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Abstract
The bacterial endosymbiont Wolbachia is best known for its ability to modify its host’s
reproduction by inducing cytoplasmic incompatibility (CI) to facilitate its own spread.
Classical models predict either near-fixation of costly Wolbachia once the symbiont has
overcome a threshold frequency (invasion barrier), or Wolbachia extinction if the barrier is
not overcome. However, natural populations do not all follow this pattern: Wolbachia can
also be found at low frequencies (below one half) that appear stable over time. Wolbachia is
known to have pleiotropic fitness effects (beyond CI) on its hosts. Existing models typically
focus on the possibility that these are negative. Here we consider the possibility that
the symbiont provides direct benefits to infected females (e.g. resistance to pathogens)
in addition to CI. We discuss an underappreciated feature of Wolbachia dynamics: that
CI with additional fitness benefits can produce low-frequency (< 1/2) stable equilibria.
Additionally, without a direct positive fitness effect, any stable equilibrium close to one half
will be sensitive to perturbations, which make such equilibria unlikely to sustain in nature.
The results hold for both diplodiploid and different haplodiploid versions of CI. We suggest
that insect populations showing low-frequency Wolbachia infection might host CI-inducing
symbiotic strains providing additional (hidden or known) benefits to their hosts, especially
when classical explanations (ongoing invasion, source-sink dynamics) have been ruled out.
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Introduction

Maternally inherited endosymbiotic bacteria of genus Wolbachia are widespread in arthropods and nema-
todes (Hilgenboecker et al., 2008; Weinert et al., 2015; Zug and Hammerstein, 2012). Since the discovery of
Wolbachia-induced cytoplasmic incompatibility (CI, Laven, 1956; Yen and Barr, 1971) – embryonic mortality
in the offspring of parents of different infection status – the symbionts have attained considerable empirical
as well as theoretical interest. CI is an obvious and dramatic fitness effect, but Wolbachia’s effects are often
pleiotropic, impacting the fitness of its hosts directly and regardless of the type of mates that the host repro-
duces with (for example Hoffmann, Turelli, and Harshman, 1990). Assuming that pleiotropy includes direct
costs of infection, it becomes at first sight difficult to understand how Wolbachia can spread and reach high
frequencies. However, theory soon showed that costly Wolbachia infections show positive frequency depen-
dence. At low frequencies, costs predominate and Wolbachia cannot spread, but if the initial frequency of
Wolbachia is sufficiently high (above an invasion barrier), then the frequency-dependent success favours the
CI-inducing symbiont sufficiently for it to spread (Caspari and Watson, 1959; Fine, 1978). At equilibrium it will
be close to fixation, only prevented from fixing by some infections failing to be passed on to offspring (Engel-
städter and Telschow, 2009; Hoffmann, Turelli, and Harshman, 1990). This fits in with the general expectation
that positive frequency dependence makes it easy to explain either absence or (near) fixation of a trait (Lehto-
nen and Kokko, 2012).

Inmany empirical systems,Wolbachia are indeed very prevalent in their host populations (Deng et al., 2021;
Duplouy and Brattström, 2018; Hoffmann, Turelli, and Harshman, 1990; Jeong et al., 2009) in line with exist-
ing theory. However, the recent accumulation of studies on the prevalence and penetrance of Wolbachia in
diverse host species and populations show a wider range of infection prevalences. Sazama et al. (2019) have
reported that infection prevalence of Wolbachia is likely to remain below one half in the majority of insect
species (Arthofer et al., 2009; Hughes et al., 2011; Sun et al., 2007; Tagami andMiura, 2004), including systems
where the spread of Wolbachia is potentially ongoing (Duplouy, GD Hurst, et al., 2010). There are also exam-
ples of low prevalence remaining reasonably stable over time (Duplouy, Couchoux, et al., 2015). Although
some cases of low and apparently stable prevalence might be explicable as a result of migration to sink pop-
ulations from sources where symbiont prevalence is high (Flor et al., 2007; Telschow et al., 2007), it appears
difficult to consider spatial dynamics a sufficient explanation for widespread cases of empirically documented
low prevalences.

Here we show that spatial heterogeneity is not needed for models to produce low stable frequencies of
CI-inducing symbionts, once one allows the effects of infection on the host to be positive. Studies allowing
positive fitness effects of CI-inducing symbionts are rare. However, Zug and Hammerstein (2018) investigated
the effect of positive fitness on the invasion dynamics of CI and other types of reproductive parasites into
virgin populations and against each other. They demonstrated the key role of relative fitness in determining
invasion conditions of the parasites. The effect is often observed as a lower (or absent) invasion threshold fre-
quency. While their focus was mostly on the invasibility of the parasites, we aim to widen the understanding
of the resulting stable equilibrium frequencies when positive fitness effects are present.

We first revisit classic CI models (following the notation of Engelstädter and Telschow, 2009) and show that
the assumption structure, where infected hosts experience either no or negative fitness effects, cannot equi-
librate at infection prevalences below one half (as stated by Turelli, 1994, for a diplodiploid case). We also
argue that within the range predicted by the classic model (between one half and one), the lower end of the
range is difficult to maintain in the presence of stochastic fluctuations in infection prevalence, as the invasion
barrier will in these cases be too close to the stable equilibrium. We then show that when we allow infected
hosts to benefit from their infection status, the stable equilibria can exist below one half in a wide range of



Figure 1. Mating results and key parameters of reproduction when insect population contains Wolbachia
infected individuals. When an infected male (IM) fertilizes eggs, the Wolbachia-modified sperm leads to

cytoplasmic incompatibility in all Wolbachia-free eggs, regardless of the infection status of their mother (IF,
UF). Uninfected males (UM) fertilize all eggs successfully. Note that in the diplodiploid case, the incompatible

eggs (that die) could have developed as either males or females. In haplodiploids, where fertilization
produces females, the incompatible eggs would all be originally female. In the female-killing type they simply

die, while in the masculinization type they develop as males instead.
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cases, including situations with and without an invasion barrier. The results of the classical diplodiploidmodel
of CI are quite similar to the results of different haplodiploid models (with an exception that we discuss). Our
observations of low frequency stable equilibria (specifically, below one half) are not entirely novel: the analysis
of (Zug and Hammerstein, 2018) includes a demonstration of such a situation in a diplodiploid system (their
Supplementary Fig. S1), albeit without any written comment as the focus of these authors was elsewhere.
Hence, our aim is to strengthen the appreciation of the dynamic consequences of positive fitness effects in
the dynamics of CI-inducing symbionts.

Models and analysis

Diplodiploid model

Hoffmann, Turelli, and Harshman (1990) presented a seminal model for the spread of CI-inducing sym-
bionts in diploid-diploid species, building upon a slightly different model of Fine (1978). We use the discrete
time model of Hoffmann, Turelli, and Harshman (1990) but update it to the notation of Engelstädter and
Telschow (2009) (Fig. 1). Wolbachia-bearing females have relative fecundity f compared to the uninfected
baseline (which we set to unity). Wolbachia is transmitted maternally to a proportion t of eggs. Under rules
of CI, an uninfected egg that is fertilized by a Wolbachia-modified sperm (produced by an infected male) dies
with probability L, while Wolbachia-infected eggs survive irrespective of the status of the fertilizing sperm (to
be precise, this requires sperm to be either from a Wolbachia-free father or from a father with the same or a
compatibleWolbachia strain as the egg; for simplicity we follow earlier studies and consider only one strain in
our model).



Our model assumes equal frequency (p) of Wolbachia in males and females in the current generation. We
track four types ofmatings (themother and the father can eachbeuninfected or infected) and their outcome in
terms of infected and uninfected offspring production. Only infected mothers can produce infected offspring,
and the total of such offspring is pft (sperm genotype does not matter for these mothers). The denominator
consists of all offspring from all matings. The change from the current generation to the next is

∆p =
pft

(1− p)2︸ ︷︷ ︸
UF x UM

+(1− p)p(1− L)︸ ︷︷ ︸
UF x IM

+ pf(1− p)︸ ︷︷ ︸
IF x UM

+ p2f
(
t+ (1− t)(1− L)

)︸ ︷︷ ︸
IF x IM

− p

=
pft

1− p(1− f)− pL
(
1− p(1− f + ft)

) − p,

(1)

where the first term gives the infection frequency in the next generation. Equation (1) has three equilibria:

p̂0 = 0, p̂1 =
−B −

√
B2 − 4AC

2A
, and p̂2 =

−B +
√
B2 − 4AC

2A
,

where A = L
(
1 − f(1 − t)

)
, B = f − 1 − L and C = 1 − ft (Fig. 2a). As shown by Hoffmann, Turelli, and

Harshman (1990), when all three equilibria exist, p̂0 and p̂2 are stable while p̂1 between them is unstable and
gives the invasion threshold (in Appendix B we rederive this result extending it to f > 1). Turelli (1994, Eq.
4) and Turelli and Hoffmann (1995, Eq. 3) indicated that p̂2 > 1/2, although they did not provide an explicit
proof for that. Below, we show what is required for this result to hold.

Before proceeding to understand effects caused by f > 1, it is useful to understand why the classical result
arises, i.e. that f ≤ 1 predicts the absence of low (< 1/2) and stable frequencies. We outline the reasons
both mathematically and biologically. Mathematically, p̂1 and p̂2 are symmetric around a point r = −B/(2A).
Now, for p̂2 to remain below 1/2, it is necessary (but not sufficient) that r is below 1/2. Solving the inequality
r < 1/2 for f with 0 < t ≤ 1, 0 < L ≤ 1 yields

1− f + L

2L
(
1− f(1− t)

) <
1

2

⇔ f >
1

1− L(1− t)
≥ 1,

(2)

which clearly implies that r > 1/2 for any f ≤ 1. However, the result also suggests that permitting f > 1 can
change the results, since r < 1/2 becomes possible and thus possibly also p̂2 < 1/2. A numerical example
shows that this indeed happens with suitable parameter values (Fig. 2b, c, d).

It is worthwhile to consider the robustness of the equilibria against stochastic variation in the environment,
that may perturb populations away from their current equilibria. We show that this makes equilibria close to
one half unlikely to persist in the long term, within the classically assumed parameter regime where f ≤ 1.
Consider a situation where f ≤ 1 and the stable equilibrium p̂2 is close to one half. We have a situation
p̂1 < r < p̂2, but given the assumption f ≤ 1 we also know that r > 1/2. Since we assumed p̂2 is close to
one half, it follows that all points p̂1, r and p̂2 must be close to each other (since r is located exactly midway
between p̂1 and p̂2). Hence, if the stable equilibrium p̂2 is close to one half, then the unstable equilibrium
p̂1 (representing the invasion barrier) is not far below p̂2. Under such circumstances, random fluctuations in
infection prevalence can easily make the population fall stochastically under the invasion barrier, from where
it deterministically proceeds towards extinction (unless another stochastic event brings it back up to above
the invasion barrier).

Biologically, the above analysis implies that ifWolbachia infection has effects that go beyond CI, then these



additional fitness differences between infected and uninfected hosts can change the outcome of the inter-
action significantly. The direction of these differences determine whether Wolbachia frequencies can only
stabilize at high values (with direct negative fitness effect), or whether the range of prevalence values extends
to include low frequencies.

To develop biological intuition for why this is the case, it is instructive to see why the invasion threshold
exists in the classical situation (f ≤ 1), i.e. why in Fig. 2a there is a switch from poor spread of Wolbachia at
low frequencies to better success at moderate frequencies. The impact of Wolbachia on uninfected eggs is
captured by parameterL, but the value ofL becomes irrelevant as a determinant of the dynamics when the in-
fection is rare (very low p). A Taylor series expansion of Eq. (1) around p = 0 is (ft−1)p+f(1−f+L)tp2+O[p]3,
showing that parameter L is associated with second or higher order terms relative to p. Hence, when p is low,
the terms that include L become negligible and∆p ≈ (ft− 1)p.

For the infection to increase in frequency when it is rare, the requirement is that ∆p > 0, creating a sim-
ple condition: ft > 1 means that the ’leakage’ of offspring into an uninfected state (i.e., only a proportion t

of offspring of Wolbachia-infected mothers inherit the infection) is more than compensated for by the fecun-
dity advantage of Wolbachia-infected mothers. Assuming this is the case, the equilibrium p̂0 is unstable and
Wolbachia can spread from rare. Hence there is no invasion threshold when ft > 1 (See also Appendix B).
Simultaneously, fixation is not possible if we assume t < 1; the ‘leakage’ always maintains a supply of unin-
fected individuals.

Figure 2a shows an example where ft is below 1 and spread from rare is consequently not possible. When
there are not enough males causing the ‘competing’ egg type to fail (very low p), the combination of low fe-
cundity (f < 1) and imperfect transmission (t < 1) together prevent CI-inducing Wolbachia from maintaining
its frequency in the population. At higher p, we can no longer ignore the consequences of CI, and therefore
the effect of the parameter L. Now, a high proportion of infected males will elevate the relative success of
infected eggs compared to uninfected competitors; the success difference arises from uninfected females’
eggs dying. This explains why in classical examples the CI-inducing symbiont can begin to spread at some
threshold value of p: the spread is caused by sufficiently many infected males harming the reproduction of
uninfected individuals.

The central role of the product ft provides important insight. Its value exceeds 1 when f > 1/t, thus suf-
ficiently high values of f can make the invasion barrier disappear (as stated e.g. by Zug and Hammerstein,
2018). However, this can never happen for any f ≤ 1, since 1/t ≥ 1 for any t ∈ (0, 1]. Thus f > 1 is a
necessary (but not sufficient) requirement for the invasion barrier to disappear. Note that the above holds
assuming that the stable polymorphic equilibrium exists but it is possible to lose both the threshold and the
stable equilibrium also with ft < 1 as seen in Fig. 2. Biologically, situations of f > 1/t > 1 are possible,
once one considers the full range of possibilities for pleiotropy. If females infected by CI-inducing Wolbachia
are more fecund than uninfected females, and if this advantage is sufficiently large, then the invasion barrier
disappears. In this case, one might at first sight expect that this additional advantage would simply makeWol-
bachia reach fixation. This is not the case, however, since the effect of t < 1 causing fixation to be impossible
still holds.

Instead, the more interesting finding is that f > 1 creates conditions where a low frequency of Wolbachia
can be stable. This was not possible when f ≤ 1, because infected males at low prevalence do not cause a
large enough survival difference between eggs. But if f > 1, infected females can outcompete uninfected
ones with very little (assuming ft < 1) or no (ft > 1) CI-related advantages, and as a whole, the infection
can spread at values of L that are so low that they would never make Wolbachia spread in situations involv-



ing f ≤ 1 (compare Fig. 2c to Fig. 2e). In other words, the latter condition would not feature an invasion
barrier above which positive frequency dependence would be sufficiently strong to bringWolbachia to higher
frequencies.

If we now assume that f > 1/t, we know that the invasion barrier is absent since infected females are
more fecund than uninfected ones (as the above implies that f > 1). Once the infection spreads, so that
infectedmales are no longer negligibly rare, infected females reap additional benefits (indirectly, by the effect
of L killing their competitors). The remaining equilibrium in the 0 < p < 1 range is stable. Even when L = 0,
i.e. the effect of males on eggs is switched off and the aforementioned additional benefits are absent, qual-
itatively similar dynamics arise: the infection frequency increases from rare but cannot fix due to imperfect
transmission (also shown in Fig. S1 of Zug and Hammerstein, 2018).

Figures 2c and 2d show examples with ft > 1 and five values of L. As expected, the L = 0 case (lowest
curve) exhibits simple dynamics, with the infected strain increasing until imperfect transmission leads to a
stable equilibrium which, by solving∆p = p̂ft/

(
p̂f + (1− p̂)

)
− p̂ = 0, is at p̂ = (1− ft)/(1− f) ≈ 0.06 with

the given numerical example. Higher values ofL lead to equilibria with a higher prevalence ofWolbachia (Figs.
2 and 3). Choosing equivalent values for L in a setting where ft < 1 always leads to lower growth (all graphs
are lower in Fig. 2e, f compared with the equivalent graphs in Fig. 2c, d). At high L this means introducing an
invasion barrier, while at lowL the result is negative growth regardless of the current value of p, i.e. extinction
of Wolbachia (three lowest curves in Fig. 2e).

It is worth clarifying the statement that introducing benefits can allow for a lower equilibrium frequency
of Wolbachia, as it is counter-intuitive at first sight. The meaning of the statement is not that higher f lowers
the equilibrium frequency when other parameters are kept constant; this does not happen, instead, higher
f increases the frequency (Fig. 3). The statement refers to the fact that this very effect (high f improves the
prospects forWolbachia) can, under parameter settings that are a priori unfavourable toWolbachia, shift a sit-
uation where noWolbachia persist to one where some spread is possible, and the system finds its equilibrium
at low p (the light-coloured curves in Fig. 2c compared to Fig. 2e; Fig. 3). The interesting findings of equilibria
with p < 1/2 arise because ft > 1 implies no invasion barrier irrespective of the value of L, thus Wolbachia
can spread from rare even if L is meagre, but the modest value of L then gives very little ‘boost’ at higher
values of p (meagre male effects on uninfected eggs when L is low).

Although our analysis so far appears to suggest that cases with invasion barrier associate with high equilib-
rium frequencies, it should be noted that examining the full range of possibilities permitted by f > 1 includes
cases where an invasion barrier exists, and the stable equilibrium is below one half. An invasion threshold
exists if ft < 1 (assuming existence of the stable polymorphic equilibrium), while the necessary condition
for p̂2 < 1/2 is that f > 1. Suitably chosen values for f and t can fulfil both criteria simultaneously (exam-
ple: Fig. 2b). As a summary, increasing f will increase the value of the stable equilibrium, but at the same
time open possibilities for less successful symbionts, manifested as lower values of L and t, that will equili-
brate at lower frequencies. The effect of parameter f with different combinations of t andL is shown in Fig. 3.

It is of interest to see if equilibria with low p can only exist at very low values of L (mild incompatibility) as
in the above examples, or whether other values of other parameters allow low-p equilibria to exist even if L
is relatively high. The latter proves to be the case, and as a whole, assuming f > 1 reveals a richer set of
possible outcomes than what can occur if f ≤ 1 (Fig. 4). The “classical” example with two stable equilibria
and an invasion threshold between them (light grey in Fig. 4), as well as extinction of Wolbachia (white), can
be found whether f indicates costs or benefits to being infected, but f > 1 additionally permits cases with-
out invasion barriers and with low stable prevalence of Wolbachia when low or moderate L combines with



Figure 2. Equilibria of the diplodiploid model (Eq. (1)) shown with plots of∆p as a function of p. Dots: stable
equilibria, circle: unstable equilibrium, cross: point r. a) Classical example with an invasion threshold and
high-frequency stable equilibrium. Parameters f = 0.85, t = 0.85, L = 0.85. b) It is possible to have a low
stable frequency (p < 1/2) together with an invasion threshold (ft = 0.9588 < 1). (f = 1.128, t = 0.85,

L = 0.35.) Panels c), d) and e), f) contrast the effect of the strength of CI (L) on the invasion dynamics when
ft > 1 or ft < 1. In c),d) f = 1.19, t = 0.85, and no invasion threshold exists. Low value of L leads to low
stable infection frequency. In e),f) f = 0.99, t = 0.85. High L shows the classic case, while low L predicts

extinction of Wolbachia.
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Figure 3. Equilibria of the diplodiploid model (Eq. (1)) as function of f , for different values of t (panel titles)
and L (colours of the lines, see legend). Solid lines: stable equilibria. Dashed lines: unstable equilibria.
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Figure 4. Properties of equilibria of the diplodiploid model shown across parameter space. The parameter
regions are categorized as featuring only the trivial equilibrium at p = 0 (white), a non-trivial stable

equilibrium p̂2 > 1/2 with or without invasion threshold (light grey), and non-trivial stable equilibrium
p̂2 < 1/2 without (dark grey) or with (black) an invasion threshold. Values of parameter f (fecundity) are

indicated above each panel.
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ft > 1 (dark grey areas). Finally, the situation with the stable equilibrium below one half co-occurring with
an invasion threshold places conflicting demands on the value of f (see above), and while not impossible to
fulfil, satisfying them requires rather fine tuned parameter settings with low or intermediate values of L and
for a narrow range of t slightly below 1/f (black areas in Fig. 4).

Haplodiploid models

Thus far, the presented analysis of low stable frequencies of Wolbachia assumed diplodiploid sex deter-
mination. In this section, we extend these results to two haplodiploid cases, that differ in the effects of an
infection on the host. The first case resembles the classic diplodiploid model in that cytoplasmic incompatibil-
ity kills fertilized eggs, but since under haplodiploidy all fertilized eggs develop as females, we now switch to
calling it the female-killing effect (and note that it is equivalent to the “Leptopilina type” of Vavre et al. (2000)).
In the second case, incompatibility instead leads to the loss of paternal chromosomes and haploidization of
the zygote, which consequently develops as amale (Breeuwer andWerren, 1990). We call this themasculiniza-
tion effect (Vavre et al. (2000) call it the “Nasonia type”, see also Breeuwer and Werren (1990)). Note that both
the female-killing effect and the masculinization effect can lead to a male-biased sex ratio, but the underlying
mechanisms differ, and we model them separately.

The existence of a low-value stable equilibrium of Wolbachia with f > 1 also proves true in these two hap-
lodiploid systems. We consider the female-killing effect first. Applying our notation from above to the model
of Vavre et al. (2000), the dynamics for Wolbachia frequency in females and males, pF and pM respectively,
become

∆pF =
pF ft

pF f
(
1− (1− t)pML

)
+ (1− pF )(1− pML)

− pF

∆pM =
pF ft

pF f + (1− pF )
− pM .

(3)

For the masculinization effect, we again adopt themodel from Vavre et al. (2000); the dynamics for females



and males, respectively, are given as

∆pF =
pF ft

pF f
(
1− (1− t)pML

)
+ (1− pF )(1− pML)

− pF

∆pM =
pF ft

pF f
(
1 + (1− t) k

1−kpML
)
+ (1− pF )

(
1 + k

1−kpML
) − pM .

(4)

The female equations are identical across the two effects (Eqs. (3) and (4)), as females are lost due to infec-
tions impacting fertilized eggs in both cases. However, themale equations differ, because themasculinization
effect converts females into males instead of killing them. The magnitude of this additional “male production”
depends on the fertilization rate k. If k is high, CI has the potential to cause strong effects on the primary sex
ratio, both because the baseline male production is by definition low under high k, and because there are
many fertilized eggs available to be masculinized. For the female equation, the parameter k cancels out.

Appendix A gives explicit solutions forWolbachia frequencies at the two non-trivial equilibria in these mod-
els. In Appendix B we explore the stability of the non-trivial equilibria and show numerically that when the two
non-trivial equilibria exist, the lower frequency equilibrium is unstable and the higher one is stable (as claimed
by Vavre et al., 2000). In Appendix A, we show analytically that the stable equilibrium frequency forWolbachia
infection exceeds one half when f ≤ 1, with the caveat that this applies to both sexes in the female-killing
model, but only to the Wolbachia frequency in female hosts in the masculinization model. Regardless of this
caveat, numerical examples show that the ability of f > 1 to create stable equilibria below one half for both
sexes extends to both models (for examples of equilibria, see Fig. 5). The proofs in Appendix A follow the
same logic as for the diplodiploid model: the unstable and stable equilibria are symmetric around a point r
(for each sex), which is never below one half if f ≤ 1. Hence, again, a stable equilibrium close to one half
may be vulnerable to the population falling under the invasion barrier if stochasticity causes fluctuations in
Wolbachia frequency, as discussed above with the diplodiploid model.

The infection frequency in males generally does not have to be the same as in females, because of the
potential for additional female mortality and of the two different ways in which males can be produced: the
egg not being fertilized in the first place, or via masculinization. In Appendix C, were prove analytically that in-
fection frequency in females is always higher than or equal to that in males, for both the female-killing model
and the masculinization model.

The additional flexibility actually brings about the possibility, in themasculinization case, that the frequency
of infection inmales can stabilize below one half evenwith f = 0.95 < 1 (Fig. 5c). The parameter range for this
type of situation is narrow whenever f is low (Fig. 6), though. In addition, the female infection frequency was
very high whenever f ≤ 1, so that the average infection frequency was above one half even in the few cases
wheremale infection frequency was below one half under themasculinizationmodel (Fig. 7). Such cases were
found with high fertilization rate (k) yielding a strongly female-biased sex ratio, hence the average infection
frequency was close to that found in females. Overall, low infection frequencies seem very rare unless f > 1.

Discussion

The traditional model of the dynamics of symbionts inducing cytoplasmic incompatibility predicts stable
infection frequencies above one half in diplodiploid systems (Turelli, 1994; Turelli and Hoffmann, 1995). How-
ever, the prediction of high stable frequencies is tightly linked to an assumption of direct fitness effects of



Figure 5. Equilibria of the two haplodiploid models in (pF , pM )-space. In left column f < 1, right f > 1. Dot:
stable equilibria, circle: unstable equilibrium. Dashed line: male null-cline (∆pM = 0), solid line: female
null-cline (∆pF = 0). a) The stable equilibrium is close to fixation and invasion threshold exists. b) Low
frequency stable equilibrium with invasion threshold. c) The non-trivial stable equilibrium at ˆpM < 1/2,

although f < 1. d) Low frequency stable equilibrium with invasion threshold. Parameters: a) and c) f = 0.95,
t = 0.92, L = 0.95, k = 0.9 (only c); b) and d) f = 1.4, t = 0.7, L = 0.7, k = 0.5 (only d).
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Figure 6. Classification of equilibria of the haplodiploid models across parameter space. Columns from left
to right with f = 0.8, f = 1.1 and f = 1.4. First row: female-killing effect; other rows: masculinization effect
model with different values of k. White: only the trivial equilibrium at zero. Light grey: non-trivial stable
equilibrium with 1/2 < p̂F ≤ 1. Dark grey: p̂F ≤ 1/2 without invasion threshold. Black: p̂F ≤ 1/2 with

invasion threshold. The red lines outline two thresholds, between which ˆpM ≤ 1/2. Note that the vertical
t-axes span only high values, where non-trivial equilibria exist.
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Figure 7. Equilibrium infection frequencies of the haplodiploid models across parameter space. Columns
from left to right with f = 0.8, f = 1.1 and f = 1.4. First row: female-killing effect; other rows:

masculinization effect model with different values of k. Black contour lines show infection frequency in
females (with gaps of 0.1), while the color shows difference between female and male infection frequency
according to the colorbar in the bottom. Thick solid contour marks one half frequency. Females always have

higher infection frequency than males.
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infection being either neutral or detrimental. Our findings, that low-frequency (below one half) stable equi-
libria can exist, are as such not new: examples were presented by Zug and Hammerstein (2018), but these
authors did not elaborate on when exactly low frequencies can be expected to prevail. We show analytically
that they can occur only if the relative fecundity of the infected individuals is higher than one.

The association between negative fitness effects and high frequencies is explained by positive frequency-
dependence. CI penalizes uninfected individuals’ reproduction, but cannot do so very efficiently if infections
are rare; therefore, infections must overcome an invasion barrier first but can thereafter spread to high fre-
quencies (only counteractedby leaky transmission). Positive fitness effects remove thedifficulties of spreading
from very low frequencies, and as awhole this creates conditions for stable equilibria at low frequency. Similar
results hold for haplodiploid systems, with the exception of male infection frequency in masculinization-type
CI, which can stay below one half even with relative fecundity less than or equal to one.

The simplest case of low stable frequencies occurs when the effective fitness of rare infected individuals
is higher than that of uninfected individuals (ft > 1). In that case, a rare infection can spread as there is no
invasion barrier (p̂0 is unstable; see also Zug and Hammerstein, 2018), and the infection frequency rises to
levels dictated by the strength of CI, efficiency of transmission, and relative fecundity. With very weak CI and
leaky transmission, the stable equilibrium can be very close to zero (e.g. 0.06 in Fig. 2c, d). A more complex
situation occurs when the relative fecundity of infected individuals exceeds one but not by much, so that rel-
ative fecundity above one combines with effective fecundity below one (f > 1 with ft < 1). In that case,
the invasion threshold exists, but it is still possible to have a stable equilibrium below one half, a finding that
has not been demonstrated before. As the previous analyses usually assumed equal or lower fecundity of
infected individuals, they consequently observed stable equilibria above one half.

Note that similar results arise when considering a sexual population containing a lineage with a wild-type
symbiotic strain and a lineage with a fitness-increasing symbiotic strain with non-perfect transmission. As
shown by Zug and Hammerstein (2018), the condition ft > 1 is necessary and sufficient for the success-
ful invasion of the fitness-increasing strain, as it provides the strain with higher effective fecundity than the
wild-type lineage. They also mentioned this being analogous to the mutation-selection balance of haploids
(Hoffmann and Turelli, 1997). Along the same lines, when studying the possibility of sex-ratio determination of
CI-inducing symbionts, Egas et al. (2002) conclude that the symbiont can invade “if the proportion [of] infected
daughters produced by infected females is bigger than the proportion [of] daughters produced by uninfected
females (when mated with uninfected males)”, again returning to higher effective fecundity of the infected
individuals.

Given that the consequences of higher relative fecundity are not only clear but also, in the formof examples,
present in earlier analyses, why have positive fitness effects not been discussed explicitly before? A typical
discussion of Wolbachia focuses on the fitness deficit caused by infection (Hoffmann, Turelli, and Harshman,
1990), which creates an interesting paradox: why should a symbiont with negative fitness effects on its host
be so common in natural populations? The discovery of reproductive manipulation (such as CI) solved this
conundrum. The possibility of positive fitness effects has thereafter not attracted much attention, despite
the relevant equations remaining valid when f > 1. As an exception, Zug and Hammerstein (2018) recently
explored positive fitness effects, with a focus on the evolution of the infectious agent and comparison of dif-
ferent symbionts (non-manipulating, CI, male-killing).

Besides showing that the stable equilibrium almost always exceeds one half when f ≤ 1, we also argue
that infection frequencies slightly above one half are not expected to be robust in nature. Our model analysis
thus suggests that positive fitness effects of CI-inducingWolbachia infection are expected to be found in those



natural populations that show low and stable densities of infection over time. Stable infection frequencies
below one half and even slightly above it are likely paired with positive fitness effect unless another dynamic
can explain the situation. Besides the fitness benefit demonstrated here, low frequencies may of course be
observable during ongoing invasion or result from source-sink dynamics (e.g. Flor et al., 2007; Telschow et al.,
2007).

It would be ideal to complement our findings with concrete empirical examples of stable CI-inducing Wol-
bachia strains that are maintained at low frequencies in their host populations. Unfortunately, it is difficult
to highlight one specific case that perfectly illustrates our findings. Although it is well appreciated that Wol-
bachia is common among species while not necessarily reaching high frequencies within a species (Sazama
et al., 2019), studies typically do not provide much information regarding additional fitness effects when pop-
ulations have been screened for Wolbachia infection (Russell et al., 2012). However, there is some empirical
evidence forWolbachia strains that elevate host fitness, where the benefit maymanifest itself, for example, as
higher fecundity (Fry et al., 2004) or protection from viral diseases (Chrostek et al., 2013), and also evidence of
evolution towards mutualism (higher fecundity) in natural Wolbachia populations (Weeks et al., 2007). Often,
there is no information on whether the symbiont induces CI or any other phenotype in their hosts (Duplouy,
Couchoux, et al., 2015). The stability properties of reported low frequencies are rarely evaluated, as most
studies report prevalence of the symbiont at a single time point; recurrent screenings of the same natural
populations over the course of several generations are rare (however, see Duplouy, Couchoux, et al., 2015;
Duplouy, Nair, et al., 2021; Kriesner et al., 2013). Hence, the changes in the infection frequencies through
generations remain unknown, and it is difficult to determine stability of the infection frequency, let alone any
existence of invasion barriers or other dynamical features of the system.

Another testable prediction from the presented models is that in the haplodiploid models the female in-
fection frequency seems to be consistently higher than the male infection frequency. Additionally, the mas-
culinization type seems to predict lower equilibrium frequencies than the female-killing type. The latter ob-
servation might be explained, at least partially, by the fact that masculinization allows for excess production
of uninfected males (compared to the zygotes dying), which “dilutes” the infection.

Further possibility for extension of this work would be to study the total size of the host population and the
effect of Wolbachia on that. Also, understanding the details of dynamics approaching to fixed points would
shed light on the diversity of possibilities that could be observed in nature. Both the host population size and
the dynamics before reaching a stable equilibrium would be of interest when applyingWolbachia as a control
agent.

Our model highlights that when strains are found at low frequencies in their host populations, there are
additional possibilities to them being either in the process of being eliminated or of invading (Duplouy, GD
Hurst, et al., 2010; Kriesner et al., 2013) their host population: a low frequency can be a stable outcome. As
the mitochondrial haplotype will hitchhike a succesfully spreading maternally inherited Wolbachia infection,
the state of potentially ongoing change can partially be answered with the study of the associated mitochon-
drial haplotype diversity in the host population, but often even this data is not available (but see Duplouy, GD
Hurst, et al., 2010; Richardson et al., 2012). Long-term surveys of host populations and their infection status
through time, as well as the study of their ecology are therefore needed. The recent clear results from the
effective control strategy against human-born disease such as Dengue (suppressing its vector, Aedes aegypti)
have clearly shown that long-term surveys are possible and informative for endosymbionts (e.g. Ryan et al.,
2019).
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Appendix A: Limits for CI frequency in haplodiploid systems

Female-killing effect

When CI causes mortality of the female embryo in haplodiploid species, the population dynamics follow
the model in Eq. (3). The non-trivial equilibria of the model are

p̂F =
2− 2f − ft+ f2t+ fLt± ft

√
(1 + L− f)2 + 4L(ft− 1)

2
[
1 + f

(
f − 2 + Lt+ fLt(t− 1)

)] ,

p̂M =
1 + L− f ±

√
(1 + L− f)2 + 4L(ft− 1)

2L
,

(A1)

where pluses belong to the non-trivial stable equilibrium p̂2 andminuses to the unstable equilibrium p̂1 when
they exist (Vavre et al., 2000). The stability of these is explored numerically in Appendix B.

Note that for the equilibrium p̂1 we can see that when ft = 1, p̂M = p̂F = 0 and additionally when ft > 1,
p̂M < 0, hence the “invasion threshold” coincides with p̂0 at ft = 1 and is not in the biologically relevant range
when ft > 1, similar to the diplodiploid model.

We use the same technique as for diplodiploid model, showing that the “real part” r (the part that is nec-
essarily real, i.e. excluding the square root part) of the equilibrium frequency is below one half if and only if
f > 1, and hence p̂2 > 1/2 for f ≤ 1. For the male frequency, it is easy to see that

rM =
1− f + L

2L
<

1

2
⇔ 1− f < 0 ⇔ f > 1,

but for the female frequency the proof is somewhat more complicated. In that case

rF =
2− 2f − ft+ f2t+ fLt

2
[
1 + f

(
f − 2 + Lt+ fLt(t− 1)

)] .
The denominator of rF divided by two (i.e. the expression within square brackets) is a quadratic function of
f , (

1 + Lt(t− 1)
)
f2 + (Lt− 2)f + 1,

which is always positive, as the intercept is positive and no real roots exist (discriminantLt2(L−4) < 0). As the
denominator of rF is always larger than zero, we can multiply the inequality rF < 1/2 with the denominator,
resulting in an equivalent inequality

(1− t)(1− Lt)f2 + tf − 1 > 0. (A2)

In Eq. (A2) the intercept of the left hand side is negative and the quadratic coefficient (1−t)(1−Lt) > 0. Hence,
the equation holds true for positive f only when f is larger than the larger root, say flim, of the quadratic
function in the left hand side of Eq. (A2). Only if flim < 1, can f ≤ 1 fulfil the inequality in Eq. (A2) and



equivalently rF < 1/2. Let us now investigate in what conditions flim < 1:

flim =
−t+

√
t2 + 4(1− t)(1− Lt)

2(1− t)(1− Lt)
< 1

⇔
√
t2 + 4(1− t)(1− Lt) < 2(1− t)(1− Lt) + t | ()2 , both sides positive

⇔ t2 + 4(1− t)(1− Lt) < 4(1− t)2(1− Lt)2 + 4t(1− t)(1− Lt) + t2

⇔ 4(1− t)2(1− Lt) < 4(1− t)2(1− Lt)2 | : 4(1− t)2(1− Lt) > 0

⇔ 1 < 1− Lt

⇔ Lt < 0.

Thus, the lower limit flim is below one only if Lt < 0, which is never true. Hence the limit is always at least 1,
which implies that rF < 1/2 is true only if f > 1. This concludes the proof that p̂F,2 > 1/2 for the female-
killing type CI when f ≤ 1.

Masculinization effect

The CI can alternatively lead to deletion of the paternal genome, turning the diploid egg into a haploid that
develops as male. In that case, the population dynamics follow the model in Eq. (4). The non-trivial equilibria
of the model are

p̂F =
2 + f2(1 + k)t− f

[
2 + t

(
1 + k + L(k − 1)

)]
2

[
1− f

[
2 + Lt(k − 1)− f

(
1− Lt(k − 1)(t− 1)

)]]

±
ft

√
(k − 1)

[
(k − 1)(1− f + L)2 + 4L

(
k − 1 + fk(t− 1)

)
(ft− 1)

]
2

[
1− f

[
2 + Lt(k − 1)− f

(
1− Lt(k − 1)(t− 1)

)]] ,

p̂M =
1− f − k + fk + L− kL

2L
(
1− k + fk(1− t)

)
±

√
(k − 1)

[
(k − 1)(1− f + L)2 + 4L

(
k − 1 + fk(t− 1)

)
(ft− 1)

]
2L
(
1− k + fk(1− t)

) ,

(A3)

where pluses belong to the non-trivial stable equilibrium p̂2 andminuses to the unstable equilibrium p̂1 when
they exist (Vavre et al., 2000). The stability of these is explored numerically in Appendix B.

We show that p̂F,2 > 1/2 whenever f ≤ 1 using the same logic as before, i.e. we show by contradiction
that for any f ≤ 1 and valid parameter values, “the real part” of the solution, rF , cannot be less than 1/2.
Thus, rF ≥ 1/2 and hence also p̂F,2 > 1/2 as it is larger than rF , which is

rF =
2 + f2(1 + k)t− f

[
2 + t

(
1 + k + L(k − 1)

)]
2

[
1− f

[
2 + Lt(k − 1)− f

(
1− Lt(k − 1)(t− 1)

)]] .
The denominator of rF is a linear function of k:

2(f − 1)2 + 2fLt
(
1 + f(t− 1)

)
+ k
[
−2fLt

(
1 + f(t− 1)

)]
.



When f ≤ 1, the slope of that function is negative (−2fLt
(
1 + f(t− 1)

)
< 0) and the root satisfies

1 +
(f − 1)2

fLt
(
1 + f(t− 1)

) ≥ 1.

Thus, with f ≤ 1 the denominator is positive for k < 1, and the inequality rF < 1/2 simplifies to the equivalent
condition

(1− f)(1 + f − ft) + f2t(1− t)L+ k
(
−ft+ f2t+ f2Lt(t− 1)

)
< 0. (A4)

The left hand side is again a linear function of k, which has an intercept that is always positive for L ∈ (0, 1]

as it is linear in L and has positive intercept and slope. The linear function of k in Eq. (A4) has one root at

k̂ = 1 +
1− f2 − 2f(1− f)t

ft
(
1− f + fL(1− t)

) > 1,

as the second term is positive for f ≤ 1. The denominator of the second term is obviously positive and the
numerator is also positive, as it is linear in t, having negative slope and root (1 + f)/2f ≥ 1 when f ≤ 1.

Thus, Eq. (A4) has positive intercept and k̂ ≥ 1 holds, which means that the left hand side of Eq. (A4) is
positive for all k ∈ (0, 1[ and hence the inequality in Eq. (A4) is never true for valid values of k. As Eq. (A4)
is equivalent with rF < 1/2, this implies that the real part of the female equilibrium frequency is never less
than 1/2 with valid parameter values (assuming f ≤ 1). The actual stable equilibrium is even higher than rF ,
which concludes the proof that female frequency is never below 1/2 at the stable equilibrium.

Finally, for the infection frequency in males under the masculinization effect model, it is easy to prove by
example that the frequency at the stable equilibrium indeed can be below 1/2 even with f < 1. In Fig. 5c, the
parameters are f = 0.95, t = 0.92, L = 0.95, k = 0.9 while p̂M,2 < 1/2.

In conclusion, the infection frequency in females follows the samepattern as female-killing type anddiplodiploid
systems with symmetry of the stable equilibrium and the unstable equilibrium around a point that is above
one half for all f ≤ 1, but the infection frequency in males makes an exception as it can go below one half
even with f < 1.

Appendix B: Local stability analysis of the equilibria of CI models

In this appendix we will use linear stability analysis to calculate the local stability of the equilibria of the
different models presented in the main text.

Diplodiploid model

The dynamics ofWolbachia frequency in bothmales and females in this model is given by Eq. (1) in themain
text, here repeated in slightly different form that specifies the time T explicitly:

pT+1 =
pT ft

pT f
(
1− pTL(1− t)

)
+ (1− pT )(1− pTL)

. (B1)

For notational convenience, define a function g as

g(pT ) =
ft

pT f
(
1− pTL(1− t)

)
+ (1− pT )(1− pTL)

,



so that
pT+1 = g(pT )pT . (B2)

Equilibria of this discrete time dynamical system satisfy

p̂ = g(p̂)p̂. (B3)

An equilibrium, p̂, is locally stable if and only if the absolute value of the derivative of pT+1 with respect to pT

is smaller than one (see e.g. Otto and Day, 2007), that is,∣∣∣∣∣dpT+1

dpT

∣∣∣∣
p̂

∣∣∣∣∣ < 1.

We will denote this derivative evaluated at equilibrium p̂ as ζ(p̂).

Therefore to calculate the stability of the equilibria of our diplodiploid model, we need the derivative of
pT+1 with respect to pT . Differentiating Eq. (B2) gives

dpT+1

dpT
= g(pT ) + pT

dg
dpT

.

Next we want to evaluate this derivative at the equilibria. Equation (B1) has three equilibria, solved from
equation Ap2 +Bp+ C = 0, as shown in the main text and repeated here for convenience:

p̂0 = 0, p̂1 =
−B −

√
B2 − 4AC

2A
, and p̂2 =

−B +
√
B2 − 4AC

2A
, (B4)

where A = L(1− f(1− t)), B = −1 + f − L and C = 1− ft.

The stability of the first equilibrium, p̂0, is given by

ζ(p̂0) =

∣∣∣∣∣dpT+1

dpT

∣∣∣∣
p̂0

∣∣∣∣∣
= g(0)

= ft.

The equilibrium p̂0 = 0 is therefore stable if and only if ft < 1. At ft = 1, the equilibria p̂0 and p̂1 coincide,
and when ft > 1 p̂0 is unstable. Note that this has implications on the existence of invasion threshold, since
there is no invasion threshold if p̂0 is unstable (p̂1 < 0 when ft > 1). In that case the infection frequency will
increase from any initial frequency until it reaches a stable equilibrium.

The stability of the second equilibrium, p̂1, is given by

ζ(p̂1) =

∣∣∣∣∣g(p̂1) + p̂1
dg
dpT

∣∣∣∣
p̂1

∣∣∣∣∣ .
The first term g(p̂1) = 1 when p̂1 ̸= 0, because of Eq. (B3). The second term is

p̂1
dg
dpT

∣∣∣∣
p̂1

=
−p̂1
ft

[
f − 1− L+ 2p̂1L

(
1− f(1− t)

)]
= − p̂1

ft
(B + 2p̂1A) ,



and hence

ζ(p̂1) =

∣∣∣∣1− p̂1
ft

(B + 2p̂1A)

∣∣∣∣ ,
or using Eq. (B4),

ζ(p̂1) =

∣∣∣∣1 + p̂1
ft

√
B2 − 4AC

∣∣∣∣ .
Stability requires that ζ(p̂1) < 1. Since ft > 0 always holds, equilibrium p̂1 is unstable whenever p̂1 > 0.
The first non-trivial equilibrium is therefore always unstable when it is positive, in agreement with Hoffmann,
Turelli, and Harshman (1990).

Similarly, the stability of the second equilibrium, p̂2, is given by

ζ(p̂2) =

∣∣∣∣∣g(p̂2) + p̂2
dg
dpT

∣∣∣∣
p̂2

∣∣∣∣∣
=

∣∣∣∣1− p̂2
ft

√
B2 − 4AC

∣∣∣∣ .
The equilibrium p̂2 is therefore stable if and only if

0 <
p̂2
ft

√
B2 − 4AC < 2. (B5)

If p̂2 > 0, then the left-hand side of this inequality is true. To check the right-hand side of the inequality, we
substitute the expression of p̂2 in Eq. (B4) into Eq. (B5) to obtain:

B2 − 4AC −B
√
B2 − 4AC

2A(1− C)
< 2,

or equivalently

B

(
B −

√
B2 − 4AC

4A

)
< 1,

which can be written as
−B

2
p̂2 < 1. (B6)

Now, if B < 0 (i.e. f < 1 + L) we can multiply both sides of inequality by −2/B to get an equivalent stability
condition

p̂2 <
2

1 + L− f
,

which is always true since 0 < 1+L− f < 2 and hence the right-hand side is larger than 1. Therefore as long
as p̂2 ≤ 1 this condition is fulfilled and p̂2 is a stable equilibrium. On the other hand, if B ≥ 0 (i.e. f ≥ 1 + L),
the left hand side of Eq. (B6) is zero or negative since−B < 0 and the inequality is true for all p̂2 ≥ 0. Hence,
p̂2 is always stable if it exists within the biologically relevant range between 0 and 1.

Haplodiploid models

TheWolbachiamodels with haplodiploid sex determination in themain text are both frequency-dependent
models that in general we can write as follows

pT+1 = B(pT )pT , (B7)



where pT is a vector with the frequency ofWolbachia infection in females and males as its entries. Moreover,
both the female-killing effect model, and the masculinization effect model have the following general shape:(

pF

pM

)
T+1

=

(
g(pF,T , pM,T ) 0

h(pF,T , pM,T ) 0

)(
pF

pM

)
T

, (B8)

where the functions g and h are different for the female-killing model and the masculinization model, and
they are presented in the sections below.

Equilibria, p̂, of this discrete time dynamical system satisfy

p̂ = B(p̂)p̂.

The stability of an equilibrium to small perturbations is determined by the absolute value of the dominant
eigenvalue of the Jacobian matrix of the model evaluated at the equilibrium. The equilibrium is stable if the
absolute value of the dominant eigenvalue of the Jacobian matrix is smaller than one. The Jacobian matrix is
obtained by differentiating Eq. (B7) and when evaluated at an equilibrium it is

M =
dpT+1

dpT

T

∣∣∣∣
p̂

=

(
∂pF,T+1

∂pF,T

∂pF,T+1

∂pM,T
∂pM,T+1

∂pF,T

∂pM,T+1

∂pM,T

)∣∣∣∣
p̂

.

As both models have similar structure (Eq. B8) their Jacobian matrices have the general form

M =

(
g(p̂) 0

h(p̂) 0

)
+ p̂F

(
∂g
∂pF

∂g
∂pM

∂h
∂pF

∂h
∂pM

)∣∣∣∣
p̂

. (B9)

Female-killing effect

We consider the female-killing effect first (Eq. (3) from the main text in recursion form with explicit time T ):

pF,T+1 =
pF,T ft

pF,T f
(
1− pM,TL(1− t)

)
+ (1− pF,T )(1− pM,TL)

,

pM,T+1 =
pF,T ft

pF,T f + (1− pF,T )
.

(B10)

Therefore, if we define,

g(pF,T , pM,T ) =
ft

pF,T f
(
1− pM,TL(1− t)

)
+ (1− pF,T )(1− pM,TL)

,

h(pF,T , pM,T ) =
ft

pF,T f + (1− pF,T )
,

then we can write the recursion equations (B10) in the matrix form given above by equation (B8).

For the trivial equilibrium, p0 = (0, 0), g(p̂) = h(p̂) = ft and we have

M =

(
ft 0

ft 0

)
.

The eigenvalues of this Jacobian matrix are 0 with eigenvector (pF , pM ) = (0, 1), and ft with eigenvector
(pF , pM ) = (1, 1). The zero eigenvalue is associated with perturbations in the directions of males only, which



makes sense biologically: these perturbations decay back to the zero equilibrium since males do not transmit
Wolbachia. The largest eigenvalue of the p0 = (0, 0) equilibrium is ft. Similarly to the diplodiploid model, the
trivial equilibrium is therefore stable if ft < 1, and unstable if ft > 1.

The non-trivial equilibria of this model are given in Eq. (A1) and repeated below,

p̂F =
2− 2f − ft+ f2t+ fLt± ft

√
(1 + L− f)2 + 4L(ft− 1)

2
[
1 + f

(
f − 2 + Lt+ fLt(t− 1)

)] ,

p̂M =
1 + L− f ±

√
(1 + L− f)2 + 4L(ft− 1)

2L
.

To calculate the Jacobian matrix for the non-trivial equilibria, we need to calculate the derivatives in Eq.
(B9). It will be useful to note that for the non-trivial equilibria, p̂ = B(p̂)p̂ implies that g(p̂F , p̂M ) = 1, and
h(p̂F , p̂M ) = p̂M

p̂F
. It follows that

∂h

∂pF

∣∣∣∣
p̂

=
1− f

ft

p̂2M
p̂2F

,

∂h

∂pM

∣∣∣∣
p̂

= 0,

and

∂g

∂pF
=

1

ft
g(pF , pM )2 [1− pML− f (1− (1− t) pML)] ,

and therefore

∂g

∂pF

∣∣∣∣
p̂

=
1

ft

[
1− p̂ML− f

(
1− (1− t)p̂ML

)]
. (B11)

The equilibrium condition g(p̂F , p̂M ) = 1 can be rewritten as

p̂F f
(
1− (1− t)p̂ML

)
= ft− 1 + p̂ML+ p̂F − p̂F p̂ML.

Multiplying Eq. (B11) with p̂F as in Eq. (B9), and substituting the above expression yields

∂g

∂pF

∣∣∣∣
p̂

p̂F =
1

ft
(1− p̂ML− ft).

Similarly,

∂g

∂pM
=

1

ft
g(pF , pM )2

(
pF fL(1− t) + L(1− pF )

)
,

and

∂g

∂pM

∣∣∣∣
p̂

=
1

ft

(
p̂F fL(1− t) + L(1− p̂F )

)
=

1

p̂Mft

(
p̂F f + (1− p̂F )− ft

)
=

1

p̂M

(
p̂F
p̂M

− 1

)
,



where we have used g(p̂F , p̂M ) = 1 and h(p̂F , p̂M ) = p̂M

p̂F
for the last two lines, respectively.

Putting all of this together, we get the following Jacobian matrix,

M =

(
1 0
p̂M

p̂F
0

)
+

 1
ft (1− p̂ML− ft) p̂F

p̂M

(
p̂F

p̂M
− 1
)

(1−f)
ft

p̂2
M

p̂F
0


=

 1
ft (1− p̂ML) p̂F

p̂M

(
p̂F

p̂M
− 1
)

p̂M

p̂F

(
1 + (1−f)

ft p̂M

)
0

 .

The eigenvalues of this Jacobian, denoted by λ, are given by the following quadratic equation

λ2 − λ

ft
(1− p̂ML)−

(
1 +

1− f

ft
p̂M

)(
p̂F
p̂M

− 1

)
= 0.

If the absolute value of the dominant eigenvalue of the Jacobian is below one, then the equilibrium is stable.
The eigenvalues are given by

λ =
1

2ft
(1− p̂ML)± 1

2ft

√
(1− p̂ML)

2
+ 4(ft)2C,

where
C =

(
1 +

1− f

ft
p̂M

)(
p̂F
p̂M

− 1

)
.

Since L ≤ 1, the first term of λ is positive and the eigenvalue with the largest absolute value is

λ1 =
1

2ft
(1− p̂ML) +

1

2ft

√
(1− p̂ML)

2
+ 4(ft)2C.

We could not determine stability of the equilibria analytically. Instead, we used Python to explore the pa-
rameter space {0.01 ≤ L, t ≤ 1} × {0.01 ≤ f ≤ 3} sampling values for each parameter uniformly with
0.01 interval, which resulted in 3000000 parameter combinations. Whenever an equilibrium (either p̂1 or p̂2)
appeared in the biologically meaningful range 0 < p̂M , p̂F ≤ 1, we analysed its stability. For all cases where
|λ1| ̸= 1 (i.e. linear stability analysis did not fail) the linear stability analysis concluded that p̂1 was unstable
and p̂2 was stable.

Masculinization effect

For the masculinization effect, the dynamics for females and males, respectively, are given by Eq. (4) in the
main text (here in recursion form):

pF,T+1 =
pF,T ft

pF,T f
(
1− (1− t)pM,TL

)
+ (1− pF,T )(1− pM,TL)

,

pM,T+1 =
pF,T ft

pF,T f
(
1 + (1− t) k

1−kpM,TL
)
+ (1− pF,T )(1 +

k
1−kpM,TL)

.

(B12)



Therefore, if we define,

g(pF,T , pM,T ) =
ft

pF,T f
(
1− (1− t)pM,TL

)
+ (1− pF,T )(1− pM,TL)

,

h(pF,T , pM,T ) =
ft

pF,T f
(
1 + (1− t) k

1−kpM,TL
)
+ (1− pF,T )(1 +

k
1−kpM,TL)

,

then we can write the recursion equations (B12) in the matrix form given above by equation (B8).

The non-trivial equilibria of this model are given by Eq. (A3) and repeated here:

p̂F =
2 + f2(1 + k)t− f

[
2 + t

(
1 + k + L(k − 1)

)]
2

[
1− f

[
2 + Lt(k − 1)− f

(
1− Lt(k − 1)(t− 1)

)]]

±
ft

√
(k − 1)

[
(k − 1)(1− f + L)2 + 4L

(
k − 1 + fk(t− 1)

)
(ft− 1)

]
2

[
1− f

[
2 + Lt(k − 1)− f

(
1− Lt(k − 1)(t− 1)

)]] ,

p̂M =
1− f − k + fk + L− kL

2L
(
1− k + fk(1− t)

)
±

√
(k − 1)

[
(k − 1)(1− f + L)2 + 4L

(
k − 1 + fk(t− 1)

)
(ft− 1)

]
2L
(
1− k + fk(1− t)

) .

As before, at the trivial equilibrium, p0 = (0, 0), g(p̂) = h(p̂) = ft, and therefore

M =

(
ft 0

ft 0

)
.

Again the eigenvalues of this Jacobianmatrix are 0with eigenvector (pF , pM ) = (0, 1), and ftwith eigenvector
(pF , pM ) = (1, 1). The zero eigenvalue is associated with perturbations in the directions of males only. The
largest eigenvalue of the p0 = (0, 0) equilibrium is ft. Similarly to the diplodiploid model, the trivial equilib-
rium is therefore stable if ft < 1, and unstable if ft > 1.

For the non-trivial equilibrium, we need to calculate the derivatives in the formula for the Jacobian again
(Eq. (B9)):

∂g

∂pF

∣∣∣∣
p̂

=
1

ft

(
1− p̂ML+ f(1− t)p̂ML− f

)
,

∂g

∂pM

∣∣∣∣
p̂

=
1

ft
L
(
1− p̂F + p̂F f(1− t)

)
,

∂h

∂pF

∣∣∣∣
p̂

=
1

ft

(
p̂M
p̂F

)2(
1 +

k

1− k
p̂ML− f − (1− t)

k

1− k
fp̂ML

)
,

∂h

∂pM

∣∣∣∣
p̂

=
1

ft

kL

1− k

(
p̂M
p̂F

)2 (
p̂F − p̂F f(1− t)− 1

)
.



Using g(p̂F , p̂M ) = 1 and h(p̂F , p̂M ) = p̂M

p̂F
, we can simplify

∂g

∂pF

∣∣∣∣
p̂

p̂F =
1

ft
(1− ft− p̂ML),

∂h

∂pF

∣∣∣∣
p̂

p̂F =
1

ft

(
p̂M
p̂F

)2(
1− p̂F

p̂M
ft+

k

1− k
p̂ML

)
.

Putting it all together gives the following expression for the Jacobian matrix,

M =

 1
ft (1− p̂ML) 1

ftLp̂F
(
1− p̂F + p̂F f(1− t)

)
1
ft

(
p̂M

p̂F

)2 (
1 + k

1−k p̂ML
)

1
ft

k
1−k

(
p̂M

p̂F

)2
Lp̂F

(
p̂F − p̂F f(1− t)− 1

)
 .

The eigenvalues of this Jacobian are given by the solution to

λ2 − λ
1

ft

(
1− p̂ML−

(
p̂M
p̂F

)2
kB

1− k

)
− 1

(ft)2

(
p̂M
p̂F

)2
B

1− k
= 0,

where
B = Lp̂F

(
1− p̂F + p̂F f(1− t)

)
.

The eigenvalues are therefore equal to

λ =
1

2ft

(
1− p̂ML−

(
p̂M
p̂F

)2
kB

1− k

)

± 1

2ft

√√√√(1− p̂ML−
(
p̂M
p̂F

)2
kB

1− k

)2

+ 4

(
p̂M
p̂F

)2
B

1− k
.

As with the female-killing model, we could not determine the stability of the equilibria analytically. Instead,
we conducted similar numerical analysis in Python with 100 values for {0.01 ≤ L, t ≤ 1}, 300 values for
{0.01 ≤ f ≤ 3}, and three values of k ∈ {0.5, 0.7, 0.9}, resulting in 9 000000 parameter combinations in
total. We calculated the values of the equilibria and determined their stability based on the larger absolute
value of the eigenvalues above, whenever 0 < p̂M , p̂F ≤ 1. Again, the equilibria were unstable (p̂1) and stable
(p̂2) as expected, whenever they occurred within the biologically meaningful range and the leading eigenvalue
had absolute value different from 1.

Appendix C:Wolbachia frequency is higher in females than in males in
the haplodiploid models

Here we show that in the haplodiploid models presented in the manuscript, the infection frequency in fe-
males is never lower than infection frequency in males.



Female killing effect

We start from from the remark that g(p̂F , p̂M ) = 1. Hence,

g(p̂F , p̂M ) =
ft

p̂F f
(
1− p̂ML(1− t)

)
+ (1− p̂F )(1− p̂ML)

= 1

⇔ p̂F f + 1− p̂F − p̂F p̂Mf(1− t)L− p̂ML(1− p̂F ) = ft.

(C1)

Next, we use h(p̂F , p̂M ) = p̂M

p̂F
, namely

h(p̂F , p̂M ) =
ft

p̂F f + (1− p̂F )
=

p̂M
p̂F

⇔ p̂F f + 1− p̂F =
p̂F
p̂M

ft.

Substituting the latter row into Eq. (C1) yields

p̂F
p̂M

ft− p̂F p̂Mf(1− t)L− p̂ML(1− p̂F ) = ft,

and therefore
p̂F
p̂M

− 1 =
1

ft

(
p̂F p̂Mf(1− t)L+ p̂ML(1− p̂F )

)
. (C2)

The right-hand side of Eq. (C2) cannot be negative with valid parameter values (including f > 1). Therefore
p̂F

p̂M
≥ 1, which means that the infection frequency in females is always higher than or equal to male infection

frequency.

Masculinization effect

We start again from g(p̂F , p̂M ) = 1, and h(p̂F , p̂M ) = p̂M

p̂F
. The first equality gives

g(p̂F , p̂M ) =
ft

p̂F f
(
1− (1− t)p̂ML

)
+ (1− p̂F )(1− p̂ML)

= 1

⇔ p̂F f
(
1− (1− t)p̂ML

)
+ (1− p̂F )(1− p̂ML) = ft,

(C3)

and the second gives

h(p̂F , p̂M ) =
ft

p̂F f
(
1 + (1− t) k

1−k p̂ML
)
+ (1− p̂F )

(
1 + k

1−k p̂ML
) =

p̂M
p̂F

⇔ p̂F f
(
1 + (1− t)

k

1− k
p̂ML

)
+ (1− p̂F )

(
1 +

k

1− k
p̂ML

)
= ft

p̂F
p̂M

.

(C4)

Subtracting the last row of Eq. (C3) from the last row of Eq. (C4) yields

ft

(
p̂F
p̂M

− 1

)
= p̂F p̂Mf(1− t)L

(
1 +

k

1− k

)
+ p̂ML(1− p̂F )

(
1 +

k

1− k

)
=

1

1− k

(
p̂F p̂Mf(1− t)L+ p̂ML(1− p̂F )

)
,

and therefore
p̂F
p̂M

− 1 =
1

ft

1

1− k

(
p̂F p̂Mf(1− t)L+ p̂ML(1− p̂F )

)
.



The right-hand side above is never below zero for any valid parameter values, and therefore p̂F

p̂M
is never less

thanone. Hence, the female infection frequency is always higher thanor equal to themale infection frequency.
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