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Highlights

• Maximum Likelihood (ML) cost functions are derived
for direction of arrival (DOA) estimation under non-uniform
unknown sensor noise powers.

• Newton methods for the cost functions are presented in-
cluding closed-form formulas for the gradients and Hes-
sians.

• The degeneracy or inconsistency of the Deterministic ML
estimator is analysed.

• The proposed estimators are compared with state of the
art estimators both in terms of root-mean-square (RMS)
and computational burden performance.
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Abstract

This paper presents an efficient method for computing Maximum Likelihood (ML) direction-of-arrival (DOA) estimates in
scenarios in which the sensor noise powers are nonuniform and unknown. The method combines the Alternating Projection (AP)
algorithm for coarsely locating additional DOAs and Newton iterations for finally obtaining the ML estimates. Compared with
the existing approaches, the method reduces the computational burden significantly due to the small number of Newton iterations
required and to the efficient computation of each iteration. Specifically, the iterations are computed in a small number of arithmetic
operations thanks to the closed-form formulas for the gradient and Hessian of the ML cost functions presented in this paper. The
method’s total computational burden is of just a few mega-flops (mega floating-point operations) in typical cases. We present the
method for the deterministic and stochastic ML estimators. Then, an analysis of the deterministic ML cost function’s gradient
reveals an unexpected drawback: its associated estimator is either degenerate or inconsistent. Finally, we assess the method’s root-
mean-square (RMS) error and computational burden numerically and compare it with other relevant estimators in the literature.

1. Introduction

The DOA estimators for several narrowband sources are
usually designed for uniform noise scenarios, i.e, they may be
used whenever the noise is uncorrelated, both spatially and tem-
porally, and of the same power at each sensor. This noise unifor-
mity greatly simplifies DOA estimation, because it allows one
to describe the noise through a single parameter, its power, and
makes it possible to employ estimators such as MUSIC (MUl-
tiple SIgnal Classification) and ESPRIT (Estimation of Signal
Parameters via Rotational Invariance Techniques), [1, 2], and
simplifies the derivation of ML estimators, [3, 4, 5]. However,
in a variety of applications, though the noise is spatially and
temporally uncorrelated, its power differs from sensor to sensor.
This is the case in some seismic and biomedical applications
[6], in applications involving sparse arrays [7, 8, 9, 10, 11, 12],
or whenever there exist imperfections in the sensors’ process-
ing chains [13, 14, 15, 16]. DOA estimation in these applica-
tions becomes more complex, given that the noise powers must
be taken into account in the estimation as additional unknown
parameters. Actually, the unknown noise powers (UNPs) pre-
vent the direct use of subspace methods such us MUSIC and
ESPRIT and significantly increase the complexity of comput-
ing ML estimates. There have been attempts to adapt subspace
methods to the UNP case, such as [7] and [12], in which the
impinging signals are assumed to be uncorrelated. Regarding
ML estimation, the UNP ML cost functions depend on a large
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number of parameters of three different kinds, signal, noise and
DOA parameters, and the computation of the corresponding
ML estimates involves the location of the cost function’s global
maximum in all of them. This is a hard optimisation problem
that is usually addressed by alternating maximisations in each
of these three kinds of parameters in a proper way. In [14, 17],
the authors proposed an iterative method for the deterministic
ML (DML) cost function, that exploited the fact that this func-
tion can be concentrated in the signal samples and noise powers
separately. They proposed an iteration in which the remaining
DOA parameters were obtained through a genetic algorithm. In
[18], a more efficient computation method for the UNP DML
estimator was presented. This method exploited the relation-
ship between the UNP DML cost function and its equivalent
for uniform noise. Fundamentally, the author combined the
AP algorithm [19] with a closed-form noise-powers estimation
step. This last method outperforms that in [14, 17] because it
replaces the expensive global-search genetic algorithm with the
AP method. In [9], the authors presented a method that resem-
bles that in [18] but for the Stochastic ML (SML) cost function.
It is is also based on a two-step iteration combining the AP al-
gorithm with an iterative method for the noise powers, termed
the Power-Domain (PD) method.

We can see that all these approaches are variants of the stan-
dard ascendant direction method in numerical analysis [20, Sec
10.7], in which the maximum of a given cost function is ap-
proached iteratively by maximising in sub-sets of the parame-
ters involved. The main advantage of ascendant direction is that
it approximately locates the global maximum of the cost func-
tion with low complexity. However, it is inefficient for refining
an initial coarse estimate, given that the number of iterations re-
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quired for locating the actual global maximum is usually large.
For this refinement, a better alternative is a Newton method
given that its convergence rate is quadratic [21, Sec 6.3.1]. The
purpose of this paper is to present a method for computing UNP
ML estimates based on Newton’s method, whose complexity is
low due to the efficient implementation of the Newton itera-
tions, which is made possible by the closed-form gradient and
Hessian expressions presented in this paper.

The paper has been organised as follows. In the next sec-
tion, we introduce the signal model and the UNP ML cost func-
tions. Then, we recall the state of the art two-step methods for
the computation of the UNP ML estimates in Sec. 3 and com-
ment on their limitations in Sec. 4, where we also outline the so-
lution to these limitations. After that, we present the proposed
method in Sec. 5, which is based on Newton iterations, and the
gradient and Hessian expressions in Sec. 6. In Sec. 7, we check
whether the DML and SML estimators are non-degenerate and
consistent. Finally, we assess the proposed method in Sec. 8
numerically.

1.1. Notations and basic concepts

We employ the following notations:

• Column vectors and matrices are written in lower- and
upper-case bold font respectively. Thus x denotes a col-
umn vector and X a matrix.

• [X]p,q denotes the (p, q) component of matrix X, and
[X]p,· and [X]·,q its pth row and qth column respectively.

• diag(x) is the diagonal matrix formed by the components
of x.

• For square X, tr{X} denotes the trace of X, i.e, the sum of
its diagonal components.

• [x; y] denotes the column vector formed by concatenating
the column vectors x and y vertically.

• XH stands for the conjugate transpose of X.

• X† stands for the pseudo-inverse of matrix X. If X has
full column rank then X† = (XH X)−1XH .

• Given a matrix X of full column rank, its projection ma-
trix is XX†.

• IM denotes the M × M identity matrix.

• Given a matrix A of size M ×K, its QR decomposition is
A = QR, where Q has size M×K and follows QHQ = IK

and R is upper triangular. For the properties of this de-
composition, see [22, Th. 5.2.3].

• The operator ’≡’ indicates a symbol or function defini-
tion.

• Given two variables a and b, the arrow a→ b denotes the
replacement of a with b in a given expression.

• δK,p denotes a K × 1 Dirac vector

[δK,p]k ≡


0, k , p

1, k = p.

Throughout the paper, we often omit the dependency on the
various parameters in writing for simplicity. Thus, for example,
Φ stands for Φ(θ, λ) and Φo for Φo(θ). The actual dependen-
cies are evident from the context.

The starting point for the cost function derivations in the pa-
per is the complex Gaussian probability density function (PDF),
[23, Th. 15.1]. Specifically, if the expected value of matrix Z
is Ez and the columns of Z are independent and have equal co-
variance matrix Cz, then the PDF of Z is

f (Z) =
1

πMN |Cz|N ·

exp(−tr{C−1
z (Z − Ez)(Z − Ez)

H}).
(1)

We denote the various ML cost functions in the paper using
the subscripts “o”, “D”, and “S”,

• LDo(θ) denotes the concentrated deterministic ML cost
function for equal but unknown sensor noise power.

• LD(θ, λ) and LS (θ, λ) respectively denote the concentrated
deterministic and stochastic ML cost functions for un-
known sensor noise powers.

2. Signal model and UNP Maximum Likelihood cost func-
tions

We present in the sequel the signal model under unknown
noise powers and then the two main ML cost functions, the de-
terministic and stochastic, in separate subsections. Consider a
linear array formed by M sensors and K waves impinging from
angles of arrival θk, k = 1, . . . , K. If the receiver takes N snap-
shots, the data model is

Z = Φo(θ)S + N, (2)

where:

• [Z]m,n is the nth sample from the mth sensor.

• θ contains the K angles of arrival (AOAs) θk, [θ]k ≡ θk.

• φo(θ) is the array’s response to a wave from angle θ and
Φo(θ) is a matrix stacking the responses to the angles in
θ, [Φo(θ)]·,k ≡ φo(θk).

• [S]k,n is the nth sample from the kth impinging signal.
There are two different models for S called deterministic
and stochastic. In the deterministic, the whole matrix S
is modeled as a set of unknown parameters while, in the
stochastic, the columns of S are modeled as independent
samples of a complex Gaussian vector of zero mean and
covariance matrix Rs.
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• All components [N]m,n are independent noise samples
that follow a complex normal circularly-symmetric dis-
tribution of zero mean and deviation 1/λm, where we re-
fer to λm as the inverse noise deviation at the mth sensor.
Additionally, we define the following vector and diagonal
matrix from λm,

[λ]m ≡ λm, Λ ≡ diag(λ).

Using Λ, we have that the columns of N have covariance
matrix Λ−2.

2.1. Deterministic Maximum Likelihood (DML) cost function

If S is viewed as a deterministic matrix, then Z in (2) has
mean Ez → ΦoS and covariance Cz → Λ−2 and, from (1), the
PDF of Z is

fD(Z|θ, λ,S) ≡
|Λ|2N

πMN
exp

(
−tr

{
Λ2(Z −ΦoS)(Z −ΦoS)H

})
, (3)

where we have written Φo rather than Φo(θ) for simplicity. If
we take the logarithm of this expression and introduce the fol-
lowing “whitened” signature matrix

Φ(θ, λ) ≡ ΛΦo(θ), (4)

then, after straightforward manipulations, we obtain from (3)
the cost function

LD(θ, λ,S) ≡ − NM log π + 2N log |Λ|
− tr{(ΛZ −ΦS)(ΛZ −ΦS)H}). (5)

Next, as is well known, this expression is maximized in S for
fixed θ and λ, if the product ΦS is replaced with PΛZ, where
P is the projection matrix of Φ. For later use, we express this
last matrix as

P ≡ ΦMΦH ,

where M is the inverse correlation matrix of Φ,

M ≡ (ΦHΦ)−1.

So if we replace ΦS with PΛZ in (5) and perform straight-
forward manipulations, we obtain the new cost function

LD(θ, λ) ≡ N
(
2 log |Λ| − tr{(IM − P)Rzλ}), (6)

where we have neglected the constant −NM log π in (5) and Rzλ

denotes the “whitened” data correlation matrix

Rzλ ≡ 1
N
ΛZZHΛ. (7)

(6) is the concentrated DML cost function that is used in the
rest of the paper.

For uniform noise, the cost function equivalent to LD is ob-
tained form (6), simply by setting Λ = IM/σ, where σ is the

noise deviation. Thus, setting Λ = IM/σ and noting that P
turns out to be independent of σ, we obtain

N
( − 2M logσ − 1

σ2
tr{(IM − P)Rz}), (8)

where

Rz ≡ 1
N

ZZH .

As can be easily checked, (8) can be maximized in σ and θ
independently. This implies that we may obtain a θ-only cost
function simply by setting σ equal to a fixed value, say σ = 1.
Thus, from (8), we obtain the cost function

LDo(θ) ≡ −Ntr{(IM − Po)Rz}), (9)

where the sub-script “o” indicates that the matrices are com-
puted with Λ = IM .

2.2. Stochastic Maximum Likelihood (SML) cost function

In the stochastic modeling, the columns of S are viewed as
independent trials of a complex Gaussian distribution of zero
mean and covariance Rs and, from (2), this leads to the PDF in
(1) with Ez → 0 and Cz → ΦoRsΦ

H
o + Λ−2. For simplicity, let

us write this last covariance matrix as

ΦoRsΦ
H
o + Λ−2 = Λ−1(ΦRsΦ

H + IM)Λ−1.

Substituting these values of Ez and Cz into (1), we obtain the
PDF in the stochastic case

fS (Z|θ, λ, Rs) ≡ |Λ|2N

πMN |IM +ΦRsΦ
H |N ·

exp
(
−Ntr

{
(IM +ΦRsΦ

H)−1Rzλ

})
, (10)

where we have inserted the signature matrix in (4) and the whitened
correlation matrix in (7).

Taking the logarithm of (10), we obtain the cost function

LS (θ, λ, Rs) ≡ −MN log(π) + 2N log |Λ|
−N log |IM +ΦRsΦ

H | − Ntr{(IM +ΦRsΦ
H)−1Rzλ}.

(11)

This expression can be maximised in Rs for fixed θ and λ and
the maximum is attained at

R̂s ≡ Φ†Rzλ(Φ†)H − M. (12)

(See [24] for a proof.)
In order to replace Rs with R̂s in (11), it is convenient to

start by performing this same replacement on the covariance
matrix appearing twice in (11), namely the matrix

C ≡ IM +ΦR̂sΦ
H . (13)

More precisely, we proceed to derive compact expressions of C
and C−1 in terms of Φ and P.

First, noting that ΦMΦH = P and ΦΦ† = P, the substitu-
tion of (12) into (13) yields the desired expression for C,

C = IM +Φ(Φ†Rzλ(Φ†)H − M)ΦH

= IM − P + PRzλP.
(14)
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Second, regarding C−1, consider the QR decompositionΦ =QR,
with QHQ = IK and invertible R, and an M × (M − K) matrix
Q⊥ spanning the orthogonal complement to Q, (QH

⊥Q⊥ = IM−K ,
QHQ⊥ = 0). Noting that P = QQH and IM − P = Q⊥QH

⊥ , we
may write C in (14) as

C =
[
Q⊥, Q

] [IM−K 0
0 QH RzλQ

] [
QH
⊥

QH

]
.

From this factorisation, its clear that C−1 is given by

C−1 =
[
Q⊥, Q

] [IM−K 0
0 (QH RzλQ)−1

] [
QH
⊥

QH

]
.

And, finally, replacing Q→ ΦR−1, we obtain an expression for
C−1 in terms of Φ and P only:

C−1 = Q⊥QH
⊥ + Q(QH RzλQ)−1QH

= IM − P

+ΦR−1((R−1)HΦH RzλΦR−1)−1(R−1)HΦH

= IM − P +Φ(ΦH RzλΦ)−1ΦH .

We may write this formula concisely as

C−1 = IM − P + Pz, (15)

where

Pz ≡ ΦMzλΦ
H and Mzλ ≡ (ΦH RzλΦ)−1. (16)

Coming back to (11), the replacement of Rs with R̂s can
be effected by substituting into that equation the identities (14),
(15), and

tr{PzRzλ} = K.

This last identity can be easily deduced from (16). The result of
these substitutions, neglecting constant summands, is the con-
centrated cost functions

LS (θ, λ) ≡ N
(
2 log |Λ| − tr{(IM − P)Rzλ} − log |C|). (17)

This is the concentrated stochastic ML cost function that is
analysed in the rest of the paper. Note that LS in (17) is formed
by adding a single term to LD in (6). Actually, we have

LS = LD + LC , where LC ≡ −N log |C|. (18)

3. State of the art two-step approach for the computation
of UNP ML estimates

Let us now recall the usual two-step approach for comput-
ing UNP ML estimators [18, 9]. Fundamentally, this approach
consists of maximising a given cost function in θ and λ alter-
nately until convergence is achieved. Since it has the same form
for either the DML or SML cost function, let us only recall the
version in [18] for the DML estimator. The DML estimate of
the pair (θ, λ) is the abscissa of the global maximum of LD(θ, λ)
in (6), and the method in [18] exploits two basic properties of
this last cost function:

1. For a fixed value of λ, say λo, LD(θ, λo) can be easily cast
as a uniform-noise DML cost function. This allows one
to maximise LD(θ, λo) in θ using the AP algorithm [19].
This last algorithm is based on line searches and consists
of two steps:

• AP initial step. A K × 1 vector θ̂0 of coarse esti-
mates is computed in K sub-steps as follows. At
the kth sub-step, a (k − 1)-length vector θ̂0,k−1 is ex-
tended to a k-length vector θ̂0,k by appending the
result of a line search, i.e,

θ̂0,k =
[
θ̂0,k−1; arg max

θ
LD([θ̂0,k−1; θ], λo)

]
. (19)

The initial vector θ̂0,0 is empty and the output coarse
estimate is θ̂0 = θ̂0,K .

• AP refinement step. This sub-step is iterative and,
in each iteration, performs one line search for each
component of the previous iteration’s output θ̂k−1

independently. In other words, if θ̂r,k,θ denotes θ̂r

but with its kth component replaced with the vari-
able θ, then the next iteration output is given by
(r ≥ 0, k = 1, 2, . . . , K)

[θ̂r+1]k = arg max
θ

LD(θ̂r,k,θ, λo). (20)

2. If θ0 is the output of step 1) and is close to the true value
of θ, then we may expect

Rz ≈ Φo(θ0)SSHΦo(θ0)H + Λ−2

and, therefore, the columns of Rz − Λ−2 approximately
lie in the span of Φo(θ0). This implies that their projec-
tion onto the orthogonal complement to this last span is
approximately zero, i.e,

(IM − Po(θ0))(Rz − Λ−2) ≈ 0.

Thus, we may estimate λ as the vector minimising the
Frobenius norm of this last matrix, given by

tr
{
(IM − Po(θ0))(Rz − Λ−2)(Rz − Λ−2)H}

.

As can be readily checked [18], the resulting estimate of
λ is, (m = 1, 2, . . . , M),

[λ0]m =

√
1 − [Po(θ0)]m,m

Re{[Rz(IM − Po(θ0))]m,m} . (21)

These two procedures can be used to approach the maximum of
LD(θ, λ) by means of an iterative procedure, in which 1) and 2)
are performed alternatively. In [18], this procedure is simplified
further by substituting (21) into the alternative cost function

LDmd(θ, λ) ≡ −Ntr{(IM − P)Rzλ}, (22)

which is identical to LD but neglecting the term log |Λ|. The
result of this substitution is a, so called, PD cost function, given
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by

LPD(θ) ≡ −
M∑

m=1

(
rH

m(IM − Po)rm

− Re{[IM − Po]m,· · rm}
[IM − Po]m,m

)
,

(23)

where rm ≡ [Rz]·,m.

4. Limitations of the state of the art two-step approach and
outline of the proposed method

The computation of UNP ML estimates consists of locat-
ing the global maximum of either LD and LS and this process
has two fundamental stages. In the first, the global maximum
is coarsely located by avoiding the convergence to any local
maximum and, in the second stage, the coarse location just ob-
tained is refined until the global maximum is attained. The state
of the art approach in the previous section performs these two
stages in the same way, i.e, by ascending to the global maxi-
mum through searches performed in either a single parameter
(AOA θ) or a parameter sub-set (vector λ). This is probably the
best approach for the first stage, given that it avoids the con-
vergence to any local minimum due to the line search in (19).
However, once a coarse location [θ0; λ0] is known, there is addi-
tional information available, namely, the fact that the cost func-
tion’s shape is approximately known around [θ0; λ0], and this
additional information can be exploited by a suitable method,
such as a Newton method [21, Ch. 5], [25, 26]. To be more
precise, if [θ0; λ0] is close to the global maximum position, say
position [θ; λ], then a second-order Taylor expansion around
[θ0; λ0] may have some accuracy at [θ; λ]; that is, if L denotes
either LD or LS , we have the approximation

L(θ, λ) ≈L(θ0, λ0) + g(θ0, λ0)T
[
θ−θ0

λ−λ0

]

+
1
2

[θ − θ0; λ − λ0]T H(θ0, λ0)
[
θ−θ0

λ−λ0

]
,

(24)

where g(θ, λ) and H(θ, λ) denote the gradient and Hessian of
L(θ, λ) respectively. This implies that we may approach the
position of the global maximum by iteratively maximising (24)
or, in other words, by performing Newton iterations of the form
(r = 0, 1 . . .)

[
θr+1

λr+1

]
=

[
θr

λr

]
− µr H−1(θr, λr) g(θr, λr), (25)

where [θr; λr] is the current iterate and the parameter µr is usu-
ally set to 1 but may be between 0 and 1 in case there is no
increase in the cost function value; (see [21, Ch. 6] for further
details on Newton’s method.).

This Newton method improves on the state of the art ap-
proach for the following two reasons. First, (25) involves no re-
peated one-dimensional maximisations such as (20). And sec-
ond, (25) converges quadratically to the global maximum [21,
Sec. 6.3.1] and this implies, in practice, that a small number

of iterations is sufficient. However, a drawback is that (25) re-
quires the value of the gradient and Hessian of either LD or LS

and this may, in principle, involve a high computational burden.
In this paper, we overcome this drawback by presenting closed-
form formulas of the gradient and Hessian of both LD and LS

in Sec. 6, that make it possible to obtain the values of these
differentials in a small number of flops. These formulas have
been derived following the approach in [27], [28, Ch. 5].

One unexpected spin-off of these closed-form formulas is
the analysis in Sec. 7, where it is shown that the DML es-
timator is either inconsistent or degenerate, i.e, either its per-
formance fails to improve with the number of snapshots or the
DML cost function has no global maximum. This is a draw-
back that is readily observed in the numerical examples (Sec.
8.1): the Newton iterations for the DML cost function produce
diverging values of some component of λ.

In the next section, we present the proposed method in detail
and then the expressions of the gradients and Hessians in Sec.
6.

5. Proposed method

The proposed method consists of the following steps:

1.1 Computation of coarse estimate of θ, denoted θ′0.

1.2 Computation of coarse estimate of λ, denoted λ′0.

2 Refinement of [θ′0; λ′0] using a Newton method.

We explain these steps in corresponding sub-sections.

5.1. Step 1.1: Initial DOA estimates θ0

This sub-step computes the argument θ0 that globally max-
imises LDo in (9). θ0 will be the input argument of Step 2. The
method employed for obtaining this last vector is the AP initial
step in Sec. 3, but complemented with a Newton refinement
after each angle is added. Specifically, starting with an empty
vector θ′0, θ′k+1 is constructed from θ′k in the following two sub-
steps,

1. Add angle. The method finds out the approximate loca-
tion of the global maximum of LDo([θ′k; θ]) through a line
search in θ, and appends the corresponding abscissa to θ′k,
in order to form a new vector θ′k+1,o, (θ′k+1,o = [θ′k,o; θ]).

2. Refinement. A Newton refinement of the form in (25) is
applied to θ′k+1,o. Specifically, with initial vector θ′k+1,o,0 =

θ′k+1,o, the corresponding Newton iteration is (r = 0, 1, . . .),

θ′k,o,r+1 = θ′k,o,r − µk,r H−1
Do(θ′k,o,r) gDo(θ′k,o,r), (26)

where µk,r is the iteration’s scale factor, and gDo(θk,o,r)
and HDo(θk,o,r) are the gradient and Hessian (or Hessian
approximation) of LDo respectively. (26) is repeated un-
til ‖θ′k,o,r+1 − θ′k,o,r‖ is sufficiently small. Then, the last
iteration’s vector is the output θ′k.

1) and 2) are repeated K times and the final output θ′K is the
input to Step 2, θ0 = θ′K .
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5.2. Step 1.2: Initial noise parameter estimates λ0

In this sub-step, we employ the estimate of λ in (21) pre-
sented in [18].

5.3. Step 2: Newton refinement

In this final step, we refine the initial estimate [θ0; λ0] through
the Newton iterations in (25). They are computed until ‖[θr+1; λr+1]−
[θr; λr]‖ is sufficiently small. The final vector [θr+1; λr+1] is the
corresponding DML or SML estimate.

6. Gradients and Hessians of the DML and SML cost func-
tions

For simplicity, we introduce the gradients and Hessians of
LD and LC , given that the corresponding differentials of LS can
be readily obtained through the equation LS = LD + LC . We let
gD and gC denote the gradients and HD and HC the Hessians
of LD and LC respectively. Besides, we divide all these differ-
entials into blocks corresponding to the θ and λ vectors. Thus,
for the gradient gD we have the block structure

gD ≡
[
gDθ

gDλ

]
, gC ≡

[
gCθ

gCλ

]
.

and the corresponding expressions are

gDθ= 2NRe{diag{Φ†Rzλ(IM − P)D}}
gDλ= 2NΛ−1diag{IM − (IM − P)Rzλ(IM − P)}
gCθ= −2NRe{diag{MzλΦ

H Rzλ(IM − P)D}}
gCλ= 2NΛ−1Re{diag{P − 2RzλPz}},

(27)

where

[D]·,k ≡ Λ ∂

∂θk
φo(θk), k = 1, . . . , K.

The derivation of gDλ and gCλ can be found in Appendix B and
that of gDθ and gCθ in the complementary material.

Regarding the Hessians, we have the structure

HD ≡
[
HDθθ HDθλ

HT
Dθλ HDλλ

]
, HC ≡

[
HCθθ HCθλ

HT
Cθλ HCλλ

]
.

The expressions of these blocks are in Appendix A and the
corresponding derivations are in the complementary material.

7. Consistency and non-degeneracy of the DML and SML
estimators

Let us consider first the value of Rz for high N and with
high probability. This value is approximately

Rz ≈ ΦoRsΦo + Λ−2, (28)

where the right hand side is evaluated at the true values of θ and
λ; and where Rs is the signal covariance matrix for the SML
estimator, or the asymptotic covariance

Rs = lim
N→∞

1
N

SSH .

for the DML estimator. (We assume the existence of this limit.
Note that the number of columns of S is N.)

We have the following two desirable properties of both the
DML and SML estimators for high N and with high probability,

1. Consistency. The DML or SML estimate is close to the
true values of θ and λ. Therefore, (28) also holds if its
right-hand side is evaluated at the estimates of θ and λ
rather than at the true values of these vectors.

2. Non-degeneracy. The DML or SML estimate corresponds
to a critical point of either LD or LS , i.e, we either have

gDθ(θ, λ) = 0, gDλ(θ, λ) = 0 (29)

or
gS θ(θ, λ) = 0, gSλ(θ, λ) = 0. (30)

Now we can show that if 1) is true then 2) is false for the
DML estimator, while if 1) is true then 2) is also true for the
SML estimator. For this, let us assume 1) and then prove that
all equations in condition 2) hold except for the second one in
(29), i.e, gDλ , 0.

First, note that the expressions of gDθ and gCθ in (27) are
formed by products containing the factor

ΦH Rzλ(IM − P). (31)

But (28) implies the approximation

Rzλ = ΛRzΛ ≈ ΦRsΦ
H + IM , (32)

and we can easily combine the property (IM − P)Φ = 0 with
this last approximation to show that (31) is approximately zero.
So, we deduce gDθ ≈ 0 and gCθ ≈ 0 and in turn

gS θ = gDθ + gCθ ≈ 0.

Thus, the first equations of (29) and (30) hold.
Second, let us check whether gDλ ≈ 0. For this, substitute

(32) into the expression for gDλ in (27) and use (IM − P)Φ = Φ

and (IM − P)2 = IM − P. We have

gDλ ≈ 2Ndiag
{
Λ−1

− Λ−1(IM − P)(IM +ΦRsΦ
H)(IM − P)

}

= 2Ndiag{Λ−1 − Λ−1(IM − P)}
= 2Ndiag{Λ−1 P}.

(33)

If Q denotes a matrix whose columns are an ortho-normal basis
for the span of Φ, then P = QQH and the mth component of
(33) can be expressed as

[gDλ]m ≈ 2N
‖[Q]·,m‖2
λm

≥ 0.

Since ‖[Q]·,m‖2 is positive for at least one index m, we have
gDλ , 0. This proves that 1) and 2) are incompatible for the
DML estimator.
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And finally, let us check whether gSλ ≈ 0. For this, we need
to consider the expression of gCλ in (27), but let first us prove
that PzRzλ ≈ P. We have

PzRzλ = Φ(ΦH RzλΦ)−1ΦH Rzλ

≈ Φ(ΦH(IM +ΦRsΦ
H)Φ)−1ΦH(IM +ΦRsΦ

H)

= Φ(ΦHΦ +ΦHΦRsΦ
HΦ)−1ΦH(IM +ΦRsΦ

H)

= Φ((IK +ΦHΦRs)Φ
HΦ)−1ΦH(IM +ΦRsΦ

H)

= Φ(ΦHΦ)−1(IK +ΦHΦRs)
−1ΦH(IM +ΦRsΦ

H)

= Φ(ΦHΦ)−1(IK +ΦHΦRs)
−1(ΦHΦRsΦ

H +ΦH)

= Φ(ΦHΦ)−1(IK +ΦHΦRs)
−1(IK +ΦHΦRs)Φ

H

= Φ(ΦHΦ)−1ΦH = P.

Now, let us operate on the expression of gCλ in (27) assuming
this last approximation, recalling that Rzλ = ΛRzΛ, and using
the property diag{PΛ−1} = diag{Λ−1 P}. We have

gCλ = 2N(Re{diag{PΛ−1 − 2RzΛPz}})
= 2N(Re{diag{PΛ−1 − 2Λ−1RzλPz}})
≈ 2N(Re{diag{PΛ−1 − 2Λ−1 P}})
= 2N(Re{diag{Λ−1 P − 2Λ−1 P}})
= −2Ndiag{Λ−1 P}.

Therefore, from (33), we have

gSλ = gDλ + gCλ ≈ 0.

So, we conclude that 1) implies 2) for the SML estimator.

8. Numerical examples

We have assessed the proposed method for the LD and LS

cost functions numerically in the following scenario:

• Received signals. The received signals were uncorre-
lated complex Gaussian process of equal variance and
there were K = 2 of them.

• Sensor array. Uniform linear array formed by M = 10
sensors with half-wavelength spacing.

• Angles of arrival. The angles of arrival were θ1 = 7◦ and
θ2 = 13◦ relative to the broadside.

• Sensor noise inverse deviations. They were the follow-
ing:

Λ = diag([10, 2, 1.5, 0.5, 8, 0.7, 1.1, 3, 6, 3])−1/2. (34)

• Initial estimate. In all simulations, the initial estimates
of θ and λ were computed using the AP algorithm fol-
lowed by the estimator in ().

• Refinement methods. We tested the following estima-
tors,

-20 0 20 40 60
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DMLo
DML-alt
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Figure 1: RMS error performance of MUSIC, DMLo, DML-alt, and SML for
uncorrelated signals.

– MUSIC. Multiple Signal Classification estimator.

– DMLo. DML estimator for uniform noise. This is
the output of Step 1.1 of the proposed method.

– Chen. SML estimator computed using the method
in [9].

– MDS. Approximate DML estimator in [18]

– DML-alt. Proposed method for the DML cost func-
tion but alternating the iterations in θ and λ.

– DML. Proposed method for the DML cost function.

– SML. Proposed method for the SML cost function
using the full Hessian.

• Number of Monte Carlo trials. We performed 500 Monte
Carlo trials.

8.1. Degeneracy of the DML estimator

Fig. 1 shows the RMS error performance of MUSIC, DMLo,
DML-alt, and SML. We can see that DML-alt reaches an RMS
error floor above the Cramer-Rao bound (CRB), while MU-
SIC becomes close to the Cramer-Rao (CR) bound only at high
SNRs. Finally, SML reaches the CR bound at intermediate and
high SNRs. In this figure, DML is missing because Newton’s
method produces a divergent λ estimate and, therefore, DML
is unavailable. This can be explained by the problem related
with the DML cost function already commented in Sec. 7. Fig.
2 shows this phenomenon for a specific realisation in which
Newton’s method is initialised with the true values of θ and λ
and SNR = 40 dB. We can see in this figure that the Newton
iteration achieves an increase in the cost function value every
time, but maxm λm diverges, i.e, at least one sensor noise power
is taken as zero approximately. Obviously, this is a degenerate
result.

8.2. Comparison with other estimators

Fig. 3(a) shows the RMS in the estimation of θ1 for sev-
eral estimators. Note that SML and Chen have the best per-
formance, while the RMS error of DMLo is slightly above the
error of SML and Chen. MDS’s error is above the CR bound by
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Figure 2: Value of LD(θ, λ) and λm. The x-axis variable is the iteration number
in Newton’s method but applied to the λ vector of LD(θ, λ) only. θ and λ are
initialised with the true values of these vectors and SNR = 40 dB.

roughly 10 dB at mid to high SNRs. Fig. 3(b) shows the aver-
age computational burden of the estimators in 3(a) measured in
flops. Note that the computational burden of Chen is between
factor 3.7 and 22.9 larger than that of SML; (difference between
0.56 and 1.36 in log-10 scale). Finally, though the RMS error of
DMLo is slightly larger than that of SML and Chen [Fig. 3(a)],
its computational burden is far smaller than that of SML and
Chen.

The difference in performance between DMLo and SML
becomes more significant if the disparity in the noise powers is
increased. Figs. 4(a) and 4(b) are the equivalents of Figs. 3(a)
and 3(b) for λ given by

Λ = diag([80, 2, 1.5, 0.5, 64, 0.7, 1.1, 3, 48, 3])−1/2, (35)

where the noise variances are the same as in (34), except com-
ponents 1, 5 and 9, which have been multiplied by 8. Note that
SML and Chen outperform DMLo by roughly 10 dB.

9. Conclusions

We have presented an efficient method for computing maxi-
mum likelihood (ML) estimates of the directions of arrival (DOA)
to an array of sensors under unknown nonuniform sensor-noise
powers. The method is based on the Newton method combined
with an initial Alternate Projection (AP) search. Its efficiency
is based on three factors. First, the Newton iterations con-
verge in a small number of iterations. Second, they involve no
one-dimensional searches. And third, the gradient and Hessian
required in each iteration can be obtained with low complex-
ity thanks to the closed-form formulas for these differentials
presented in this paper. The analysis of the deterministic ML
(DML) cost function’s gradient reveals an unexpected draw-
back of the corresponding estimator: it is either degenerate or
inconsistent. The method is assessed in the paper numerically
and compared with other methods in the literature.
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(a) CR bound and RMS error in the estimation of θ1.
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(b) Average number of flops required for the computation of the estima-
tors in Fig. 3(a).

Figure 3: RMS error and average number of flops for several estimators.
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(a) CR bound and RMS error in the estimation of θ1.
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(b) Average number of flops required for the computation of the estima-
tors in Fig. 4(a).

Figure 4: RMS error and average number of flops for several estimators and
noise parameters in (35).

Appendix A. Hessian expressions

For introducing the Hessian blocks, define first the matrix

[D2]·,k ≡ Λ ∂2

∂θ2
k

φo(θk), k = 1, . . . , K.

The blocks are the following:

HDθθ = 2NRe
{

M � (DH(IM − P)Rzλ(IM − P)D)T

−(Φ†D) � (Φ†Rzλ(IM − P)D)T

−(Φ†Rzλ(IM − P)D) � (Φ†D)T

−(Φ†Rzλ(Φ†)H) � (DH(IM − P)D)T

+IK � (Φ†Rzλ(IM − P)D2)T
}
.

(A.1)

HDθλ = 4NRe
{
(Φ†Rzλ(IM − P)) � ((IM − P)D)T

+(DH(IM − P)Rzλ(IM − P)) � (Φ†)∗
}
Λ−1,

(A.2)

HDλλ = 2NΛ−1
(

Re
{
(4P − IM) � ((IM − P)Rzλ(IM − P))T

}

− IM

)
Λ−1,

(A.3)

HCθθ = 2NRe
{
(MzλΦ

H Rzλ(IM − P)D) � (Φ†D)T

+M � (DH(IM − P)D)T

−IK � (MzλΦ
H Rzλ(IM − P)D2)T

−Mzλ � (DH(IM − RzλPz)Rzλ(IM − P)D)T

+(MzλΦ
H RzλD) � (MzλΦ

H Rzλ(IM − P)D)T
}
,

(A.4)

H Cθλ = 4NRe
{
(DH(IM − P)) � (Φ†)∗

(MzλΦ
H) � (Rzλ(IM − PzRzλ)D)T

(DH(IM − RzλPz)) � (RzλΦMzλ)T
}
Λ−1,

(A.5)

HCλλ = 2NΛ−1Re
{
(IM − 2P) � PT

− 4(Rzλ(IM − PzRzλ)) � PT
z

− 2(RzλPz) � (IM − 2RzλPz)T
}
Λ−1.

(A.6)

The derivations of these blocks can be found in the complemen-
tary material.

Appendix B. Derivation of gradient blocks gDλ and gCλ

In the sequel, we let x denote any of the components of
λ and the sub-script ()x denote differentiation in that variable.
Thus, for instance, if x is λm then Px denotes

∂

∂λm
P.

We require the following formulas,
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• We repeatedly use the fact that the product of two diago-
nal matrices can be commuted, i.e, Λ−1Λx = ΛxΛ

−1.

• For a square invertible matrix A, Jacobi’s formula states
that the derivative in a variable x of log |A| is

(log |A|)x = tr{A−1 Ax}. (B.1)

• The derivatives in x of Rzλ and P can be computed by
means of the product derivative rule, and be concisely
expressed as

Rzλ,x = ΛxΛ
−1Rzλ + RzλΛ

−1Λx, (B.2)

Px = PΛ−1Λx + ΛxΛ
−1 P − 2PΛ−1Λx P. (B.3)

• The product Pz Px can be concisely written in terms of
Λx through orthogonality properties. Specifically, since
Pz P = Pz, we have

Pz Px = (Pz P)x − Pz,x P = Pz,x(I − P)

= (Φx MzλΦ
H +ΦMzλ,xΦ

H +ΦMzλΦ
H
x )(I − P)

= ΦMzλΦ
H
x (I − P) = ΦMzλΦ

HΛ−1Λx(I − P)

= PzΛ
−1Λx(I − P). (B.4)

Appendix B.1. Gradient of LD in λ, gDλ

Let us derive the expression of gDλ. First, we differentiate
(6) in x using (B.1),

LD,x = N
(
2 tr{Λ−1Λx} + tr{PxRzλ}

− tr{(IM − P)Rzλ,x}
)
.

Second, we substitute (B.3) and (B.2) into this last expression
and expand the product with (IM − P). The result of these op-
erations is

LD,x = N
(
2tr{Λ−1Λx} + tr{PΛ−1ΛxRzλ}+
tr{ΛxΛ

−1 PRzλ} − 2tr{PΛ−1Λx PRzλ}
− tr{ΛxΛ

−1Rzλ} − tr{RzλΛ
−1Λx}+

tr{PΛxΛ
−1Rzλ} + tr{PRzλΛ

−1Λx}
)
.

Third, we rotate the products inside the trace operators in order
to get Λx on the right hand side. Besides, we use the property
ΛxΛ

−1 = Λ−1Λx. We obtain

LD,x = 2N
(
tr{Λ−1Λx} + tr{RzλPΛ−1Λx}

+ tr{PRzλΛ
−1Λx} − tr{PRzλPΛ−1Λx}

− tr{RzλΛ
−1Λx}

)
=

2N
(
tr{Λ−1Λx} − tr{(I − P)Rzλ(I − P)Λ−1Λx}

)
. (B.5)

If x is one of the components of λ, say λm, then Λx = δM,mδ
T
M,m,

and we have tr{AΛx} = [A]m,m for any matrix A of proper size.
So, to obtain the gradient, we just need to replace tr{AΛx} with

diag{A} in (B.5) for every possible A. The result of this opera-
tion is

gDλ=2Ndiag{−Λ−1(IM − P)Rzλ(IM − P) + Λ−1}
=2NΛ−1diag{IM − (IM − P)Rzλ(IM − P)},

which is the second formula in (27).

Appendix B.2. Gradient of LC in λ, gCλ

First, differentiate (18) in x using (B.1), (14), and (15):

LC,x = (−N log |C|)x = −Ntr{C−1Cx} =

− Ntr{(IM − P + Pz){IM − P + PRzλP}x} =

− Ntr{(IM − P + Pz){−P + PRzλP}x}. (B.6)

From (B.3), it can be easily checked that {−P+PRzλP}x is equal
to a sum of terms whose row or column span lies in the span of
Φ. This implies tr{(IM − P){−P + PRzλP}x} = 0 and, therefore,
(B.6) simplifies to

LC,x = −Ntr{Pz{−P + PRzλP}x}.
Applying the product derivative rule, we have

LC,x = −N(−tr{Pz Px} + tr{Pz PxRzλP}
+ tr{Pz PRzλ,x P} + tr{Pz PRzλPx}).

Next, we rotate the trace arguments, leaving the derivatives on
the right, and apply the property

Pz P = PPz = Pz. (B.7)

We obtain

LC,x = −N(−tr{Pz Px} + tr{RzλPz Px}
+ tr{PzRzλ,x}) + tr{PzRzλPx}. (B.8)

At this point, the fact that P, Pz, and Rzλ are Hermitian im-
plies that −tr{Pz Px} and tr{PzRzλ,x} are real and tr{RzλPz Px}∗ =

tr{PzRzλPx}. Using these two properties, we may write (B.8)
more concisely as

LC,x = −NRe
{ − tr{Pz Px}} + 2tr{RzλPz Px}}+

tr{PzRzλ,x}}.
Now, the orthogonality properties and (B.4) imply tr{Pz Px} =

0. So, we have

LC,x = −NRe
{
2tr{RzλPz Px}} + tr{PzRzλ,x}}.

Next, we insert the formulas for Px and Rzλ,x in (B.2) and (B.3),

LC,x = −NRe
{
2tr

{
RzλPz(PΛ−1Λx + Λ−1Λx P

− 2PΛ−1Λx P)
}
+ tr

{
Pz(RzλΛ

−1Λx + Λ−1ΛxRzλ)
}}
.

This expression can be readily expanded into a sum of trace
terms. Then, rotating the trace arguments so that Λx appears on
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the right-hand side, applying (B.7) and noting that tr{RzλPzΛ
−1Λx}∗ =

tr{PzRzλΛ
−1Λx}, we obtain

LC,x = 2NRe
{
tr
{
PRzλPzΛ

−1Λx
}

− 2tr
{
RzλPzΛ

−1Λx
}}

= 2NRe
{
tr
{
PRzλPzΛ

−1Λx
} − 2tr

{
Λ−1RzλPzΛx

}}

= 2NRe
{
tr
{
PRzλPzΛ

−1Λx
} − 2tr

{
RzΛPzΛx

}}
.

Finally, noting that PRzλPz = P, we obtain

LC,x = 2NRe
{
tr
{
PΛ−1Λx

} − 2tr
{
RzΛPzΛx

}}
. (B.9)

If we let x run through the variables in λ in the same way as we
did for (B.5), the result is

gCλ=2NRe{diag{PΛ−1 − 2RzΛPz}}
=2NΛ−1Re{diag{P − 2RzλPz}},

where we have used RzΛ = Λ−1Rzλ. This is the formula for
gCλ in (27).
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