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Abstract: We assess Value-at-Risk (VaR) and Expected Shortfall (ES) estimates assuming different
models for the standardized returns: distributions based on polynomial expansions such as Cornish-
Fisher and Gram-Charlier, and well-known parametric densities such as normal, skewed-t and
Johnson. This paper aims to analyze whether models based on polynomial expansions outperform
the parametric ones. We carry out the model performance comparison in two stages: first, with a
backtesting analysis of VaR and ES; and second, using loss functions. Our backtesting results show
that all distributions, except for normal ones, perform quite well in VaR and ES estimations. Regarding
the loss function analysis, we conclude that polynomial expansions (specifically, the Cornish-Fisher
one) usually outperform parametric densities in VaR estimation, but the latter (specifically, the
Johnson density) slightly outperform the former in ES estimation; however, the gains of using one
approach or the other are modest.
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1. Introduction

In recent years, big events such as the great plunge in oil prices in 2015, the economic in-
stability in Greece during 2009–2017, the China stock market turbulence in 2015–2016, Brexit
in 2016 and the COVID-19 pandemic in 2020–2021, have caused important losses for in-
vestors; consequently, measuring risk properly has become a crucial task for researchers
and practitioners in finance. Nowadays, two of the most used downside risk measures
are the Value-at-Risk (VaR) and the Expected Shortfall (ES). Indeed, the Basel Committee
on Banking Supervision (Basel III) imposes to financial institutions to meet some capital
requirements based on VaR and ES estimates. If they are not properly estimated, it may
lead to a sub-optimal capital allocation, affecting the profitability or stability of financial
institutions. The VaR and the ES measure, respectively, the quantile and the expected
return conditioning on returns being lower than its quantile. These two risk measures
have received some criticism: desirable properties of a risk measure (among them, the
coherence property) are formalized by [1] in a set of axioms, and VaR has been found not to
be coherent because it does not satisfy the subadditivity property and, as a consequence, it
might fail to appropriately account for risk concentrations, and diversification strategies
might be negatively affected; VaR has also been criticized for not providing information
beyond the quantile; regarding ES, it does not verify the elicitability condition, which means
that there could be an issue with direct backtesting of ES estimates (see [2]), although some
feasible approaches to backtesting ES have recently been proposed (see, among others, [3],
using a linear approximation of ES based on VaRs at different coverage levels, and [4],
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using cumulative violations). In spite of this criticism, Var and ES are very informative
about the tail shape of the asset returns distribution, and regulatory requirements have
focused on them.

Both VaR and ES estimates are usually obtained by previously estimating, with maxi-
mum likelihood (ML) techniques, the parameters implied in a returns model with ARMA
structure for the conditional mean of returns and GARCH-type models for their conditional
variance, and assuming a particular distribution for the standardized errors, henceforth Zt.
The standard normal distribution has been the most frequent distribution assumed for Zt,
but this assumption is often rejected in the empirical finance literature when modeling stock
returns and other financial assets, even after controlling for volatility clustering effects. As a
consequence, recent research has focused on the analysis of models that use generalizations
of the normal distribution that are flexible enough to tackle with asymmetry and heavy
tails, but that are also analytically tractable. Here we focus on two approaches which
have been highly used in recent years to obtain generalizations of the normal distribution
that might lead to more accurate daily estimates of VaR and ES: (i) use of polynomial
expansions that allow to easily obtain more flexible models than the normal; (ii) use of
parametric densities that encompass the normal. Our aim in this paper is to compare the
performance of these two approaches, through the implementation of backtesting methods
and loss functions. In principle, one could think that the flexibility inherent to polyno-
mial expansions should lead to better estimates of VaR and ES, if the sample size is large
enough. However, the parametric densities have been introduced to specifically address
the departures from non-normality that are typical in financial data and, thus, they might
yield better results than the polynomial expansions, with the sample sizes that are usual in
econometric practice with financial series. This is precisely the kind of comparison that we
are interested in; and, in order to perform a fair comparison between the two approaches,
the order of the polynomial expansions that we will consider will lead to distributions
with two parameters, and the parametric distributions that we will consider will have two
shape parameters.

The polynomial expansions that we use here are the Cornish-Fisher (CF) and the Gram-
Charlier (GC) expansions. Both expansions differ in their nature: CF is a transformation
of the normal quantile function (see [5]), whereas GC is a transformation of the normal
probability density function. The CF distribution that we consider here is obtained using a
fourth-order expansion. In this way, a two-parameter distribution is obtained, and there
is a simple relation between the two parameters and the skewness and kurtosis; this easy
tractability comes from using the bijective property of the CF polynomial expansion, once
the domain of variation is appropriately restricted (monotonicity condition), see [6]; if the
monotonicity condition does not hold, then the ‘increasing rearrangement’ procedure of [7]
can be used to restore monotonicity (an empirical application of this methodology can be
seen in [8]). The GC expansions (see, e.g., [9]) are very flexible and analytically tractable
since many densities can be expressed as the product of the standard normal probability
density function times an infinite series of Hermite polynomials. In practice, truncated GC
expansions (also known as Edgeworth- Sargan densities) have to be used (see [10] for the
analysis of these densities with financial data), and this often implies negative densities
over some interval of their domain. Several solutions have been proposed to handle
this problem: (i) restricting the parameter space and then estimating the parameters by
constrained ML, see [11]; (ii) using certain transformations in order to guarantee positivity
of the expansion, see [12,13]; (iii) considering semi-nonparametric densities which are
always positive by construction, and hence the parameters can be easily estimated by
using ML instead of constrained ML, see [14–16]. In this work we use the third approach,
and consider the standardized semi-nonparametric distribution of fourth order, which is a
two-parameter distribution.

The parametric densities that we use here are two well-known two-parameter den-
sities: the skewed-t density, introduced by [17] in financial econometrics; and one of the
densities proposed in Johnson [18], which was analyzed by [19,20] in the context of mod-
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eling financial returns. The skewed-t density exploits the leptokurtosis property of the
Student-t distribution, but also allows for asymmetries thanks to the introduction of an
additional parameter. The idea behind Johnson’s approach to derive densities that en-
compass the normal is to consider random variables obtained by transforming a normal
random variable with the inverse of a non-decreasing continuous function g; specifically,
three different g functions have been proposed, leading to lognormal, unbounded and
bounded distributions, although here we will consider exclusively the unbounded one,
that is, g(x) = sinh−1(x).

The accuracy of VaR and ES estimates under the two approaches (polynomial ex-
pansions or parametric densities) is measured using backtesting techniques with rolling-
window data. For backtesting VaR, we implement the traditional tests, i.e., the uncondi-
tional coverage test of [21] and the independence test of [22]. For backtesting ES, we use
the robust unconditional and conditional coverage tests of [4], which focus on cumulative
violations. Furthermore, different loss functions (see, e.g., [23]) are used in order to rank
models that are not rejected with backtesting procedures.

The remainder of the paper is structured as follows. Section 2 describes the statistical
specifications that are used for modeling returns, and how inference on VaR and ES is made
with them. Section 3 describes the procedures that are used to assess the performance of
the statistical models, namely, backtesting procedures for VaR and ES and loss functions.
Section 4 describes the data and applies the different methods to study the performance
through backtesting and loss functions. Section 5 concludes the paper with a summary of
the main findings and contributions.

2. Statistical Models and Inference
2.1. General Framework

We assume that daily stock returns, Rt, satisfy that

Rt = µ + σtZt, (1)

where {Zt} are independent and identically distributed (iid) zero-mean unit-variance
random variables, µ is a parameter and {σt} follows a non-linear asymmetric GARCH
(NGARCH) model, see e.g., [24], given by

σ2
t = b0 + b1σ2

t + b2(Rt−1 − µ− cσt−1)
2, (2)

where b0, b1 and b2 are positive parameters, and c is an additional parameter that captures
the leverage effect. Note that c > 0 implies that returns exhibit leverage effect, i.e., volatility
increases more after negative shocks than after positive shocks of the same magnitude,
whereas c < 0 means that there is inverse leverage effect, i.e., volatility increases more
after positive shocks than after negative shocks of the same magnitude. The NGARCH
is reduced to the GARCH when c = 0. In this paper we assume that Zt =v−1/2

Y (Yt−mY),
where Yt is random variable that is defined by means of a polynomial expansion or a
parametric model, and we denote mY ≡ E(Yt) and vY ≡Var(Yt). The aim of our research is
to compare the performance of densities based on polynomial expansions and densities
based on parametric models; in order to make a fair comparison, both the polynomial
expansions and the parametric models that we consider will be characterized by two
parameters ψ1, ψ2 that determine the skewness and the kurtosis of Yt in each case. Thus,
hereafter the probability density function (pdf) and the cumulative distribution function
(cdf) of Yt are denoted as fY(· | ψ1, ψ2) and FY(· | ψ1, ψ2), respectively.

Our analysis will focus on the performance of the models when estimating the value
at risk (VaR) and the expected shortfall (ES) of returns. Given α ∈ (0, 1), the α-VaR and
the α-ES of Yt will be denoted as VaRY(α | ψ1, ψ2) and ESY(α | ψ1, ψ2), respectively, that
is, VaRY(α | ψ1, ψ2) = F−1

Y (α | ψ1, ψ2) and ESY(α | ψ1, ψ2) = E(Yt | Yt ≤VaRY(α | ψ1, ψ2)).
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Therefore, as Yt =mY +
v1/2

Y
σt

(Rt − µ), it follows that the cdf, the pdf, the α-VaR and the
α-ES of Rt conditional on information up to period t− 1 are:

Ft(r | Ft−1) = FY(mY +
v1/2

Y
σt

(r− µ) | ψ1, ψ2), (3)

ft(r | Ft−1) =
v1/2

Y
σt

fY(mY +
v1/2

Y
σt

(r− µ) | ψ1, ψ2), (4)

VaRt(α | Ft−1) = µ +
σt

v1/2
Y

(VaRY(α | ψ1, ψ2)−mY), (5)

ESt(α | Ft−1) = µ +
σt

v1/2
Y

(ESY(α | ψ1, ψ2)−mY). (6)

Note that these expressions depend on seven parameters: the mean parameter µ, the
four parameters of the NGARCH model b0, b1, b2, c, and the two shape parameters ψ1,
ψ2. These seven parameters can be estimated by Maximum Likelihood (ML), once the pdf
fY(· | ψ1, ψ2) is specified, and the corresponding mean and variance (mY, vY) are found.
Specifically, the estimates are found by maximizing

ln L(µ, b0, b1, b2, c, ψ1, ψ2) = ∑T
t=1

(
1
2

ln vY −
1
2

ln σ2
t + ln fY(mY +

v1/2
Y
σt

(Rt − µ) | ψ1, ψ2)

)

where σt is given in (2). The optimization problem incorporates non-negativity restrictions
on b0, b1 and b2, the second-order stationarity restriction b2(1 + c2) + b1 < 1, and the
restrictions on ψ1 and ψ2 that are specified below in each case. Once the parameters of the
model are estimated, VaRt(α | Ft−1) and ESt(α | Ft−1) are estimated using the expressions
given in (5) and (6), but replacing the unknown parameters by their ML estimates. In the
next two subsections we specify the distributions for Yt that we consider.

2.2. Distributions Based on Polynomial Expansions
2.2.1. Cornish-Fisher Expansion

We follow here the specification of the Cornish-Fisher expansion described in [25].
A random variable Y follows a two-parameter Cornish-Fisher distribution (a CF distribu-
tion, for short) with parameters ψ1 and ψ2 if

Y = a0(ψ1, ψ2) + a1(ψ1, ψ2)W + a2(ψ1, ψ2)W2 + a3(ψ1, ψ2)W3, (7)

where W is a standard normal random variable, ψ1, ψ2 are parameters such that

|ψ1| < 6(
√

2− 1) ≈ 2.4853

and

ψ2 ∈

36 + 11ψ2
1 −

√
ψ4

1 − 216ψ2
1 + 1296

9
,

36 + 11ψ2
1 +

√
ψ4

1 − 216ψ2
1 + 1296

9

,

and we denote a0(ψ1, ψ2) = −ψ1/6, a1(ψ1, ψ2) = 1− ψ2/8 + 5ψ2
1/36, a2(ψ1, ψ2) = ψ1/6

and a3(ψ1, ψ2) = ψ2/24− ψ2
1/18. For simplicity, hereafter we write aj instead of aj(ψ1, ψ2).

Note that the conditions on ψ1 and ψ2 are introduced to guarantee that the transformation
from W to Y is one-to-one. As a consequence, if we denote h(W) = a0 + a1W + a2W2 +
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a3W3, the relationship (7) implies that the cdf of Y is FY(y | ψ1, ψ2) = Φ(h−1(y)). The
corresponding pdf is

fY(y | ψ1, ψ2) =
φ(d(y, ψ1, ψ2))

(ψ2
8 −

ψ2
1

6 )d(y, ψ1, ψ2)2 + ψ1
3 d(y, ψ1, ψ2) + 1− ψ2

8 +
5ψ2

1
36

where φ(·) denotes the standard normal pdf,

d(y, ψ1, ψ2) ≡ −
a2

3a3
+

3

√
− q(y, ψ1, ψ2)

2
+
√

∆(y, ψ1, ψ2) +
3

√
− q(y, ψ1, ψ2)

2
−
√

∆(y, ψ1, ψ2),

q(y, ψ1, ψ2) ≡
2a3

2 − 9a1a2a3 + 27a2
3(a0 − y)

27a3
3

, and

∆(y, ψ1, ψ2) ≡
q(y, ψ1, ψ2)

2

4
+

(3a1a3 − a2
2)

3

729a6
3

.

It also follows from (7) that mY = 0 and

vY = 1 +
1
96

ψ2
2 +

25
1296

ψ4
1 −

1
36

ψ2ψ2
1.

Additionally, the α-VaR and the α-ES of Y are:

VaRY(α | ψ1, ψ2) = a0 + a1Φ−1(α) + a2Φ−1(α)2 + a3Φ−1(α)3,

ESY(α | ψ1, ψ2) = a0 −
a1

α
φ(Φ−1(α)) +

a2

α
(α−Φ−1(α)φ(Φ−1(α)))− a3

α
(2 + Φ−1(α)2)φ(Φ−1(α)).

The latter expression follows because E[Y | Y ≤VaRY(α | ψ1, ψ2)] = E[h(W) | h(W) ≤
h(Φ−1(α))] = E[a0 + a1W + a2W2 + a3W3 | W ≤ Φ−1(α)], and the truncated moments
of a standard normal distribution are E[W | W ≤ a] = −φ(a)/Φ(a), E[W2 | W ≤ a] =
1− aφ(a)/Φ(a), and E[W3 |W ≤ a] = −(2 + a2)φ(a)/Φ(a) (see e.g., [26]).

2.2.2. Gram-Charlier Expansion

We follow here the specification of the Gram-Charlier expansion described in [27].
A random variable Y follows a two-parameter Gram-Charlier distribution (a GC distribu-
tion, for short) with parameters ψ1 and ψ2 if its pdf is

fY(y | ψ1, ψ2) =
φ(y)
v′v

(1 + ψ1H1(y) + ψ2H2(y))
2, (8)

where we denote v = (1, ψ1, ψ2)
′, and {Hk(·)}∞

k=0 are the normalized Hermite polynomials,
defined recursively as follows: H0(y) = 1, H1(y) = y and, for k ≥ 2,

Hk(y) =
yHk−1(y)−

√
k− 1Hk−2(y)√
k

.

The corresponding cdf of Y is given by

FY(y | ψ1, ψ2) = Φ(y)− φ(y)∑4
k=1

γk(ψ1, ψ2)√
k

Hk−1(y), (9)

where we denote γ1(ψ1, ψ2) = 2ψ1(1 +
√

2ψ2)/v′v, γ2(ψ1, ψ2) =
√

2(ψ2
1 + 2ψ2

2 +
√

2ψ2)/v′v,
γ3(ψ1, ψ2) = 2

√
3ψ1ψ2/v′v and γ4(ψ1, ψ2) =

√
6ψ2

2/v′v. For simplicity, hereafter we write
γj instead of γj(ψ1, ψ2). It also follows from (8) that mY = γ1 and vY =

√
2γ2 + 1− γ2

1.
The α-VaR of Y is

VaRY(α | ψ1, ψ2) = F−1
Y (α | ψ1, ψ2),
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where FY(·) is given in (9); there is no closed-form expression for F−1
Y (·), but it can be

computed numerically using the procedure described in [28]. Finally, the α-ES of Y is

ESY(α | ψ1, ψ2) =
1
α

Φ(VaRY(α | ψ1, ψ2))∑5
k=1 ηk(ψ1, ψ2)pk(VaRY(α | ψ1, ψ2)),

where η1(ψ1, ψ2) = 1 − γ2/
√

2 + 3γ4/
√

24, η2(ψ1, ψ2) = γ1 − 3γ3/
√

6, η3(ψ1, ψ2) =
γ2/
√

2 − 6γ4/
√

24, η4(ψ1, ψ2) = γ3/
√

6, η5(ψ1, ψ2) = γ4/
√

24, p1(y) = −φ(y)/Φ(y),
p2(y) = 1− yφ(y)/Φ(y), and pk(y) = (k− 1)pk−2(y)− yk−1φ(y)/Φ(y) for k ≥ 3.

2.3. Parametric Distributions
2.3.1. Skewed-t Distribution

There are several equivalent specifications of a skewed-t distribution; here we use
the parameterization of [29]. A random variable Y follows a skewed-t distribution with
parameter ψ1 (skewness parameter) and ψ2 (degrees of freedom), where ψ1 ∈ (0, 1) and
ψ2 > 0, if its pdf is

fY(y | ψ1, ψ2) =

 fψ2(
y

2ψ1
) if y ≤ 0,

fψ2(
y

2(1−ψ1)
) if y > 0,

where fψ2(·) denotes the pdf of the Student-t distribution with ψ2 degrees of freedom.
The corresponding cdf is

FY(y | ψ1, ψ2) =

 2ψ1Fψ2(
y

2ψ1
) if y ≤ 0,

2(1− ψ1)Fψ2(
y

2(1−ψ1)
) + (2ψ1 − 1) if y > 0,

where Fψ2(·) denotes the cdf of the Student-t distribution with ψ2 degrees of freedom.
When ψ2 > 1 the mean of Y is

mY =
2
√

ψ2(1− 2ψ1)Γ(
ψ2−1

2 )
√

πΓ(ψ2
2 )

.

Additionally, if ψ2 > 2 the variance of Y is

vY =
4ψ2(1− 3ψ1 + 3ψ2

1)

ψ2 − 2
−m2

Y.

Note that the Student-t distribution is nested in this distribution when ψ1 = 1/2.
Also note that the pdf of (Y−mY)/v1/2

Y is the same as the pdf in Equation (10) of [17],
after reparameterization. The α-VaR of Y is

VaRY(α | ψ1, ψ2) =

 2ψ1F−1
ψ2

( α
2ψ1

) if α ≤ ψ1,

−2(1− ψ1)F−1
ψ2

( 1−α
2(1−ψ1)

) if α > ψ1.

Note that, by the symmetry of fψ2(·), it follows that F−1
ψ2

(α) = −F−1
ψ2

(1− α) for α ∈
(0, 1). Also note that there is no closed-form expression for F−1

ψ2
(·), but most programming

languages include this function. Finally, the α-ES of Y is

ESY(α | ψ1, ψ2)=


− 4ψ2

α(ψ2−1)ψ2
1 fψ2(F−1

ψ2
( α

2ψ1
))(1+

F−1
ψ2

( α
2ψ1

)2

ψ2
), if α ≤ ψ1,

− 4ψ2(1−ψ1)
2

α(ψ2−1) { fψ2(F−1
ψ2

( 1−α
2(1−ψ1)

))(1+
F−1

ψ2
( 1−α

2(1−ψ1)
)2

ψ2
)− 1−2ψ1

(1−ψ1)2 fψ2(0)}, if α > ψ1.
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2.3.2. Johnson Distribution

We follow here the parameterization of the Johnson distribution described in [30].
A random variable Y follows a Johnson distribution with shape parameters ψ1 and ψ2,
where −∞ < ψ1 < ∞ and ψ2 > 0, if

Y = sinh
(

W − ψ1

ψ2

)
,

where W is a standard normal random variable, and sinh(x) = (exp(x)− exp(−x))/2.
The cdf of a random variable with Johnson distribution is

FY(y | ψ1, ψ2) = Φ
(

ψ1 + ψ2 sinh−1(y)
)

,

where sinh−1(y) = ln(x +
√

1 + x2). The corresponding pdf is

fY(y | ψ1, ψ2) =
ψ2√

1 + y2
φ
(

ψ1 + ψ2 sinh−1(y)
)

.

The mean of Y is mY = − exp(ψ−2
2 /2) sinh(ψ1/ψ2), and its variance is

vY =
1
2

(
exp

(
ψ−2

2

)
− 1
)(

exp
(

ψ−2
2

)
cosh

(
2ψ1

ψ2

)
+ 1
)

,

where cosh(x) = (exp(x) + exp(−x))/2. Finally, the α-VaR and the α-ES of Y are

VaRY(α | ψ1, ψ2) = sinh
(

Φ−1(α)− ψ1

ψ2

)
,

ESY(α | ψ1, ψ2) =
1

2α
exp(

ψ−2
2
2

)

[
exp(−ψ1

ψ2
)Φ
(

Φ−1(α)− 1
ψ2

)
− exp(

ψ1

ψ2
)Φ
(

Φ−1(α) +
1

ψ2

)]
.

3. Assessing the Performance of VaR and ES Estimates
3.1. Backtesting VaR and ES

To evaluate one-day-ahead VaR/ES forecasts, first we use the backtesting method,
which is a formal statistical framework that consists on checking whether actual losses
are in line with predicted losses (see [31]). We perform this analysis using a one-day
rolling-window methodology. Specifically, given a sample of T daily returns, we divide
the sample into two parts: the in-sample period with the first T0 observations, and the
out-of-sample period with the remaining T− T0 observations. In our first estimation we use
the data from day 1 to day T0 to estimate the model by ML, and then derive the estimates
of VaRT0+1(α | FT0) and EST0+1(α | FT0) as described in the previous section. In our
second estimation we exclude observation 1 from the estimation sample, and incorporate
the observation of day T0 + 1; thus, we proceed to estimate the model by ML using the
data from day 2 to day T0 + 1, and then derive the estimates of VaRT0+2(α | FT0+1) and
EST0+2(α | FT0+1) as above. We continue in this way until getting VaR and ES estimates for
the whole out-of-sample period, i.e., {V̂aRt(α | Ft−1)}T

t=T0+1 and {ÊSt(α | Ft−1)}T
t=T0+1.

The accuracy of these sequence of estimates is then analyzed by comparing them with
the sequence of actual out-of-sample returns {Rt}T

t=T0+1, using the procedures that are
described below.

We use two procedures for backtesting VaR. First, we apply the unconditional coverage
test of [21]. This test is based on the fact that, if the model is correctly specified, then the
so-called hit variables ht ≡ I(Rt <VaRt(α | Ft−1)), where I(·) is the indicator function,
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are independent Bernoulli random variables, and hence ∑T
t=T0+1 ht follows a Binomial

distribution Bi(T − T0, α). The test statistic is

LRUC = −2 ln
(

αN(1− α)T−T0−N

α̂N(1− α̂)T−T0−N

)
,

where N ≡ ∑T
t=T0+1 ĥt, α̂ ≡ N/(T − T0) and ĥt ≡ I(Rt < V̂aRt(α | Ft−1)). Under the null

hypothesis that the model is correctly specified, the asymptotic distribution of LRUC is χ2
1;

thus, the null hypothesis of correct specification is rejected at the 5% significance level if the
sample value of LRUC is above χ2

1,0.05 = 3.8415. Second, we apply the independence test
of [22]. This test is based on the fact that, if the model is correctly specified, then hits are
independent over time; hence, if we denote αij ≡ P(ht+1 = j | ht = i) for i, j = 0, 1, then αi1
must be equal to α, both when i = 0 and i = 1, and αi0 must be equal to 1− α, both when
i = 0 and i = 1. The test statistic is

LRIND = −2 ln

(
α̂N01+N11(1− α̂)N00+N10

α̂
N01
01 (1− α̂01)N00 α̂N11

11 (1− α̂11)N10

)

where Nij ≡ ∑T−1
t=T0+1 I(ĥt+1 = j)I(ĥt = i), for i, j = 0, 1, α̂01 ≡ N01/(N00 + N01) and

α̂11 ≡ N11/(N10 + N11). Under the null hypothesis that the model is correctly specified,
the asymptotic distribution of LRIND is also χ2

1; thus, the null hypothesis of correct spec-
ification is rejected at the 5% significance level if the sample value of LRIND is above
χ2

1,0.05 = 3.8415.
We also use two procedures for backtesting ES. First, we apply the robust unconditional

test of [4]. The test statistic is

MUES =

√
T − T0(H(α)− α

2 )√
α( 1

3 −
α
4 ) +

T−T0
T0

R̂′ESΛ̂R̂ES

,

where H(α) ≡ (T − T0)
−1 ∑T

t=T0+1 Ĥt(α),

Ĥt(α) ≡
ĥt

α
{α− FY(m̂Y +

v̂1/2
Y
σ̂t

(Rt − µ̂) | ψ̂1, ψ̂2)},

Λ̂ is the 7× 7 variance-covariance matrix of the estimates, and R̂ES is a 7× 1 matrix whose
precise definition is given in page 955 of [4]. Under the null hypothesis that the model is
correctly specified, the asymptotic distribution of MUES is standard normal; thus, the null
hypothesis of correct specification is rejected at the 5% significance level if the absolute
value of the sample value of MUES is above z0.025 = 1.96. Second, we apply the robust
conditional test of [4]. For a given m ∈ N, the test statistic is

MCES(m) = (T − T0)ρ̂
′
(m)Ω̂

−1ρ̂(m)

where ρ̂(m) = (ρ̂1, . . . , ρ̂m)
′, ρ̂j = γ̂j/γ̂0 for j = 0, 1, . . . , m,

γ̂j =
1

T − T0 − j ∑T−j
t=T0+1(Ĥt+j(α)−

α

2
)(Ĥt(α)−

α

2
),

Ω̂ is an m × m matrix whose ijth element is Ω̂ij = I(i = j) + ((T − T0)/T0)R̂′jΛ̂R̂j, and

R̂j is a 7× 1 matrix whose precise definition is given in page 955 of [4]. Under the null
hypothesis that the model is correctly specified, the asymptotic distribution of MCES(m) is
χ2

m; thus, the null hypothesis of correct specification is rejected at the 5% significance level
if the sample value of MCES(m) is above χ2

m,0.05.
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3.2. Assessment of Performance with Loss Functions

The main goal of the backtesting procedures described in the previous subsection is to
determine if a model provides reliable VaR and ES estimates. However, it is often the case
that the null hypothesis of correct specification is not rejected for several models; hence,
a criterion to select one model among those that have not been rejected with backtesting
techniques is required. A frequently used criterion is based on the so-called loss functions
(LF). This approach was introduced in [32], and its aim is to calculate the size of noncovered
losses by measuring the distance between a risk measure for period t, say RiskMt, computed
with the information available up to period t− 1, and the observed returns for that period
Rt. Following [23], the loss functions considered in this paper have the form

L(Rt, RiskMt) =

{
f (Rt, RiskMt) if Rt < RiskMt,

0 if Rt ≥ RiskMt.
(10)

Note that this type of loss function only pays attention to the magnitude of the hit when it
actually occurs. In our empirical analysis we analyze four risk measures: VaRt(0.05 | Ft−1),
VaRt(0.025 | Ft−1), ESt(0.05 | Ft−1) and ESt(0.025 | Ft−1). As regards the function f , we
will use the following alternatives:

f1(Rt, RiskMt) = 1 + (Rt − RiskMt)2

f2(Rt, RiskMt) = (Rt − RiskMt)2

f3(Rt, RiskMt) =
∣∣∣1− ∣∣∣ Rt

RiskMt

∣∣∣∣∣∣
f4(Rt, RiskMt) =

(|Rt |−|RiskMt |)2

|RiskMt |

f5(Rt, RiskMt) = |Rt − RiskMt|

(11)

Function f1 is used in [32], function f2 is used in [33], and functions f3, f4, f5 are used
in [34]. Note that both f1 and f2 penalize large hits more than small ones, whereas the
remaining functions stress the importance of uncovered losses but taking also into account
their relative sizes.

For a given risk measure and a given loss function f j, the overall performance of an

estimate of the risk measure, say R̂iskM, can be found by computing the average loss across
the out-of-sample period, that is,

Lj(R̂iskM) =
∑T

t=T0+1 Lj(Rt, R̂iskMt)

T − T0
, (12)

where Lj(Rt, R̂iskMt) denotes the loss that is found according to (10), when function f j is
used as f . When comparing the performance of different estimates of the risk measure
RiskM, the one that minimizes the average loss Lj(R̂iskM) should be preferred.

4. Empirical Results

We collect daily log-returns of several indexes, stocks and others extracted from Datas-
tream and Yahoo Finance. Log-returns are obtained by taking the logarithmic differences
of closing daily prices, i.e., Rt = (ln(Pt)− ln(Pt−1))× 100, where Pt denotes the price of
the stock at time t. The selection of series is made with the aim of encompassing several
markets across the world and stocks of different countries and sectors. As described in
Section 3.1, the full data period of size T is divided into the in-sample period (first T0
observations) and the out-of-sample period (remaining T − T0 observations). The period
and sample size vary across series; the number of observations in the in-sample period is
T0 = 2000 in all cases; thus, the out-of-sample period is approximately 60% of the total
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sample in most cases. Information about the data, including descriptive statistics, period
and in-sample period, is reported in Table 1. Note that the end of the sample period is
always December 2019, in order to exclude the COVID-19 period.

Table 1. Descriptive Statistics for Daily Log-Returns.

Series Mean Std.Dev. Max Min Skew. Kurt. Period T

S&P500 0.02 1.16 10.96 −9.47 −0.23 9.48 11/10/2000–10/12/2019 5000
Euro Stoxx 50 −0.01 1.42 10.44 −9.01 −0.05 5.24 11/10/2000–10/12/2019 5000
BRBOVES 0.04 1.69 13.68 −12.10 −0.12 4.62 11/10/2000–10/12/2019 5000
NASCOMP 0.02 1.46 13.25 −9.59 0.08 6.83 11/10/2000–10/12/2019 5000
Hang Seng 0.01 1.39 13.40 −13.59 −0.04 9.21 11/10/2000–10/12/2019 5000
DAX 0.02 1.56 12.37 −9.60 −0.11 5.39 11/10/2000–10/12/2019 5000
FTSE100 0.00 1.33 12.22 −11.51 −0.25 9.95 11/10/2000–10/12/2019 5000
Euro to US $ 0.00 0.59 3.84 −4.62 −0.10 2.78 11/10/2000–10/12/2019 5000
China Merch. Bank 0.05 2.15 9.60 −14.27 0.17 4.07 10/04/2002−10/12/2019 4353
Kweichow Moutai 0.12 2.05 9.56 −15.21 0.34 3.60 02/01/2002−10/12/2019 4421
Amazon.com 0.08 2.28 29.62 −28.46 0.54 14.83 11/10/2000–10/12/2019 5000
Apple 0.10 1.17 13.02 −19.75 −0.23 6.36 11/10/2000–10/12/2019 5000
Coca−Cola 0.01 1.79 13.00 −10.60 −0.14 11.02 11/10/2000–10/12/2019 5000
Walt Disney 0.03 1.79 14.82 −20.29 −0.21 11.00 11/10/2000–10/12/2019 5000
e−bay 0.03 2.50 26.53 −23.04 0.10 12.74 11/10/2000–10/12/2019 5000
Heineken 0.01 1.44 9.57 −21.53 −0.74 14.39 29/06/2000–10/12/2019 5000

In order to examine how sensitive parameter estimates are to the distribution of the
errors, first we report the estimates that are obtained with each distribution using the
in-sample period of one of the series, namely the Euro Stoxx 50. As a reference, we also
report the estimates that are obtained when we assume that the distribution of the errors
Zt is standard normal. These results can be found in Table 2.

Table 2. Parameter Estimates of Euro Stoxx 50 (In-Sample Period *).

CF GC Skewed-t Johnson Normal

b0
0.0240

(0.0049)
0.0239

(0.0064)
0.0245

(0.0044)
0.0239

(0.0086)
0.0245

(0.0127)

b1
0.7575

(0.0433)
0.7548

(0.0444)
0.7541

(0.0296)
0.7577

(0.0473)
0.7574

(0.1120)

b2
0.0432

(0.0031)
0.0427

(0.0031)
0.0443

(0.0074)
0.0432

(0.0031)
0.0421

(0.0413)

c 2.0919
(0.2144)

2.1235
(0.2214)

2.0882
(0.2612)

2.0926
(0.2588)

2.1294
(1.1149)

µ
−0.0184
(0.0248)

−0.0175
(0.0421)

−0.0244
(0.0219)

−0.0182
(0.0790)

−0.0234
(0.0350)

ψ1
−0.2613
(0.0593)

0.3873
(0.1484)

0.5695
(0.0158)

1.6762
(3.2153)

ψ2
0.3093

(0.1664)
0.1628

(0.0438)
25.7810

(14.2877)
4.2613

(4.0214)

Sample skewness of Ẑt −0.2933 −0.2933 −0.2941 −0.2933 −0.2923
Estimated skewness based on ψ̂1, ψ̂2 −0.2754 −0.2423 −0.2548 −0.2776

Sample kurtosis of Ẑt 3.4112 3.4108 3.4152 3.4114 3.4070
Estimated kurtosis based on ψ̂1, ψ̂2 3.3374 3.3301 3.3275 3.3434

Note: Standard errors in parentheses. * In-sample period is from 11 October 2000 to 10 June 2008 (2000 observations).

The estimates of the unconditional mean parameter µ and the conditional variance
parameters, b0, b1, b2, c, are similar across distributions. The shape parameters ψ1 and
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ψ2 are not directly comparable across distributions. These parameters are related to the
skewness and kurtosis of the distribution; thus, we compare the estimates of skewness and
kurtosis that are found with each distribution using two procedures: first, by computing
the sample skewness and sample kurtosis of the estimated errors Ẑt; second, by computing
the ML estimates of the skewness and kurtosis coefficient (the formulas that relate these
coefficients with ψ1 and ψ2 in each distribution can be found in the references that are
included in Section 2). The estimates of skewness and kurtosis across distributions are
similar; in all cases left skewness and leptokurtosis are observed. In order to visually check
what type of distribution could be more appropriate, in Figures 1 and 2 we show kernel
density estimates obtained with the estimated errors Ẑt of the normal model, together with
the standard normal pdf. In all cases the kernel density estimates exhibit a much higher
kurtosis than the standard normal pdf; additionally, a slight left skewness is also observed
in most cases. These plots suggest that the normal model is not appropriate.

Figure 1. Kernel estimates of the probability density functions of the residuals Ẑt obtained with the
normal model (part 1).

Figure 2. Kernel estimates of the probability density functions of the residuals Ẑt obtained with the
normal model (part 2).

For each returns series described in Table 1, the estimates of VaR and ES for all
distributions (including the standard normal) are backtested using the procedures described
in Section 3.1. Specifically, given a coverage level α, we compute the p-values that are
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obtained when backtesting VaR(α) with the test statistics LRUC and LRIND, and we consider
that the model is “successfully backtested for VaR(α)” if both p-values are greater than 0.05;
the results that are obtained when performing this exercise for coverage levels α = 0.05
and α = 0.025 are reported in Table 3. Similarly, we compute the p-values that are obtained
when backtesting ES(α) with the statistics MUES and MCES(1), and we consider that the
model is “successfully backtested for ES(α)” if both p-values are greater than 0.05; the
results that are obtained when performing this exercise for coverage levels α = 0.05 and
α = 0.025 are reported in Table 4.

Table 3. Backtesting VaR at the 5% Significance Level.

Coverage Level α = 0.05 Coverage Level α = 0.025
CF GC Skewed-t Johnson Normal CF GC Skewed-t Johnson Normal

S&P500 1 1 1 1 1 1 1 1 1 0
Euro Stoxx 50 1 1 1 1 1 1 1 1 1 0
BRBOVES 1 1 1 1 1 1 1 1 1 1
NASCOMP 1 1 1 1 1 1 1 1 1 0
Hang Seng 1 1 1 1 1 1 1 1 1 0
DAX 1 1 1 1 1 1 1 1 1 0
FTSE100 1 1 1 0 1 1 1 1 1 0
Euro to US $ 1 1 1 1 1 1 1 1 1 1
China Merch. Bank 1 1 1 1 0 1 1 1 1 1
Kweichow Moutai 1 0 1 1 0 1 1 1 1 1
Amazon.com 1 0 0 0 0 1 0 0 1 0
Apple 1 1 1 1 0 1 1 1 1 1
Coca-Cola 1 1 0 0 1 0 0 1 1 1
Walt Disney 1 1 1 1 0 1 1 1 1 1
e-bay 0 1 1 1 0 1 1 1 1 1
Heineken 1 1 1 1 0 1 0 1 1 1

Note: A value of “1” means that the corresponding model is succesfully backtested; otherwise, the value is “0”.

Table 4. Backtesting ES at the 5% Significance Level.

Coverage Level α = 0.05 Coverage Level α = 0.025
CF GC Skewed-t Johnson Normal CF GC Skewed-t Johnson Normal

S&P500 1 1 1 1 0 1 1 1 1 0
Euro Stoxx 50 1 1 1 1 0 1 1 1 1 0
BRBOVES 1 1 1 1 1 1 1 1 1 1
NASCOMP 1 1 1 1 0 1 1 1 1 0
Hang Seng 1 1 1 1 0 1 0 1 1 0
DAX 1 1 1 1 0 1 1 1 1 0
FTSE100 1 0 1 1 0 1 1 0 1 0
Euro to US $ 1 1 1 1 1 1 1 1 1 1
China Merch. Bank 1 0 1 1 0 1 1 1 1 1
Kweichow Moutai 1 1 1 1 0 1 1 1 1 0
Amazon.com 1 0 0 1 0 1 1 1 1 1
Apple 1 1 1 1 1 1 1 1 1 1
Coca-Cola 1 1 1 1 1 1 1 1 1 0
Walt Disney 1 1 1 1 1 1 1 1 1 0
e-bay 1 1 1 1 1 1 1 1 1 1
Heineken 1 0 1 1 1 1 0 1 1 0

Note: A value of “1” means that the corresponding model is succesfully backtested; otherwise, the value is “0”.

When backtesting VaR, the normal distribution is successfully backtested only in
18 cases out of the 32 analyses that are carried out with it. The other four distributions
perform much better, as they are only rejected in two cases (CF distribution), three cases
(skewed-t and Johnson distributions) or five cases (GC distribution). Also note that, when
comparing the results of VaR(0.05) and VaR(0.025), there are not big differences between
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them, except in the Johnson distribution (which fails in three cases when α = 0.05, but is
always successfully backtested when α = 0.025). When backtesting ES, the normal distri-
bution performs even worse, as it is successfully backtested only in 13 cases. The other
four distributions perform much better, but some differences are observed among them:
the CF and the Johnson distributions are always successfully backtested and the skewed-t
distribution is only rejected in two cases; however, the GC distribution is rejected in six
cases. Also note that, in terms of performance of the different distributions, the results
for ES(0.05) and ES(0.025) are completely similar. It is also worth emphasizing that there
are two cases (FTSE100 and Heineken with the GC model) that are successfully backtested
for VaR but not for ES when coverage level is 0.05, and two other cases (Hang Seng with
the GC model and FTSE100 with the skewed-t model) in which this also happens when
coverage level is 0.025; note that this may happen when the model does not appropriately
capture the behavior at the extreme left tail. Similar cases have also been reported, e.g., in
Table 7 of [27], and in Table 2 of [35] (when analyzing FTSE100 with their statistic Tn.).

To sum up, the backtesting results suggest that the standard normal distribution is
clearly outperformed by all four two-parameter distributions, but these results shed no
clear light on whether the distributions based on polynomial expansions outperform the
distributions based on parametric densities.

We proceed then to comparatively analyze the performance of the four two-parameter
distributions using loss functions. When using several loss functions, it may happen that
the best model according to one of the loss functions is not the same as the best model
according to another loss function. A possible way to reconcile all the results is to use the
sum of all loss functions and then consider that the best model is the one with lowest sum;
this is, for example, the approach followed in [23]. Instead, here we will only perform
comparisons between two models (first between the two polynomial expansions, second
between the two parametric models, and third between the best ones in the first and second
comparisons); for this reason, in each case we decide to consider that the best model is the
one that yields lower loss functions for most of the five loss functions described in (11),
and thus we avoid that a bad performance with one of the loss functions is decisive in the
comparison. More specifically, for each of our 16 return series and for each of our 4 risk
measures (that is, 64 cases), we perform the comparison of models in this way: (i) we define
the “best polynomial expansion” (BPE) as follows: if neither the GC nor the CF distributions
have been successfully backtested for that risk measure, we consider that there is no BPE;
if one of these two distributions is successfully backtested but the other is not, then the
one that is successfully backtested is considered as the BPE; and when both the CG and
the CF distributions are successfully backtested, we compute the average loss functions
Lj(R̂iskM) defined in (12), for j = 1, . . . , 5, with each distribution, and the one that yields
lower values for most of these five loss measures is considered as the BPE; (ii) we define the
“best parametric density” (BPD) by comparing the skewed-t distribution and the Johnson
distribution in the same way as the GC and CF distributions are compared; (iii) finally,
we compare the BPE and the BPD using the median of the five relative differences (in
percentage) between one and the other, that is

Median of Relat. Diff. = Median{100×
Lj(R̂iskM)BPD − Lj(R̂iskM)BPE

Lj(R̂iskM)BPD

, for j = 1, . . . , 5},

Note that this value gives us with a measure of the relative gain obtained by using
a polynomial expansion instead of a parametric density: a positive (negative) value tells
us how much better (worse) the BPE is with respect to the BPD, in percentage. To clar-
ify matters, in the first analysis that we perform, i.e., when analyzing the estimation of
VaR(0.05) for S&P500, all four distributions are successfully backtested. The average loss
functions when using the GC distribution are L1 = 0.1023, L2 = 0.0543, L3 = 0.02102,
L4 = 0.02704 and L5 = 0.03483, and four of these values (all but L2) are lower than the
similar values that are obtained with the CF distribution; hence, the GC distribution is the
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BPE. The average loss functions when using the skewed-t distribution are L1 = 0.10161,
L2 = 0.05027, L3 = 0.02181, L4 = 0.02654 and L5 = 0.0343, and all of them are lower than
the similar values that are obtained with the Johnson distribution; hence the skewed-t
is the BPD. And the median of the five relative differences between the GC distribution
and the skewed-t distribution is 100 × (L5,Skewed-t − L5,GC)/L5,Skewed-t = −1.55%, that
is, in this case using a polynomial expansion yields slightly worse results than using a
parametric density. Table 5 reports the results that are found when performing this analysis
for VaR(0.05) and Var(0.025), and Table 6 reports similar results when performing this
analysis for ES(0.05) and ES(0.025).

The results in Table 5 show that the polynomial expansions typically outperform
the parametric densities when estimating VaR: the polynomial expansions are preferred
in 25 out of the 32 analysis that are performed. More specifically, the CF distribution is
clearly the dominant one: when estimating VaR(0.025), it is the preferred one in 12 cases
(in the other 4 cases the preferred model is twice the GC model, and once each one of the
parametric densities); when estimating VaR(0.05), the CF distribution still continues to be
the preferred one in 9 cases (in the other 7 cases the preferred model is four times the skewed-
t distribution, twice the GC distribution and once the Johnson distribution). However,
the results in Table 5 also show that the gain by using a polynomial expansion instead
of a parametric density is modest: the values of our measure of the relative difference
between the BPE and the BPD are within the interval [−4%, 6%] in all but one of the
29 comparisons that are made, and most of the times (in 19 cases) the absolute value of the
relative difference is below 3%.

Table 5. Comparison of Distributions with Loss Functions: VaR.

VaR(0.05) VaR(0.025)
Best

Polynomial
Expan. (1)

Best
Parametric
Density (2)

Median of
Relat. Diff. *

[(1)-(2)]/(2)

Best
Polynomial
Expan. (1)

Best
Parametric
Density (2)

Median of
Relat. Diff. *

[(1)-(2)]/(2)

S&P500 GC Skewed-t −1.55% GC Skewed-t 3.11%
Euro Stoxx 50 CF Skewed-t −0.28% CF Johnson 0.63%
BRBOVES CF Johnson 0.50% CF Johnson 0.63%
NASCOMP GC Skewed-t −0.61% GC Johnson 5.51%
Hang Seng GC Johnson 5.37% CF Johnson 2.43%
DAX CF Johnson 0.73% CF Johnson 0.95%
FTSE100 CF Skewed-t 0.49% CF Johnson 0.85%
Euro to US $ GC Skewed-t −3.40% CF Skewed-t −3.31%
China Merch. Bank GC Johnson 14.25% CF Johnson 3.18%
Kweichow Moutai CF Johnson 2.97% CF Johnson 5.58%
Amazon.com CF — ** — CF Johnson 3.81%
Apple CF Johnson 1.18% CF Johnson 1.25%
Coca-Cola CF — ** — — ** Johnson —
Walt Disney CF Johnson 1.31% CF Johnson 1.49%
e-bay GC Johnson −3.07% CF Johnson 1.68%
Heineken CF Johnson 1.85% CF Johnson 2.50%

Note: Only distributions that are “sucessfully backtested” are considered (excluding the normal). * A positive
sign means that the best polynomial expansion performs better (has lower median loss) than the best parametric
density. ** In this case no distribution of this type is sucessfully backtested.
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Table 6. Comparison of Distributions with Loss Functions: ES.

ES(0.05) ES(0.025)
Best

Polynomial
Expan. (1)

Best
Parametric
Density (2)

Median of
Relat. Diff. *

[(1)-(2)]/(2)

Best
Polynomial
Expan. (1)

Best
Parametric
Density (2)

Median of
Relat. Diff. *

[(1)-(2)]/(2)

S&P500 GC Skewed-t −3.42% CF Skewed-t −4.00%
Euro Stoxx 50 CF Johnson −0.20% CF Johnson −1.18%
BRBOVES CF Johnson −0.03% CF Johnson −0.45%
NASCOMP CF Johnson −0.74% CF Johnson −1.77%
Hang Seng CF Johnson 1.19% CF Johnson 0.58%
DAX CF Johnson 0.10% CF Johnson −0.34%
FTSE100 CF Johnson 0.09% CF Johnson −0.50%
Euro to US $ CF Johnson 1.13% CF Skewed-t −9.38%
China Merch. Bank CF Skewed-t −2.32% GC Skewed-t 2.39%
Kweichow Moutai CF Skewed-t 1.69% CF Skewed-t −0.86%
Amazon.com CF Johnson 0.65% CF Skewed-t −7.03%
Apple CF Johnson −0.42% CF Johnson −1.71%
Coca-Cola CF Johnson −0.25% CF Skewed-t −2.94%
Walt Disney CF Johnson −0.02% GC Johnson 2.41%
e-bay CF Johnson 0.18% CF Johnson −1.21%
Heineken CF Skewed-t 0.23% CF Skewed-t −3.27%

Note: Only distributions that are “sucessfully backtested” are considered (excluding the normal). * A positive sign
means that the best polynomial expansion performs better (has lower median loss) than the best parametric density.

The results in Table 6 show a different picture when estimating ES. Parametric densities
outperform polynomial expansions in 21 out of the 32 analysis that are performed. More
specifically, the Johnson distribution is now the dominant one, but the results are much
less clear-cut than those of Table 5. In fact, when estimating ES(0.05), in 8 cases the BPE
outperforms the BPD (and in those 8 cases the CF distribution is the BPE), and in 8 cases
the BPD outperforms the BPE (and in 6 of these cases the Johnson distribution is the BPD).
When estimating ES(0.025) there is more evidence of a better performance of the BPD, as it
outperforms the BPE in 13 cases (and in 7 of these cases the Johnson distribution is the
BPD). However, it is possibly more important to emphasize that now the differences in
performance are even lower than those observed in Table 5: the values of our measure of
the relative difference between the BPE and the BPD are within the interval [−4%, 3%] in
all but two of the 32 comparisons that are made, and most of the times (in 23 cases) the
absolute value of the relative difference is below 2%.

To sum up, the distributions based on polynomial expansions (specifically, the CF
distribution) outperform the parametric distributions that we consider when the risk
measure of interest is VaR, but if our interest lies on the estimation of ES the parametric
distributions (specifically, the Johnson distribution) provide somewhat better results than
the polynomial expansions that we consider. In any case, the relative gains of using one
approach instead of the other are modest, especially when estimating ES.

5. Concluding Remarks

We study the performance of alternative models for estimating the VaR and the ES of
daily returns, using both backtesting tests and loss functions to rank the candidate models.
All the models we consider specify a NGARCH structure for the conditional variance with
constant conditional mean, but differ in the distribution assumed for the standardized
errors, Zt; more specifically, we examine (i) distributions based on polynomial expansions
(Cornish-Fisher and Gram-Charlier), and (ii) well-known parametric distributions (skewed-
t and Johnson distributions). We employ traditional tests for backtesting VaR, see [21,22],
and the approach of cumulative violations proposed in [4] for backtesting ES.

The datasets we use include stock returns, indexes and exchange rates, and cover
markets from around the world. The coverage levels considered here are 5% and 2.5%,
which are typical values employed by regulators and risk managers in practice. The first
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stage of our analysis, based on the backtesting approach, provides evidence that polynomial
expansions are as good as parametric densities to generate statistically correct VaR/ES
estimates at both coverage levels; it also shows that the standard normal density is not
appropriate in most cases. A second stage analysis, based on the use of loss function,
is implemented for those successfully backtested VaR/ES models, in order to rank the
models and examine whether or not polynomial expansions yield better estimates than
parametric densities. The conclusion of this analysis is that polynomial expansions (specif-
ically, the Cornish-Fisher one) usually outperform parametric densities in VaR estimation,
but parametric densities (specifically, the Johnson density) slightly outperform polynomial
expansions in ES estimation. However, the gains of using one approach or the other are
modest, especially in the case of ES estimation.

Several interesting avenues for further research are as follow: First, examining whether
an increase in the number of parameters would favor one of the two approaches over the
other; this type of analysis should consider, for example, the three-parameter generalization
of the Student-t density proposed in [36], or the higher-order GC expansion considered
in [37]. Second, including in the analysis polynomial expansions based on alternative
densities to the normal that yield closed-form expressions for ES, see, e.g., [38] for the
case of the Student-t, or [39] for the case of hyperbolic secant and logistic densities. Third,
extending our analysis by considering the use of joint scoring functions for VaR and ES and
intraday data, in the spirit of [40].
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