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Abstract—In this work, we propose a novel method for generating 3D point clouds that leverages the properties of hypernetworks.

Contrary to the existing methods that learn only the representation of a 3D object, our approach simultaneously finds a representation

of the object and its 3D surface. The main idea of our HyperCloud method is to build a hypernetwork that returns weights of a particular

neural network (target network) trained to map points from prior distribution into a 3D shape. As a consequence, a particular 3D shape

can be generated using point-by-point sampling from the prior distribution and transforming the sampled points with the target network.

Since the hypernetwork is based on an auto-encoder architecture trained to reconstruct realistic 3D shapes, the target network weights

can be considered to be a parametrization of the surface of a 3D shape, and not a standard representation of point cloud usually

returned by competitive approaches. We also show that relying on hypernetworks to build 3D point cloud representations offers an

elegant and flexible framework. To that point, we further extend our method by incorporating flow-based models, which results in a

novel HyperFlow approach.

Index Terms—Hypernetworks, 3D point cloud processing, generative modeling

Ç

1 INTRODUCTION

TODAY many registration devices, such as LIDARs and
depth cameras, are able to capture not only RGB channels

but also depth estimates. As a result, 3D objects registered by
those devices and geometric data structures representing
them, called point clouds, become increasingly important in
contemporary computer vision applications, including auton-
omous driving [1] or robotic manipulation [2]. To enable the
processing of point clouds, researchers typically transform
them into regular 3D voxel grids or collections of images [3],
[4]. This, however, increases the memory footprint of object
representations and leads to significant information losses.

On the other hand, representing 3D objects with the
parameters of their surfaces is not trivial due to the com-
plexity of mesh representations and combinatorial irregu-
larities. Last but not least, point clouds can contain a
variable number of data points corresponding to one
object and registered at various angles, which requires the
methods that process them to be permutation and rotation
invariant.

One way of addressing the above challenges related to point
cloud representations is to subsample the point clouds and
enforce permutation invariance within the model architecture,
as it was done in DeepSets [5] or PointNet [6], [7]. Although it
works perfectly fine when point clouds are given as an input of
themodel, it is not obvious how to apply this approach for vari-
able size outputs. A recently introduced family ofmethods solves
this problem by relying on generativemodels that return proba-
bility distribution of the points on the object surface, instead of
an exact set of points [8], [9]. The most successful methods that
follow this path, such as PointFlow [8] and Conditioned Invert-
ible Flow [9], are based on a flow architecture that allows obtain-
ing a representation of 3Dobject surfaces.

The main limitation of the existing flow-based models is
the fact that their training relies on a conditioning mecha-
nismwhich, in turn, requires more complex architectures, an
increased number of parameters, and a significant amount of
structural fine-tuning. Moreover, flow-based methods can-
not be trained on probability distributions without compact
support. For instance, it is not possible to train a flow-based
model on a 3D ball since computing a cost function using
log-likelihood returns infinity as a result and can therefore
lead to numerical instability of the entire training procedure.
Additionally, flow-based models require the dimensionality
of input and output data to be identical.

In our previous work [11] we show that one can circum-
vent the above shortcomings of the flow models by using a
HyperCloud model. HyperCloud builds on the approach
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of [10] and combines it with a hypernetwork [12], [13] that
outputs weights of a generative model, the so-called target
network. The target network can then be used to create an
arbitrary number of points (depending on its architecture
returned by a hypernetwork), instead of fixed-size sets. The
proposedmodel is a hypernetwork, whereas previousworks
encoded the prior distribution transformation as a latent vec-
tor. Our HyperCloudmethod is much easier to train than the
competing algorithms, as it requires a smaller number of
hyperparameters and does not put any constraints on the
input probability distribution and its Jacobian. Methods that
use log-likelihood as a cost function cannot be trained on
probability distributions with compact support. Finally, as
presented in Fig. 3, theHyperCloudmethod returns a contin-
uous mesh representation of 3D objects at virtually no cost in
the quality of reconstructions (see Fig. 1).

In this paper, we postulate that using hypernetworks to
build powerful 3D point representations offers an elegant
and flexible framework and, to that end, we introduce a
more general method for creating such representations that
also encompasses the existing flow models. To satisfy the
requirements of the flow models, we need to introduce the
prior distribution of our target network that offers non-com-
pact support. On the other hand, representing objects by
modeling their surfaces inspires us to use probability distri-
butions that allow a straightforward transformation of a 3D
point cloud into a mesh, as it is done HyperCloud via the
so-called triangulation trick, as shown in Fig 3.

Thus, we consider a point cloud as a sample from a dis-
tribution on object surfaces with additive noise introduced
by a registration device, such as LIDAR. To model this dis-
tribution, we propose a new Spherical Log-Normal func-
tion, which mimics the topology of 3D objects and provides
non-compact support.

This, in turn, enables effective utilization of a flow-based
model as a part of a hypernetwork, instead of a fully-con-
nected neural network as we do in HyperCloud. The result-
ing general framework which we call HyperFlow produces
state-of-the-art generative results both for point clouds and
mesh representations, while reducing the training time and
corresponding memory footprint of the model by over an

order of magnitude with respect to the competing flow-
based methods.

To summarize, we have extended our previous work in
the following way:

� We have introduced a new HyperFlow generative
framework that encompasses previous hypernet-
work-based models while allowing incorporation of
powerful flow-based architectures.

� To achieve that, we have proposed a new Spherical
Log-Normal distribution which models a point
cloud density with non-compact support and, hence,
can be effectively used by a flow-based model.

� The resulting method offers a significant reduction
in training time and memory footprint with respect
to the more complex flow-based models while pre-
serving state-of-the-art generative capabilities.

The remainder of this paper is structured as follows: Sec-
tion 2 discusses related works. In Section 3, we present our
HyperCloud approach. In Section 4 we introduce Spherical
Log-Normal probability distribution that enables the gener-
alization of HyperCloud framework in order to encompass
flow-based models and in Section 5 we introduce the gener-
alized HyperFlow method for building 3D point cloud
representations. Finally, Section 6 presents the results of
evaluations and we conclude this work in Section. 7.

2 RELATED WORK

Introducing deep learning in the context of 3D point cloud
representations allowed improving performance in various
discriminative tasks, including classification [5], [6], [7], [14]
and segmentation [6]. Despite those successes, generating
3D point clouds with deep learning models remains a chal-
lenging task.

Point Clouds Reprehension of 3D Objects. Due to the irregu-
lar format of point cloud representation, most researchers
transform such data to regular 3D voxel grids or collections
of images. In [4], the authors propose the voxelized represen-
tation of an input point cloud. Other approaches use multi-
view 2D images [3] or occupancy grid calculation [15], [16].
Modeling volumetric objects in a general-adversarial man-
ner is also considered in [17] for the 3D-GANmodel.

Another approach to generative models for point cloud
converts a point distribution to aN � 3matrix by sampling a
pre-defined number ofN points from the distribution so that
existing generative models are applicable. Such a solution
can be applied in the VAE framework [18] as well as adver-
sarial auto-encoders (AAEs) [10]. In the above methods,
auto-encoders and GANs are trainedwith loss functions that
directly optimize the distance between two point sets, e.g.,
using Chamfer distance (CD) or earth mover’s distance
(EMD). In [19], the authors apply auto-regressive models
[20] with a discrete point distribution to generate one point
at a time, also using a fixed number of points per shape.

An important class of generative models of 3D point
clouds are Energy-Based Models (EBMs). Energy-based gen-
erative ConvNets [21] approximate the explicit probability
distribution of data in the form of an energy function parame-
trized by a convolutional neural network. In such a case, new
point clouds can be generated using Monte Carlo Markov

Fig. 1. Mesh representations generated by our HyperCloud method.
Contrary to the existing methods that return point cloud representations
sparsely distributed in 3D space, our approach allows creating a continu-
ous 3D object representation in the form of meshes.
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Chain (MCMC) sampling. Such an architecture was used to
generate images [21], videos [22], [23], [24], and 3Dvoxels [25],
[26]. One of the most recent models, Generative PointNet
(GPN), applies this approach to 3D point clouds [27].

All the above methods learn to produce a fixed number
of points for each shape, but they do not parametrize the
surface of the shapes. Treating a point cloud as a fixed-
dimensional matrix has several drawbacks. First, the model
is restricted to generating a fixed number of points. Getting
more points for a particular shape requires separate up-
sampling models such as [28], [29].

In [8], the authors propose a principled probabilistic
framework to generate 3D point clouds by modeling them
as a distribution of distributions. PointFlow uses two-level
of distributions where the first level is the distribution of
shapes, and the second level is the distribution of points
given a shape. PointFlow uses continuous normalizing flow
[30], [31] for both of these tasks.

Instead of directly parametrizing the distribution of
points in a shape, PointFlow models this distribution as an
invertible parameterized transformation of 3D points from
a prior distribution (e.g., a 3D Gaussian an). Intuitively,
under this model, generating points for a given shape
involves sampling points from a generic Gaussian prior dis-
tribution and then moving them according to this parame-
terized transformation to their new location in the target
shape. Such a solution has many advantages over the classi-
cal approaches, which only produce a cloud of points, nev-
ertheless it is limited in multiple ways. The most important
limitation is the fact that they use log-likelihood as a cost
function and, in consequence, cannot be trained on proba-
bility distributions with compact support. This significantly
reduces the utility of flow-based models as, for instance,
using a 3D ball distribution as a prior one returns infinite

values and therefore leads to numerical instability of the
training. In this work, we show that once this constraint is
dropped thanks to using a fully connected neural network,
we can directly model 3D point cloud surfaces and hence
create their continuous mesh representations.

Mesh Representation of 3D Objects. One of the most chal-
lenging tasks in 3D point cloud generation is producing
mesh representations using only raw 3D point cloud in
training. Mesh is a set of vertices joined together with edges
that enable a piece-wise planar approximation of a surface.

A mesh of an object can be obtained with a transforma-
tion of a mesh on a unit sphere [11], [32]. However, such
methods are limited, and they reconstruct objects that are
topologically the same as spheres.

Patch-based approaches [33], [34], [35] are much more
flexible and enable modeling virtually any surface, includ-
ing those with a non-disk topology. This is achieved using
parametric mappings to transform 2D patches into a set of
3D shapes. The first deep neural network which models 2D
manifold into 3D space was FoldingNet [14]. FoldingNet
uses a single patch to model the surface of an object. In
AtlasNet [36], the authors introduced a method that used
several patches to model a mesh. Such elements in the atlas
are trained independently. Subsequently, these patches are
not stitched together, causing discontinuities appearing as
holes or intersections patches. Therefore in the case of Atlas-
Net, the authors also use a sphere to construct a mesh.

3 HYPERCLOUD: HYPERNETWORK FOR

GENERATING 3D POINT CLOUDS

In this section, we present our HyperCloudmodel for gener-
ating 3D point clouds. HyperCloud encompasses previously
introduced approaches: the auto-encoder based generative
model proposed in [10] and the hypernetwork proposed in
[12]. Before we present our solution, we will briefly describe
these two approaches.

3.1 Adversarial Auto-Encoders for 3D Point Clouds

Let us start with the auto-encoder architecture for 3D point
clouds. Let X ¼ fXigi¼1;...;n ¼ fðxi; yi; ziÞgi¼1;...;n be a given
dataset containing point clouds. The basic goal of an auto-
encoder is to transport the data through a typically, but not
necessarily, lower dimensional latent space Z � RD while

Fig. 2. Top: The baseline approach for generating 3D point clouds
returns a fixed number of points [10]. Bottom: Our HyperCloud method
leverages a hypernetwork architecture that takes a 3D point cloud as an
input while returning the parameters of the target network. Since the
parameters of the target network are generated by a hypernetwork, the
output dataset can be variable in size. We can sample any number of
points from the uniform distribution on a 3D ball and transfer them to sur-
face of an object. As a result, we obtain a continuous parametrization of
the surface of the object and a more robust representation of its mesh.

Fig. 3. Scheme of producing mesh representations with HyperCloud.
When using 3D ball distribution, our method can generate 3D point
clouds filled with data points, while when given 3D sphere distribution, it
transforms samples from the sphere to surfaces of 3D objects - a feature
highly desirable in the context of 3D mesh rendering.
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minimizing the reconstruction error. Thus, we search for an
encoder E : X ! Z and decoder D : Z ! X functions,
which minimizes the reconstruction error between Xi and
its reconstructions DðEðXiÞÞ.

For point cloud representation, the crucial step is to
define proper reconstruction loss that can be used in the
autoencoding framework. In the literature, two common
distance measures are successively applied for reconstruc-
tion purposes: Earth Mover’s (Wasserstein) Distance [37],
and Chamfer pseudo-distance [38].

Earth Mover’s Distance (EMD) is a metric between two
distributions based on the minimal cost that must be paid to
transform one distribution into the other. For two equally
sized subsetsX1 � R3 andX2 � R3 their EMD is defined as

EMDðX1; X2Þ ¼ min
f:X1!X2

X
x2X1

cðx;fðxÞÞ;

where f is a bijection and cðx;fðxÞÞ is the cost function and
can be defined as

cðx;fðxÞÞ ¼ 1

2
kx� fðxÞk22:

The second metric, Chamfer pseudo-distance (CD), meas-
ures the squared distance between each point in one set to
its nearest neighbor in the other set

CDðX1; X2Þ ¼
X
x2X1

min
y2X2

kx� yk22 þ
X
x2X2

min
y2X1

kx� yk22:

An auto-encoder based generative model is a classical
auto-encoder model with a modified cost function, which
forces the model to be generative, i.e., ensures that the data
transported to the latent space comes from the prior distri-
bution (typically Gaussian one) [39], [40], [41]. Thus, to con-
struct a generative auto-encoder model, we add a measure
of the distance of a given sample from the prior distribution
to its cost function.

Variational Auto-encoders (VAE) are generative models
that are capable of learning an approximated data distribu-
tion by applying variational inference [39]. To ensure that
the data transported to latent space Z are distributed
according to standard normal density, we add the distance
from standard multivariate normal density

costðX; E;DÞ¼ErrðX;DðEðXÞÞÞ þ �DKLðEðXÞ; Nð0; IÞÞ;
whereDKL is the Kullback–Leibler divergence [42].

The main limitation of VAE models is that the regulariza-
tion term requires a particular prior distribution to make the
KL divergence tractable. In order to deal with that limitation,
the authors of [43] introduce an Adversarial Auto-encoder
(AAE) that utilizes adversarial training to force a particular
distribution on Z space. The model assumes an additional
neural network - the discriminator, which is responsible for
distinguishing between fake and true samples, where the
true samples are sampled from an assumed prior distribution
and fake samples are generated via an encoding network.

In [10], the authors propose an approach to Adversarial
Auto-encoders dedicated to the 3D point clouds. Because
the input of the model is a set of points, they use an E Point-
Net model [6] that is invariant to permutations as an

encoder. They receive the same distribution for all possible
orderings of points from X. Since the discriminator is not
permutation invariant mapping D (as it is a simple MLP
model), the authors utilize an additional function that pro-
vides one-to-one mapping for the points stored inX.

The probability distribution assumed for the latent space
can be more complex than Nð0; IÞ and not given in an
explicit form. Some autoencoders try to learn some more
sophisticated distributions directly from the data. Such sol-
utions may utilize techniques like VampPrior [44] or incor-
porate continuous [8] or discrete [45] normalizing flows.

Due to large techniques of enforcing probability distribu-
tion on the latent space, the cost function of the model can
be formulated in the more general form

costðX; E;DÞ ¼ ErrðX;DðEðXÞÞÞ þRegðEðXÞ; P Þ; (1)

where Err is Earth Mover’s (Wasserstein) Distance or
Chamfer pseudo-distance and Reg is a function that forces
latent space to be from some known or trainable distribu-
tion P . For known distributions like the Gaussian one, Kull-
back–Leibler divergence or adversarial training can be used
for regularization.

In our work, we propose to enrich the presented regular-
ized autoencoder by replacing the decoder with the hyper-
network. The goal of the hypernetwork is to transform the
latent representation of the point cloud to the weights of the
so-called target network. The goal of the target network is
to transform the samples from the assumed prior to the
points that represent 3D shapes without assuming the arbi-
trary fixed number of points. Roughly speaking, in our case,
hypernetwork produces a parametrization of the respective
generative model.

3.2 Hyper-Network

Hyper-networks, introduced in [12] are defined as neural
models that generate weights for a separate target network
solving a specific task. The authors aim to reduce the num-
ber of trainable parameters by designing a hyper-network
with a smaller number of parameters than the target net-
work. By making an analogy between hyper-networks and
generative models, the authors of [46], use this mechanism
to generate a diverse set of target networks approximating
the same function.

Hyper-networks can also be used for functional repre-
sentations of images [13]. In such a concept by means of a
functional (or deep) representation of an image, the authors
introduce a function (neural network) I : R2 ! R3 which
given a point (with arbitrary coordinates) ðx; yÞ in the plane
returns the point in ½0; 1�3 representing the RGB values in a
continuous domain of the color of the image at a location
ðx; yÞ. In such a framework, images are represented by func-
tions (neural networks) that transfer pixel locations N�N

into color space. More precisely, the neural network gener-
ates an RGB color for each pixel position. In this case, the
entire image is created by processing each pixel location to
obtain the corresponding color values.

3.3 HyperCloud

Inspired by the above methods, we propose our Hyper-
Cloud model that uses a hyper-network to output weights
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of a generative network to create 3D point clouds, instead of
generating them directly with the decoder, as done in [10].
More specifically, we present a parameterization of the sur-
face of 3D objects as a function S : R3 ! R3, which given a
point from the prior distribution ðx; y; zÞ returns the point
on the surface of the objects. Roughly speaking, instead of
producing a 3D point cloud, we would like to produce
many neural networks (a different neural network for each
object) that model the surfaces of objects.

In practice, we have one neural network architecture that
uses different weights for each 3D object. More precisely, we
model function Tu : R

3 ! R3 (neural network with weights
u), which takes an element from the prior distribution P and
transfers it onto an element on the surface of the object. In our
work, we use the transformation between a uniform distribu-
tion on the 3D ball and the object. This choice of a distribution
allows one to create a continuous mesh representation. The
key idea behind this is that the distribution does not have
compact support. Roughly speaking, the Gaussian distribu-
tion does not have a smooth border.

In consequence, we can produce as many points as we
need (we can sample an arbitrary number of points from
the uniform distribution of the unit ball and transfer them
by the target network). Thanks to the target network, the
model can be trained on point clouds containing a different
number of points.

Furthermore, we can produce a continuous mesh repre-
sentation of the object. All elements from the ball are trans-
formed into a 3D object. In consequence, the unit sphere is
transformed into the surface of the object. Now we can pro-
duce meshes without a secondary mesh rendering proce-
dure. It is obtained by simply feeding our neural network
by the vertices of a sphere mesh, see Fig 3. As a result, we
obtain meshes of 3D objects. The sharpness of the borders is
a direct consequence of compact support probability distri-
bution of the input prior. Since flow-based models cannot
handle this family of priors and require infinite support dis-
tributions, the representations generated with those models
are of lower quality.

The target network is not trained directly. We use a
hyper-network Hf : R3 � X ! u; which for a point-cloud
X � R3 returns weights u to the corresponding target net-
work Tu. Thus, a point cloudX is represented by a function

T ððx; y; zÞ; uÞ ¼ T ððx; y; zÞ;HfðXÞÞ:

To use the above model, we need to train the weights f of
the hypernetwork. For this purpose, we minimize the dis-
tance between point clouds like Chamfer distance (CD) or
earth mover’s distance (EMD) over the training set of points
clouds. More precisely, we take an input point cloudX � R3

and pass it toHf. The hypernetwork returns weights u to tar-
get network Tu. Next, the input point cloud X is compared
with the output from the target network Tu (we sample the
correct number of points from the prior distribution and
transfer them by the target network). As a hypernetwork, we
use a permutation invariant encoder that is based on Point-
Net architecture [6] and a modified decoder to produce
weights instead of row points. The architecture of Tu consists
of: an encoder (E) which is a PointNet-like network that trans-
ports the data to lower-dimensional latent space Z 2 RD and

a decoder (D) (fully connected network), which transfers the
latent space to the vector of weights for the target network. In
our framework, hypernetwork TuðXÞ represents our autoen-
coder structure DðEðXÞÞ. Assuming TuðXÞ ¼ DðEðXÞÞ, we
train our model by minimizing the cost function given by
Equation (1).

3.4 Limitations

Using the hypernetwork as part of our HyperCloudmethod,
we obtain a simple yet effective approach for modeling 3D
point clouds. Instead of relying onmore complex flow-based
modules, such as the Continuous Normalization Flow
(CNF) [30] in PointFlow [8], we use a hypernetwork to return
in HyperClouda fully connected target network that maps a
uniformdistribution on a 3D ball to a 3D point cloud. Relying
on a hypernetwork instead of conditioning on a CNFmodule
with the autoencoder latent space [8] reduces the number of
CNF function parameters in our model. As a consequence,
we reduce the training time and corresponding memory
footprint of the model by over an order of magnitude with
respect to the competing PointFlow. However, although
much more efficient, our resulting HyperCloud model does
not offer the flexibility that is required to fully reconstruct
complex 3D shapes, and hence may result in inferior perfor-
mance compared to the competing flow-based models. The
most straightforwardway to address this limitation is to sub-
stitute a conventional fully connected target network with a
CNF module. Yet this substitution is not possible without
modifying the underlying probability distribution, since
flow-based models cannot be trained on compact support
priors. In the next sections, we showhow tomitigate this lim-
itation by introducing a novel probability distribution func-
tion that can be later integrated into a general framework for
building 3D point cloud representations.

4 SPHERICAL LOG-NORMAL DISTRIBUTION AND

THE TRIANGULATION TRICK

In this section, we introduce Spherical Log-Normal distribu-
tion that offers non-compact support required by flow-
based modules by modeling the density of point clouds
around the surfaces of 3D objects. We then show how it can
be also used in the context of generating 3D meshes via the
so-called triangulation trick.

Since our approach relies on flow-based models, a den-
sity distribution has to fulfill several conditions to be used
in practice. First of all, flow-based methods cannot be
trained on probability distributions with compact support.
For instance, it is not possible to train a flow-based model
on a 3D ball, as proposed in HyperCloud [11], since com-
puting the log-likelihood cost function used in flows would
return infinity for this distribution. As a result, the model
does not converge due to numerical instability. Second, we
would like to model the probability distribution of the sur-
face (mesh representation), which is two-dimensional (the
border of a 3D object). Therefore, a Gaussian distribution in
R3 is not a good choice since it models only elements in 3D.
Finally, the density distribution should be topologically
coherent with the density of the modeled object. More pre-
cisely, because of the way registration devices sample space
around object surfaces, point clouds are populated with the
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highest density around object edges and are missing points
within the object structure. Modeling this density with a dis-
tribution that does not allow discontinuities is infeasible as
per Theorem 1 [47].

Theorem 1. There is no continuous invertible map between the
3-D ball and the 2-D sphere that respects the boundary.

For modeling the surface of an object with a continuous,
invertible map, one shall consider the topology of the object
[31], [48], [49]. To learn a transformation that is continuous,
invertible, and provides the results close to object boundary,

one has to choose a prior that is topologically similar to the
expected point cloud, i.e. has the same number of disconti-
nuities.1 Therefore, we construct a probability distribution
on a sphere without compact support.

Fig. 4. Interpolations between two 3D point clouds and its mesh representations.

Fig. 5. 3D point clouds and their mesh representations produced by HyperCloud.

1. Continuous normalizing flows (FFJORD [31]) are able to approxi-
mate discontinuous density functions. This, however, remains insufficient
to model high-quality 3D point clouds while generating continuous
parametrization of object surfaces. Consequently, in our approach, we
propose a density distributionwithout compact support andwith a single
discontinuity, which corresponds to the topology of 3D objects repre-
sentedwith point clouds.
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4.1 Spherical Log-Normal Distribution on Rn.

A probability distribution on a sphere in Rn can be con-
structed by using one-dimensional density distribution,
which takes only positive real values f : Rþ ! Rþ: In such
a case, we can define spherical density distribution as

fn : Rn 3 x ! 1

volðSn�1Þkxkn�1
fðkxkÞ; (2)

where volðSn�1Þ is a surface area of a n-dimensional unitary
sphere and f is a one-dimensional density, which takes
only positive real values. We use one-dimensional density
distribution f : Rþ ! Rþ along the radius of unit sphere in
all directions. In our model, we use a Log-normal distribu-
tion fðrÞ ¼ 1

r 	 1
s
ffiffiffiffi
2p

p expð�ðlog r�mÞ2
2s2

Þ that is a continuous proba-
bility distribution of a random variable, whose logarithm is
normally distributed and, hence, provides non-compact
support.

4.2 Spherical Log-Normal Distribution in R3.

To develop an intuition behind the proposed distribution,
we start with a simple visualization in R2. Fig. 8 shows the
level sets and sample from Spherical Log-Normal distribu-
tion with different parameters s. The spherical Log-Normal
distribution does not have compact support and can there-
fore be used in a flow-based architecture. Furthermore, we
can force the distribution to concentrate as close as possible
to 2D sphere boundaries.

InR3, our Spherical Log-Normal distribution is defined as

f3ðxÞ ¼ 1

2ð2pÞ3=2skxk3
exp �ðlog kxk � mÞ2

2s2

 !
: (3)

In order to use our distribution in a flow-based model,
we need to compute its log-likelihood function

log f3ðxÞ ¼ �log ð2ð2pÞ32Þ � log s � 3log kxk � ðlog kxk � mÞ2
2s2

:

(4)

Finally, sampling elements from our Spherical Log-Nor-
mal distribution can be done by following a simple proce-
dure. First sample r from one-dimensional Gaussian Nð0; 1Þ
and then sample x from n-dimensional Gaussian Nð0; IÞ. A
sample form Spherical Log-Normal can be obtained by the
following equation: expðmþ s 	 rÞ 	 x

kxk :
We avoid numerical instabilities of training by applying

a straightforward strategy to find the correct values of s

parameter: we start with an arbitrarily large value of s and
reduce it linearly during the training.

4.3 Triangulation Trick

To model 3D object surfaces as meshes using the Hyper-
Cloud generative model, we need to investigate the relation-
ship between point clouds and object surfaces. In principle, a
point cloud representing a 3D object can be considered a set
of samples located on the surface of the object with additive
noise introduced by a registration device.We use our Spheri-
cal Log-Normal function to model this distribution with
peak density around the object surfaces (in 2D, around circle
edges, in 3D close to the surface of the sphere) and limited by

the radius of the distribution. Oncewe obtain a parametrized
distribution of a point cloud that models the object surface
together with the registration noise, we can produce a mesh
with a simple operationwhichwe call the triangulation trick.

The triangulation trick involves transferring vertices of a
sphere mesh through a target network in the same way as
3D points, as shown in Fig 3. Since the target network trans-
forms a sample from a Spherical Log-Normal distribution
into a 3D point cloud, when we feed it with a sphere trian-
gulation, it outputs a mesh. In fact, when we substitute sam-
ples from the Spherical Log-Normal distribution with
sphere vertices, we effectively assume minimal registration
noise. Processing vertices by the target network pre-trained
on point clouds allows us to directly generate denoised
mesh representation of object surfaces and obtain a high-
quality 3D object rendering. The generative character of our
HyperCloud model enables the construction of the entire
mesh by processing only vertices with a target network,
without the need for information about the connections
between them, as is done in traditional rendering methods.

Fig. 7 presents reconstructions obtained using the Gauss-
ian and the Spherical Log-Normal distributions. We look at
the cross-sections of the reconstructions to observe the main
differences in how the input distribution is transformed
into a final model by the target network. For the Gaussian
distribution, its tails are transformed into object details,
such as wingtips and airplane rear aileron. Therefore, we
cannot claim that the peak density models the surface of the
object, while its tails model the registration noise. For the
Spherical Log-Normal, its distribution tails are spread along
object surfaces, modeling the registration noise. This allows
us to produce the final mesh through the triangulation trick,
effectively denoising 3D mesh-based object representation
and yielding high-quality results, as shown in Fig. 9.

5 HYPERFLOW: HYPERNETWORK AND

CONTINUOUS NORMALIZING FLOWS FOR

GENERATING 3D POINT CLOUDS

In this section, we present our general framework for creat-
ing 3D point clouds, together with their mesh-based repre-
sentations, dubbed HyperFlow. We show how HyperFlow
leverages the Spherical Log-Normal to encompass both
flow-based and conventional neural networks. Now we are
ready to introduce the HyperFlow model that leverages a
hypernetwork framework to train a Continuous Normaliz-
ing Flow [31] target network and generate 3D point clouds
together with its mesh-based representation.

Fig. 6. Example of interpolation of the 3D object representation space in
the target network. Our hypernetwork architecture allows us to work with
a single object, represented as a distribution of points on a single 3D
point cloud, hence we can browse the space of potential 3D objects by
interpolating representation space in the target network, instead of doing
so in the latent auto-encoder space, as typically done.
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5.1 Continuous Normalizing Flow

Generative models are one of the fastest-growing areas of
deep learning. Variational Autoencoders (VAE) [39] and
Generative Adversarial Networks (GAN) [50] are the most
popular approaches. However, yet another model has
gained popularity – namely the Normalizing Flow (NF) [48].
A flow-based generative model is constructed by a sequence
of invertible transformations. Unlike the other two methods
mentioned previously, the model explicitly learns the data
distribution, and therefore the loss function is simply the
negative log-likelihood.

The Normalizing Flow (NF) [48] is able to model com-
plex probability distributions. The normalizing flow trans-
forms a simple prior distribution (usually the Gaussian one)
PðY Þ into a complex one (represented by data distribution
X) by applying a sequence of invertible transformation
functions: f1; . . . ; fn : Y ! X. By flowing through a chain of
transformations x ¼ F ðyÞ ¼ fn 
 fn�1 
 . . . 
 f1ðyÞ; we obtain
a probability distribution of the final target variable. Conse-
quently, the probability density of the output variable is
given by the change of variables formula

logP ðxÞ ¼ logP ðyÞ �
Xn
k¼1

log det
@fk
@yk�1

����
����; (5)

where y can be computed from x using the inverse flow:
y ¼ f�1

1 
 f�1
2 
 . . . 
 f�1

n ðxÞ: In such a framework, both the
inverse map and the determinant of the Jacobian should
be computable.

The continuous normalizing flow [30] is a modification of
the above approach, where instead of a discrete sequence of
iterations, we allow the transformation to be defined by a
solution to a differential equation @yðtÞ

@t ¼ fðyðtÞ; tÞ;where f is
a neural network that has an unrestricted architecture. The
Continuous Normalizing Flow (CNF ) Fu : Y 3 y ! x 2 X is
a solution of differential equations with the initial value
problem yðt0Þ ¼ x, @yðtÞ

@t ¼ fuðyðtÞ; tÞ. In such a case we have

F ðyÞ ¼ Fuðyðt0ÞÞ ¼ yðt0Þ þ
Z t1

t0

fuðyðtÞ; tÞdt;

F�1
u ðxÞ ¼ xþ

Z t0

t1

fuðyðtÞ; tÞdt;
(6)

where fu defines the continuous-time dynamics of the flow
Fu and yðt1Þ ¼ x.

The log probability cost function with prior distribution
and density g can be computed by

CF ðX; g; uÞ ¼
X
x2X

log gðF�1
u ðxÞÞ �

Z t1

t0

Tr
@fu
@yðtÞ
� �

dt: (7)

In PointFlow [8] the authors show that the CNF can be
used for modeling 3D objects. Instead of directly parame-
trizing the distribution of points in a shape (fixed size 3D
point cloud), PointFlow models this distribution as an
invertible parameterized transformation of 3D points from
a prior distribution (e.g., a 3D Gaussian). Intuitively, under
this model, generating points for a given shape involves
sampling points from a generic Gaussian prior and then
moving them according to this parameterized transforma-
tion to their new location in the target shape.

Fig. 7. We compare how the prior density is modified for the model with a Gaussian prior (the upper two rows) and Spherical Log-Normal (the bot-
tom two rows). In the first and the third row we show how the flow model transforms the original density into the target dataset. The second and the
fourth row show the cross-sections along the plane depicted by red points. For the Gaussian distribution, target space points are not distributed
evenly across the object (a central part of Gaussian distribution is transformed into the bottom of the plane, while its tails are used to model wingtips).
For the Spherical Log-Normal, target space points are distributed evenly across the object, showcasing that our approach truly models the distribu-
tion of the points along object surfaces.

Fig. 8. Level sets and samples from the Spherical Log-Normal distribu-
tion with different parameters s and m ¼ 0. Since the Spherical Log-Nor-
mal distribution does not have compact support, it can be used in flow-
based architectures.
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5.2 HyperFlow

In this section, we present details of our novel model
dubbed HyperFlow, which encompasses and extends prior
works by training continuous normalizing flow modules to
model 3D point cloud distributions with a hypernetwork
framework. Our model is an extension of HyperCloud,
which uses flow architecture as a target network.

We adapt the log-likelihood cost function to a hypernet-
work framework. We therefore introduce our HyperFlow
model that consists of two main parts. The first one is a
hypernetwork that outputs weights of another neural net-
work. The second one is a target network thatmodels the dis-
tribution of elements on the surface of a 3D object. Using
autoencoder terminology, we define three elements: an
encoder, a decoder, and a prior distribution. The encoder Ef :
X ! Z can reduce data dimensionality by mapping it to a
lower-dimensional latent space Z � RD. We follow [51] and
use a simple permutation-invariant encoder to predict Ef.

We use PZ over shape representations proposed by
PointFlow [8]. The assumed probability distribution on the
latent pace can be more complex than the commonly used
Nð0; IÞ and not given in an explicit form. In such a frame-
work, we use an additional continuous normalizing flow
Gc, which transfers the latent space into a Gaussian prior.
Finally, we propose to use a decoder that returns weights of
the target network Du : Z 3 z ! Q, instead of 3D points, as
done in [8], [9]. The resulting hypernetwork contains an
encoder Ef, a decoder Du and a flow Gc.

The hypernetwork takes as an input a point cloud X �
R3 and returns weights Q to fQ that define the continuous-
time dynamics of the flow FQ. The CNF takes an element
from the prior distribution P and transfers it to an element
on the surface of the object. In our work, we use a Free-form
Jacobian of Reversible Dynamics (FFJORD) [31] and trans-
formation between the Spherical Log-Normal distribution
and the 3D object. As presented in Section 4, this choice of
distribution function allows one to create a continuous
mesh representation with the triangulation trick.

HyperFlow is trained by optimizing the following objec-
tive function

lHF ðX; E;DÞ ¼ CF ðX; f3;DðEðXÞÞÞ þRegðEðX;P Þ: (8)

CF is CNF log probability cost function given by eq. (6)
with the Spherical Log-Normal density f3 as a prior. Instead
of direct pasteurization u, we use a hyper model D that pre-
dicts parameters of the target function inside CNF. Reg is a
regularization term responsible for forcing latent representa-
tion EðXÞ to an assumed prior P . The regularization can be
performed via KL divergence, adversarial training, or by
incorporating an additional CNF as in the PointFlow
approach. We utilize the PointFlow method for the experi-
mental part to keep the methodological consistency between
key reference approaches.

5.3 Relation to the Existing Models

Compared to previousmodels like PointFlow, we propose to
use hyper-networks instead of embedding-based condition-
ing. Thanks to that approach, the target model responsible
for generating a shape does not share parameters across all
possible shapes, but each of the shapes receives a dedicated
target model. As a consequence, the number of parameters
of the target model is significantly lower, which is especially
important for continuous flows, where a large number of for-
ward passes is executed by an ODE solver. We receive com-
parable reconstruction results to PointFlow (in terms of
EMD) with a significant reduction of parameters from over
0:5M parameters (PointFlow uses 512� 512� 512 configura-
tion of the target flow) to over 2500 parameters of the target
flow (we use 64� 16� 64 configuration).

We also think that the selection of base distribution for
our model is a valuable contribution. Compared to Point-
Flow, we preserve the probabilistic features of the model
and, thanks to proper base distribution selection and the tri-
angular trick, we are able to generate meshes, while Point-
Flow fails to do that (see Table 3). On the other hand,
AtlasNet receives better reconstruction results, but it is not
trained in a probabilistic framework, it has no generative
capabilities, and it is impossible to evaluate the importance
of each of the points on the surface (no likelihood measure).

6 EXPERIMENTS

This section describes the experimental results of the pro-
posed generative models in various tasks, including 3D
points cloud and mesh generation, learning representations,
and interpolation.

6.1 Metrics

Following the methodology for evaluating generative fidel-
ity and diversification among the samples provided in [51]
and [8], we have applied the following criteria for evaluation:
Jensen-Shannon Divergence, Coverage, MinimumMatching
Distance 1-nearest Neighbor Accuracy.

Jensen-Shannon Divergence (JSD): a measure of the dis-
tance between two empirical distributions P and Q, defined
as

JSDðPkQÞ¼KLðPkMÞ þKLðQkMÞ
2

; where M¼P þQ

2
:

Coverage (COV): a measure of generative capabilities in
terms of richness of generated samples from the model. For
two point cloud sets X1; X2 � R the coverage is defined as a

Fig. 9. Mesh representations generated by our HyperFlow method. Con-
trary to the existing methods that return point cloud representations
sparsely distributed in 3D space, our approach allows creating a continu-
ous 3D object representation in the form of meshes.
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fraction of points inX2 that are the nearest neighbor to some
points inX1 in the given metric.

Minimum Matching Distance (MMD): Since COV only
takes the closest point clouds into account and does not
depend on the distance between the matchings , an addi-
tional metric has been introduced. For point, cloud sets X1,
X2, MMD is a measure of similarity between point clouds in
X1 to those inX2.

1-Nearest Neighbor Accuracy (1-NNA) is a testing proce-
dure characteristic for evaluating GANs. We have consid-
ered two sets: set Sg composed of generated point clouds
and test (reference) point clouds, Sr. We have picked some
generated point cloud X from Sg and have found the corre-
sponding nearest neighbor in S�X ¼ Sr

S
Sg � fXg, the set

that aggregates both training and sampled shapes excluding
the considered point cloud X. The 1-NNA is the leave-one-
out accuracy of the 1-NN classifier

1�NNA ¼
P

X2Sg ½NX 2 Sg� þ
P

Y 2Sr ½NY 2 Sr�
jSgj þ jSrj :

For each sample, the 1-NN classifier classifies it as com-
ing from Sr or Sg according to the label of its nearest sample.
The perfect situation occurs when the classifier is unable to
distinguish between real and generated point clouds, which
means that the value of the criterion is close to 50%.

6.2 Generation on 3D Point Clouds

We examine the generative capabilities of the provided
HyperCloud and HyperFlow in comparison to the existing
reference approaches. In this experiment, we follow the
methodology provided in [8]. For HyperCloud, we have uti-
lized the hypernetwork architecture trained with EMD
reconstruction loss together with the continuous flow on
latent representation instead of simple KLD regularization.

We have compared the results with the existing solutions:
raw-GAN [51], latent-GAN [51], PC-GAN [52] and Point-
Flow [8]. We have trained each model using point clouds
from one of the three categories in the ShapeNet dataset: air-
plane, chair, and car. We have followed the exact evaluation
pipeline provided in [8].

The results are presented in Table 1. HyperCloud obtains
comparable results to the other models that utilize EMD
reconstruction loss with the advantage of sampling an arbi-
trary number of points. The model was outperformed by
PointFlow and HyperFlow that do not utilize EMD as recon-
struction loss and use a more complex continuous flow for a
point-level generation. However, HyperFlow is capable of
generating meshes via the triangulation trick and is more
effective in terms of training time and memory consumption.
Fig. 10 displays a comparison between our HyperFlow
method and the competing PointFlow.We have evaluated the
architectures used in the previous sections that have obtained
the best quantitative results for a fair comparison. Themodels
have been trained on the car dataset. Our HyperFlow
approach has led to a significant reduction in both training
time andmemory footprint due to amore compact flow archi-
tecture enabled by a hypernetwork framework.

6.3 Generation of 3D Meshes

The main advantage of our method compared to reference
solutions is the ability to generate both 3D point clouds and
meshes without any post-processing stage. In Fig. 5, we
present a point cloud as well as a mesh representation gen-
erated by the same model. Thanks to using a uniform distri-
bution on the 3D ball, we can easily construct a mesh. All
elements from the ball are transformed into a 3D object. In
consequence, the unit sphere is transformed into the surface
of the object. As it was mentioned, we can produce meshes
without a secondary meshing procedure. It is obtained by

TABLE 1
Generation Results

MMD-CD scores are multiplied by 103; MMD-EMD scores and JSDs are multiplied by 102.
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propagating the triangulation of the 3D sphere through the
target network, see Fig 3.

In the case of a Gaussian prior, we can use a similar pro-
cedure, but it is nontrivial to select the optimal sphere
radius, which will be used by the generation of a mesh (con-
trary to our hyper models, in PointFlow there is no default
for radius R). If the chosen radius is too small, the con-
structed mesh lies inside the point cloud, and consequently,
we lose small outlying elements of the object, e.g., chair
legs. On the other hand, if the chosen sphere radius is large,
some small elements of the 3D object will be merged, e.g.,
four legs of a chair will merge into one.

For the evaluation of the quality of mesh grid representa-
tion, we propose the following experiment. Instead of sam-
pling the points from the assumed prior distribution, we
sample them from a given surface (sphere with the assumed
radius). Next, we calculate the standard quality measures of
generated point clouds considered in the previous experi-
ment. Since all models except PointFlow listed in Table 1
work only on a fixed number of points, we compare our
results only with PointFlow.

As mentioned above, we can use the PointFlow model to
produce mesh representation similarly by feeding the target
network by triangulation on a sphere. In our experiment,
consistently with the standard used for hypothesis testing,
we have used 95%, 98%, and 99% confidence spheres for 3D
Gaussian distribution, see Table 3. As we can see, the
default Gaussian prior is not suitable for producing a con-
tinuous representation of the boundary. As can be seen in
Table 3, PointFlow that uses a Gaussian distribution as a

prior provides results inferior to HyperCloud and Hyper-
Flow, while the HyperFlow method offers the best perfor-
mance, thanks to using Spherical Log-Normal as a prior
instead of a compact support distribution function as in
HyperCloud.

6.4 Unsupervised Representation Learning

In this experiment, we have evaluated the quality of latent
space representation of our models. We have followed the
experimental settings from previous works [8], [51] and
have trained our model using the full ShapeNet dataset.
Next, we have evaluated the quality of latent representation
by training a linear SVM classifier on top of it using Model-
Net10 and ModelNet40 datasets. In this experiment we
have also considered 3DGAN [17], AtlasNet [36], Folding-
Net [14], Generative PointNet (GPN) [27] and Generative
VoxelNet (GVoxelNet) [26] as reference methods. We have
provided the results of empirical evaluation of our model in
Table 2. Our models have achieved an accuracy that is com-
parable to the results achieved by the original version of l-
GAN, but they have been was worse than the results
achieved by PointFlow and l-GAN trained with a new set-
ting. However, in our experiments, we have not used

TABLE 2
Unsupervised Feature Learning

3DGAN FoldingNet l-GAN (EMD) l-GAN (CD) GPN GVoxelNet AtlasNet l-GAN-2 (EMD) l-GAN-2 (CD) PointFlow HyperFlow HyperCloud

MN10 (%) 91.0 94.4 95.4 95.4 93.7 92.4 91.9 92.8 92.2 93.7 91.0 90.5
MN40 (%) 83.3 88.4 84.0 84.5 - - 86.6 87.0 86.7 86.8 84.7 84.9

Models are first trained on ShapeNet to learn shape representations, which are then evaluated on ModelNet10 (MN10) and ModelNet40 (MN40) by comparing
the accuracy of off-the-shelf SVMs trained using the learned representations. l-GAN-2 was trained and evaluated using PointFlow experimental settings.

Fig. 10. Comparison of training times and GPU memory used by Point-
Flow and HyperFlow. Our HyperFlow method offers over an order of
magnitude decrease in both training time and memory.

TABLE 3
The Values of Quality Measures of 3D Representations
Obtained by Sampling From a Sphere with a Given

Radius R for Airplane, Chair and Car Shapes

It can be seen that HyperCloud and HyperFlow preserve the good quality of
sampled point clouds, while PointFlow has difficulties in obtaining good qual-
ity representations from the sphere.
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preprocessed ModelNet datasets in the same pipeline as in
PointFlow, but in the way recommended in [51].

6.5 Interpolation

In our hyper model, we can construct two types of interpo-
lation. Since we have two different prior distributions: the
Gaussian one in the hypernetwork architecture (latent of
auto-encoder) and the uniform distribution on the unit
sphere in the target network, see Fig. 2. First of all, we can
take two 3D objects and obtain a smooth transition between
them, see Fig. 4. For each point cloud, we can generate
mesh representation. Therefore we can also produce inter-
polation between the meshes.

Our hypernetwork architecture allows us to work with a
single object, represented as a distribution of points on a sin-
gle 3D point cloud. One interesting consequence of this fea-
ture is that we can browse the space of potential 3D objects
by interpolating representation space in the target network
instead of doing so in the latent auto-encoder space, as is typ-
ically done. Fig. 6 shows an example of such interpolation.

6.6 Flow Transformations of Meshes

In this part of the experiment, we show the idea of direct
mesh generation via the triangulation trick. We show how
the locations of points are shifted during the integration
process, while preserving the connections between points.

In our HyperFlow model, generating points for a given
shape involves sampling points from a Spherical Log-Normal
prior and then moving them according to this parameterized
transformation to their new location in the target shape. In
Fig. 11 we present such a transformation. Since our model

allows producing meshes, we show how a mesh from a uni-
form sphere is transformed into amesh on the object.

6.7 Reconstruction Results

In this subsection, we evaluate how well our model can
learn the underlying distribution of points. We present
reconstruction results for ShapeNet (airplane, car, chair). In
this experiment, we compare HyperFlow with the current
state-of-the-art AtlasNet [36] where the prior shape is either
a sphere or a set of patches. Furthermore, we also make a
comparison with l-GAN [53] and PointFlow [8]. We follow
the experiment set-up in PointFlow and report the perfor-
mance in both CD and EMD in Table 4. Since these two met-
rics depend on the scale of point clouds, we also report the
upper bound in the ”oracle” column. The upper bound is
produced by computing the error between two different
point clouds with the same number of points sampled from
the same ground truth meshes.

We observe that HyperFlow achieves comparable results
(in terms of EMD) to PointFlow that was also trained via

Fig. 11. We show how the triangulation on the sphere is transformed into a mesh of the object. Thanks to the so-called triangulation trick, we obtain
object meshes. Since we use a CNF as a target network, we can visualize a continuous transformation between a uniform sphere and the surfaces
of objects.

TABLE 4
Reconstruction Results

CD is multiplied by 104 and EMD is multiplied by 102.
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NLL optimization. The remaining approaches were trained
by optimizing reconstruction measures, therefore, they per-
form better in terms of the considered criteria.

7 CONCLUSIONS

In this work, we present a novel approach to representing
point clouds of 3D objects with parameters of target networks
trained by a hypernetwork. More specifically, we are able to
build variable size representations of point clouds not only
when they are input into the model but also when they are
returned as an output. Our proposed method not only gives
high-quality 3D object representations, but also allows for the
creation of realistic 3D meshes. Finally, the framework pre-
sented in this work encompasses many existing approaches,
including flow-based models, and hence it can be used in a
multitude of real-life applications, including LIDAR data
reconstruction and autonomous driving, and it can also open
new research areas related to generativemodels.
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