbers to randomly sample three network

members from each farmer’s INMs for interview. A total of 600

farm households, consisting of 325 inoculant exposed farmers

and 275 unexposed farmers, were interviewed in a face-to-

face session. The data collected include inoculant adoption

status, dissemination program participation status, household

demographic characteristics, location characteristics, input

used, crop yield and farm net returns, plot level precipitation

and soil quality.

Definitions and summary statistics of the variables used in

the empirical analysis are presented in Table 1. It shows that 54%

of our sampled farmers participated in the inoculant extension

program. Table 1 also shows that 51% of farmers adopted the

inoculant with an average yield of 830 kg/ha soybeans and net

returns of 840 GHC/ha.

As shown in Table 1, average land cultivated to soybeans is

5 ha, using an average total labor supply of 8 persons hours

per day/ha and 4 kg/ha of agrochemicals (e.g., weedicides)

in the process. It further shows that 57% of the farmers are

located in the western corridor zone. Table 1 again, shows that

51% of the farmers live in communities that are connected

to the national grid of electricity supply, and located at an

average distance of 19 km to the nearest extension office and

2 km to the nearest market. In terms of inoculant knowledge

test score, Table 1 reveals that farmers obtained an average

of 56% inoculant knowledge score from participating in the

dissemination program. A comparison of mean differences

show some significant differences in observed characteristics

between inoculant adopters and non-adopters (see Table A1 in

Supplementary material).

On the socioeconomic characteristics of farmers, majority

(71%) of the farmers in our sample are males with an average age

of 42 years and about 23% attaining at least 1 year of schooling,

which seems to be quite low.

Results and discussions

Empirical results

First, we discuss the results of the first-stage bivariate

probit model estimates, as the identification of the outcome

model hinges on the first-stage estimates. However, we

present the estimates from the first-stage in the Table A2

in Supplementary material due to space limitation.8 Next,

we present and discuss estimates of the weighted non-

linear least-squares, estimated via the generalized method of

moments procedure.

First-stage bivariate probit estimates

Table A2 in Supplementary material presents estimates from

the bivariate probit model. The model is used to account

for selection bias and for identification of the instrumental

variable (IV) regression. Table A2 in Supplementary material

shows that, both the extension participation model (i.e., the

mediation model) and the adoption model are highly correlated

due to unobserved heterogeneities. The p-value for the null

hypothesis shows that ρmd is significantly different from zero

(at 1% level), indicating that farmers’ extension participation

and inoculant adoption decisions may be correlated due to

unobserved heterogeneities. However, the sign for ρmd is

negative, suggesting that farmers are likely to substitute adoption

of new technologies (such as the inoculant) with knowledge

acquisition from extension participation (Huth and Allee, 2002;

Mohammed and Abdulai, 2022b). This observation is intuitive,

because both extension services and adoption of improved

technologies tend to enhance farmers’ production efficiency

(Abdulai and Huffman, 2000; Kumbhakar and Tsionas, 2009;

Triebs and Kumbhakar, 2018). The statistical significance of

ρmd also suggests that farmers may have self-selected into the

extension program or adoption of the inoculant technology.

Table A2 in Supplementary material also shows that, the

two instrumental variables are both statistically different from

zero (significant at 1% level). In particular, distance to the

nearest extension office (Z2), which is used to identify extension

program participation, is negative and significant at 1%

level, suggesting that a decrease in distance to the nearest

extension office by 4.3 km, increases the probability of farmers’

extension participation. More importantly, farmer’s community

connection to the national electricity grid (Z1), which we used

to identify the inoculant adoption model, is positive and highly

significant at the 1% level. This implies that a one percent

increase in rural electrification of communities, increases the

likelihood of inoculant adoption by 319%. Intuitively, this

makes sense, because the rhizobia used in formulating the

inoculant survive in a particular temperature range (25◦C),

which stands to reason that, communities with access to

constant electricity supply could well operate cold storage

facilities. As a result, farmers in such communities may have

easy access to the inoculant, hence, are more likely to adopt,

compared to farmers living in communities without constant

8 Although the covariates in the bivariate probit model can be

considered as determinants of inoculant adoption and extension

participation, we focus on its identification properties, because the

primary interest in this study is for proper model identification, and not

to model determinants of participation and adoption decisions.
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TABLE 1 Definition and summary statistics.

Variable Definition Mean SD Min Max

Outcomes

Yield Soybean yield per hectare (lnKg/ha) 829.64 888.24 32.41 5703.87

Farm net returns Gross revenue less variable cost (lnGHC/ha) 840.26 762.11 75.11 4229.89

Treatment variable

Adopt-Inoculant 1 If farmer adopts inoculant, Otherwise= 0 0.510 0.500 0 1

Mediator variable

AES-Part 1 If farmer participated in dissemination program,

Otherwise= 0

0.542 0.499 0 1

Production inputs

Land Area of land planted with soybean (ha) 5.045 4.371 5.045 4.371

Labor Total labor used in soy cultivation (Worker-days/ha) 7.808 24.23 0.198 274.73

Agrochem Total amount of active ingredient in chemical used

(kg/ha)

4 7.186 0 87.22

Chemdumy 1 If farmer uses agrochemical, Otherwise= 0 0.025 0.156 0 1

Improvar 1 If farmer uses improve seed variety, Otherwise= 0 0.700 0.459 0 1

Creditconst 1 If farmer is not credit constrained, Otherwise= 0 0.828 0.377 0 1

Farmer-specific characteristics

Age Age of farmer (years) 41.56 13.32 18 87

Gender 1 If farmer is male, 0 for female 0.708 0.455 0 1

Edu Farmer has at least one year of schooling (0–1) 0.227 0.142 0.048 1

Location

WCZ 1 If farmer is in Western Corridor Zone, Eastern

Corridor Zone= 0

0.567 0.496 0 1

Distmarket Distance to nearest market (km) 2.362 4.137 0.100 50.10

Soilqual 1 If soil quality is good, Poor soil quality= 0 0.508 0.500 0 1

Rainfall Amount of rainfall in (%) 61.63 16.24 20 100

Instrumental variables

Distextoff (Z2) Distance to nearest extension office in (km) 18.90 25.10 0.016 160.93

Electgrid (Z1) 1 If community is connected to the national grid for

electricity supply, Otherwise= 0

0.512 0.500 0 1

Other control variables

Testscore Inoculant knowledge test score (%) 56.091 23.75 2 98

Resemtech 1 If inoculant usage resembles existing inputs usage,

otherwise= 0

34.933 35.22 0 100

Techdiff 1 If inoculant application process is considered difficult,

otherwise= 0

0.278 0.267 0 1

Dislang 1 If dissemination language is in farmer’s mother

tongue, otherwise= 0

0.695 0.461 0 1

Comextoff 1 if community has extension agent, otherwise= 0 0.625 0.485 0 1

SD, standard deviation; Min and Max, minimum and maximum values respectively.

electricity supply (Dzanku et al., 2020). Our finding of positive

effect of community electricity connectivity on farm households’

production activities is consistent with the existing literature on

rural electrification impact on households’ economic activities

(see Cabraal et al., 2005; Independent Evaluation Group-World

Bank, 2008; Thomas et al., 2020).

The validity of the instrument for identification of local

average treatment effect in our IV regression estimation strategy

requires that the instrument be a monotonic increasing function

of the level of the instrumental variable (Z1), and the level

of the treatment (D) (see Chen et al., 2020). As shown in

Table A2 in Supplementary material, the coefficients of both
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the instrument (Z1) in the treatment model and the treatment

indicator D in the mediation model have positive signs and are

highly significant (at 1% conventional level), suggesting that our

instrument is valid and strong. This also implies that inoculant

adoption increases with increasing extension participation and

community electricity connectivity.

Determinants of technology and ine�ciency
frontiers

Tables 2, 3 present factors that affect the production

technology and inefficiency frontiers with respect to yield

(lnKg/ha), for the case scenario that farmers adopt the

inoculant technology with mediation (i.e., AdoptersM) and the

counterfactual scenario of non-adoption with non-mediation

(i.e., Non-adoptersM), respectively (see Tables 4, 5, for that of

farm net returns). The factors explain the observed yield and

net returns variabilities in each scenario among farmers with

different adoption and mediation conditions in our sample. For

the sake of brevity, we focus the discussion on the yield, which

can be extended to that of the net returns.

The model estimated is a weighted non-linear least-squares

regression using generalized method of moment. In particular,

it does not represent any specific conventional production

function model, and as such does not depend on any functional

form distribution assumptions. Though we estimate a non-

linear regression model with some of the covariates being

logged, the parameter estimates can be interpreted as in a linear

regression estimation (Chen et al., 2020). Our approach of

estimating the stochastic production frontier is akin to that of

the generalized additive models (GAMs) approach, that fits a

response variable on a sum of smooth functions of explanatory

variables in a regression context with normal distribution

(Ferrara and Vidoli, 2017; Ferrara, 2020). This specification is

preferred to the conventional functional form specifications, due

to its flexibility in relaxing the need to impose strict linearity and

monotonicity condition on the underlying stochastic frontier

function between the explanatory variables and the outcomes of

interest (Ferrara, 2020).

Each table contains two columns corresponding to two

different adoption scenarios. In Table 2, column one contains

estimates for the case scenario that a farmer participated in the

extension program and also adopted the inoculant technology

(i.e., AdoptersM), henceforth, mediated-adopters (MA), while

column two represents the counterfactual case scenario, if

the same farmer had neither participated in the extension

program nor adopted the inoculant technology, referred to as

non-mediated-non-adopters (NM-NA). In Table 3, column one

represents the case scenario that a farmer adopted the inoculant

technology without participating in the extension program

(i.e., AdoptersN), hereafter, non-mediated-adopters (NM-A),

whereas column two represents the counterfactual case, if the

same farmer had participated in the extension program but

TABLE 2 Adoption with mediation—(weighted nonlinear

least-squares)—yield (lnKg/Ha).

Variables AdoptersM Non-adoptersN

(d, M(d
′

)) = (1,1) (d, M(d
′

)) = (0,0)

Coeff. (S.E) Coeff. (S.E)

Age −0.030* (0.018) −0.052 (0.119)

Agesq 0.0004** (0.0002) 0.001 (0.001)

Gender 0.416*** (0.123) 0.037 (0.301)

Edu 0.618* (0.360) 0.029 (1.547)

lnland 1.596*** (0.140) 1.115*** (0.399)

lnlabor −0.128*** (0.063) 0.160 (0.200)

lnagrochem −0.415*** (0.087) −0.338 (0.221)

Chemdumy −0.490 (0.206) 3.696 (2.324)

Improvar 0.345*** (0.122) 1.008*** (0.314)

WCZ 0.362*** (0.122) 1.226*** (0.308)

Distmarket −0.004 (0.015) 0.058 (0.043)

Soilqual 0.236*** (0.167) 0.460 (0.442)

Rainfall 0.003 (0.003) −0.012 (0.011)

Creditconts −0.106 (0.113) 1.768*** (0.599)

Tsresid −0.490*** (0.150) 2.997*** (1.198)

Const. 4.568*** (0.488) 219.307*** (38.043)

Inefficiency

βg
(ts) −2.355*** (0.431) 0.011*** (0.003)

βg
(0) 0.248 (0.188) 5.594*** (0.181)

Observ. (N) 306 294

***, **, and * are 1, 5, and 10% level of significance; Values in brackets are bootstrapped

robust standard errors. Columns one and two represents farmers who participate in

the extension program and adopt the inoculant [i.e., AdoptersM = mediated-adopters,

abbreviated as (MA)] and farmers who neither participate nor adopt the inoculant [i.e.,

Non-AdoptersN =Non-mediated-non-adopters, abbreviated as (NM-NA)], respectively.

βg(0) represent estimates of the non-negative inefficiency parameter vector that did not

aontrol for farmer inculant knowledge test score and βg(t) represent estimates of the non-

negative inefficiency parameter vector that controlled for farmer inculant knowledge test

score.

did not adopt the inoculant technology (i.e., Non-adoptersM),

hereafter refer to as mediated-non-adopters (M-NA).

The coefficient of the constant terms in Table 2 that captures

the effect of unobserved farmer-specific characteristics are

positive and statistically significant, suggesting that unobserved

characteristics (such as farmers’ inert abilities) may have

contributed positively in enhancing farmers’ ability to push the

production frontier upward, irrespective of the superiority of

the production technology employed or extension participation

status. Similar positive and statistically significant trend is

observed in Tables 3–5.

The results also show that observed farmer-specific

characteristics such as education, gender and age have

significant impact in shifting the production frontier of farmers.

In particular, coefficient of education is positive for all farmers,

but statistically significant at 10% level for only MA farmers,

suggesting that an increase in education pushes the production
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TABLE 3 Adoption without mediation—(weighted nonlinear

least-squares)—yield (lnKg/Ha).

Variables AdoptersN Non-adoptersM

(d, M(d
′

)) = (1,0) (d, M(d
′

)) = (0,1)

Coeff. (S.E) Coeff. (S.E)

Age −0.108 (0.081) 0.589*** (0.194)

Agesq 0.001 (0.001) −0.006*** (0.002)

Gender −0.692*** (0.278) −1.338 (0.824)

Edu 0.034 (1.834) 0.457 (3.552)

lnland 0.874*** (0.368) 1.507* (0.851)

lnlabor 0.207 (0.163) 0.070 (0.590)

lnagrochem −0.004 (0.273) 0.217 (0.622)

Chemdumy −1.981 (8.740) −1.154 (5.106)

Improvar 0.195 (0.320) −2.592* (1.419)

WCZ 0.017 (0.358) −2.525*** (0.870)

Distmarket −0.019 (0.018) 0.040 (0.097)

Soilqual 0.559* (0.323) 0.885 (1.187)

Rainfall −0.017** (0.008) 0.060* (0.033)

Creditconts 0.780* (0.415) −1.797*** (0.735)

Tsresid −0.307*** (0.099) −2.450*** (0.791)

Const. 10.159*** (2.344) −10.378 (7.887)

Inefficiency

βg
(ts) −0.901*** (0.303) −6.037*** (1.256)

βg
(0) 0.730*** (0.301) −8.573*** (0.808)

Observ. (N) 306 294

***, **, and * are 1, 5, and 10% level of significance; Values in brackets are bootstrapped

robust standard errors. Columns one and two represents farmers who did not participate

in the extension program but adopt the inoculant [i.e., AdoptersN = Non-Mediated-

Adopters, abbreviated as (NM-A)] and farmers who participate in the extension

program but did not adopt the inoculant [i.e., Non-AdoptersM , abbreviated as M-

NA)], respectively. βg(0) represent estimates of the non-negative inefficiency parameter

vector that did not aontrol for farmer inculant knowledge test score and βg(t) represent

estimates of the non-negative inefficiency parameter vector that controlled for farmer

inculant knowledge test score.

frontier of this category of farmers upwards. Also in Table 2,

gender (i.e., being a male farmer) has positive coefficient across

all farmers, but statistically significant at 1% level for only MA

farmers, suggesting that being a male farmer within our study

area generally improve ones’ productivity. This observation may

be due to the fact that male farmers in most parts of developing

countries have better access to family labor, extension service,

quality land and other resources than female farmers, a finding

that is in line with, Gebre et al. (2019) in their study on gender

differences in agricultural productivity among maize farmers

in Ethiopia. However, in Table 3, the coefficient of gender is

negative for all farmers, but significant at 1% level for only

NM-A farmers, suggesting that for female farmers with less

access to extension services and quality land, adoption of the

inoculant will greatly improve their productivity. The reverse

is observed for the net returns in Tables 4, 5, suggesting that in

TABLE 4 Adoption with mediation—(weighted nonlinear

least-squares)—farm net returns (lnGHC/Ha).

Variables AdoptersM Non-adoptersN

(d, M(d
′

)) = (1,1) (d, M(d
′

)) = (0,0)

Coeff. (S.E) Coeff. (S.E)

Age 0.007 (0.017) −0.346*** (0.146)

Agesq −8.83e−06 (0.0002) 0.004*** (0.002)

Gender −0.212** (0.096) 0.346 (0.422)

Edu 0.311 (0.259) 3.029 (3.355)

lnland 1.213*** (0.123) 1.903*** (0.615)

lnlabor −0.060 (0.046) 0.154 (0.275)

lnagrochem −0.115* (0.068) −0.860*** (0.364)

Chemdumy −0.263 (0.155) −7.137 (5.148)

Improvar −0.318*** (0.110) −0.604 (0.545)

WCZ −0.328*** (0.082) −0.453 (0.406)

Distmarket 0.021** (0.010) −0.109** (0.055)

Soilqual 0.229*** (0.078) 2.312*** (0.582)

Rainfall −0.005*** (0.003) −0.024 (0.016)

Creditconts 0.047 (0.100) 2.955*** (0.972)

Tsresid −0.530*** (0.127) −4.183*** (1.246)

Const. 5.248*** (0.481) 256.133*** (75.911)

Inefficiency

βg
(ts) −3.990*** (0.688) −0.015*** (0.003)

βg
(0) 0.165 (0.128) 5.737*** (0.304)

Observ. (N) 306 294

*** , ** , and * are 1, 5, and 10% level of significance; Values in brackets are bootstrapped

robust standard errors. Columns one and two represents farmers who participate

in the extension program and adopt the inoculant [i.e., AdoptersM = Mediated-

Adopters, abbreviated as (MA)] and farmers who neither participate nor adopt the

inoculant [i.e., Non-AdoptersN = Non-Mediated-Non-Adopters, abbreviated as (NM-

NA)], respectively. βg(0) represent estimates of the non-negative inefficiency parameter

vector that did not aontrol for farmer inculant knowledge test score and βg(t) represent

estimates of the non-negative inefficiency parameter vector that controlled for farmer

inculant knowledge test score.

terms of net returns, both male and female farmers are able to

push their net returns frontier upwards.

Table 2 also shows that among the conventional inputs (land,

labor, agrochemicals and improved seed variety), land has the

highest effect on the production frontier. The coefficient of

land is positive and statistically significant at 1% level across all

farmers, suggesting that farm size has positive effect in pushing

the production frontier of both MA and NM-NA farmers

upward. Similar positive effect is observed in Tables 3–5.

The coefficient of improved seed variety in Table 2

is positive and statistically significant for all farmers,

suggesting that availability of improved crop varieties

have positive effect on pushing the production frontier

upwards for all category of farmers. However, low quantity

of agrochemicals usage, in particular, during weed control

may have significant (at 1% level) negative effect in shifting

the production frontier of farmers downwards, which could
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TABLE 5 Adoption without mediation—(weighted nonlinear

least-squares)—farm net returns (lnGHC/Ha).

Variables AdoptersN Non-adoptersM

(d, M(d
′

)) = (1,0) (d, M(d
′

)) = (0,1)

Coeff. (S.E) Coeff. (S.E)

Age −0.029 (0.052) −0.287* (0.169)

Agesq 0.0003 (0.001) 0.003** (0.002)

Gender 0.388** (0.190) 0.365 (1.150)

Edu 0.583 (1.135) 1.314 (6.820)

lnland 1.646*** (0.264) 3.341*** (1.248)

lnlabor −0.070 (0.111) −1.081* (0.604)

lnagrochem −0.383* (0.213) −1.550* (0.888)

Chemdumy −0.054 (2.044) −11.586 (26.093)

Improvar 0.066 (0.196) −0.173 (1.276)

WCZ 0.363* (0.218) −2.687*** (0.948)

Distmarket −0.027*** (0.011) −0.032 (0.104)

Soilqual 0.441** (0.198) −3.430*** (1.106)

Rainfall −0.005 (0.005) −0.019 (0.036)

Creditconts 0.501* (0.277) −8.537*** (1.674)

Tsresid −0.177*** (0.232) −9.153*** (2.004)

Const. 5.461*** (1.426) 103.102** (54.629)

Inefficiency

βg
(ts) −1.630*** (0.487) −0.078** (0.042)

βg
(0) 0.296 (0.215) 4.765*** (0.600)

Observ. (N) 306 294

***, **, and * are 1, 5, and 10% level of significance; Values in brackets are bootstrapped

robust standard errors. Columns one and two represents farmers who did not participate

in the extension program but adopt the inoculant [i.e., AdoptersN = Non-Mediated-

Adopters, abbreviated as (NM-A)] and farmers who participate in the extension

program but did not adopt the inoculant [i.e., Non-AdoptersM , abbreviated as M-

NA)], respectively. βg(0) represent estimates of the non-negative inefficiency parameter

vector that did not aontrol for farmer inculant knowledge test score and βg(t) represent

estimates of the non-negative inefficiency parameter vector that controlled for farmer

inculant knowledge test score.

subsequently occasioned significant revenue losses as seen in

Tables 4, 5.

In addition to the conventional and farmer-specific

characteristics, we also controlled for environmental and

geographical factors using zonal dummies, plot level soil

quality and precipitation. The results in Table 2 reveal that

the zonal dummy which indicates whether the farmer is

located in the western corridor zone (WCZ) or eastern

corridor zone (base category) is positive and statistically

significant at 1% for all farmers, indicating that inoculant

adoption and extension participation have positive effects

in shifting the production frontier of farmers located in

the western corridor zone upward, compared to farmers

in the eastern corridor zone. Tables 2, 3 also reveal that

soil quality at the farm level has positive effect (statistically

significant at 1 and 10% levels, respectively) in shifting the

production frontiers upwards for MA and NM-A farmers.

However, the positive effect may erode due to insufficient

precipitation at the plot level, leading to significant (at

5% level) shift in the production frontier downwards for

NM-A farmers and subsequent loss of revenue as shown in

Tables 4, 5.

In the last two rows of Tables 2, 3, we present estimates

of post-mediation factor(s) that influence farmers’ level of

(in)efficiency in the usage of the inoculant technology that

could have great impact on yields obtained from adoption. We

conducted an inoculant technical knowledge quiz and used the

test scores to proxy the post-mediation factors in the inefficiency

frontier function.

In Tables 2, 3, the coefficient of a constant only inefficiency

frontier model [represented as β
g
(0)

] is positive for all farmers,

but statistically significant at 1% level for NM-NA and NM-A

farmers only, suggesting that adopting the inoculant technology

without sufficient technical knowledge on its usage makes

farmers highly inefficient and less beneficial.

On the other hand, the coefficient of the inefficiency model,

with inoculant knowledge test score [represented as β
g
(ts)

] is

negative and statistically significant at 1% level for all category

of farmers, except for NM-NA farmers, indicating that adopting

the technology with sufficient technical knowledge increases

farmers’ production efficiency (Dzanku et al., 2020). Similar

results pattern is obtained for net returns in Tables 4, 5.

Impact of mediation and inoculant adoption on
productivity, e�ciency and welfare

In this section, we report estimates of the treatment effects

derived in Equations 11–13. The results for yields and net

returns are presented in Tables 6, 7, respectively. Focusing on

Table 6, the first column contains total impact of program

participation on the farm household’s welfare, decomposed into

welfare contribution coming directly from adoption of new

technology and indirectly from participation in the extension

program. The second column contains total impact of inoculant

adoption on the production frontier of inoculant adopters’

relative to non-adopters, decomposed into the portion due

directly to technological change which shifts the observed

production frontier closer to the ideal production frontier (i.e.,

the potential yield frontier), and indirectly due to improvement

in adopters’ technical knowledge in shifting the production

frontier. The estimates in the third column represent the total

impact on the production efficiency of inoculant adopters

relative to non-adopters, decomposed into efficiency gained due

to technological change and indirectly due to improvement on

inoculant adopters’ technical knowledge.

The results in column one of Table 6 show that, the total

treatment effect [measured as the local average treatment effect

(LATE)] on yields is positive and statistically significant at

the 1% level. Specifically, the impact on yield is 34 kg/ha

(and 47 GHC/ha for net returns), suggesting that farmers who
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TABLE 6 Productivity, e�ciency and welfare estimates on soybean

yield—(lnKg/ha).

Impact on: welfare Technology frontier Inefficiency frontier

LATE LATEh LATEg

34.423*** (0.820) −134.670*** (3.236) −168.969*** (3.862)

DLATE DLATEh DLATEg

12.292*** (0.739) −46.027*** (2.861) −58.360*** (3.554)

ILATE ILATEh ILATEg

22.140*** (0.516) −88.610*** (1.993) −110.685*** (2.480)

***1% level of significance; Values in brackets are bootstrapped standard errors from

1,000 re-samples. LATE is local average treatment effect, representing the total effect of

participation in the extension dissemination program and inoculant adoption; DLATE

is direct local average treatment effect, representing the component of the total effect

that comes from inoculant adoption; ILATE is indirect local average treatment effect,

representing the component of the total effect that comes from extension participation.

The welfare measure represents the net effects of the potential outcomes of the shift in the

technology and the inefficiency frontiers computed at the means.

TABLE 7 Productivity, e�ciency and welfare estimates on net

returns—(lnGHC/ha).

Impact on: welfare Technology frontier Inefficiency frontier

LATE LATEh LATEg

47.109*** (0.568) −185.790*** (2.269) −232.824*** (2.653)

DLATE DLATEh DLATEg

35.037*** (0.525) −118.119*** (1.891) −153.188*** (2.341)

ILATE ILATEh ILATEg

12.066*** (0.300) −67.663*** (1.531) −79.684*** (1.785)

***1% level of significance; Values in brackets are bootstrapped standard errors from

1,000 re-samples. LATE is local average treatment effect, representing the total effect of

participation in the extension dissemination program and inoculant adoption; DLATE

is direct local average treatment effect, representing the component of the total effect

that comes from inoculant adoption; ILATE is indirect local average treatment effect,

representing the component of the total effect that comes from extension participation.

The welfare measure represents the net effects of the potential outcomes of the shift in the

technology and the inefficiency frontiers computed at the means.

participate in the extension program and adopt the inoculant

technology increased their yields (and net returns), compared

to if they had neither participated in the extension program

nor adopted the inoculant technology. A decomposition of the

welfare benefits due to mediation indicate that 36% (i.e., DLATE

= 12 kg/ha) of the welfare benefits, in terms of marginal gains

in yield, can be attributed to the farm household’s adoption of

improved technology (i.e., the inoculant), while 64% (ILATE

= 22 kg/ha) is due to the farm household’s participation in

inoculant extension dissemination program.

The total treatment effect on the production frontier in

column two of Table 6 shows that, the technological change led

to a reduction in the yield gap between the production frontier of

adopters and that of the best production frontier by 135 kg/ha. In

order words, farmers who participated in the extension program

and adopted the inoculant technology increased their yields by

135 kg/ha, a finding that is similar to that of Ulzen et al. (2018)

who found 200 kg/ha increased in soybean yields with inoculant

application in northern Ghana. Further decomposition of the

impact on the shift of the production frontier shows that

34% (i.e., DLATEh = 46 kg/ha) is due to adoption of the

improved technology, while 66% (ILATEh = 89 kg/ha) of the

shift is due to enhancement in farmers’ technical knowledge

on the improved technology usage. Intuitively, the total effect

is an interaction of adoption of the improved technology and

technical knowledge in the management of the new technology

that leads to realization of the full potential of the technology

(Takahashi et al., 2020).

In column three of Table 6, the total effect on the technical

efficiency shows that improvement in technical efficiency of

farmers led to an increase in yield of about 169 kg/ha.

This indicates that farmers who participate in the extension

program and adopt the inoculant technology are able to cut

down their inefficiency up to 169 kg/ha (i.e., yield that would

have been lost due to inefficiency) by adopting improved

technology with technical knowledge. The marginal gain due

to technical efficiency appears to slightly outweigh that of yield

at the production frontier (i.e., 135 kg/ha). This finding is

consistent with the argument by Huang and Liu (1994) that

farmers who acquire technical knowledge on a new technology

prior to adoption of the technology tend to benefit more. A

decomposition of the total effect of technical efficiency shows

that 34% (i.e., DLATEg = 58 kg/ha) of the improvement comes

from the farmer’s adoption of improved technology, while

66% (ILATEg = 110 kg/ha) comes from technical knowledge

on the technology, implying that the synergic effect of better

technology and technical knowledge is required for farmers

to be fully technically efficient. However, greater proportion

of the improvement in productivity is achieved through the

extension participation sub-component (i.e., ILATE), compared

to the improved technology adoption sub-component (DLATE),

implying that providing farmers with superior technology

without knowledge on its usage could result in underexploiting

the full potential of the technology. We find similar patterns of

impact on the production technology frontier and the technical

efficiency frontier in the net returns model presented in Table 7.

Production and technology gap profiles

In Figures 2, 3, we present the conditional (i.e., condition on

being a complier) mean yield estimates in deciles across various

sub-populations of adopters at the production technology and

technical inefficiency frontiers, respectively (see Figures A2, A3

in the Supplementary material for net returns). This is important

in characterizing the production and technology gap between

the various sub-populations of adopters and non-adopters, since

adoption of an improved technology may induce inequalities in

the production structures of farmers, due to heterogeneity in

production technology and technical efficiency of farmers at the

respective frontiers. Recent literature in the stochastic frontier
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FIGURE 2

Yield gap profile at the production technology frontier (Kg/Ha). Where H-11, H-00 and H-01 indicates mediated-adopters, non-mediated-

non-adopters and mediated-non-adopters, respectively at the production technology frontier function of yield. The figure illustrates the yield

gap profile in deciles of farmers operating at di�erent production technology frontiers, compared to farmers at the best production frontier

operating at zero technological ine�ciency.

FIGURE 3

Yield gap profile at the ine�ciency frontier (Kg/Ha). Where G-11, G-00 and G-01 indicates mediated-adopters, non-mediated-non-adopters

and mediated-non-adopters, respectively at the technical ine�ciency function of yield. The figure illustrates the yield gap profile in deciles of

farmers operating at di�erent levels of technical ine�ciency, compared to farmers operating at zero technical ine�ciency.

analysis employs quantile regression to profile the production

and technology gap among firms for structural analysis (e.g.,

Huang et al., 2017; Lai et al., 2020). However, the quantile

regression approach is somehow restrictive as it allows for

characterization of firms only at the quantile means and not

at the individual firm level means, as in the case of standard

regression (Fortin et al., 2011), the approach employed in

this paper.

Figure 2 shows that, the yield distance of farmers who

participate in the extension program and adopt the inoculant

technology [i.e., the MA farmers (H-11)] at every decile is

closer to zero, compared to farmers who neither participate
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FIGURE 4

Comparison of yield (Kg/Ha) distributions at the technology frontier—direct e�ect. (A) Mediated-adopters, (B) non-mediated-non-adopters.

FIGURE 5

Comparison of yield (Kg/Ha) distributions at the technology frontier—indirect e�ect. (A) Mediated-non-adopters, (B)

non-mediated-non-adopters.

in the extension program nor adopt the technology [i.e., the

NM-NA farmers (H-00)]. Similarly, the MA farmers’ yield

gap is also narrower at the upper deciles (i.e., >4th decile),

compared to farmers who participate in the extension program,

but did not adopt the inoculant [i.e., the M-NA farmers

(H-01)]. This implies that farmers who participated in the

extension program before adopting the inoculant technology

are closer to farmers producing at the best production frontier

relative to other category of farmers. A similar pattern of

distribution in the yield gap is observed in Figure 3, the

conditional mean plot of the yield at the technical efficiency

frontier. Figure 3 shows that, the average yield distance of MA

farmers (G-11) at every decile is almost on the zero line, as

compared to that of NM-NA (G-00) and M-NA (G-01) farmers

respectively, indicating that farmers who participate in the

extension dissemination program and adopt the inoculant are
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FIGURE 6

Comparison of yield (Kg/Ha) distributions at the ine�ciency frontier—direct e�ect. (A) Mediated-adopters, (B) no-mediated-non-adopters.

FIGURE 7

Comparison of yield (Kg/Ha) distributions at the ine�ciency frontier—indirect e�ect. (A) mediated-non-adopters, (B)

no-mediated-non-adopters.

technically more efficient than those who neither adopt nor

participate in the dissemination program.

However, a comparison of the yield distance at both the

production frontier and the technical efficiency frontier between

farmers who participated in the extension dissemination

program but did not adopt the inoculant [i.e., the M-NA

farmers—(H-01 and G-01)] is also lower, when compared to

that of NM-NA farmers (i.e., H-00 and G-00), suggesting

that extension participation even without adoption of a

new technology may still be effective in improving farmers’

productivity, compared to zero extension provision. We find

similar production and technical efficiency profile patterns
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in the net returns estimates presented in Figures A2, A3 in

Supplementary material.

Figures 4, 5 show the full conditional mean yield gap

distributions for MA farmers (H-11) in Figure 4A, compared to

NM-NA farmers (H-00) in Figure 4B and also that of M-NA (H-

01) farmers in Figure 5A, compared to NM-NA (H-00) farmers

in Figure 5B, respectively. The mean yield gap distribution at

the production technology frontier of MA farmers is much

lower (within 10 kg/ha), compared to that of the distributions

of NM-NA and M-NA farmers. This observation implies that

greater percentage of the yield variability among the farmersmay

be attributed to technology heterogeneity, which significantly

minimizes the yield distance between the farmers’ production

frontier and that of farmers at the best production frontier.

Similar pattern of distribution is observed for the net returns in

Figures A4, A5 in the Supplementary material.

Similarly, the mean yield gap distribution at the technical

efficiency frontier in Figures 6, 7 show that the distribution for

MA farmers (i.e., G-11) is densely skewed to the left (i.e., toward

zero—within 2 kg/ha), compared to that of NM-NA (i.e., G-00)

and M-NA (G-01) farmers, respectively. This results indicates

that conditional on participating in the extension dissemination

program and adopting the inoculant technology, all else being

equal, greater percentage of yield variability at the frontiers may

be due to random noise rather than technical inefficiency. We

observed similar distribution patterns for the net returns in

Figures A6, A7 in the Supplementary material.

Policy implications and conclusions

Our findings revealed that investing in either development

of improved agricultural technologies such as the inoculant or

intensifying extension delivery programs can to lead to increased

productivity, as well as efficiency and welfare gains. Specifically,

the study found that the contribution of adoption of improved

agricultural technology alone (i.e., inoculant adoption) can

lead to direct improvement in farm productivity, or indirectly

through improved farmer efficiency led productivity gains,

resulting in overall household welfare gains.

The study also made similar findings on extension

delivery program participation alone, whose impact however,

outweighs that of improved technology adoption alone. Our

findings further indicate that making improved agricultural

technologies available to farmers without complimentary

extension knowledge supply could result in under exploiting the

full potential of the technology. As the synergic effects of the two

appears to be far greater than their individual effects.

The findings also show that investment in research

and development to produce yield enhancing agricultural

technologies suitable for poor and degraded soil conditions

for farmers in developing countries, such as Ghana, can

contribute immensely to poverty and food insecurity reduction.

The development of new agricultural technologies must be

pursued with vigorous provision of extension services to

farmers, given that extension agents provide farmers with

necessary knowledge needed to exploit the full potential of

the technologies.

Our findings also reveal the significance of rural

electrification in enhancing the diffusion and adoption of

new agricultural technologies. Specifically, new agricultural

technologies that need cold storage such as the rhizobia

inoculant technology could go a long way to increase farm

incomes and reduce rural poverty. This will also facilitate

the deployment of new communication channels, such as

the information and communication technologies (ICT)

channels that rely on electricity for effective functioning, for

extension delivery. As argued in this study, investment in rural

electrification will also drive the development and expansion

in rural enterprises such as sales of agro-inputs and perishable

agro-based products, which must be stored under specific

storage conditions.

Finally, our findings reveal that a policy intervention that

subsidizes the inoculant technology to female farmers, who often

have less access to extension services and quality land, will

greatly improve their productivity.
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