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Abstract The present work deals with the development of a framework ded-
icated to the construction of constitutive models with non-local internal vari-
ables. Such internal variables allow considering the impact of microstructural
changes on the current state of a material point. Non-locality is introduced
by considering, not only the spatial average, but also the spatial variance of
an internal variable in constitutive relations. The proposed framework relies
on continuum thermodynamics to construct the set of constitutive equations.
Such a framework allows including some information regarding the spatial
distribution of internal variables when constructing non-local models for ther-
momechanical applications. In contrast with gradient-type models, this strat-
egy does not require additional equilibrium equations and boundary condi-
tions. For the purpose of illustration, some numerical examples are presented.
According to the numerical results, the proposed framework can be used to
circumvent the difficulties associated with excessive spatial localization or to
consider size effects.

Keywords Thermodynamics · Constitutive laws · Non-locality · Damage ·
Plasticity

1 Introduction

Many constitutive models used for thermo-mechanical applications rely on the
internal variable concept [24] to represent the effect of microstructural trans-
formations (e.g. hardening, damage, phase transitions) on the behavior of solid
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materials. For the majority of constitutive models, the evolution equations as-
sociated with the different internal variables are purely local. Specifically, the
evolution of the internal state of a material point solely depends on the current
state of that material point. However, there are some situations for which it is
needed to include some information regarding the spatial distribution of state
variables. As discussed by Baz̆ant and Jirásek [7], there are different motiva-
tions for such constitutive models, which are often referred to as non-local.
Indeed, non-local models allow (i) considering deviations from locality due to
material heterogeneity at small scales, (ii) limiting strain localization resulting
from softening, which is largely used in the context of damage mechanics, and
(iii) capturing size effects associated with metal plasticity [39,18] or fracture
of ceramic materials [50,29].

Non-local constitutive models can be classified as either gradient-type or
integral-type models1. Gradient-type models treat the spatial gradients of in-
ternal variables as additional state variables. The consequence is that the evo-
lution of internal variables is governed by a set of equilibrium equations and
some boundary conditions. Such equations and boundary conditions are gener-
ally derived from an extended principle of virtual power [22,14,36]. Gradient-
type models have been largely used in the context of conventional plasticity, ei-
ther to capture size effects [1,20] or to limit strain localization associated with
softening [3]. Also, the role of Geometrically Necessary Dislocations (GND)
on strain hardening can be incorporated in the framework of crystal plasticity
by considering the spatial gradients of plastic shear strains as state variables
[41,38,53]. The phase-field method, which is widely used for solving interfa-
cial problems, also relies on the spatial gradients of some order parameters to
evaluate surface energy. Many applications of the phase-field method to either
brittle [34,42,10,25] or ductile fracture [28,2] have been proposed. When ap-
plied to fracture, the phase-field method allows circumventing the difficulties
associated with excessive damage localization and considering the increase of
surface energy resulting from crack nucleation and crack growth.

In contrast with gradient-type models, integral-type models use some non-
local variables obtained after spatial integration of their local counterparts.
Generally speaking, such non-local variables can be interpreted as the spa-
tial averages of the corresponding local variables over the neighborhood of the
material point of interest. Integral-type models have been largely used in the
context of brittle [43,8,12] or ductile fracture [31,4], mostly to limit damage lo-
calization. Some alternative formulations, using either an evolving length scale
[44] or an internal time [16], have been proposed to consider damage-dependent
interactions. As discussed by [30], integral-type models for plasticity-induced
softening have also been developed. For instance, Baz̆ant and Lin [6] proposed
a non-local Mohr-Coulomb model that replaces the local plastic strain tensor
by its non-local counterpart. The approach of Polizzotto et al. [45], which is de-
veloped in a consistent thermodynamic framework, uses a non-local definition

1 Gradient-type models are sometimes referred to as ’weakly’ non-local models while in-
tegral models are referred to as ’strongly’ non-local models [7].



Thermodynamic framework for variance-based non-local constitutive models 3

of the isotropic hardening variable. In the context of crystal plasticity, Gao
and Huang [23] and Counts et al. [15] developed a non-local formulation that
accounts for the role of GND. For this purpose, they have used an integral-
type of approach to evaluate the spatial gradient of the plastic deformation
gradient tensor.

The present work aims at enriching integral-type constitutive models by
incorporating not only the spatial average, but also the spatial variance of
an internal variable in constitutive relations. The objective is to include ad-
ditional information regarding the spatial distribution of an internal variable
when constructing integral-type constitutive models. The proposed framework
is developed in the context of continuum thermodynamics and can be applied
to different types of problems, including plasticity and damage. In the first
section, the definitions of the average and the variance of an internal variable
are introduced. The general form of constitutive equations is detailed in the
second section. Some illustrative examples are presented in the final section in
either the context of damage mechanics, or crystal-plasticity.

2 Non-local internal variables

The development of constitutive relations, which is detailed in the next section,
uses some internal variables to consider the impact of microstructural trans-
formations on the state of a material point. The main idea of integral-type
non-local models consists of assuming that the state of a material point (e.g.
stress, internal energy) depends on the spatial distribution of state variables in
its neighborhood. For this purpose, two different types of non-local variables
are considered: the spatial average and the spatial variance. The definitions of
these variables are briefly presented here.

2.1 Spatial average

Most integral-type models use some non-local variables that are obtained from
the application of an averaging procedure. Specifically, for any local internal
variable β, the spatial average µβ is defined according to [11]:

µβ [X] =
1

W

∫
Vc

w[X ′ −X]
(
β[X ′]− β[X]

)
dX ′ + β[X] (1)

As indicated by the above equation, the non-local variable µβ is actually the
first raw moment associated with the spatial distribution of the local variable
β. The averaging procedure uses a weight function w that describes the inter-
actions between material points with initial positions X and X ′. The region
of space over which such interactions are considered is denoted by Vc. The
factor W is obtained by integrating the weight function over an infinite region
of space V∞, that is:

W =

∫
V∞

w[X ′]dX ′ (2)
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For the development of constitutive relations, it may be needed to perform
a double-averaging operation. For any internal variable β, the corresponding
double-averaged variable µββ is given by:

µββ [X] =
1

W

∫
Vc

w[X ′ −X]
(
µβ [X ′]− µβ [X]

)
dX ′ + µβ [X] (3)

In some situations, it may be useful to construct a gradient approximation
of the spatial average. For this purpose, the internal variable at position X ′

can be obtained from a Taylor series expansion at position X according to:

β[X ′] = β[X] +
∑
k

1

k!

(
X ′ −X

)⊗k • (∇⊗k ⊗ β[X]
)

(4)

The above equation uses the following notations2:(
X ′ −X

)⊗k def
=
(
X ′ −X

)
⊗ · · · ⊗

(
X ′ −X

)︸ ︷︷ ︸
k

(5)

∇⊗k ⊗ β def
= ∇⊗ · · · ⊗∇︸ ︷︷ ︸

k

⊗β (6)

Provided that the material point of interest is away from any internal or exter-
nal boundary, the application of the averaging operator of Equation (1) is not
impacted by spatial gradients of odd order. Also, when the interaction volume
is small, the spatial average µβ can be approximated from the second order
derivative of the internal variable β with:

µβ [X] ≈ β[X] +
1

2
L :

(
∇⊗2 ⊗ β[X]

)
(7)

with:

L =
1

W

∫
Vc

w[X ′ −X]
(
X ′ −X

)⊗2
dX ′ (8)

The above approximation has been used by [49] and [13] to transform integral-
type models into gradient-type models.

2.2 Spatial variance

When constructing constitutive relations, it might be necessary to provide ad-
ditional information regarding the spatial distribution of an internal variable
in the vicinity of a material point. For this purpose, higher order central mo-
ments of the internal variable β can be included in the list of state variables. In
the following, our attention is restricted to the variance of the internal variable

2 The notation ∇ is used to denote the derivative with respect to the initial position X.
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β (i.e. the second central moment). The spatial variance, which is denoted by
ξβ , is obtained from:

ξβ [X] =
1

W

∫
Vc

w[X ′ −X]
((
µβ [X]− β[X ′]

)⊗2 − (µβ [X]− β[X]
)⊗2)

dX ′

+
(
µβ [X]− β[X]

)⊗2
(9)

The spatial variance is a tensor whose rank is twice that of β. It measures the
scatter associated with the spatial distribution of the internal variable around
the material point of interest.

The gradient approximation of the variance is obtained by combining Equa-
tions (4) and (9). Upon the condition that the point of interest is away from
any internal or external boundary, the variance ξβ can be approximated as a
quadratic function of the first gradient of the local internal variable β with:

ξβ [X] ≈ (β[X]⊗∇) ·L · (∇⊗ β[X]) (10)

This quadratic form is largely used in many gradient-type models (e.g. [21,52]).
The above result indicates that such gradient-type models can be perceived as
approximations of variance-based integral-type models.

2.3 Weight function

The weight function w, which is needed for the evaluation of non-local internal
variables, allows controlling the mutual interactions between material points
with initial positionsX andX ′. The weight function is conveniently expressed
as the composition of two functions k and r such that:

w[X ′ −X] = k ◦ r[X ′ −X] (11)

with:

r =
√(
X ′ −X

)
·R−2 ·

(
X ′ −X

)
(12)

The symmetric and positive semi-definite second order tensor R is a material
parameter that provides information regarding the distances and directions
over which interactions are considered. Many theories use an isotropic weight
function. For this specific case, the interaction tensor R is defined from an
interaction radius R (with R ≥ 0) according to:

R = R 1 (13)

A more general definition consists of using an anisotropic weight function, in
which case the interaction tensor R takes the following form:

R =
∑
i

Ri ri ⊗ ri (14)
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Fig. 1 Schematic diagram showing the interaction volume for different material points.

where the radii Ri and mutually orthogonal unit vectors ri allow defining an
interaction ellipsoid. It is worth mentioning that the choice of the interaction
tensor R should comply with the restrictions due to material symmetry.

When the weight function w has bounded support, interactions are effective
only in the region corresponding to the intersection of the interaction ellipsoid
with the region Vc over which the internal variable is defined (see Figure 1). If
the weight function w has unbounded support, interactions are effective within
the entire definition domain of the internal variable Vc. The underlying idea is
that different constitutive models, with different sets of internal variables, may
be used when modeling the thermomechanical behavior of a body. In such a
case, only the material points for which the definition of the internal variable
makes sense are considered when evaluating the non-local variable.

3 Field equations

In a thermomechanical context, the history of a material point with initial
position X is described by the functions χ and θ defining the motion and
temperature histories. Such functions allow determining the current position
x and absolute temperature T with:

x = χ[X, t] and T = θ[X, t] (15)

The evolution of the current position and temperature fields is governed by
some partial differential equations, which are commonly classified as either
conservation or constitutive equations. In the following, conservation equations
are first briefly recalled. The general framework used for the construction of
constitutive relations is then detailed.

3.1 Conservation equations

For a closed system, mass conservation requires that the initial mass density
%, which corresponds to the mass per unit volume in the initial configuration,
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does not change with time [46]:

%̇ = 0 (16)

For linear and angular momenta to be conserved, the first Piola-Kirchoff
stress tensor P must be such that:

P ·∇ +B = %ẍ (17)

P · F T = F · P T (18)

where F = ∂x/∂X is the deformation gradient tensor and B is the body force
density.

Also, according to the first law of thermodynamics, the evolution of the
specific internal energy e is given by:

ė =
1

%
P : Ḟ − 1

%
∇ ·Q+ rq + rnl (19)

whereQ is the heat flux density vector and rq is the specific heat supply. While
the mass and momentum conservation equations display their classical form, it
is important to mention that the local form of the first law of thermodynamics
includes a non-conventional contribution that takes the form of a specific en-
ergy source rnl. This additional energy source, which is sometimes referred to
as the non-locality residual [45], results from the assumption of non-locality.
Specifically, it represents the transfer of internal energy between interacting
material points. For any material point, the specific source rnl must satisfy
the following condition:

r̄nl[X] =
1

Vc

∫
Vc

rnl[X
′]dX ′ = 0 (20)

In the above equation, r̄nl denotes the average value of the non-locality residual
over the region Vc, which corresponds to the domain over which the constitu-
tive model is adopted (see Figure 1). In general, this region is not the volume
occupied by the whole body. The condition (20) reflects the fact that a mate-
rial point may transfer some internal energy to neighborhing material points
but, when averaged over the volume Vc, non-locality does not result in any net
production or loss of energy. It is worth mentioning that the region over which
the constitutive model is defined may coincide with the region occupied by the
body of interest. For this specific but rather common situation, the average
value of the non-locality residual r̄nl is identical for all material points, hence
does not depend on the initial position.

Finally, the second law of thermodynamics requires the specific entropy
production source σ to be non-negative at any time and for any material
point, which means that:

σ = ṡ+
1

%
∇ ·

(
Q

T

)
− rq
T
≥ 0 (21)

where s is the specific entropy.
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3.2 Constitutive equations

In a thermomechanical context, the list of state variables3 used for the devel-
opment of constitutive relations includes the deformation gradient tensor F
and its rate Ḟ , the absolute temperature T , its spatial gradient ∇T , a local
internal variable β and its non-local counterparts µβ and ξβ . The constitutive
model consists of some constitutive relations for the first Piola-Kirchoff stress
tensor P , the heat flux density vector Q, the specific free energy a = e − sT
and the specific entropy s. Such constitutive relations are formally written in
the following form:

a = â
[
F , Ḟ , T,∇T,β,µβ , ξβ

]
(22)

s = ŝ
[
F , Ḟ , T,∇T,β,µβ , ξβ

]
(23)

P = P̂
[
F , Ḟ , T,∇T,β,µβ , ξβ

]
(24)

Q = Q̂
[
F , Ḟ , T,∇T,β,µβ , ξβ

]
(25)

Also, when some internal variables are introduced, the corresponding evolution
equations must also be included in the constitutive model. These equations
allow describing how the microstructure of a material point is affected by a
thermomechanical process. The evolution equations take the following form:

β̇ = β̂
[
F , Ḟ , T,∇T,β,µβ , ξβ

]
(26)

It is worth mentioning that no evolution equation is needed for non-local
internal variables. Indeed, non-local internal variables are directly connected
to their local counterparts with their definition given by either Equation (1)
or Equation (9). Also, though the finite strain framework is used here for the
purpose of generality, the proposed framework can be used in the infinitesimal
strain context by considering the infinitesimal strain tensor (and its rate) as
external state variables instead of the deformation gradient tensor (and its
rate) in constitutive relations.

The specific dissipation source d = σT , which must be non-negative, is ob-
tained by combining the above equation with the energy conservation equation
(19) and the definition of the specific free energy:

d =
1

%
P : Ḟ + rnl − ȧ− sṪ −

1

%
∇ ln[T ] ·Q ≥ 0 (27)

3 For the purpose of conciseness, a single internal variable is considered here. The extension
of the proposed framework for multiple internal variables is straightforward.
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The specific free energy rate ȧ, which appears in the above inequality, is ex-
pressed as follows4:

ȧ =
∂a

∂F
: Ḟ+

∂a

∂Ḟ
: F̈+

∂a

∂T
Ṫ+

∂a

∂∇T
·∇Ṫ+

∂a

∂β
•β̇+

∂a

∂µβ
•µ̇β+

∂a

∂ξβ
ξ̇β (28)

Using the above relation, the expression of the specific dissipation source be-
comes:

d =

(
1

%
P − ∂a

∂F

)
: Ḟ − ∂a

∂Ḟ
: F̈ −

(
s+

∂a

∂T

)
Ṫ − ∂a

∂∇T
·∇Ṫ

− ∂a

∂β
• β̇ − ∂a

∂µβ
• µ̇β −

∂a

∂ξβ
ξ̇β + rnl −

1

%
∇ ln[T ] ·Q ≥ 0

(29)

The above inequality should hold for any temperature and motion history.
Since the dissipation source exhibits a linear dependence with respect to F̈ , Ṫ
and ∇Ṫ , the specific free energy must satisfy the following conditions:

∂a

∂Ḟ
= O,

∂a

∂T
= −s and

∂a

∂∇T
= 0 (30)

These conditions indicate that both the specific free energy and specific en-
tropy should not depend on the deformation gradient rate and the temperature
gradient, i.e.:

a = â
[
F , T,β,µβ , ξβ

]
(31)

s = ŝ
[
F , T,β,µβ , ξβ

]
(32)

The dissipation inequality therefore takes the following form:

d =
1

%
P ir : Ḟ +

1

%
b • β̇ +

1

%
m • µ̇β +

1

%
z ξ̇β + rnl −

1

%
∇ ln[T ] ·Q ≥ 0 (33)

For the purpose of conciseness, the following quantities have been introduced:

P ir = P − % ∂a
∂F

(34)

b = −% ∂a
∂β

(35)

m = −% ∂a

∂µβ
(36)

z = −% ∂a
∂ξβ

(37)

The dissipation inequality (33) does not allow constructing the evolution equa-
tion associated with the internal variable β. Indeed, the contributions associ-
ated with the evolution of local and non-local internal variables are separated

4 The inner product of two tensors whose rank is that of β (e.g. µβ) is denoted by •. In
a similar fashion, the inner product of two tensors whose rank is twice that of β (e.g. ξβ) is
denoted by .
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though these variables are not independent from each other. To circumvent
this difficulty, it is convenient to introduce the quantities µm, µz and µx such
that (see Appendix A):

m • µ̇β = µm • β̇ (38)

z ξ̇β = 2 (µz • β − µx) • β̇ (39)

To satisfy the above averaging conditions, the quantities µm, µz and µx are
defined according to:

µm[X] =
1

W

∫
Vc

w[X ′ −X]
(
m[X ′]−m[X]

)
dX ′ +m[X] (40)

µz[X] =
1

W

∫
Vc

w[X ′ −X]
(
z[X ′]− z[X]

)
dX ′ + z[X] (41)

µx[X] =
1

W

∫
Vc

w[X ′ −X]
(
z[X ′] • µβ [X ′]− z[X] • µβ [X]

)
dX ′

+ z[X] • µβ [X]

(42)

Using the properties (38) and (39), the dissipation inequality is rewritten as:

d =
1

%
P ir : Ḟ +

1

%
B • β̇ − 1

%
∇ ln[T ] ·Q ≥ 0 (43)

with:

B = b+ µm + 2µz • β − 2µx (44)

The above equation indicates that the dissipative forceB driving the evolution
of the internal variable β includes a local contribution as well as some non-local
contributions resulting from the introduction of the spatial average and spatial
variance in the list of state variables. Also, to obtain the above dissipation
inequality, the following definition of the specific energy source rnl has been
adopted:

rnl = m • µ̇β + z ξ̇β − µm • β̇ − 2 (µz • β − µx) • β̇ (45)

Because of the equalities (38) and (39), the condition (20) is automatically
fulfilled for any material point and at any time for the body of interest. The
dissipation inequality (43) is the starting point for the construction of evolution
equations. Indeed, it indicates that the evolution of the state of a material
point is controlled by the dissipative forces P ir, B and ∇ ln[T ]. In contrast
with conventional (i.e. local) theories, the evolution of the internal variable
β is driven by the dissipative force B that includes both local and non-local
contributions when the proposed framework is adopted.
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4 Numerical examples

For illustration purposes, some numerical examples using the proposed frame-
work are presented in this section. Such examples aim at showing the possi-
ble advantages offered by the introduction of higher order non-local internal
variables when constructing constitutive models for thermomechanical appli-
cations.

The following examples deal with crystalline materials. In the following, an
isotropic interaction tensor (see Equation (13)) is used whatever the crystal
structure is, mostly for simplicity reasons. The underlying assumption is that
the interactions between different material points only depend on their relative
distance. The function r therefore takes the following form:

r[X ′ −X] =
||X ′ −X||

R
(46)

Also, a biquadratic function is used for k, that is5:

k[r] =
15

16
〈1− r2〉2+ (47)

To solve the differential equations resulting from static equilibrium and
compatibility, the spectral method [35] is used. This method allows evaluating
the behavior of a volume element with periodic boundary conditions. The spec-
tral method has been implemented in the context of finite strains according to
the iterative procedure presented by Eisenlohr et al. [17]. The sole modification
concerns the evaluation of non-local internal variables. Specifically, non-local
variables are obtained from their local counterparts once constitutive rela-
tions have been integrated from a discrete convolution operation. Non-local
variables are then used as an input for the integration of constitutive rela-
tions during the next iteration. This procedure is repeated until convergence
is achieved. Also, for simplicity, the temperature field is assumed to be uniform
and constant, which corresponds to the specific case of isothermal conditions.

4.1 Example 1: Damage localization

Constitutive relations For the present application, the construction of consti-
tutive relations relies on the general framework of continuum damage mechan-
ics [32]. Specifically, a scalar internal variable β is introduced to represent the
degradation of mechanical resistance of a material point. The damage variable
is equal to one for a fully damaged material point. At the opposite, a zero
value corresponds to the absence of damage. Assuming that fracture is con-
trolled by brittle damage, the specific free energy a is decomposed into three
contributions according to:

a = ae + ad + ath (48)

5 The positive part of a variable (say x) is given by 〈x〉+ = (x+ |x|)/2.
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The elastic strain energy contribution ae is given by:

ae =
1

2%
E : C : E (49)

where C is the stiffness tensor and E is the Green strain tensor:

E =
1

2

(
F T · F − 1

)
(50)

To consider closure effects, the impact of damage on stiffness properties is
described according to:

C =

{
(1− β) C0 if tr[E] > 0

(1− β) C0 + β Ps : C0 : Ps if tr[E] ≤ 0
(51)

where C0 is the initial stiffness tensor. The above equation assumes that the
spherical contribution to the stiffness tensor is recovered when the spherical
strain is negative. For this purpose, Equation (51) uses the spherical projection
tensor Ps given by:

Ps =
1

3
1⊗ 1 (52)

For the contribution of damage to free energy ad, different options (a-d)
are explored:

ad =
1

%
A
(
2β − β2

)
(53a)

ad =
1

%
A
(
2β − β2

)
+

1

%

G

2
(β − µβ)

2
(53b)

ad =
1

%
A
(
2β − β2

)
+

1

%

G

2

(
(β − µβ)

2
+ ξβ

)
(53c)

ad =
1

%
A
(
2β − β2

)
+

1

%

G

2
ξβ (53d)

In the above equations, A and G are material parameters controlling respec-
tively the local and non-local contributions of damage to free energy. While
the local contribution takes the form suggested by Wu [51], different proposi-
tions regarding the non-local contribution are considered. The first option (a)
corresponds to a purely local damage model. For the other options (b-d), the
non-local contribution, which vanishes for a uniform damage field, is estimated
from the spatial average µβ and/or the spatial variance ξβ of the damage vari-
able. The case where the spatial average is the sole non-local internal variable
(b) corresponds to the standard non-local approach. The options involving
the spatial variance (c and d), alone or together with the spatial average, are
presented to demonstrate the possibilities offered by the proposed framework.
From a thermodynamic point of view, it is worth mentioning that, in com-
parison with the local model (a), an affine distribution of the damage variable
leads to an increase of free energy for variance-based models (c or d). At the
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opposite, an affine distribution of the damage variable does not provide any
additional contribution to free energy when the standard average-based model
(b) is adopted.

The thermal contribution to free energy, which is denoted by ath, does not
need to be specified because isothermal conditions are assumed.

The state equations are established by differentiating the specific free en-
ergy with respect to the different state variables. In the absence of viscous
contribution to the stress state (i.e. P ir = O), the first Piola-Kirchoff stress
tensor is:

P = %
∂a

∂F
= F · (C : E) (54)

The differentiation of free energy with respect to the damage variable leads to
the expression of the energy restitution rate b:

b = −% ∂a
∂β

= −1

2
E :

∂C
∂β

: E + 2A (β − 1) (55a or 55d)

b = −% ∂a
∂β

= −1

2
E :

∂C
∂β

: E + 2A (β − 1) +G (µβ − β) (55b or 55c)

The driving force associated with the spatial average of the damage variable
is given by:

m = −% ∂a
∂µβ

= 0 (56a or 56d)

m = −% ∂a
∂µβ

= G (β − µβ) (56b or 56c)

In a similar fashion, the driving force associated with the spatial variance is:

z = −% ∂a
∂ξβ

= 0 (57a or 57b)

z = −% ∂a
∂ξβ

= −G
2

(57c or 57d)

Using the above state equations, the dissipation equality reduces to:

d =
1

%
Bβ̇ − 1

%
∇ ln[T ] ·Q ≥ 0 (58)

with:

B = −1

2
E :

∂C
∂β

: E + 2A (β − 1) (59a)

B = −1

2
E :

∂C
∂β

: E + 2A (β − 1) +G (2µβ − β − µββ) (59b)

B = −1

2
E :

∂C
∂β

: E + 2A (β − 1) + 2G (µβ − β) (59c)

B = −1

2
E :

∂C
∂β

: E + 2A (β − 1) +G (µββ − β) (59d)
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When the formulation is purely local (a), the dissipative force driving the
development of damage does not contain any contribution limiting damage
localization. For the models that use the spatial variance (c and d), the non-
local contribution to the dissipative force has a clear meaning. Whatever the
damage field is, the non-local contribution participates in damage diffusion by
reducing the difference between the damage variable β and its spatial (single
or double) average (µβ or µββ). This non-local contribution can therefore
be interpreted as a localization limiter. For the standard non-local approach
(b), which considers the damage variable and its spatial average as internal
variables, the non-local contribution also promotes damage diffusion. This non-
local contribution tends to reduce the difference between the local damage
variable β and a non-local variable (2µβ − µββ).

From a computational perspective, the mixed model (c), which uses both
the variance and the average, requires less computational efforts than the
standard non-local approach (b). Indeed, for the evaluation of the non-local
contribution to the dissipative force, only one averaging operation needs to
be performed. At the opposite, when the standard non-local approach (b) is
adopted, both the single and the double-averaging operations must be applied
to the damage variable to evaluate the non-local contribution to the dissipative
force driving damage development.

In the context of standard materials, the evolution equations associated
with the damage variable and the heat flux density vector are derived from a
dissipation potential. Because of the restriction to isothermal conditions, the
constitutive equation for the heat flux vector does not need to be established
here. The dependence of the dissipation potential to the temperature logarithm
gradient is therefore ignored. In the present case, the dissipation potential φ
displays the following form:

φ =
K

2%

( 〈B〉
+

K

)2

(1− β) (60)

where K is a viscosity parameter. The differentiation of the dissipation po-
tential with respect to the dissipative force B leads to the following evolution
equation for the damage variable:

β̇ = %
∂φ

∂B
=
〈B〉+
K

(1− β) (61)

It is worth mentioning that the above evolution equation only allows damage
growth (i.e. healing is not allowed).

Parameters and loading conditions The volume element used for this appli-
cation is shown in Figure 2. It is composed of 64 equiaxed randomly oriented
grains, with an average grain size of 25 µm. To evaluate the impact of spa-
tial discretization on numerical results, resolutions ranging from 323 to 1283

voxels have been used for the application of the spectral method. Since the
size of the volume element is 100 µm, the voxel size ranges from 1.6 µm to 0.5
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Fig. 2 Polycrystalline volume element used for the application of the spectral method.

Table 1 Material parameters for the brittle damage model. The Laue class corresponding
to the crystalline solid is 6/mmm (hexagonal system). Only independent elastic constants
are given.

Stiffness
C1111 C1122 C3333 C1133 C1212

163.7 GPa 36.4 GPa 63.5 GPa 53.0 GPa 38.8 GPa
Damage Radius

A G K R
10−1 MPa 1 MPa 5× 10−3 MPa.s 2 µm

µm. Also, to investigate the development of brittle damage, periodic boundary
conditions corresponding to uniaxial tension with a constant axial strain rate
of 10−3 s−1 are prescribed to the volume element.

The material parameters used for the numerical simulations are listed in
Table 1. An interaction radius R of 2 µm is used for the computation of non-
local damage variables.

Results The evolution of the macroscopic axial stress as a function of the
macroscopic axial strain obtained for a resolution of 1283 is plotted in Figure
3. The macroscopic behavior is qualitatively similar for the different models.
Specifically, the axial stress first increases and drops rapidly when damage de-
velops significantly. When the formulation is purely local, the maximum axial
stress is lower than that obtained with non-local models. Indeed, when the
non-local contribution is adopted, the development of damage is accompanied
by a diffusion process that reduces the impact of the singularities resulting
from damage development.

The total dissipated energy and peak stress are plotted as a function of res-
olution in Figure 4. According to the numerical results, some differences exist
regarding mesh dependency. Specifically, in contrast with non-local formula-
tions (b-d), the results obtained with the local formulation (a) strongly depend
on mesh resolution. This difference is attributed to the localization of damage
within a few voxels. Strong spatial damage localization, hence mesh depen-
dency, is largely reduced when non-locality is introduced. This is particularly
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Fig. 3 Stress-strain diagrams obtained for a uniaxial tension test with the different damage
models.

true for variance-based models (c or d) that exhibit the lowest dependency
with respect to mesh resolution. The difference with the average-based model
(b) is attributed to the fact that the non-local contribution to the dissipative
force, which drives damage diffusion, is higher when the spatial variance is
introduced.

4.2 Example 2: Polycrystalline plasticity

Constitutive relations To describe the elastic-viscoplastic behavior of a crys-
talline material point, the deformation gradient tensor is decomposed into
elastic (superscript e) and plastic (superscript p) contributions according to:

F = F e · F p (62)

In addition to the plastic contribution to the deformation gradient tensor
F p, the list of internal state variables used for the present constitutive model
includes some isotropic hardening variables. In the following, the hardening
variable attached to the sth slip system is denoted by βs and the correspond-
ing spatial average and variance are respectively denoted by µsβ and ξsβ . The
proposed model is similar in spirit to the non-local softening plasticity mod-
els of Vermeer and Brinkgreve [48] and Strömberg and Ristinmaa [47] in the
sense that non-locality is introduced via isotropic hardening variables. This ap-
proach contrasts with common strain gradient plasticity models (e.g. [1],[53])
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Fig. 4 Evolution of the total dissipated energy (top) and peak stress (bottom) as a function
of the mesh resolution.

that consider the spatial gradients of plastic strains, rather than hardening
variables.

The proposed set of state variables allows decomposing the specific free
energy a into three contributions corresponding to elastic strain energy ae,
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defect energy ad and thermal energy ath such that:

a = ae + ad + ath (63)

The elastic contribution to free energy is given by:

ae =
1

2%
Ee : C : Ee (64)

where C is the stiffness tensor and Ee is the elastic Green strain tensor:

Ee =
1

2

(
F Te · F e − 1

)
(65)

As for the damage model, different options (a-d) are explored for the con-
tribution of defects to free energy:

ad =
1

2%

∑
s

βs
∑
t

Hstβt (66a)

ad =
1

2%

∑
s

βs
∑
t

Hstβt +
1

2%
G
∑
s

(βs − µsβ)2 (66b)

ad =
1

2%

∑
s

βs
∑
t

Hstβt +
1

2%
G
∑
s

(
(βs − µsβ)2 + ξsβ

)
(66c)

ad =
1

2%

∑
s

βs
∑
t

Hstβt +
1

2%
G
∑
s

ξsβ (66d)

In the above equation, H is the isotropic hardening matrix and G is a material
parameter controlling the non-local contribution to free energy. The first op-
tion (a) corresponds to a purely local formulation while the other options (b-d)
are non-local. For the latter formulations, the non-local contribution is either
evaluated from the spatial averages (b and c) and/or the spatial variance (c
and d) of the isotropic hardening variables.

Since isothermal conditions are considered, the thermal contribution to free
energy, which solely depends on temperature, does not need to be specified.

In the absence of viscous stress, the first Piola-Kirchoff stress tensor is
given by:

P = %
∂a

∂F
(67)

= F e · (C : Ee) · F−Tp (68)

Depending on the retained option, one obtains the following state equations
for the driving force associated with the hardening variable for the sth system:

bs = −% ∂a
∂βs

= −
∑
t

Hstβt (69a or 69d)

bs = −% ∂a
∂βs

= −
∑
t

Hst +G(µsβ − βs) (69b or 69c)
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For each slip system s, the driving force associated with the spatial average
of the hardening variable is:

ms = −% ∂a
∂µsβ

= 0 (70a or 70d)

ms = −% ∂a
∂µsβ

= G(βs − µsβ) (70b or 70c)

For the spatial variance of the hardening variable, the corresponding driving
force is given by:

zs = −% ∂a
∂ξsβ

= 0 (71a or 71b)

zs = −% ∂a
∂ξsβ

= −G
2

(71c or 71d)

Using the proposed framework, the expression of the specific dissipation
source d reduces to:

d =
1

%
Σ : Lp +

1

%

∑
s

Bsβ̇s − 1

%
∇ lnT ·Q (72)

where Lp = Ḟ p · F−1p is the plastic contribution to the velocity gradient. The
above equation indicates that plastic flow is controlled by the Mandel stress
tensor Σ [33], whose expression is:

Σ = F Te · P · F Tp (73)

The stress-like quantity Bs is the conjugate force to the hardening variable
βs. The application of relation (44) leads to:

Bs = −
∑
t

Hstβt (74a)

Bs = G
(
2µsβ − µsββ − βs

)
−
∑
t

Hstβt (74b)

Bs = 2G
(
µsβ − βs

)
−
∑
t

Hstβt (74c)

Bs = G
(
µsββ − βs

)
−
∑
t

Hstβt (74d)

In the context of crystal plasticity, each slip system s is defined from two
unit vectors: the slip plane normal ns and the slip direction ms. When plastic
flow is the sole result of crystallographic slip, the plastic contribution to the
velocity gradient Lp is obtained from:

Lp =
∑
s

ms ⊗ nsνs (75)
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where νs is the plastic shear strain rate for each slip system. To consider
the size-dependence of the hardening rate, the critical resolved shear stress
rs, which represents the resistance to plastic flow for the sth slip system, is
defined according to:

rs = −Bs (76a)

rs = −Bs
√

1 + L
√

(βs − µsβ)2 (76b)

rs = −Bs
√

1 + L
√

(βs − µsβ)2 + ξsβ (76c)

rs = −Bs
√

1 + L
√
ξsβ (76d)

where L is a material parameter. In contrast with local crystal-plasticity based
models (a), the resistance to plastic flow includes a non-local contribution (b-
d) that results from inhomogeneous hardening. Such a contribution vanishes
when the hardening variable is (at least locally) uniformly distributed, in which
case the linear isotropic hardening rule is retrieved. To determine whether the
conditions for plastic flow are met or not, it is convenient to introduce a yield
function fs for each slip system s such that:

fs = |τs| − rs (77)

with:
τs = ms ·Σ · ns (78)

The dissipation potential φ used to obtain the evolution equations takes
the following form:

φ =
1

%

∑
s

K

M + 1

( 〈fs〉
K

)M+1

(79)

where K and M are some viscosity parameters. The plastic shear strain rate
is thus given for each slip system s by:

νs = %
∂φ

∂τs
=

( 〈fs〉
K

)M
sign [τs] (80)

Also, the evolution equations for the hardening variables obtained for the
different options are:

β̇s = %
∂φ

∂Bs
= −% ∂φ

∂rs
∂rs

∂Bs
= |νs| (81a)

β̇s = %
∂φ

∂Bs
= −% ∂φ

∂rs
∂rs

∂Bs
= |νs|

√
1 + L

√
(βs − µsβ)2 (81b)

β̇s = %
∂φ

∂Bs
= −% ∂φ

∂rs
∂rs

∂Bs
= |νs|

√
1 + L

√
(βs − µsβ)2 + ξsβ (81c)

β̇s = %
∂φ

∂Bs
= −% ∂φ

∂rs
∂rs

∂Bs
= |νs|

√
1 + L

√
ξsβ (81d)
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Table 2 Material parameters for the crystal plasticity model. The Laue class corresponding
to the crystalline solid is m3̄m (cubic system). Only independent elastic constants are given.

Stiffness Viscoplasticity
C1111 C1122 C1212 K M

168.3 GPa 122.1 GPa 75.7 GPa 10 MPa 20
Hardening Radius

Hss Hst G L R
200 MPa 200 MPa 10 GPa 1000 2 µm

Parameters and loading conditions The volume element used to investigate
the elasto-plastic behavior is the same as for the previous example (see Fig-
ure 2). To study size effects, three different grain sizes have been considered:
12.5 µm, 25 µm and 50 µm. The results obtained for an infinite grain size,
which correspond to the local formulation, are also provided. The boundary
conditions prescribed to the volume element correspond to a simple shear test
with a constant shear strain rate of 10−2 s−1. The material parameters used
for performing the numerical simulations are listed in Table 2. For the present
application, the hardening variables have an initial value of 1.25%, which cor-
responds to an initial critical resolved shear stress of 30 MPa.

Results The evolution of the macroscopic tangential stress as a function of
the macroscopic shear strain is plotted in Figure 5 for the different grain sizes.
According to the numerical results, the reduction of grain size leads to an
increase of both the yield stress and the hardening rate. In the present context,
this size effect is attributed to the inhomogeneous distribution of the hardening
variable, which affects the resistance to plastic flow. It is worth noticing that,
in comparison with the average-based model (b), the impact of grain size on
the elasto-plastic behavior is more significant when the spatial variance (c or
d) is introduced. Since the spatial average does not much contribute to size
effects, the mixed (c) and variance-based (d) models provide similar results.

The yield stress obtained from the non-local models (b, c or d) is plotted
as a function of the inverse of the square root of the average grain size in
Figure 6. According to the results, the yield stress tends toward a minimum
value when the grain size approaches infinity, which is consistent with the Hall-
Petch equation. This effect is due to the fact that the non-local contribution
to hardening is negligible for large grain sizes. When the grain size is reduced,
the dependence of the yield stress with respect to the average grain size is
close to that given by the Hall-Petch equation when either the mixed (c)
or variance-based (d) models are adopted. While the results obtained with
the average-based model (b) are size-dependent, the role of grain size on the
development of plasticity is not fully consistent with the Hall-Petch equation.
Such results highlight the possible benefits of considering the spatial variance
of hardening variables in the description of size effects.

It should be mentioned that, in contrast with gradient-type models (e.g.
[27],[9]), integral-type models are not well suited for very small grain sizes,
i.e. inferior to the interaction radius R. Indeed, when the interaction volume
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is large in comparison with the grain size, the spatial average and spatial
variance reach asymptotic values in the sense that they are not much affected
by further grain size reduction. As a result, the impact of grain size on the
yield stress is not correctly depicted for very small grain sizes. Additional
developments are therefore needed to improve the description of size effects
over a wide range of grain sizes with (average- or variance-based) integral-type
models.

The spatial distribution of the cumulated plastic strain βeq =
∑
s β

s ob-
tained at the end of the shear test with the variance-based model (d) is shown
in Figure 7 for different grain sizes. Plastic strain localization is less pronounced
for the finest microstructure due to non-local effects. At the opposite, for the
coarsest microstructure, significant plastic strains have been accumulated near
grain boundaries as a result of internal stresses. In this latter case, non-local
effects have a negligible impact on the spatial distribution of plastic deforma-
tion. The norm of ∇ × F p, which provides a quantitative measure of plastic
deformation incompatibility, is also plotted in Figure 8 for the different grain
sizes. This quantity is related to the density of GND [5]. According to the
results, though the proposed model does not explicitly use GND densities,
the reduction of grain size leads to higher plastic deformation incompatibili-
ties, hence higher GND densities. Also, GND preferably accumulate near grain
boundaries, which are the regions where significant plastic deformation incom-
patibilities are observed.

To illustrate the energetic implications of the present model, the evolution
of the average internal energy density as a function of the macroscopic shear
strain is plotted in Figure 9 for the variance-based model (d). According to
the results, the grain size reduction leads to an increase of internal energy that
is attributed to heterogeneous hardening.

5 Conclusions

In the present work, a general framework has been proposed to construct
variance-based non-local constitutive models. In contrast with most integral-
type constitutive models, which only use the spatial averages, the spatial
variances of internal variables are treated as additional state variables. The
proposed framework relies on continuum thermodynamics to construct the
state equations and the evolution equations, which incorporate some non-local
contributions. Such contributions allow considering the impact of the spatial
distribution of internal variables on the thermomechanical behavior of solid
materials without introducing additional equilibrium equations and boundary
conditions. For the purpose of illustration, some numerical examples have been
presented. According to the numerical results, the proposed framework can be
used to circumvent the difficulties associated with excessive spatial localization
or to consider size effects. Further work should focus on the construction of
more advanced constitutive models within the proposed framework and their
validation from experimental observations.
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Fig. 5 Stress-strain diagrams obtained for a simple shear test for different grain sizes with
the average-based (top), mixed (middle) and variance-based (bottom) non-local models.
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Fig. 6 Evolution of the yield stress as a function of the inverse of the square root of the
average grain size. The yield stress is given by the von Mises equivalent stress corresponding
to an equivalent plastic strain of 0.2%.
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22. Frémond, M., Nedjar, B., Damage, gradient of damage and principle of virtual power,
Int J Solids Struct. 33 (1996)

23. Gao, H., Huang, Y., Taylor-based nonlocal theory of plasticity, Int. J. Solid Struct. 38
(2001)

24. Germain, P., Nguyen, Q.S., Suquet, P., Continuum Thermodynamics. J. Appl. Mech.
50 (1983)

25. Gmati, H., Mareau, C., Ammar, A., El Arem, S., A phasefield model for brittle fracture
of anisotropic materials, International Journal for Numerical Methods in Engineering 121
(2020)

26. Gudmundson, P., A unified treatment of strain gradient plasticity, J. Mech. Phys. Solids
52 (2004)

27. Haouala, S., Lucarini, S., Llorca, J., Segurado, J., Simulation of the Hall-Petch effect in
FCC polycrystals by means of strain gradient crystal plasticity and FFT homogenization,
J. Mech. Phys. Solids 134 (2020)

28. Hernandez Padilla, C.A., Markert, B., A coupled phase-field model for ductile fracture
in crystal plasticity, PAMM 14 (2014)

29. Jin, L., Ding, Z., Li, D., Du, X., Experimental and numerical investigations on the
size effect of moderate high-strength reinforced concrete columns under small-eccentric
compression, International Journal of Damage Mechanics 27 (2017)
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A Averaging properties of non-local variables

The construction of constitutive relations uses some specific averaging properties of non-
local variables. These properties are briefly demonstrated here. Specifically, for any local
internal variable β, the time derivative of the spatial average µβ is given by:

µ̇β [X] =
1

W

∫
Vc

w[X′ −X]
(
β̇[X′]− β̇[X]

)
dX′ + β̇[X] (82)

For any tensor field m, whose rank is that of β, the above expression leads to:

m • µ̇β =
1

Vc

1

W

∫
Vc

∫
Vc

w[X′ −X]m[X] •
(
β̇[X′]− β̇[X]

)
dX′dX

+
1

Vc

∫
Vc

m[X] • β̇[X]dX

(83)



28 Charles Mareau

Since the weight function w is even, the above expression becomes:

m • µ̇β =
1

Vc

1

W

∫
Vc

∫
Vc

w[X′ −X]
(
m[X′]−m[X]

)
• β̇[X]dX′dX

+
1

Vc

∫
Vc

m[X] • β̇[X]dX

(84)

=µm • β̇ (85)

Also, the time derivative of the spatial variance ξβ is:

ξ̇β [X] =
1

W

∫
Vc

w[X′ −X]
(
µβ [X]− β[X′]

)
⊗
(
µ̇β [X]− β̇[X′]

)
dX′

+
1

W

∫
Vc

w[X′ −X]
(
µ̇β [X]− β̇[X′]

)
⊗
(
µβ [X]− β[X′]

)
dX′

−
1

W

∫
Vc

w[X′ −X]
(
µβ [X]− β[X]

)
⊗
(
µ̇β [X]− β̇[X]

)
dX′

−
1

W

∫
Vc

w[X′ −X]
(
µ̇β [X]− β̇[X]

)
⊗
(
µβ [X]− β[X]

)
dX′

+
(
µβ [X]− β[X]

)
⊗
(
µ̇β [X]− β̇[X]

)
+
(
µ̇β [X]− β̇[X]

)
⊗
(
µβ [X]− β[X]

)

(86)

For any symmetric tensor z, whose rank is twice that of β, one obtains that:

z ξ̇β =
1

Vc

2

W

∫
Vc

∫
Vc

w[X′ −X]z[X]
((
µβ [X]− β[X]

)
⊗ β̇[X]

)
dX′dX

−
1

Vc

2

W

∫
Vc

∫
Vc

w[X′ −X]z[X]
((
µβ [X]− β[X′]

)
⊗ β̇[X′]

)
dX′dX

−
1

Vc
2

∫
Vc

z[X]
((
µβ [X]− β[X]

)
⊗ β̇[X]

)
dX

(87)

The evenness of the weight function allows re-writing the above expression as follows:

z ξ̇β =
1

Vc

2

W

∫
Vc

∫
Vc

w[X′ −X]z[X]
((
µβ [X]− β[X]

)
⊗ β̇[X]

)
dX′dX

−
1

Vc

2

W

∫
Vc

∫
Vc

w[X′ −X]z[X′]
((
µβ [X′]− β[X]

)
⊗ β̇[X]

)
dX′dX

− 2
1

Vc

∫
Vc

z[X]
((
µβ [X]− β[X]

)
⊗ β̇[X]

)
dX

(88)

For the purpose of conciseness, it is convenient to introduce the tensor field x such that:

x[X] = z[X] • µβ [X] (89)

Using the above definition, expression (88) becomes:

z ξ̇β =
2

W

∫
Vc

∫
Vc

w[X′ −X]
((
z[X′]− z[X]

)
• β[X]

)
• β̇[X]dX′dX

−
2

W

∫
Vc

∫
Vc

w[X′ −X]
(
x[X′]− x[X]

)
• β̇[X]dX′dX

+ 2

∫
Vc

(z[X] • β[X]) • β̇[X]dX − 2

∫
Vc

x[X] • β̇[X]dX

(90)

= 2 (µz • β − µx) • β̇ (91)
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Fig. 8 Spatial distributions of ||∇ × F p|| obtained at the end of a simple shear test for
different grain sizes with the variance-based non-local model.
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Fig. 9 Evolution of the average internal energy density calculated as a function of the
macroscopic shear strain during a simple shear test for different grain sizes with the variance-
based non-local model.


