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SUMMARY

Inflammatorymonocytes (iMOs) and B cells are themain targets of the poxvirus ectromelia virus (ECTV) in the
lymph nodes of mice and play distinct roles in surviving the infection. Infected and bystander iMOs control
ECTV’s systemic spread, preventing early death, while B cells make antibodies that eliminate ECTV. Our
work demonstrates that within an infected animal that survives ECTV infection, intrinsic and bystander infec-
tion of iMOs and B cells differentially control the transcription of genes important for immune cell function
and, perhaps, cell identity. Bystander cells upregulate metabolism, antigen presentation, and interferon-
stimulated genes. Infected cells downregulate many cell-type-specific genes and upregulate transcripts
typical of non-immune cells. Bystander (Bys) and infected (Inf) iMOs non-redundantly contribute to the cyto-
kine milieu and the interferon response. Furthermore, we uncover how type I interferon (IFN-I) or IFN-g
signaling differentially regulates immune pathways in Inf and Bys iMOs and that, at steady state, IFN-I primes
iMOs for rapid IFN-I production and antigen presentation.

INTRODUCTION

Numerous viruses penetrate their hosts through disruptions of

epithelial surfaces, spread to the lymph nodes (LNs) that drain

the site of infection (draining LNs [dLNs]) via afferent lymphatics,

and become systemic by reaching the blood through efferent

lymphatics. It is clear that during this process, the innate immune

response in the dLN plays a major role in restraining systemic

viral spread and preventing disease.1,2

After footpad infection, the mouse-specific orthopoxvirus ec-

tromelia virus (ECTV) disseminates lympho-hematogenously,

causing fulminant mousepox in several mouse strains such as

BALB/c, but not in C57BL/6 (B6) mice, which survivewithoutma-

jor disease partly because their innate immune response re-

stricts the early dissemination of ECTV from the dLNs.

At 2 to 3 days post-infection (dpi), inflammatory monocytes

(iMOs) and B cells, which far outnumber iMOs, are the major tar-

gets of ECTV infection in the dLNs.3 At this time, infected (Inf), but

not bystander (Bys), iMOs are themajor producers of type I inter-

feron (IFN-I).3 Conversely, Bys iMOs, but not Inf iMOs, produce

the chemokine CXCL9, which is necessary for recruiting natural

killer (NK) cells to the dLNs.4 IFN-I andNK cells, which kill Inf cells

and produce critical IFN-gamma (IFN-g), are necessary to

contain the rapid dissemination of ECTV from the dLNs to the

liver and the spleen. Mice depleted of MOs/macrophages with

clodronate liposomes or deficient in IFN-g, the IFN-g receptor

(Ifngr�/�), or the IFNAR1 subunit (Ifnar1�/�) of the IFN-I receptor

(IFNAR) succumb to ECTV infection (Figure 1A).3,5,6 Lyz2-Cre

Ifnar1fl/fl mice, lacking IFNAR1 in MOs and macrophages but

not in other cells, also die from ECTV infection, and their iMOs

do not transcribe IFN-I efficiently.7 To produce CXCL9, Bys

iMOs need to intrinsically express the IFN-g receptor (IFNGR).4

Thus, iMOs require intrinsic IFNAR and IFNGR signaling to

contribute to ECTV control.

B cells are also critical to resisting ECTV infection because the

antibodies they produce at later stages of infection are needed

for ECTV clearance.6,8 However, B cells do not produce IFN-I

or CXCL9 in response to ECTV infection.3,4 Hence, while both

iMOs and B cells are ECTV targets and essential for resistance

to mousepox, Inf and Bys iMOs, but not B cells, seem to play

unique and complementary roles in the early control of ECTV

spread. The data also suggest that iMOs and B cells respond

differently to direct and bystander infection. Here, we compared

the transcriptomes of iMOs and B cells with intrinsic and

bystander ECTV infection to better understand why iMOs, but

not B cells, may contribute to innate immune protection.
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RESULTS

Infection status defines the transcriptional profile of
iMOs and B cells in vivo

We infected B6 mice with ECTV-expressing green fluorescent

protein (ECTV-GFP). At 3 dpi, we fluorescence-activated cell

sorted (FACS) Inf (GFP+) and Bys (GFP�) iMOs (CD11bhighLy6-

chigh) and B cells (CD19+) from pooled dLNs. As controls, we

sorted Ly6Chigh iMOs from the spleen (in naive mice, iMOs are

absent in LNs, and few are present in the blood) and LN B cells

from uninfected (naive) mice. We extracted total RNA, made

cDNA libraries, and performed RNA sequencing (RNA-seq).

We selected 3 dpi because only at this time point is the number

of iMOs in the dLNs at its peak;3 the number of Inf cells is suffi-

cient to experiment, and the innate immune response curbs

ECTV dissemination from the dLNs to target organs (Figure 1B).

B cells comprise most of the cells in the dLNs. Thus, the fre-

quency of Inf B cells was lower than that of Inf iMOs (Figure 1B),

but the number of Inf B cells was higher than that of Inf iMOs (Fig-

ure 1C). The infection status was confirmed by quantifying viral

transcripts (Figure 1D).

Principal-component analysis (PCA) (Figure 1E) showed that

Bys and naive classes clustered mainly according to cell type

and subclustered according to their naive or Bys status. In

contrast, Inf iMO and B cells strongly deviated from their Bys

and naive counterparts. Notably, the Euclidean distance (ED) be-

tween Inf iMOs and Inf B cells was shorter than the ED between

Inf and naive B cells or between Inf and naive iMOs. Class-pre-

diction gene clustering (Figure 1F) also showed that Inf cells

strongly deviated from their naive and Bys counterparts,

although they maintained their cell-type identity. Hence, the

most robust changes in the transcriptional profile were caused

by intrinsic infection, deviating the global transcription of iMOs

and B cells away from those corresponding to their cell type.

The ED between iMOs was greater than between B cell clas-

ses (Figure 1E). Thus, the transcriptional response was stronger

in iMOs than in B cells. Consistently, compared with their naive

counterparts, Inf and Bys iMOs had more differentially ex-

pressed genes (DEGs) (R2-fold change, p < 0.01) than Inf or

Bys B cells (Figures S1A–S1F; Table S1). Inf iMOs and B cells

had more DEGs than their Bys counterparts. Inf iMOs had

1,782 increased and 1,850 decreased transcripts compared

with naive iMOs (Figures S1E and S1F). Hence, rather than

cellular RNA depletion, as in HeLa cells infected with vaccinia vi-

rus,9 iMOs infected in vivo switched their transcription to a new

gene set. Only 4.2% of upregulated and 34% of downregulated

DEGs in Inf iMOs belonged to pathways in the Reactome Path-

ways Database (RPD) (https://reactome.org), suggesting poor

curation of the cellular pathways induced by intrinsic viral infec-

tion of immune cells in vivo.

About 50% of the DEGs in B cells were DEGs in iMOs, but only

20%of DEGs in iMOswere DEGs in B cells. The 357 upregulated

and 363 downregulated genes shared between Bys and Inf iMOs

represented only �20% of DEGs in Inf iMOs but >50% of DEGs

in Bys iMOs (Figures S1E and S1F). Inf and Bys B cells shared

only 36 upregulated and 16 downregulated DEGs (Figures S1E

and S1F). The four experimental classes shared only 11 upregu-

lated and 2 downregulated DEGs (Figures S1E and S1F;

Table S1). Class prediction analysis identified relatively large

clusters of genes predominantly or uniquely expressed by Bys

B cells, Bys iMOs, Inf B cells, or Inf iMOs (Figures S1K–S1N).

Together, these data further show that the transcriptional

response is stronger in iMOs than in B cells and in Inf than in

Bys iMOs.

A direct comparison of Bys versus Inf B cells demonstrated

higher transcription of 1,647 DEG in Bys and 1,454 DEGs in Inf

B cells (Figure 1G). Gene Ontology (GO) analysis showed that

the main cellular pathways associated with transcripts enriched

in the two classes did not overlap (Figure 1H).

We have shown that Inf iMOs upregulate IFN-I genes,3 while

Bys iMOs upregulate CXCL9 transcription and translation in an

IFNGR-dependent manner.4 Comparison of Bys and Inf iMOs

confirmed these results. We also identified 2,441 and 2,328

DEGs, respectively, higher in Bys or Inf iMOs (Figure 1I). As

with B cells, therewas no pathway overlap between the two clas-

ses by GO analysis (Figure 1J).

We used ‘‘gene set enrichment analysis’’ (GSEA) with the

‘‘Molecular Signatures Database (MsigDB) hallmark gene set

collection’’ (https://www.gsea-msigdb.org) to identify cellular

pathways specific for Inf versus Bys status. Bys B cells and

iMOs were enriched in transcripts for the gene sets ‘‘IFN-a and

IFN-g response,’’ ‘‘glycolysis,’’ ‘‘adipogenesis,’’ and ‘‘reactive

Figure 1. Infection status defines the transcriptional profile of iMOs and B cells in vivo

(A) Innate immune response in the dLNs at 3 dpi reduces virus dissemination and promotes host survival (BioRender.com).

(B) At 3 dpi, Bys and Inf B cells (CD19+) and iMOs (CD11bhighLy6Chigh) were sorted from the popliteal dLNs of ECTV-infected animals, and their transcriptional

profile was determined by RNA-seq (BioRender.com).

(C) Number of each sorted population from the dLNs of infected mice.

(D) Frequencies of ECTV transcripts in total read counts. p value (pval) determined by Student’s t test analysis between Inf and Bys groups.

(E) ED PCA.

(F) Clustering heatmap of class-predicting genes.

(G) Volcano plot and graph show the number of DEGs expressed higher in Inf or Bys B cells.

(H) GO based on the RPD of genes transcribed in Inf and Bys B cells.

(I) Volcano plot and graph showing the number of DEGs expressed higher in Inf or Bys iMOs.

(J) GO based on the RPD of genes transcribed in Inf and Bys iMOs.

(K) GSEA of cellular pathways (MSigDB H) in Bys versus Inf B cells (top, enriched in Bys B cells) or Bys versus Inf iMOs

(bottom, enriched in Bys iMOs).

Three biological replicates of each sorted population (Bys, Inf, and naive) were sequenced, except for Inf B cells, for which only two biological replicates were

sequenced. Each biological replicate is derived from a pool of 10 popliteal dLNs from 5 B6 infected mice or one naive spleen (naive iMOs) or LN (naive B cells).

Error bars represent the standard error of the mean.
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oxygen species production’’ (Figure 1K; Tables S2-3 and S2-5).

Inf B cells and iMOs were enriched in transcripts for only a few

gene sets (Tables S2-4 and S2-6). At p < 5%, only the ‘‘TGF-b

signaling’’ set was enriched in Inf B cells and iMOs. Inf B cells

were additionally enriched for ‘‘peroxisome,’’ ‘‘DNA repair,’’

and ‘‘Myc targets’’ sets. In contrast, Inf iMOs were enriched for

‘‘WNT b-catenin’’ and ‘‘TNF-a signaling via NF-kB’’ sets. There-

fore, within an Inf host, Bys and Inf iMOs and B cells adjust their

transcriptome according to their infection status, with minor

overlap. The transcriptional response to intrinsic or bystander

infection is greater in iMOs than in B cells. The data also suggest

that in an Inf animal, Bys iMOs and B cells increase their meta-

bolism and activate their innate immune functions, likely

becoming primed to better combat their approaching intrinsic

infection.

Bys cells increase, while Inf cells decrease, prototypical
transcripts
We confirmed cell identity by the presence of transcripts for Spi1

(PU.1), Irf8, Klf4, Ccr2, Ly6c2, and Lyz2 in iMOs (Figure 2A, top)

or Cd19, Pax5, Ms4a1, and immunoglobulin genes (Ighd, Ighm,

and Iglc1) in B cells (Figure 2A, bottom). iMOs had no or low tran-

scripts for Ly6g, Siglech, Zbtb46, Ncr1, Trbc1, and Cd3e, indi-

cating good purity (deposited dataset). GSEA with the MSigDB

cell-type C8 gene set collection indicated that, compared with

naive or Inf B cells, Bys B cells were enriched in B cell prototyp-

ical gene sets such as the ‘‘Aizarani liver major histocompatibility

complex (MHC) class II+ B cells’’ set (Figure 2B). Similarly, Bys

iMOs were enriched in gene sets typical of the MO/macrophage

lineage, such as the ‘‘Travaglini lung classical monocyte’’ gene

set, when compared with naive or Inf iMOs (Figure 2C). Interest-

ingly, despite normal surface protein expression by flow cytom-

etry (Figure 1B), Inf iMOs and B cells had decreased expression

of several prototypical mRNAs compared with their naive and

Bys counterparts (Figures 2A–2E). Inf B cells and iMOs were

also enriched in transcripts found in gene sets typical of non-im-

mune cells (Figures 2D and 2E).

Others have shown that in bone-marrow-derived and alveolar

macrophages, cytomegalovirus (CMV) induced the upregulation

of the transcription factor (TF) ZEB1, which activated genes

within the Wnt and transforming growth factor b (TGF-b)

signaling pathways to promotemacrophage de-differentiation.10

We found that during in vivo ECTV infection, Inf iMOs and B cells

upregulated genes in the ‘‘TGF-b signaling’’ set, while only Inf

iMOs upregulated some transcripts in the MSigDB ‘‘Wnt b-cate-

nin’’ set, when compared with Bys (Table S1-4; Figures 2F and

2G). Zeb1 was strongly transcribed in Bys and naive B cells,

reduced in Inf B cells, and almost absent in all iMOs (Figure 2F).

However, intrinsic ECTV infection induced the transcription of

other genes within the WNT b-catenin set, such as Notch4 in

Inf iMOs and Dvl2 in Inf iMOs and B cells, and in the TGF-b

set, including Klf10, Skil, and Tgif1 in Inf iMOs and B cells (Fig-

ure 2G). Also, compared with naive or Bys cells, Inf iMOs or B

cells upregulated 87 experimentally verified TFs (Figure 2H).

Hence, the transcriptional changes in iMOs and B cells caused

by intrinsic ECTV infection differ from those caused by CMV

because they do not require de novo ZEB1 synthesis. However,

these changes could involve other genes in the Wnt and TGF-b

pathways, such as Dvl2, Notch4, Skil, and Tgif1 and also

other TFs.

We next analyzed cell-type-specific gene sets with higher

normalized GSEA scores in Inf compared with Bys iMOs, such

as those for epithelial, muscle, glia, or neuronal cells. However,

we did not find an enriched gene set common to Inf iMOs and

all those cell types (Figure 2I). Thus, the many transcripts proto-

typical of non-immune cells upregulated by Inf iMOs suggest

that ECTV promotes dysregulated transcription and not de-

differentiation.

Overall, our data indicate that during ECTV infection, prototyp-

icalMO/macrophage or B cell transcripts are enriched in Bys and

decreased in Inf iMOs or B cells. Additionally, intrinsic ECTV

infection causes the upregulation of transcripts prototypical of

non-immune cells.

Bys iMOs and B cells upregulate antigen-presentation
transcripts and IFN-stimulated genes (ISGs), while Bys
and Inf iMOs upregulate transcription of different
cytokine subsets
As professional antigen-presenting cells, B cells and iMOs

display viral antigens in the context of MHC class I and class II

molecules to, respectively, activate CD8 andCD4 T cells.11 Clas-

sical and non-classical MHC class I molecules also activate or

inhibit NK cells.12 Clustering analysis indicated that compared

with their naive counterparts, Bys B cells and iMOs broadly up-

regulated antigen-presenting genes. In contrast, Inf B cells and

iMOs did not upregulate those genes and downregulated many

Figure 2. Bys cells increase, while Inf cells decrease, prototypical transcripts
(A) Transcription levels of iMO (top) or B cell (bottom) specific markers in sorted cells. pval determined by DE-sleuth analysis between Inf and Bys groups.

(B) GSEA enrichment in Bys B cells in B cell gene set (MSigDBC8) comparedwith naive B cells (top, enrichment in Bys B cells) or Inf B cells (bottom, enrichment in

Bys B cells).

(C) GSEA enrichment in Bys iMOs in myeloid cells gene set (MSigDB C8) compared with naive iMOs (top, enrichment in Bys iMOs) or in monocyte gene set

(MSigDB C8) compared with Inf iMOs (bottom, enrichment in Bys iMOs).

(D) GSEA enrichment (MSigDB C8) in Inf B cells compared with naive B cells in B cell gene set (top, enrichment in naive B cells) and stem cell gene set (bottom,

enrichment in Inf B cells).

(E) GSEA enrichment (MSigDB C8) in Inf iMOs compared with naive iMO in monocyte gene set (top, enrichment in naive iMOs) or mesothelial cell gene set

(bottom, enrichment in Inf iMOs).

(F and G) GSEA enrichment (MSigDB H), volcano plot, and graphs of the WNT b-catenin gene set (F) and the TGF-b signaling gene set (G) of Inf iMOs compared

with Bys iMOs (enrichment in Inf iMOs). pval determined by DE-sleuth analysis between Inf and Bys groups.

(H) Clustering heatmap of experimentally verified TF transcripts increased in Inf populations.

(I) Venn diagram depicting unique and shared Inf iMO-correlated transcripts from MSigDB C8 gene sets with positive enrichment for Inf iMOs. Samples

correspond to those in Figure 1. pval determined by DE-sleuth analysis between Inf and Bys groups. Error bars represent the standard error of the mean.
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of them (Figure 3A). These data are consistent with our previous

observation that Inf iMOs downregulate MHC class II proteins at

the cell surface.7 Naive B cells, but not naive iMOs, transcribed

genes encoding molecules involved in MHC class II antigen pre-

sentation, including those for the MHC class II molecules H2-Aa,

H2-Ab1, and H2-Eb1, the invariant chain Cd74, the peptide ed-

itorH2-Dma, and theMHCclass II transactivatorCiita (Figure 3A).

Conversely, naive iMOs, but not naive B cells, transcribed genes

involved in MHC class I antigen presentation such as H2-D1,

B2m, Psmb8, Psmb10, and Tapbp (Figure 3A). When directly

compared to their Inf counterparts, Bys B cells and, to a larger

extent, Bys iMOs were enriched in many genes involved in

MHC class I and class II antigen presentation (Figure 3B). These

data suggest that MHC class II antigen presentation is constitu-

tive in B cells and transcriptionally activated in iMOs. In contrast,

MHC class I antigen presentation is constitutive in iMOs and

transcriptionally activated in B cells in the context of bystander,

but not intrinsic, infection.

We have recently shown that expression or absence of the

non-classical MHC class I molecule Qa-1b respectively protects

or targets cells for NK cell killing in vivo. We also showed that

Qa-1b, which is encoded by H2-T23, is increased in Bys iMOs

and decreased in Inf iMOs.13 Consistent with this, iMOs and B

cells upregulated, and Inf iMOs and B cells downregulated,

H2-T23 (Figures 3A and 3B). In addition, subsets of other non-

classical MHC class I genes, whose functions are incompletely

understood, were upregulated in Bys, but not in Inf, B cells or

iMOs (Figures 3A and 3B).

We compared transcription of broadly defined ISGs.14

Following IFN-I binding, IFNAR induces the transcription of ISG

through downstream STAT1, STAT2, and IRF9. Stat1 and Stat2

were moderately transcribed in naive cells and highly upregu-

lated in Bys, but not in Inf, cells (Figure 3C). Naive iMOs tran-

scribed Irf9, which was maintained in Bys, but downregulated

in Inf, iMOs. Irf9 transcription was low in naive and Inf, but upre-

gulated in Bys, B cells. These data suggested that Bys, but not

Inf, iMOs and B cells are primed for rapid ISG transcription.

Consistently, cluster analysis showed that Bys cells were the

main ISG transcribers in vivo (Figure 3D). Compared with naive

iMOs, Bys iMOs upregulated the largest number of ISGs, fol-

lowed by Bys B cells, Inf iMOs, and Inf B cells (Figure 3E;

Table S1-8). Bys iMOs and Bys B cells shared as many as 71

ISGs, while only 16, 2, and 12 ISGs were shared between Bys

and Inf iMOs, Bys and Inf B cells, and Inf iMOs and Inf B cells,

respectively (Figure 3E). Therefore, ISGs were mostly induced

in Bys cells, and most of the ISGs in B cells were a subset of

those in iMOs.

Naive B cells and naive iMOs transcribed some non-overlap-

ping ISGs (Figure 3D, clusters 1 and 2, respectively). All B cell

classes transcribed most cluster 1 transcripts (Figures 3D and

S2A), while most cluster 2 transcripts were downregulated in

Bys and, to a greater extent, in Inf iMOs (Figures 3D and S2B).

Thus, in vivo, bystander or intrinsic infection can induce the

downregulation of some genes thought to be ISGs.

We compared the transcription of genes important for resis-

tance to mousepox. B6 mice deficient in either Irf7, Nfkb1,

Tmem173, Myd88, Cgas, or Tlr9 are highly susceptible to

ECTV.3,4,15,16 Irf7, Nfkb1, Tmem173, Myd88, Cgas, and Tlr9

were prominently upregulated in Bys, but not in Inf, iMOs.

Only Nfkb1, which is necessary for IFN-b transcription,3 was

upregulated in Inf and not in Bys iMOs (Figure 3F). B cells

had a similar trend but with much lower expression levels.

This likely explains why Inf B cells do not transcribe IFN-I3

and as shown below.

We compared the effects of intrinsic or bystander infection in

the transcription of IFN genes. Naive iMOs or B cells did not tran-

scribe IFN-I (Figure 3G). Unlike naive and Bys iMOs, Inf iMOs up-

regulated Ifnb1 and multiple Ifna genes. Compared with naive

iMOs, Bys iMOs upregulated transcripts for Ifnb1 and Ifna4 but

much less so than Inf iMOs. Thus, the transcription of IFN-I dur-

ing in vivo viral infection has strong cell-type and infection status

specificity. We have previously shown that IFN-I transcription

depends on the TFs Irf7 and Nfkb1.3 We now find that Irf7 is up-

regulated in Bys and Nfkb1 in Inf iMOs (Figure 3F). Thus, NF-kB

likely initiates IFN-I transcription in Inf cells, while IRF7 requires

de novo synthesis triggered by the IFNAR positive feedback

loop.7

We analyzed the transcription of other cytokines (Figures 3H–

3J). Naive iMOs constitutively transcribed interleukins Il17c, Il18,

Il1b, Il15, and Il16 and chemokines Ccl6 and Ccl9. Compared

with naive iMOs, both Inf and Bys iMOs downregulated Il16,

Ccl6, and Ccl9 and upregulated six cytokines: Il27, Il6, Tnf,

Cxcl16, and Ccl2 (p < 0.001 for both groups for all genes).

Notably, cytokine transcripts were largely absent in B cells,

except for Il12a and Il16, which all B cells classes transcribed,

and Il23a (p < 0.001), which was transcribed only by Inf B cells.

We next compared Bys and Inf iMOs (Figure 3J). Eleven cyto-

kines were expressed significantly higher in Bys iMOs: Il1b,

Il18, Il12b, Ccl6, Ccl9, Ccl8 (p = 0.05), Ccl12, Ccl24, Cxcl9,

Cxcl10, and Cxcl11. Ccl7 did not reach significance (p = 0.06),

likely due to Inf iMO variability. Inf iMOs expressed significantly

more Ifnb1, multiple Ifna, and 11 additional cytokines: Il31, Il33,

Il23a, Il1a, Il10, Il17f,Ccl27a,Ccl5,Ccl4,Ccl3, andCxcl15. Ifnar1

was upregulated in Inf iMOs, while Ifnar2, Ifngr1, and Ifngr2 tran-

scription was similar in Inf and Bys iMOs (Figure 3J).

The data in this section show that Bys cells are primed for an-

tigen presentation and ISG upregulation and that Inf and Bys

iMOs, but not B cells, transcribe large, mostly non-overlapping

cytokines subsets. These data suggest that Inf and Bys iMOs

complement each other in producing cytokines during the early

immune response in the dLNs.

Infection status, and not IFN signaling, defines the
overall transcriptional response of iMOs
Given the critical roles of IFNAR and IFNGR in resistance to

ECTV5,17,18 and the need for IFNAR in Lyz2+ cells to resist

mousepox,7 we next analyzed how intrinsic IFNAR or IFNGR

deficiency affected the transcriptional changes induced in

iMOs by intrinsic of bystander ECTV infection. We made con-

genically marked, mixed bone marrow chimeras (BMCs) by

lethally irradiating wild-type (WT) B6-Cd452/2 mice and re-

constituting them with a mixture of bone marrow cells from WT

B6-CD451/1 and mutant B6-CD452/2Ifnar1�/� (Ifnar1�/�) or B6-
CD452/2Ifngr�/� (Ifngr�/�) mice to generate WT + Ifnar1�/�/
WT and WT + Ifngr�/�/WT BMCs (Figure 4A). In these BMCs,

WT and mutant iMOs in the dLNs are exposed to the same
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Figure 3. Bys iMOs and B cells upregulate anti-

gen-presentation transcripts and ISGs, while

Bys and Inf iMOs upregulate transcription of

different cytokine subsets

(A) Clustering heatmap of transcripts for antigen-pre-

senting genes.

(B) Volcano plot comparing antigen-presenting gene

transcription in Bys versus Inf cells. Bys versus Inf B

cells (left) and Bys versus Inf iMOs (right).

(C) Transcript levels of TF genes responsible for ISG

upregulation, i.e., Stat1, Stat2, and Irf9 genes.

(D) Clustering heatmap of ISGs and volcano plot

comparing ISG transcription in Bys iMOs versus Inf

iMOs. Cluster 1 highlights ISGs constitutively tran-

scribed in naive B cells and cluster 2 ISGs constitu-

tively transcribed in naive iMOs.

(E) Venn diagram depicting unique and shared ISG

transcripts increased compared with naive.

(F) Transcript levels of Irf7, Tmem173, Cgas, Nfkb1,

Myd88, and Tlr9.

(G–I) Clustering heatmap of IFN (G), interleukin (H), and

chemokine (I) genes.

(J) Volcano plot comparing cytokine transcription in

Bys versus Inf iMOs (2-fold change and p < 0.05).

Samples correspond to those in Figure 1. pval deter-

mined by DE-sleuth analysis between Inf and Bys

groups. Error bars represent the standard error of the

mean.
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microenvironment and virus loads. After infecting the BMCs with

ECTV-GFP, we sorted Bys and Inf WT and Ifnar1�/� or Ifngr�/�

iMOs (CD11bhighLy6Chigh, sorting strategy as in Figure 1B)

from the dLNs at 3 dpi. Naive WT and mutant iMOs were sorted

from the spleen of naive BMC as controls. RNA-seq was per-

formed as before.

Class prediction clustering and PCA (Figures 4B and 4C)

showed that the overall transcriptional profile first separated

the cells according to their infection status rather than their geno-

type. Still, as described below, many effects on cellular path-

ways and DEGs observed in the previous sections were due to

IFN signaling.

Compared with naive WT, naive Ifnar1�/� iMOs downregu-

lated 89 and upregulated 18 genes (Figure S3A; Table S3-1).

The main GO pathways affected by the lack of IFNAR in naive

iMOs were ‘‘immune system,’’ ‘‘cytokine signaling,’’ and ‘‘IFN-I

signaling’’ (Figure S3B). Interestingly, naive Ifnar1�/� iMOs had

lower expression of Irf7, Stat2, and Irf9 (Figure S3C), suggesting

that, at steady state, iMOs need IFNAR not only to respond to but

also to produce basal levels of IFN-I. Among the numerous

downregulated genes, many were ISGs, including Oas1g,

Ifi213, and Siglec1 (Figure S3D). Different from naive Ifnar1�/�

iMOs, naive Ifngr�/� iMOs only downregulated 10 and upregu-

lated 6 transcripts (Figures S3E and S3F; Table S3-2). None of

the genes downregulated in naive Ifngr�/� iMOs were known

ISGs, suggesting that there may not be basal levels of IFN-g

signaling at steady state and that activation of this pathway

might require inflammation. Thus, at steady state, IFNAR, but

not IFNGR, signaling poises naive iMOs to a more responsive

antiviral state.

Compared with WT iMOs, Ifnar1�/� Bys iMOs had 33 genes

with increased and 182 genes with decreased transcription (Fig-

ure 4D; Table S3-3). The most prominent pathways decreased in

Bys Ifnar1�/� iMOs were ‘‘immune system,’’ ‘‘cytokine

signaling,’’ and ‘‘IFN-I signaling.’’ At the same time, the few

genes that had increased transcription were associated with

‘‘granulopoiesis,’’ ‘‘IL-4 and IL-13 signaling,’’ and ‘‘IL-10

signaling’’ (Figure 4E).

Compared with WT iMOs, Ifngr�/� Bys iMOs had 86 increased

and 241 decreased mRNAs (Figure 4F; Tables S3-4). The main

pathways disrupted in Ifngr�/� Bys iMOs were ‘‘IFN-II-induced

ISG’’ and ‘‘extracellular protein interactions’’ (Figure 4G).

Surprisingly, only 8.3% of downregulated transcripts were

associated with known pathways in the RPD, indicating an un-

derrepresentation of IFNGR-dependent pathways or a lack of

available data.

Compared with WT iMOs, Ifnar1�/� Inf iMOs had 51 increased

and 191 decreased transcripts (Figures 4H, Table S3-5). The

few increased mRNAs in Inf Ifnar1�/� iMOs were involved in

‘‘neutrophil degranulation,’’ ‘‘cyclin S phase,’’ and IL-10

signaling’’. In contrast, most of the many decreased transcripts

were related to ‘‘immune system,’’ ‘‘cytokine signaling,’’ ‘‘IFN-I

signaling,’’ ‘‘megakaryocyte development,’’ and ‘‘IRF7 activa-

tion’’ (Figure 4I).

Compared with WT iMOs, Ifngr�/� Inf iMOs had 62 increased

and 73 decreased mRNAs (Figures 4J; Table S3-6). Some

increased transcripts were associated with ‘‘post-translational

protein phosphorylation’’ and ‘‘DNA replication,’’ while some of

those decreased corresponded with the ‘‘unfolded protein

response’’ (Figure 4K).

IFNAR1 and IFNGR are partly and non-redundantly
responsible for the changes induced by ECTV in Bys
iMOs
As shown above, antigen-presentation genes were predomi-

nantly transcribed by Bys iMOs (Figure 3A). Surprisingly, IFN

signaling had only a partial effect on the upregulation of genes

involved in MHC class I and very little or no effect on MHC class

II antigen-presentation genes (Figures 5A and 5B). IFNGR had a

significant role in the upregulation of transcripts for the immuno-

proteasome subunitPsmb9, the TAP peptide transporter subunit

Tap2, the Tapasin-like protein (Tapbpl), and various non-clas-

sical MHC class I genes. Changes in Tap1 (fold change = 0.75)

and Tapasin (Tapbp; fold change = 0.62) did not reach statistical

significance. IFNAR1 was necessary for the efficient upregula-

tion of B2m, H2-Eb2, and several non-classical MHC class I

genes.

We showed above that Bys iMOs presented robust ISG upre-

gulation (Figure 3D). As expected, Bys Ifnar1�/� and Ifngr�/�

iMOs had reduced upregulation of multiple ISGs (Figure 5C;

Tables S3-7). From the 126 ISG upregulated in Bys iMO sorted

from B6 mice (Figures 3H), 123 were also upregulated in Bys

WT iMO sorted from the mixed BMC (Figure 5D), demonstrating

the reliability of the results. Of these, 44 (�36%) required

IFNAR1, including ISG important for resistance to mousepox

such as cGas and Irf7; 31 (�25%) required IFNGR, including

Stat1 and Irf1, 13 (�10.6%) required both IFNAR and IFNGR,

and 35 (�28%) did not require either IFNAR or IFNGR, suggest-

ing redundant roles of IFN-I and IFN-g, or IFN independence

(Figure 5D and Tables S3-7). Of note, Tlr9, Cgas, and Irf7, but

not Tmem173 orMyd88, required IFNAR for efficient expression

(Figure 5E), even though all of them are necessary to resist ECTV.

Figure 4. Infection status, and not IFN signaling, defines the overall transcriptional response of iMO

(A) Bys WT, Ifnar1�/�, and Ifngr�/� iMOs and Inf WT, Ifnar1�/�, and Ifngr�/� iMOs were sorted from dLNs of B6.CD451/1 + Ifnar1�/� CD452/2/ B6.CD452/2 and

B6.CD451/1 + Ifngr�/�CD452/2/ B6.CD452/2 ECTV-infected BMCs at 3 dpi, as in Figure 1B, and their transcriptional profile determined by RNA-seq (BioRender.

com).

(B and C) Clustering heatmap (B) and PCA analysis (C) of iMO-specific class predicting transcripts.

(D and E) Volcano plot showing DEGs (D) and GO based on the RPD (E) of increased or decreased transcripts in Bys Ifnar1�/� iMOs compared with BysWT iMOs.

(F and G) Volcano plot showing DEGs (F) and GO based on the RPD (G) of increased or decreased transcripts in Bys Ifngr�/� iMOs compared with Bys WT iMOs.

(H and I) Volcano plot showing DEGs (H) and GO based on the RPD (I) of increased or decreased transcripts in Inf Ifnar1�/� iMOs compared with Inf WT iMOs.

(J and K) Volcano plot showing DEGs (J) and GO based on the RPD (K) of increased or decreased transcripts in Inf Ifngr�/� iMOs compared with Inf WT iMOs.

Four biological replicateswere sequenced for Bys and InfWT iMOs, and two biological replicates were sequenced for naiveWT iMOs and for each naive, Bys, and

Inf knockout iMO. Each biological replicate is derived from a pool of 16–20 popliteal dLNs from 8 to 10 infected BMCs or one spleen from 1 naive BMC. pval

determined by DE-sleuth analysis between WT and knockout groups.
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Figure 5. IFNAR1 and IFNGR are partly and non-redundantly responsible for the changes induced by ECTV in Bys iMOs

(A) Clustering heatmap of transcripts for molecules involved in antigen presentation.

(B) Volcano plot of antigen-presentation genes in the indicated Bys iMOs (1.4-fold change and p < 0.05).

(C) Clustering heatmap of ISGs.

(D) Venn diagram depicting unique and shared ISGs among Bys populations and volcano plot of IFNAR-dependent ISGs (left) and IFNGR-dependent ISGs (right)

in the indicated Bys iMOs.

(E) Transcript levels of Tlr9, Cgas, Irf7, Tmem173, and Myd88.

(F) Clustering heatmap of cytokine transcripts specifically upregulated in Bys iMOs.

(G) Transcript levels of cytokine genes affected by either Ifnar1�/� or Ifngr�/� deletion in Bys iMOs.

(H) GSEA enrichment in Bys WT iMOs in Travaglini lung classical monocyte gene set (MSigDB C8) compared with Bys Ifnar1�/� iMOs. Samples correspond to

those in Figure 4. pval determined by DE-sleuth analysis between WT and knockout groups. Error bars represent the standard error of the mean.
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Bys iMOs transcribed 18 cytokines in vivo (Figures 3G–3I).

IFNAR caused decreased upregulation of six (Il6, Il12b, Il18,

Il15, Ccl12, and Ccl7) and IFNGR deficiency of only two (Il27

and Cxcl9) (Figures 5F and 5G).

We also noted that Bys iMOs were enriched in iMO prototyp-

ical transcripts (Figure 2C). This enrichment was reduced in

Ifnar1�/� (Figure 5H), but not in Ifngr�/�, iMOs. Overall, these

data indicate that IFNAR and IFNGR cooperate non-redundantly

to prime Bys iMOs to respond to infection.

IFNAR1 is partly responsible for the transcriptional
changes that occur in Inf MOs
We next analyzed the impact of IFNAR and IFNGR on cytokine

production (Figure 6A). In agreement with our previous results,7

IFN-I transcription required intrinsic IFNAR (Figures 6A and 6B).

Of the other 15 cytokines transcribed by Inf iMOs, intrinsic IFNAR

deficiency resulted in no or decreased upregulation of four (Il6,

Il33, Ccl4, and Ccl5). Il27 did not reach significance (p = 0.06).

IFNGR deficiency had little or no effect on Inf iMO cytokine tran-

scription (Figures 6C and 6D).

While ISGs are known to inhibit viral replication,19 the fre-

quency of total ECTV transcripts was not increased in Ifnar1�/�

or Ifngr�/� iMOs, indicating that ISG upregulation does not

restrict ECTV transcription in Inf iMOs in vivo (Figure 6E). Also,

IFNAR or IFNGRdeficiency did not alter the transcription of early,

intermediate, or late ECTV genes.

Inf iMOs downregulated MO/macrophage-prototypical tran-

scripts and upregulated mRNAs distinctive of non-immune cells

(Figures 2E and 2I). Compared with Bys Ifnar1�/� or Bys Ifngr�/�

iMOs, Inf Ifnar1�/� and Inf Ifngr�/� iMOs still had reduced MO/

macrophage-specific transcripts (Figure S3G). Also, Ifnar1�/�,

but notWT or Ifngr�/�, Inf iMOs obtained fromBMCs failed to up-

regulate many of the genes we identified as specifically upregu-

lated in Inf iMOs compared with naive in non-irradiated WT mice

(Figure 6F, compare with Figure S1M and Tables S1-9). There-

fore, changes in cell-prototypic transcripts induced in iMO by

intrinsic infection partly depend on IFNAR but not on IFNGR

signaling.

DISCUSSION

Our PCA indicates that within an animal infected with a poxvirus,

the transcriptional profile of Bys iMOs andB cells is definedmore

by the cell’s identity than by the host’s infection status. On the

other hand, Inf iMOs and B cells, which suffer larger transcrip-

tional changes, are more defined by their infection status than

by their cell identity, as indicated by a shorter ED between
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them than with their naive or Bys counterparts. The finding that

Inf cells suffer this large transcriptional shift in vivo suggests

technical implications for using unbiased sequencing ap-

proaches such as single-cell RNA-seq (scRNA-seq) of virus-in-

fected organs. Unlike RNA-seq of sorted populations, unbiased

scRNA-seq without oligo-tagged antibody (Ab) hashing may

mischaracterize the identity of some cell populations. For

example, Inf immune cells might be misread as non-hematopoi-

etic or immune cell progenitors.

In addition to losing prototypical transcripts, Inf iMOs and B

cells gained transcripts typical of non-immune cells. Others

recently made a similar observation for alveolar macrophages in-

fected with CMV.10 Thus, our experiments suggest that tran-

scriptional dysregulation may be a common cellular response

to intrinsic viral infection. Unlike CMV-infected macrophages,

ECTV-infected iMOs and B cells did not upregulate Zeb1 but up-

regulated other Wnt and TGF-b genes previously described as

involved in cellular transformation or differentiation20–23 and a

large set of TFs. Future studies to investigate whether these

genes play a role in the transcriptional dysregulation induced

by intrinsic ECTV infection could be important because, in other

models, it has been shown that Inf cells’ transcriptional changes

can affect viral replication and disease.10,24–26 Notably, our data

also indicate that many of the transcriptional changes observed

in Inf iMOs were partly dependent on IFNAR, indicating that IFN-I

contributes to the transcriptional profile of Inf cells.

Very few Inf versus naive or Bys cell DEGs were associated

with cellular pathways curated in public databases. This sug-

gests that the pathways activated by intrinsic viral infection are

not well studied. Our data contribute to filling this knowledge

gap and can be used as a reference for transcriptional signatures

of immune cells infected with poxviruses in vivo.

The responses of Bys cells were very different from those of

their Inf counterparts. Bys iMOs andBcellswere enriched in tran-

scripts typical of their cell types and upregulatedmRNAs formol-

ecules required to present antigen. IFNAR and IFNGR non-over-

lappingly contributed to the transcription of genes important for

MHC class I, but not for MHC class II, antigen presentation.

IFNGR deficiency decreased the upregulation of genes involved

in antigen processing and peptide transport. IFNAR deficiency

resulted in inefficient upregulation of transcripts for b2m, which

is a critical component of classical and non-classical MHC class

I molecules. Yet, IFNGR or IFNAR deficiency did not fully abro-

gate the upregulation of any of these transcripts, suggesting

that IFN-I and IFN-g have overlapping effects or that IFN acts in

concert with other cytokines or signaling pathways to boost anti-

gen presentation. Most importantly, the data suggest that Bys

cells are primed to rapidly present antigens if they become in-

fected. On the other hand, Inf iMOs and B cells transcribed little

or no transcripts for antigen-presentation genes, suggesting a

shutdown in antigen processing and presentation, a short time

window for antigen presentation after intrinsic infection, and a

transition to increased vulnerability to NK cell killing.

Our data also show that intrinsic IFNAR and IFNGR regulate

ISG transcription non-redundantly. Out of all the ISGs upregu-

lated in Bys iMOs, �36% were dependent on IFNAR, �25%

on IFNGR, �28% were upregulated redundantly or independent

of IFN, and 10.6% required both IFNAR and IFNGR.

We have already defined many of the mechanisms involved in

IFN-I induction following in vivo ECTV infection. Efficient tran-

scription of all IFN-I subtypes requires the pathogen recognition

receptor cGAS,16 which produces cGAMP to activate STING.

Downstream, the efficient transcription of IFN-b and IFN-a re-

quires NF-kB or IRF7, respectively.3 Unlike in Bys WT iMOs,

Cgas and Irf7 were not upregulated in Ifnar1�/� Bys iMOs.

Thus, their upregulation requires IFN-I. These data suggest

that the first set of Inf cells produce low levels of IFN-b in an

NF-kB-dependent manner. This initial IFN-b likely primes Bys

iMOs to produce all IFN-I subtypes more efficiently as they

become infected. Mechanistically, this model fits the high

susceptibility to ECTV observed in Nfkb1�/�-, Cgas�/�-, and

Irf7�/�-deficient mice15,16 and the observation that ECTV-in-

fected Ifnar1�/� mice can still transcribe IFN-I genes.16

Remarkably, IFN-I, but not IFN-g, was indispensable for Tlr9

transcription, whereas Myd88 and Tmem173 transcription was

IFN independent or IFN redundant. In addition, Bys cells

increased transcripts that define the MO/macrophage lineage

in an IFNAR-dependent, but IFNGR-independent, manner.

Thus, IFN-I primes many of the anti-viral functions in Bys iMOs.

Notably, Inf and Bys iMOs transcribed large numbers of cyto-

kines. Inf iMOs transcribed IFN-I (Ifnb1 and multiple Ifna) and 15

additional cytokines, while Bys iMOs only minimally upregulated

IFN-I but upregulated transcripts for 18 cytokines. Only six cyto-

kines were shared by Inf and Bys iMOs. Thus, Inf and Bys iMOs,

but not B cells, seem to havemostly non-redundant and comple-

mentary roles in shaping the cytokine milieu of the dLNs. These

data suggest that resistance to viral infection may require an

ideal ratio of Bys/Inf iMOs to shape the early immune response.

In support, we have previously found that the frequencies of Inf

iMOs are increased in the dLNs of mousepox-susceptible mice

such as Cgas�/�16 and aged mice.27 Of the 16 cytokines tran-

scribed by Inf iMOs, five were IFNAR dependent, and none

were IFNGR dependent. Of the 18 cytokines expressed by Bys

iMOs, six required IFNAR, and two required IFNGR. Therefore,

IFN-I, to a great extent, and IFN-g, to a lesser extent, partially,

but not fully, control the transcription of cytokines in iMOs.

The observation that Ifnar1�/� naive iMOs downregulate Irf7,

Irf9, Siglec1, and other immune-related genes agrees with previ-

ous observations that IFN-I induced by microbiota at steady

state poise conventional dendritic cells for IFN-I production.28

Hence, our studies expand the notion that IFN-I primes myeloid

cells at a steady state to rapidly respond to infection.

Many ISGs are known for their direct antiviral functions.19

However, the frequencies of total viral transcripts in WT,

Ifnar1�/�, or Ifngr�/� Inf iMOs did not differ. We recently reported

similar results for WT and Ifnar1�/� iMOs using qPCR and ECTV

plaque assay.7 Hence, at least for ECTV, the impact of IFN on Inf

cell transcription primarily targets the regulation of the immune

response rather than the reduction of viral transcripts.

Our work collectively demonstrates that in the dLNs of an Inf

animal whose immune system efficiently controls a viral disease,

intrinsic and bystander infection differentially control the tran-

scription of genes important for immune cell function and,

perhaps, cell identity. Our data indicate that Bys and Inf iMOs

non-redundantly contribute to the cytokine milieu and the

IFN response. Furthermore, our work uncovered how IFN-I or
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IFN-g signaling differentially regulate immune pathways in Inf

and Bys iMOs and shows that, at a steady state in vivo, IFN-I

primes iMOs for rapid IFN-I production and antigen presentation

after infection.

Limitations of the study
A caveat to our BMC experimental setup is that Ifnar1�/� and

Ifngr�/� iMOs could not be separated from the �5% residual,

WT-host-derived iMOs.7 Thus, minor changes between WT

and mutant iMOs could have been overlooked.
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Antibodies

Mouse monoclonal antibody BV785 anti-mouse CD45.1,

clone A20

BioLegend Cat# 110743, RRID:AB_2563379

Rat monoclonal antibody BUV395 anti-mouse CD11b,

clone M1/70

BD Biosciences Cat# 565976, RRID:AB_2721166

Rat monoclonal antibody PE anti-mouse Ly6C,

clone HK1.4
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Ly6C/Ly6G (Gr-1), clone RB6-8C5

BioLegend Cat# 108430, RRID:AB_893556
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BioLegend Cat#101302; RRID:AB_312801
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ECTV-GFP Fang et al.29 N/A

Chemicals, peptides, and recombinant proteins

DMEM media CORNING 10-013-CV

RPMI media CORNING 10-040-CV

Penicillin Streptomycin Solution, 100x CORNING 30-002-Cl

Fetal Bovine Serum, Heat Inactivated Seradigm 1500–500

GlutaMAX 100x Gibco 35,050–061

HEPES 1M CORNING 25-060-Cl

LiberaseTM Roche 05,401 119,001

Critical commercial assays

mouse Ovation SoLo RNA-Seq Systems NuGEN 0501

RNA Clean and ConcentratorTM-5 Zymo Research R1014

Experimental models: Cell lines

Monkey C. aethiops epithelial kidney BS-C-1 cells ATCC CCL-26

Experimental models: Organisms/strains

Mouse: C57BL/6NCrl Charles River 027

Mouse: B6.SJL-PtprcaPepcb/BoyCrl Charles River 494

Mouse: C57BL/6 Ifnar1�/� mice Thomas Moran (Mount Sinai School

of Medicine, New York, NY)

N/A

Mouse: B6.129S7-Ifngr1tm1Agt/J Jackson Laboratory JAX: 003,288

Software and algorithms

Kallisto Bray et al.30 N/A

Sleuth Pimentel et al.31 N/A

BRB-ArrayTools Simon et al.32 N/A

Jvenn Bardou et al.33 N/A

Reactome Pathways Database Fabregat et al.34 N/A

GSEA Mootha et al.35, Subramanian et al.36 N/A

VolcaNoseR Goedhart et al.37 N/A

Prism 8 Software GraphPad Software N/A

FlowJoTM version 10 Treestar N/A

Other

FACSAriaTM II sorter BD Biosciences N/A

Raw and processed mRNA-Seq data GEO GSE215747
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RESOURCE AVAILABILITY

Lead contact
Further information and requests for resources and reagents should be directed to Luis J. Sigal (Luis.Sigal@jefferson.edu) or Carolina

Melo-Silva (Carolina.Rezende.Melo.da.Silva@jefferson.edu).

Materials availability
This study did not generate new unique reagents.

Data and code availability
d Raw and processed mRNA-Seq data are available in the Gene Expression Omnibus (GEO) under series entry GSE215747.

d This paper does not report original code;

d Any additional information required to reanalyze the data reported in this paper is available from the lead contact upon request.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

All mice used for viral infection were 8–12weeks old or 16 to 18weeks old for BMC. Tomake BMC, we used 4 to 6weeks old females.

We used only females because in our experience, male BMC fight and usually kill each other or get bad fighting wounds. C57BL/

6NCrl (B6) and B6.SJL-PtprcaPepcb/BoyCrl (CD45.1) mice were purchased from Charles River directly for experiments or as

breeders. Ifnar1�/� mice backcrossed to B6 were gifts from Dr. Thomas Moran (Mount Sinai School of Medicine, New York, NY).

B6.129S7-Ifngr1tm1Agt/J (Ifngr�/�) mice were purchased from the Jackson Laboratory. Colonies were bred at Thomas Jefferson Uni-

versity under specific pathogen-free conditions. Mice were group housed on individually ventilated cages and fed on 5010 LabDiet.

All mice procedures were carried out according to the Eighth Edition of the Guide for the Care and Use of Laboratory Animals of the

National Research Council of the National Academies. All experiments were approved by Thomas Jefferson University’s Institutional

Animal Care and Use Committee under protocol number 01727, "Innate Control of Viral Infections." Library preparation from a few

cells/single cell protocol was selected to reduce the number of animals required for each experiment in order to adhere to ARRIVE

guidelines in the reduction category.

METHOD DETAILS

Viruses and infection
ECTV-GFP29 was propagated in tissue culture, as previously described.7 Briefly, BS-C-1 cells grown in DMEMmedia supplemented

with 10% fetal bovine serum (FBS), 100 IU penicillin, 100 mg/mL streptomycin, 1x GlutaMAX, and 10mM HEPES to confluency were

Inf at MOI 0.01, and viruses were harvested 4 to 5 days later. Cells were rinsed with phosphate-buffered solution (PBS), scraped, and

concentrated by centrifugation. ECTVwas released bymultiple freezing and thawing cycles. Virus stocks were sonicated and titrated

by plaque assay in BS-C-1 cells. Mice were infected subcutaneously in both rear footpads with 3000 plaque-forming units (PFU) per

footpad of ECTV-GFP.

Bone marrow chimeras (BMC)
4- to 6-week-old mice previously treated for three days with acidified water (pH 2.5) were irradiated with 9 Gy using a GammaCell 40

apparatus (Nordion Inc.). Bone marrow cells were isolated in RPMI media supplemented with 10% FBS, 100 IU/mL penicillin, and

100 mg/mL streptomycin. Red blood cells were lysed with 0.84% NH4Cl and cells were filtered and counted. Irradiated mice were

reconstituted intravenously with 10 million bone marrow cells from donors. BMC animals were given acidified water for four weeks

and rested eight weeks after reconstitution.

Flow cytometry and sorting
Groups of 5 B6 mice or 8–10 BMC were Inf with 3000 pfu of ECTV-GFP in the footpad. At three dpi, bystander (Bys, GFP�) and in-

fected (Inf, GFP+) B-cells and iMOwere sorted from the popliteal dLNs. Sorted samples correspond to a pool of 10 popliteal dLN from

5 B6 infected mice or 16–20 popliteal dLN from 8 to 10 BMC or one naive spleen or LN. dLN were treated with Liberase TM (1.67

W€unsch units/mL) for 30 min in PBS supplemented with 10mM HEPES. Single-cell suspensions were passed through a 70mm

strainer, and repetitive washes with PBS supplemented with 2% BSA and 10mM HEPES. Spleen from one naive mouse was

used for sorting naive iMO. Spleens were smashed with frosted slides, and cells were washed with RPMI media supplemented

with 10% FBS, 100 IU/mL penicillin, and 100 mg/mL streptomycin. Red blood cells were lysed with 0.84% NH4Cl. Cells were treated

with anti-mouse CD16/CD32 (0.25mL per million cells) for 15min at 4�C in PBS supplemented with 2%BSA and 1mMEDTA and sub-

sequently stained with surface antibodies for 20 min at 4�C. Cells were washed and sorted with a FACSAria II sorter in PBS supple-

mented with 1% BSA, 25mM HEPES, and 1mM EDTA. Sorting data were analyzed with FlowJo version 10.
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RNA and library preparation and RNA sequencing
B-cells and iMOwere sorted directly into Trizol. Total RNAwas purified with the RNA Clean and Concentrator with DNase I treatment

(Zymo Research), and RNA was eluted in 10mL. RNA purification was quantified by Qubit, and quality control was performed by RIN

analysis (High Sensitivity RNA Screen Tape – Agilent) by the SKKCMetaomics Facility at Thomas Jefferson University. 1ng or 100pg

of total RNA was used for library preparation with the mouse Ovation SoLo RNA-Seq Systems, including DNaseI and Insert-

Dependent Adaptor Cleavage (InDA-C) treatments for DNA and rRNA depletion. Final libraries were run on Hiseq Illumina PE150

by Novogene. For B cell and iMO sorted from B6-Inf animals, three biological replicates of each population (Bys, Inf, and Naive)

were sequenced, except for B cell Inf for which only two biological replicates were sequenced. For WT, Ifnar1�/� and Ifngr�/�

iMO sorted from Inf BMCs, four biological replicates were sequenced for Bys and Inf WT iMO, and two biological replicates were

sequenced for each Bys and Inf knockout iMO.

QUANTIFICATION AND STATISTICAL ANALYSIS

High-throughput sequencing reads were analyzed pseudo alignment with Mus Musculus GRCm38.p6 and ECTV Moscow

GCA_000841905.1 genomes using Kallisto (v0.46.1).30 Transcript abundance was normalized to transcript per million, and differen-

tial expression (DE) was calculated using the Sleuth R package (v0.30.0).31 *pval <0.05, **pval <0.01, ***pval <0.001 and

****pval <0.0001. DEG was defined as those presenting at least a 2-fold change and p value (pval) < 0.01. PCA based on ED was

generated with the R package version 4.1.2. DEG volcano plots (2-fold change and p < 0.01, unless indicated otherwise) were gener-

ated with the VolcaNoseR online tool.37 Clustering heatmap of correlations of centered and scaled transcript values and class

comparison prediction analysis were generated in Biometric Research ProgramBRB- ArrayTools (2-fold change, p < 0.01,R10 tran-

scripts per million in at least one experimental group).32 Venn diagrams of DEG were generated using the JVenn plug-in.33 GO

analyses were performed on DEG with a p < 0.05 filter on selected pathways of the RPD.34 GSEA analysis was performed using

C8 (cell type signature gene sets) and H (hallmark gene sets) collections (http://www.gsea-msigdb.org/gsea/msigdb/collections.

jsp), in which Sigal2Noise or diff_of_classes analysis were employed for ranking genes in phenotype analysis for 1000 iterations.35,36

Result analysis includes gene sets enriched (adjusted enrichment score – NES) at nominal pval <5% and false discovery rate

(qval FDR) preferably below 0.25. ISG list was compiled from genes described in the literature in mouse and human cell studies

(Table S2-7).14,19,38 TF list of experimentally verified TF was derived from the Cancer Genome Anatomy Project (http://cgap.nci.

nih.gov/Pathways). The iMO-specific class prediction gene list was derived from Table S1-9. Data were analyzed with Prism 8 Soft-

ware and bar graphs show mean ± SEM.
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