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Abstract
Aim: Fungi are major drivers of ecosystem functioning. Increases in aridity are known 
to negatively impact fungal community composition in dryland ecosystems globally; 
yet, much less is known on the potential influence of other environmental drivers, and 
whether these relationships are linear or nonlinear.
Time period: 2017– 2021.
Location: Global.
Major taxa studied: Fungi.
Methods: We re- analysed multiple datasets from different dryland biogeographical 
regions, for a total of 912 samples and 1,483 taxa. We examined geographical pat-
terns in community diversity and composition, and spatial, edaphic and climatic fac-
tors driving them.
Results: UV index, climate seasonality, and sand content were the most important en-
vironmental predictors of community shifts, showing the strongest association with 
the richness of putative plant pathogens and saprobes. Important nonlinear relation-
ships existed with each of these fungal guilds, with increases in UV and temperature 
seasonality above 7.5 and 900 SD (standard deviation x 100 of the mean monthly 
temperature), respectively, being associated with an increased probability of plant 
pathogen and unspecified saprotroph occurrence. Conversely, these environmen-
tal parameters had a negative relationship with litter and soil saprotroph richness. 
Consequently, these ecological groups might be particularly sensitive to shifts in UV 
radiation and climate seasonality, which is likely to disturb current plant– soil dynamics 
in drylands.
Main conclusions: Our synthesis integrates fungal community data from drylands 
across the globe, allowing the investigation of fungal distribution and providing the 
first evidence of shifts in fungal diversity and composition of key fungal ecological 
groups along diverse spatial, climatic and edaphic gradients in these widely distrib-
uted ecosystems. Our findings imply that shifts in soil structure and seasonal climatic 
patterns induced by global change will have disproportionate consequences for the 
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1  |  INTRODUC TION

Drylands are the largest terrestrial biome (covering about 41% of the 
land surface and supporting 40 and 35% of the global population and 
global diversity, respectively) and are expected to expand further 
up to 56% by the end of the century (Cherlet et al., 2018). Drylands 
play key roles in regulating the global carbon, nitrogen and water cy-
cles, and are thus fundamental for sustaining life on Earth (Maestre 
et al., 2021). Due to their extreme temperatures, low and variable 
rainfall, and low soil fertility, drylands are particularly sensitive to 
changes in climate that lead to increased aridity (i.e., precipitation/
potential evapotranspiration; Berdugo et al., 2020).

Fungi are paramount components of and drive critical ecosys-
tem services in drylands, contributing to the formation of fertile is-
lands (Cherlet et al., 2018), nutrient cycling and climate regulation 
(Delgado- Baquerizo et al., 2017), with a major role in dryland pri-
mary production (Rudgers et al., 2018) and pedogenesis (Coleine 
et al., 2021). Key fungal groups include pathogens, mutualistic sym-
bionts of both plants and animals, lichenized fungi, as well as soil and 
litter saprobes.

Patterns of fungal diversity and community turnover are par-
ticularly little explored in drylands. Most previous studies on the 
biogeography and ecological attributes of fungal communities in 
dry ecosystems on a global scale have focussed on their relation-
ships with aridity, given its role as a key driver of dryland ecol-
ogy (Berdugo et al., 2020; Egidi, Delgado- Baquerizo, et al., 2019; 
Maestre et al., 2015). However, other climatic and environmental 
factors are potentially important in predicting fungal diversity and 
distributions in global drylands, especially at the level of guilds. 
Drylands are characterized by extreme temperatures, low and vari-
able rainfall, and low soil fertility, which can interact to drive multiple 
ecosystem attributes. For example, temperature and precipitation 
seasonality regulate plant cover dynamics and productivity in arid 
systems (Palmquist et al., 2021), which in turn can influence soil 
physical attributes, such as soil moisture, pH, structure or carbon 
content, important for the distribution of saprotrophs, pathogens, 
and symbiotrophs (Egidi, Wood, et al., 2019; Feng et al., 2022). 
Consequently, community turnover driven by seasonal processes, 
rather than aridity alone, may be particularly important for fungi in 
these systems (Berdugo et al., 2022). Similarly, solar UV radiation is 
a primary abiotic driver of litter and soil organic carbon decomposi-
tion in many arid and semi- arid ecosystems (Bornman et al., 2015; 
Zepp et al., 2007), suggesting a potential major influence upon 
the occurrence of decomposers and plant- associated fungi (Paul & 
Gwynn- Jones, 2003).

Examining the major patterns in fungal community shifts is im-
portant to elucidate the effects of environmental change for com-
munity composition or diversity. In particular, the climate hypothesis 
(O'Brien, 1998) indicates that species richness and composition over 
large scales are linked to climate, whereby species richness and 
community turnover along wide gradients are primarily controlled 
by the availability of water (e.g., precipitation and evapotranspira-
tion) and ambient energy (e.g., temperature) (Hawkins et al., 2003). 
Given the ecological and economic significance of drylands, and the 
global role of fungi in regulating their functions, it is critical to iden-
tify the climatic and environmental factors associated with distribu-
tions of fungal communities, and most importantly, to test whether 
the dependence of fungi on those drivers is linear or nonlinear. The 
latter is important because nonlinear associations between fungal 
distributions and environmental predictors may signal particular 
environmental scenarios of exacerbated sensitivity to environmen-
tal pressures, with potential implications for ecosystem function-
ing (Pausas & Bond, 2020). A better understanding of the drivers 
shaping the biogeography of dryland soil fungi can thus improve 
our ability to predict their fate under global change, and therefore 
inform future conservation and management policies. Towards this 
aim, we re- analysed multiple datasets from different dryland bio-
geographical regions, merging sequencing data from a wide range 
of ecosystems and climates (i.e. hot, temperate and cold drylands) 
to encompass a representative plethora of all dryland sub- types (i.e. 
from hyperarid to dry sub- humid). We generated a database of 1,473 
fungal genera from a total of 912 individual topsoil samples (top 0 
to 5– 15 cm) from all continents, including Antarctica. We examined 
geographical patterns in fungal assemblages and the main environ-
mental (spatial, edaphic and climatic) factors driving them in order to 
establish where important changes in community composition occur 
along this range of environmental gradients. We expect that shifts 
in water and energy availability related to climatic variables will help 
in identifying predictors of fungal diversity and distribution of key 
ecological groups in drylands on a global scale.

2  |  MATERIAL S AND METHODS

2.1  |  Literature selection

We created a dataset by collecting published literature on  
studies of soil fungal communities in drylands across the globe. 
For this literature search, we conducted searches in the Web of 
Knowledge (https://www.webof knowl edge.com), Google Scholar 

distribution of fungal groups linked to vegetation and biogeochemical cycling in dry-
lands, with implications for plant– soil interactions in drylands.

K E Y W O R D S
climate change, drylands, environmental predictors, fungal traits, fungi

 14668238, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/geb.13607 by U

niversidad D
e A

licante A
dquisiciones Y

 G
estión D

e, W
iley O

nline L
ibrary on [28/11/2022]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

https://www.webofknowledge.com
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(https://schol ar.google.it/) and Pubmed (https://pubmed.ncbi.nlm.
nih.gov/) databases in December 2020– January 2021, within manu-
scripts published between 2017 and 2021 (last update on 1 February 
2021). The following keywords were selected to maximase the num-
ber of published studies, which often use a variety of expressions 
for describing fungal biodiversity investigated by high- throughput 
sequencing in soil communities of worldwide drylands: (global* OR 
worldwide* OR hot* OR cold*) AND (drylands* OR deserts* OR 
arid/semi- arid/hyperarid/dry sub- humid region/area*) (soil* OR bi-
ocrusts* OR *biological crusts*) AND (fungi* OR fung* OR ITS* OR 
ITS1* OR ITS2* OR fungal communities*) AND (high- throughput se-
quencing* OR amplicon sequencing* or metabarcoding* OR Illumina 
sequenc*). Additionally, we included studies found in the references 
of the papers returned by the database. A Preferred Reporting Items 
for Systematic Reviews and Meta- Analyses (PRISMA) flow diagram 
(Moher et al., 2009; Supporting Information Figure S1) is provided 
to summarize the literature search and selection processes. Briefly, 
we explored 116 papers. The following selection criteria were used 
for the inclusion of samples (and, consequently, studies) in the data-
set: (a) samples came from soils or biocrusts; (b) the precise geo-
graphical location of each sample was recorded (GPS coordinates) 
or provided by the authors of the study upon request; (c) the whole 
fungal community was subject to amplicon sequencing (studies 
using group specific primers were excluded); (d) the internal tran-
scribed spacer regions (ITS1, ITS2 or both) were amplified and se-
quenced on Illumina platforms; (e) sequencing data (either in fasta 
or fastq format) were publicly available or provided by the authors 
of the study upon request, and the sequences were unambiguously 
assigned to samples; and (f) the samples could be assigned to biomes 
according to the Environment Ontology (https://www.ontob ee.org/
ontol ogy/ENVO). In total, 13 sequencing studies contained samples 
that matched our criteria (see PRISMA flow diagram in Supporting 
Information Figure S1, and Table S1 for more details); however, for 
some of the publications, we were not able to obtain sequencing 
data (the data were neither public nor provided by the authors upon 
request). A list of the data sources is found in Supporting Information 
Appendix S1. It should be noted the studies we considered included 
samples collected during different sampling campaigns but informa-
tion on sampling year was not available for individual samples for 
most locations. However, seasonal variability is now known to be far 
less important than environmental variability both at the local and 
global scale (Carini et al., 2020); consequently, sampling year should 
have a negligible effect when considering sites spanning many re-
gions of the globe. Bioinformatics details are provided in Supporting 
Information Note S1.

2.2  |  Environmental variable selection

We performed a comprehensive meta- study of data published on 
the composition of soil fungal communities in drylands across the 
world. This approach enabled us to re- analyse multiple datasets 
from different biogeographical regions and biomes and compile a 

large dataset of fungal taxa distribution worldwide. In total, 13 stud-
ies, encompassing over 912 top- soil (0 to 5– 10 cm depth) sampling 
points, were identified and included in the analysis; this allowed 
us to encompass all continents (including Antarctica; Supporting 
Information Figure S1), spanning a wide range of environmental con-
ditions. The final sample list included all dryland subtypes [hyperarid, 
aridity index (AI) .0– .05, n = 42; arid, AI = .05– .20, n = 274; semi- arid, 
AI = .20– .50; n = 336; dry subhumid, AI = .50– .65; n = 264].

Metadata were either collected from the published papers and/
or public repositories where they were submitted by the authors, or 
in a few cases from the authors of individual studies upon request 
and are included in Supporting Information (Table S1). Additional 
metadata were collected from the WorldClim database [(https://
www.world clim.org); ~1 km resolution (Fick & Hijmans, 2017), sim-
ilar to Sanderman et al., 2017; Van Den Hoogen et al., 2019)], and 
included spatial, climatic and edaphic parameters. Climatic data in-
cluded a range of variables related to temperature and precipitation 
variability that are considered important drivers of fungal distribu-
tion at large scales (Větrovský et al., 2019) –  that is, mean annual 
temperature (MAT), precipitation seasonality (PSEA), temperature 
seasonality (TSEA), AI (precipitation/potential evapotranspiration) 
and standardized precipitation- evapotranspiration index (SPEI). 
The AI was obtained from the global maps of Zomer et al. (2008), 
which provides the averaged AI of the period 1970– 2000, and 
has a spatial resolution of 30 arc- seconds. We also collected data 
on the AI from the Global Potential Evapotranspiration database 
(Trabucco & Zomer, 2019), which is based on interpolations provided 
by WorldClim. We used AI instead of mean annual precipitation in 
our study because aridity includes both mean annual precipitation 
and potential evapotranspiration, and is therefore a more accurate 
metric of the long- term water availability at each site; moreover, AI 
is the one used for categorizing drylands and in global reports about 
desertification and climate change. The SPEI is a multiscale drought 
index based on climatic data that quantifies temporal variations in 
water balance and classifies the onset, magnitude and duration of 
drought conditions relative to regular conditions at a given location 
(Beguería et al., 2014). SPEI is based on climatic data of monthly 
precipitation and potential evapotranspiration from the Climatic 
Research Unit (CRU) TS3.10.01 dataset (https://badc.nerc.ac.uk/; 
Luo et al., 2016) with FAO- 56 Penman- Monteith equation estima-
tion (Harris et al., 2014) at 0.5° spatial resolution. SPEI was used in 
a monthly time window and averaged for the period 2010– 2020 for 
each location studied (Beguería et al., 2014; Harris et al., 2014; Luo 
et al., 2016). UV radiation index (UV) was further included given 
its importance in driving biogeochemical processes in dryland soils 
(Throop & Archer, 2008; Trabucco & Zomer, 2019). Three important 
edaphic determinants of fungal biogeography [i.e., % of sand, soil 
organic carbon (SOC) and pH], obtained from the SoilGrids v2 data-
base, were also included, allowing us to evaluate the importance of 
soil physico- chemical attributes for fungal distribution in drylands. 
The global independence of the soil and climatic variables was ver-
ified with a Mantel test (999 permutations), which returned a non- 
significant (p = 1, R = .07 for soil data; p = .65, R = .06 for climatic 
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data) correlation between environmental attributes and spatial 
coordinates (latitude and longitude). We further characterized the 
degree of spatial autocorrelation of the environmental variables by 
calculating Moran's I coefficients of similarity and generating spa-
tial correlograms (a plot of distance versus autocorrelation, Sokal & 
Oden, 1978) for each environmental attribute across nine distance 
classes using the R package pgirmess (Giraudoux, 2022). The soil pa-
rameters and TSEA exhibited positive spatial autocorrelation (Moran 
coefficient > 0, p < .05, Bonferroni adjusted) over relatively short 
distance classes (classes 1– 4), while most of the climatic variables 
showed an alternation of positive and negative autocorrelation val-
ues with distance (Supporting Information Figure S2).

To account for potential spatial autocorrelation of environmental 
variables, principal coordinates of neighbour matrices (PCNMs) were 
also included as explanatory variables in downstream analyses to ex-
amine the importance of spatial heterogeneity on community compo-
sition (Borcard et al., 2018). PCNMs were calculated with the vegan R 
package, and the first two of the positive PCNMs were retained. We 
obtained complete environmental metadata for a total of 743 sam-
ples, excluding most of the Antarctic samples, for which edaphic data 
could not be retrieved. The samples with complete metadata were 
used for the quantification of diversity and guild turnover across envi-
ronmental gradients, while we used a complete dataset (912 samples, 
including Antarctica) to assess changes in fungal diversity across arid-
ity classes (see methods section 2.5). Downstream analyses, unless 
otherwise specified, were performed in R v.4 (R Core Team, 2022) and 
using the genus- level taxonomy table.

2.3  |  Quantification of ecological turnover and 
thresholds across environmental gradients

To explore the environmental drivers of distributions of the most 
common fungal ecological guilds in global drylands, we modelled 
their occurrence using an approach similar to Chen and Olden (2020). 
Briefly, we first identified the most common guilds among those oc-
curring in at least 10% of the samples, which resulted in 16 guilds. 
Rare guilds were excluded because of the uncertainty of environ-
mental prediction for low abundance and frequency taxa. We then 
explored the most important environmental predictors of fungal 
ecological turnover by generating a random forest (RF) model fitting 
a total of 500 trees using the extended modelling procedure avail-
able in the R package ‘gradientForest’ (Ellis et al., 2012; Stephenson 
et al., 2018). Gradient forest (GF) provides a flexible approach to ex-
plore multispecies responses between biodiversity and the environ-
ment (Ellis et al., 2012). Accounting for complex interactions by fitting 
multiple regression models, GF quantifies the relative importance of 
different predictors and their nonlinear correspondence with com-
munity compositional turnover or ‘splits’ along predictor gradients. 
The turnover function is measured in dimensionless R2 units where 
groups with highly predictive RF models (i.e., high R2 values) have 
greater influence on the turnover functions than those with low pre-
dictive power (i.e., lower R2). These turnover functions can provide 

unique insights into the nature of how functional patterns vary along 
multiple environmental gradients, at the level of individual guilds as 
well as the mycobiome as a whole when these individual curves 
are averaged to obtain a global R2 value. Detailed descriptions of 
these methods can be found in Baker and Hollowed (2014), Ellis 
et al. (2012) and Stephenson et al. (2018). Following the GF approach 
described above, model performance was assessed by the overall 
goodness- of- fit (R- squared) of predicted against observed values 
and by the cross- validated out- of- bag R2 values per ecological group, 
while the significance of each environmental variable was assessed 
by the relative importance weighted by R2 values (Ellis et al., 2012). 
To verify whether results were affected by differing sampling tech-
niques among studies, the model was re- run including soil depth 
as an additional covariate. Subsequently, to identify critical values 
along environmental gradients that correspond to changes in com-
position at the guild level, we plotted their cumulative importance, 
whereby the shape of the resulting distribution curves describes 
the magnitude of compositional change along the most important 
gradients, with a standardized ratio of split density > 1 indicating 
the likely presence of community shift (Roland Pitcher et al., 2012). 
Finally, to further illustrate the directionality of shifts in richness for 
each individual guild in response to environmental predictors, we 
ran GradientBoost (GB) models with Shapley additive explanations 
(SHAP) dependence plots. GB models were run individually for each 
guild and were done solely for the most important environmental 
variables and those guilds best explained by the GF models. The 
SHAP method is derived from game theory and measures how much 
each feature of a model contributes to the increase or decrease of 
the probability of a single output with respect to the average of the 
ones used to train the model (i.e., the richness of a particular eco-
logical group in this case). By plotting the values of predictor versus 
the associated SHAP values we obtain a response curve analogous 
to the effects of that predictor over the response variable (i.e., a 
partial dependence plot). SHAP values are widely used in machine 
learning, economics, security and ecology (Cha et al., 2021; Foster 
et al., 2022). SHAP values can be positive or negative, whereby a 
positive trend indicates that a feature is expected to positively in-
fluence the occurrence of a particular guild, and vice versa. Models 
were built with the ‘xgboost’ package and SHAP values were ex-
tracted with the ‘SHAPforxgboost’ package in R.

2.4  |  Quantification of biodiversity and  
environmental drivers of fungal community 
composition

Alpha diversity was estimated using the R ‘iNEXT’ package (Hsieh 
et al., 2016) and the observed Shannon diversity was used for fur-
ther statistical analyses. A RF model was built using the ‘randomFor-
est’ package with 500 trees in R to assess the relative contributions 
of climatic, spatial and edaphic predictors to dryland fungal rich-
ness. Statistical analysis was performed to identify how overall rich-
ness changed across dryland types by one- way analysis of variance 
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    |  5EGIDI et al.

(one- way ANOVA) and a pairwise multiple comparison procedure 
(Wilcoxon test); a small probability p- value (< .05) indicated a signifi-
cant difference.

2.5  |  Mapping the distribution of soil fungal 
richness across drylands

To predict the extent of the global distribution of soil fungal 
Shannon diversity, we performed a RF regression analysis (Lahouar 
& Slama, 2015) using the environmental variables from 743 soil sam-
ples for which complete observations were obtained. This excluded 
most of the Antarctic samples, for which soil data are not available 
in global databases. This model was developed by finding the set 
of covariate combinations that most robustly predict the training 
samples with 999 trees and 999 iterations. To assess the accuracy 
of the predictions calculated from the RF- based model, we calcu-
lated how much the parameter set of predictors differed from the 
original dataset. We used the Mahalanobis distance of any multidi-
mensional point of the 12 dimensions provided by the exogenous 
variables to the centre of the known distribution that we had pre-
viously calculated and the distance of any multidimensional point 
to the convex hull formed by the soil sample locations used in the 
model. Subsequently, we used outlier identification to mask our re-
sults and provide more reliable predictions in the .9 quantiles of the 
chi- square distribution with 12 degrees of freedom to which each 
location belongs (Mallavan et al., 2010). The modelling approach 
was then validated by returning predicted values (model) versus ob-
served values (soil samples), according to Piñeiro et al. (2008).

3  |  RESULTS

3.1  |  General description of the dataset

Our dataset represents the largest extant fungal community dataset 
from drylands. Compared to previous large- scale studies focused 
on fungal diversity in drylands, our survey encompasses all conti-
nents, including Antarctica, and spans all dryland subtypes (defined 
by their aridity ranges), from hyperarid (AI ≤ 0.05, n = 38), to arid 
(0.05 < AI ≤ 0.2, n = 274), semi- arid (0.2 < AI ≤ 0.5, n = 355) and dry 
sub- humid (0.5 < AI < 0.65, n = 265) regions of the world. Samples 
were distributed across cold (n = 378), temperate (n = 458) and hot 
drylands (n = 71) (Supporting Information Figure S3). The depth of 
the soil cores varied among studies, and included samples collected 
at depths of 0– 15 cm (n = 273), 0– 10 cm (n = 170), 0– 7.5 cm (n = 183) 
and 0– 5 cm (n = 180) (Supporting Information Figure S3).

Of the 1,473 genera of fungi retrieved, 60% belonged to 
Ascomycota, 33% to Basidiomycota, 2.6% to Glomeromycota and 
2% to Zygomycota (Supporting Information Figure S4). Out of 
the 66% (986) of taxa that were assigned to an ecological guild, 
34.9% were saprotrophs (including 11.5% wood saprotrophs, 9% 
litter saprotrophs and 8% soil saprotrophs), 13% plant pathogens, 

8% endophytic- mycorrhizal (5% ectomycorrhizal, 1% arbuscular- 
mycorrhizal and 2% root- foliar endophytes/epiphytes) and 5% were 
lichenized (Supporting Information Figure S5). Plant pathogens 
were mostly dominated by ascomycetous fungi from the classes 
Dothideomycetes (37.6%) and Leotiomycetes (10%), while ectomy-
corrhizal fungi and wood, litter and soil saprotrophs were dominated 
by Agaricomycetes (71, 60.5, 32 and 30%, respectively) (Supporting 
Information Figure S6).

3.2  |  Environmental drivers of functional 
composition

The relative importance of spatial, edaphic and climatic variables in 
predicting the composition of the main fungal ecological groups was 
determined using GF models, which identified the major determi-
nants of community turnover of fungi. The total model prediction 
performance from the GF analysis (i.e., the proportion of variance 
explained in a RF) was averaged across the suite of environmental 
variables from the most common guilds (i.e., among those occur-
ring in at least 10% of the samples), and ranged from .01 to .12 (R2; 
Figure 1a). Global community turnover was most strongly associated 
with the spatial variables (PCNM1 and PCNM2 eigenvector- based 
vectors, maximum cumulative importance: .12 and .08, respectively), 
followed closely by UV index (UV), with a maximum value above  .07. 
Importance in relation to other environmental predictors was high-
est (> .04) for diurnal temperature range (DTR), sand and tempera-
ture seasonality (TSEA), while mean annual temperature (MAT), 
precipitation seasonality (PSEA), pH, aridity index (AI) and soil or-
ganic content (SOC) had the lowest importance values (.02–  .04) 
(Figure 1a). An additional model run with soil depth included as an 
explanatory variable (Supporting Information Figure S7) gave similar 
results, wherein depth was an important explanatory factor for ex-
plaining the compositional shift, but the relative importance of the 
climatic and edaphic variables did not change substantially.

Then, for each ecological group, we identified the most im-
portant predictors of changes in their abundance along spatial, 
climatic and edaphic gradients. The cumulative model prediction 
performance of the guilds for which significant predictive power 
was established (R2 > 0) had a range of .11– .86 (R2), with the high-
est model performance (> .70) recorded for plant pathogens and 
soil, litter, wood and unspecified saprotrophs (Figure 1b). The 
predictive power of PCNM1 and PCNM2 was strongest for these 
fungi relative to other ecological groups (R2 > .10; Supporting 
Information Figure S7). However, plant pathogen and unspecified 
saprotroph richness were also strongly predicted by UV radiation 
and sand content (R2 values  .07 and .08, respectively), while DTR 
was the single most important climate predictor of litter sapro-
troph richness, followed by UV (R2 = .08 and  .06, respectively). 
DTR was also important in predicting soil saprotroph distributions, 
together with sand content (R2 values = .06 for both). Conversely, 
PSEA and TSEA were the strongest predictors of ectomycor-
rhizal fungi (R2 values = .04 and .05, respectively), with TSEA 
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6  |    EGIDI et al.

also strongly associating with lichenized fungi (R2 value = .05; 
Supporting Information Figure S8).

3.3  |  Detection of community changes

Frequency histograms and density plots of the values used by 
the classification trees for splits (i.e., the split density plots in 
Figure 2a) were utilized to identify the occurrence of important 
community changes at whole community scales along environmen-
tal gradients. UV index harboured a major threshold at values > 7, 
where most of the data occurred (Figure 2a). This threshold cor-
responded to a shift in the proportion of most ecological groups, 
including plant pathogens and litter and dung saprotrophs, as indi-
cated by the steep slope in the cumulative plots (Figure 2b). Along 
the two second most important climatic variables (DTR and TSEA), 
we observed multiple subsequent strong splits. The fungal commu-
nity showed a first response with mean diurnal temperature range 
> 8 °C, and then a second shift with mean diurnal range > 14 °C, 
the latter mainly corresponding to changes in proportion of a range 
of saprotrophic fungi (i.e., litter, soil and unspecified saprotrophs). 
Shifts in lichenized and ectomycorrhizal fungi, as well as animal 
and plant pathogens and dung saprotrophs, were recorded with a 
variation of monthly temperature averages > 1,000 and > 500 SD 
(Figure 2a,b; SD = standard deviation * 100 of the mean monthly 
temperature). Finally, splits in community composition occurred 
when sand content was between 45– 60%, corresponding to shifts 
in plant pathogens and saprotrophs (unspecified, dung and soil; 
Figure 2a,b).

The results of the previous analyses do not depict the rela-
tionship between environmental predictors and richness of fungal 
guilds (they only inform about the existence of a high magnitude 
change affecting the composition of the community). We, thus, 
used RF models for each guild and SHAP dependence plots (see 
Materials and methods) to visualize these relationships (Figure 3). 
All these relationships showed different degrees of nonlinear 
behaviour, with marked shifts in the predictors signalling either 
abrupt (e.g., changes in DTR, sand, UV or TSEA for unspecified 
saprotrophs), or nonlinear trends (e.g., changes occurring in TSEA) 
affecting probability of occurrence of fungal guilds. For instance, 
plant pathogens and unspecified saprotrophs had a higher prob-
ability of occurrence with increases in UV (values > 7.5), TSEA 
(values > 900 SD), and decreases in DTR (values < 14 °C), with 

F I G U R E  1  Environmental predictors of dryland fungal 
community composition. (a) Relative importance, R- squared (R2), 
of each environmental predictor included in the gradient forest 
analysis. (b) Contribution (0 to 1) of climatic, soil and spatial 
categories to the variation explained by the complete gradient 
forest model for the 15 ecological groups for which significant 
predictive power was established (R- squared > 0). PSEA = 
precipitation seasonality; TSEA = temperature seasonality; 
DTR = diurnal temperature range; AI = aridity index; UV = UV 
index; MAT = mean annual temperature; SPEI = standardized 
precipitation- evapotranspiration index; PCNM1 and 2 = first and 
second principal coordinates of neighbour matrices; sand = sand 
content; SOC = soil organic carbon

F I G U R E  2  Most relevant predictors of fungal composition in drylands worldwide. (a) Frequency histograms of gradient values at which 
splits occur in the regression trees of the top 15 ecological groups in relationship to the top six environmental variables, showing where 
along these gradients important compositional changes are taking place. Black lines are the kernel density of the histograms, red lines show 
the (normalized) distribution of the data along the environmental gradients, and blue lines indicate the ratio between splits and data (ratio 
between black and red lines). Ratios > 1 (above the dotted line) indicate conditions of relatively greater change in genus composition (i.e., 
community thresholds). Individual plots depict the predictors, arranged (left to right) from the most to the least important. (b) Compositional 
change along the top six environmental gradients for the top five fungal guilds for each environmental variable. Each line denotes a guild and 
their pattern of compositional change along the gradient. The y axes have been normalized so that the maximum corresponds to the relative 
variable importance. TSEA = temperature seasonality; DTR = diurnal temperature range; UV = UV index; PCNM1 and 2 = first and second 
principal coordinates of neighbour matrices; sand = sand content
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    |  7EGIDI et al.

pathogens also being positively associated with sand content 
of approximately 35– 50%. Soil saprotrophs were predicted to 
be more likely to occur with decreasing UV (values < 7.5), TSEA 

(values < 500 °C) and DTR (values < 14 °C); litter saprotrophs were 
generally most likely to be more likely to occur at lower TSEA (val-
ues < 500 SD).
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8  |    EGIDI et al.

3.4  |  Global patterns of fungal diversity in drylands

The RF model built to assess the relative contributions of spatial 
and environmental predictors to overall fungal diversity in dry-
lands revealed a strong contribution of spatial distance (PCNM1) 
and aridity (sand = sand content; SOC = soil organic carbon per-
centage of increase in mean squared error > 25 for both; Figure 4a), 
followed by temperature seasonality and UV index. We observed 
generally different levels of Shannon diversity among the differ-
ent aridity classes, with hyperarid, arid and dry sub- humid areas 
supporting a significantly lower (Wilcoxon test, p < .05) fungal di-
versity than semi- arid areas (Figure 4b). Consistently, the fungal 
maps, estimating the expected geographical distribution and di-
versity of dryland fungi (R = .83, Figure 4c), reflected the extent 
of well- characterized high classes of aridity. In particular, hotspots 
of fungal diversity were observed in mid and high latitude dry-
lands (northern Asia, and southern- eastern Europe). Conversely, 
an overall lower fungal alpha diversity was projected in mid lati-
tude arid regions (particularly northern Africa and Middle Eastern 

countries) and the Southern Hemisphere, with the exception of a 
few hotspots.

4  |  DISCUSSION

Our study demonstrates that environmental gradients related to 
solar UV radiation (i.e., the UV index), climate seasonality (i.e., DTR 
and TSEA) and soil structure (i.e., sand content) are critical predic-
tors of fungal community changes in global dryland soils, with the 
greatest influence detected in association with the occurrence of 
free- living fungi involved in important biogeochemical and biotic 
processes in dryland soils, such as putative plant pathogens and 
a range of fungal saprotrophic groups. Further we found that the 
relationships of environmental predictors with saprotrophic and 
pathotrophic fungal ecological guilds are markedly nonlinear, exhib-
iting abrupt shifts in the values of environmental variables that may 
signal particularly vulnerable environmental scenarios. In particular, 
increases in UV and temperature seasonality above a certain value  

F I G U R E  3  Distribution and environmental predictors of the main fungal ecological groups in drylands. Shapley additive explanations 
(SHAP) dependence plot of selected climatic and edaphic predictors of plant pathogens and saprotrophs richness in drylands. The effects 
are expressed as SHAP values, which measure the impact of each predictor on the model output (richness of a particular fungal ecological 
group). SHAP values are derived for a given predictor value in a process analogous to partial dependence plots; thus, each point on the plot 
corresponds to a prediction in a sample (see Materials and methods). DTR = diurnal temperature range; UV = UV index; TSEA = temperature 
seasonality; sand= sand content; R = Spearman's rho correlation coefficient; p = p value
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    |  9EGIDI et al.

(7.5 and 900 SD, respectively) were associated with an increased 
probability of plant pathogen and unspecified saprotroph occur-
rence, with plant pathogens also being positively associated with 
sand content of approximately 35– 50%. Conversely, these param-
eters had an overall negative relationship with litter and soil sapro-
troph incidence, with saprotrophs being negatively influenced also 
by increases in DTR (values > 14 °C). Overall, the role of climatic 
variables observed in our study supports the hypothesis that water– 
energy dynamics provide an explanation for fungal community 
turnover across different fungal guilds in drylands across multiple 
bioregions of the planet.

Mechanistically, the trends we observed at the guild level can 
be explained by the features that regulate biogeochemical cycling 
in drylands and the peculiar physiological attributes of sapro-
trophic and pathogenic fungal guilds (Throop & Archer, 2008). In 
most arid lands, temperature- related variables and soil structure 

are considered critical factors in determining the composition of 
decomposers (Zhu & Cheng, 2011), and traditional models identify 
extreme temperatures and low soil moisture, typical of dry regions 
of the world, as major controllers of litter quality and microbial ac-
tivities (A'Bear et al., 2014). These environmental parameters act as 
limiting factors for the distribution of fungal decomposers, which 
tend to withstand overall lower temperature ranges compared to 
other guilds, such as pathogenic fungi (Větrovský et al., 2019), thus 
explaining their decrease in occurrence probability with increases 
in temperature ranges and variability (Feng et al., 2022). Soil struc-
ture attributes are also expected to exert various influences on fun-
gal communities, for example by enhancing substrate availability 
from SOC pools, while also controlling water holding capacity (Hu 
et al., 2014), which can in turn regulate fungal saprotroph richness 
and composition. Similarly, in many arid ecosystems, solar radiation 
is considered a primary driver of decomposition and carbon cycling 

F I G U R E  4  Environmental predictors of dryland fungal community richness. (a) Relative importance, expressed as percentage of increase 
in mean squared error, of each environmental predictor included in the random forest analysis. (b) Box- plots illustrating alpha diversity 
indices (Shannon diversity) of fungal phylotypes (genus level) for the different aridity classes. Individual data points, median values and 
interquartile ranges are shown. Different letters indicate significant differences (p < .05, Wilcoxon test). (c) Predicted global distribution 
of Shannon diversity across drylands worldwide. The scale bar represents the diversity of each ecological group. PSEA = precipitation 
seasonality; TSEA = temperature seasonality; DTR = diurnal temperature range; AI = aridity index; UV = UV index; MAT = mean annual 
temperature; SPEI = standardized precipitation- evapotranspiration index; PCNM1 and 2 = first and second principal coordinates of 
neighbour matrices

(a) (b)

(c)
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10  |    EGIDI et al.

(Bornman et al., 2015; Brandt et al., 2010), resulting in a significant 
photo priming effect that controls root exudation, litter quality and 
nutrient availability, and accelerates abiotic- driven decomposition in 
these systems (Day et al., 2018). The tight link between UV radiation 
and biogeochemical cycling in drylands thus explains the prominent 
role of the UV index in predicting the distributions of saprotrophic 
groups associated with soil and litter, and the overall negative influ-
ence on soil saprotroph richness.

Conversely, the proportion of putative plant pathogens tended 
to increase with increasing UV radiation and climate seasonality. 
This finding is consistent with the physiological traits characteristic 
of the fungal groups associated with plant- pathotrophic modes (i.e., 
ascomycetes from the classes Dothideomycetes and Leotiomycetes), 
which possess resistance to environmental stresses typical of dry-
lands, including UV radiation, high temperature fluctuations, and des-
iccation (Coleine et al., 2021; Egidi, Delgado- Baquerizo, et al., 2019; 
Gostinčar et al., 2012). Such common adaptations to a wide range 
of environmental stressors can thus explain the ability of the mem-
bers of this ecological group to thrive in increasingly extreme en-
vironments. Additionally, photoreception and light- dependent traits 
have been recently suggested as a likely mechanism allowing foliar 
pathogens from sun- lit habitats to recognize potential partners and 
stressed hosts (Schumacher & Gorbushina, 2020), indicating that in-
creases in UV radiation might have an important but underestimated 
role in facilitating the establishment of pathotrophic fungi in dryland 
ecosystems.

The compositional turnover of the dryland functional mycobi-
ome was also strongly associated with the eigenvector- based spatial 
descriptors (PCNMs), which were also significantly correlated with 
the total fungal community diversity. At the guild level, the stron-
gest effect was recorded for pathotrophic and saprotrophic fungi, 
the most abundant members of the community in our dataset. The 
large predictive power of PCNMs indicates a role for stochastic pro-
cesses, such as dispersion limitation, in shaping the community dy-
namics of the dominant fraction of the fungal assemblies (Dumbrell 
et al., 2010). Indeed, abundant microbial taxa tend to have higher 
dispersal rates and to be affected by drift or priority effects more 
than their rarer counterparts (Mo et al., 2018), possibly explaining 
the large influence of spatial variables observed in this study for 
these ecological groups.

The climatic and edaphic parameters considered in our study had 
poor predictive power for the symbiotrophic guilds in the dataset, 
such as mycorrhizal, parasitic and endophytic fungi. This might be 
explained by the typical patchiness of vegetation distribution in dry-
lands (Ding & Eldridge, 2021; Ochoa- Hueso et al., 2018), which might 
exacerbate the importance of host occurrence for host- associated 
fungal guilds in dry systems. This finding supports the notion that 
biotic filters (e.g., vegetation composition; Davison et al., 2021; 
Hiiesalu et al., 2017), rather than climatic and edaphic factors, might 
play a critical role in characterizing the distribution of symbiotrophic 
fungi in dry ecosystems (Tedersoo et al., 2012). For example, ecto-
mycorrhizal fungi are mostly associated with trees in temperate and 
tropical forests, and might have relatively fewer hosts in arid and 

hyperarid ecosystems dominated by grasses. However, our study did 
not include explicit plant predictors, and the relative importance of 
host and habitat distribution for fungal community turnover in dry-
lands warrants further investigations on a global scale.

Collectively, our results indicate that spatial distance, together 
with solar UV radiation, temperature and precipitation variability, 
and soil structure, are underappreciated drivers of global distribu-
tion of critically important fungal groups, such as plant pathogens 
and saprobes, in drylands. These findings imply that processes lead-
ing to shifts in UV radiation incidence, soil structure and seasonal 
climatic patterns, will have disproportionate consequences for the 
distribution of fungal guilds linked to vegetation and biogeochemi-
cal cycling in drylands. These processes might be particularly exac-
erbated by predicted increases in extreme heatwave events, which 
could synergistically alter the UV- mediated effects on drylands, thus 
influencing the balance of plant– soil interactions in these systems 
(Barnes et al., 2019; Brandt et al., 2007; Vidović et al., 2015) In par-
ticular, warming can trigger dramatic water losses in soil that reduce 
the cooling effect of evaporation and evapotranspiration, thus en-
hancing the warming impact of UV solar radiation on the atmosphere 
(Miralles et al., 2014), with unknown ecosystem- level consequences.

Interestingly, the aridity index, which is considered a primary 
driver of change in drylands (Berdugo et al., 2020), had a secondary 
role in determining community turnover in our dataset. However, 
in line with other global dryland surveys (Maestre et al., 2015), we 
observed significant decline in fungal alpha diversity with increas-
ing aridity, confirming the critical role of water availability in shaping 
microbial diversity in global drylands (Maestre et al., 2021). In par-
ticular, our predictive maps indicate higher fungal diversity in high 
latitude areas, which support mostly temperate and cold drylands. 
On the contrary, lower latitudes, which support mostly arid and 
hyperarid hot deserts, harboured a comparatively lower projected 
diversity of fungi. Consistently, temperature seasonality was the 
second most important environmental explanatory variable asso-
ciated with the measured diversity of fungi. Similar patterns have 
been observed also in global surveys of fungi from forest- dominated 
systems (Větrovský et al., 2019), possibly indicating that aridity and 
temperature interact to shape fungal diversity on a global scale. 
Consequently, the diversity of dryland fungi might be particularly 
vulnerable to the effect of global warming and the magnitude of this 
effect could be especially important at more extreme latitudes, as 
recent studies predict accelerated increases in temperatures and 
temperature extremes towards the poles (Shi et al., 2021).

Taken together, the comprehensive catalogue of ecology– 
climate relationships we provide paves the way to a more exhaus-
tive and detailed understanding of the complex role of climate and 
soil in regulating fungal biogeography, especially in those regions of 
the world that are most vulnerable to environmental changes, such 
as global drylands. It is important to note, however, that the fungal 
surveys included in our study had an overall patchy distribution and 
were biased towards arid to dry sub- humid drylands from temperate 
and cold regions of the American, European and Asian continents, 
while having poor coverage of potentially important regions, such 
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    |  11EGIDI et al.

as the Sahara, Arabian and Australian sandy deserts. It will be thus 
important in the future to validate our projections on fungal diver-
sity in these undersampled regions of the world. Similarly, the lack 
of soil data from Antarctica in global databases did not allow us to 
make predictions of fungal diversity and community turnover in that 
continent. Further biodiversity inventories including regions of the 
world systematically excluded from microbial and environmental 
surveys are required to obtain a full- scale assessment of the diver-
sity and composition of soil fungi in drylands on a global level. It 
is also important to note that the climatic grids (~1 km) used here 
and in most global microbial biogeography studies can only allow for 
coarse- scale evaluations of the association between environmental 
variables and microbial communities, especially considering that the 
dependence of the climatic controls on microbial community com-
position might decrease with depth (Dove et al., 2021). While large 
scale studies are critical to improve our understanding of the global 
distribution of multiple soil communities and their possible future 
trends, efforts are necessary to reduce these uncertainties and in-
crease confidence in mapping microbial communities and predicting 
where change may be important at national to regional scales.

Finally, we observed a large proportion of fungal taxa unclassified 
at the guild level, indicating that a substantial effort is still required to 
obtain a comprehensive overview of the fungal ecological communi-
ties inhabiting drylands worldwide, and validate their relationship with 
environmental change. Our work opens a new line of investigation to 
include quantifying the importance of ecological processes that gov-
ern fungal communities across contrasting regions of the world, with 
particular emphasis on identifying the traits, and trait trade- offs, un-
derpinning their dispersal and functional capabilities in such unique 
ecosystems (Zanne et al., 2020). We anticipate that, as strain- specific 
trait data become available and ecological guild assignments more 
comprehensive, better assessment of functional variation expressed 
within and among communities in relation to dispersal constraints, UV 
tolerance and climate variability could be performed. This information 
is required to provide better predictions of the current and future ad-
aptation of fungi to the effects of climate change, and possible ramifi-
cations for the sustainability of dryland ecosystems.
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