
  

 

 

Tilburg University

Dual autoencoders modeling of electronic health records for adverse drug event
preventability prediction
Liao, Wenjun; Derijks, Hieronymus J; Blencke, Audrey A; De Vries, Esther; Van Seyen,
Minou; J Van Marum, Robert
Published in:
Intelligence-Based Medicine

DOI:
10.1016/j.ibmed.2022.100077

Publication date:
2022

Document Version
Publisher's PDF, also known as Version of record

Link to publication in Tilburg University Research Portal

Citation for published version (APA):
Liao, W., Derijks, H. J., Blencke, A. A., De Vries, E., Van Seyen, M., & J Van Marum, R. (2022). Dual
autoencoders modeling of electronic health records for adverse drug event preventability prediction. Intelligence-
Based Medicine, 6, [100077]. https://doi.org/10.1016/j.ibmed.2022.100077

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

            • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
            • You may not further distribute the material or use it for any profit-making activity or commercial gain
            • You may freely distribute the URL identifying the publication in the public portal

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Download date: 04. Dec. 2022

https://doi.org/10.1016/j.ibmed.2022.100077
https://research.tilburguniversity.edu/en/publications/34ecde70-40fb-414b-a7cf-d8629a07c1ed
https://doi.org/10.1016/j.ibmed.2022.100077


Intelligence-Based Medicine 6 (2022) 100077

Available online 20 September 2022
2666-5212/© 2022 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

Dual autoencoders modeling of electronic health records for adverse drug 
event preventability prediction 

Wenjun Liao a,b, Hieronymus J Derijks b, Audrey A Blencke b, Esther de Vries c,d, 
Minou van Seyen b, Robert J van Marum e,f,* 

a The Jheronimus Academy of Data Science, Eindhoven University of Technology, ‘s-Hertogenbosch, the Netherlands 
b Department of Pharmacy, Jeroen Bosch Hospital, ‘s-Hertogenbosch, the Netherlands 
c Department of Tranzo, Tilburg School of Social and Behavioral Sciences, Tilburg University, Tilburg, the Netherlands 
d Department of Jeroen Bosch Academy Research, Jeroen Bosch Ziekenhuis, ‘s-Hertogenbosch, the Netherlands 
e Department of Elderly Care Medicine, Amsterdam Public Health Research Institute, Amsterdam UMC, Location VUmc, Amsterdam, the Netherlands 
f Department of Clinical Pharmacology, Jeroen Bosch Hospital, ‘s-Hertogenbosch, the Netherlands   

A R T I C L E  I N F O   

Keywords: 
Adverse drug event 
Electronic health records 
Machine learning 
Autoencoder 
Clinical data science 

A B S T R A C T   

Background: Elderly patients are at increased risk for Adverse Drug Events (ADEs). Proactively screening elderly 
people visiting the emergency department for the possibility of their hospital admission being drug-related helps 
to improve patient care as well as prevent potential unnecessary medical costs. Existing routine ADE assessment 
heavily relies on a rule-based checking process. Recently, machine learning methods have been shown to be 
effective in automating the detection of ADEs, however, most approaches used only either structured data or free 
texts for their feature engineering. How to better exploit all available EHRs data for better predictive modeling 
remains an important question. On the other hand, automated reasoning for the preventability of ADEs is still a 
nascent line of research. 
Methods: Clinical information of 714 elderly ED-visit patients with ADE preventability labels was provided as 
ground truth data by Jeroen Bosch Ziekenhuis hospital, the Netherlands. Methods were developed to address the 
challenges of applying feature engineering to heterogeneous EHRs data. A Dual Autoencoders (2AE) model was 
proposed to solve the problem of imbalance embedded in the existing training data. 
Results: Experimental results showed that 2AE can capture the patterns of the minority class without incorpo-
rating an extra process for class balancing. 2AE yields adequate performance and outperforms other more 
mainstream approaches, resulting in an AUPRC score of 0.481. 
Conclusions: We have demonstrated how machine learning can be employed to analyze both structured and 
unstructured data from electronic health records for the purpose of preventable ADE prediction. The developed 
algorithm 2AE can be used to effectively learn minority group phenotype from imbalanced data.   

1. Introduction 

An Adverse Drug Event (ADE) is ‘any injury due to the use of 
medication’ [1]. Typically, elderly patients are at increased risk for 
ADEs due to problems such as frailty, multi-morbidity, and poly-
pharmacy [1]. A Dutch study retrospectively evaluating a random 
sample of 2000 admissions from a total of 155 hospitals by assessing the 
admission and discharge letters showed that an estimated 10% of un-
planned hospital admissions in patients >65 years are thought to be 
drug-related and half of them are potentially preventable [2]. The costs 

of potentially preventable hospital admissions related to medication are 
considerable, with an estimated €5461 per case on average [3]. Based on 
these figures, the Dutch Guideline “Polyfarmacie bij Ouderen, 
addendum 2e lijn” (Polypharmacy for elderly admitted to hospital) 
proposes that all elderly people visiting an Emergency Department (ED) 
should be screened pro-actively for the possibility of the hospital 
admission being drug-related. Leveraging the existing data in Electronic 
Health Records (EHRs) to better capture elderly at risk of ADE in the ED 
may improve their care [4]. 

A detailed assessment of the probability of the ED visit being related 
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to medication use and subsequent analysis of potential preventability 
using EHRs data takes a trained clinical pharmacologist an estimated 
5–10 min per patient. Since most ED visits and hospital admissions are 
not caused by a preventable ADE, carrying out this evaluation for all ED 
visits or hospital admissions will take too much in fact unnecessary staff 
time, making it not cost-effective. Thus, there is a need for efficient 
methods to identify preventable ADE cases among elderly ED-visitors 
and clinically admitted patients. 

Existing methods for automating the ADE-preventability detection 
process heavily rely on rule-based systems such as filtering pre-defined 
symptoms, abnormal computer-generated life signals, or medication 
error signals [2,5]. However, these rule-based systems are used only for 
the ADE detection part whereas upon knowing an ADE case, the pre-
ventability assessment is still dependent on expert domain knowledge 
through manual checks. Adapting the machine learning systems to 
include an estimation of preventability may provide a solution to this 
challenge because all labor-intensive tasks could then be handled 
automatically. Machine learning based predictive modeling using EHRs 
data is a nascent research area. Whether the preventability of ADE can be 
detected effectively by a machine learning model is a neglected area so 
far. The majority of interdisciplinary work on Artificial Intelligence (AI) 
and ADE focused on the detection of the incidence of ADE. 

2. Related works 

2.1. Machine learning on ADE detection: structured and unstructured 
data 

Due to the strict permission rules for EHRs access, research oppor-
tunities with collaborative use of EHRs are limited [6]. Naturally, 
literature on AI-based ADE detection is scarce. Most published studies 
only used partial information extracted from the EHRs database to form 
the algorithm training features. Some focused on using unstructured 
data, e.g., clinical notes. Eriksson et al. [7] applied a Named Entity 
Recognition (NER) tagger on the clinical narrative text to identify ADE 
phenotypical descriptions that have no requirement for causal drug 
relationship. A similar approach proposed by Henriksson et al. [8] cal-
culates distributional similarities for medication-symptom pairs based 
on co-occurrence information in a large clinical corpus. LePendu et al. 
[9] proposed a novel de-identified patient-feature construction method, 
where the clinical texts are transformed to a matrix coded on the basis of 
standard medical terms. 

Another mainstream direction is to use structured data such as 
clinical measurements, lab tests, and medication records. The strategies 
in utilizing structured EHRs data boil down to incorporating effective 
ways of extracting tabular format features that represent the longitudi-
nal, time-stamped data without losing the data’s temporal and sequen-
tial information. Zhao et al. (2015) [10] proposed a single-point 
representation method to construct features out of various structured 
datasets. In 2017, they proposed an innovative multivariate time series 
representation method for extracting features from heterogeneous 
temporal EHRs data [11]. Cheng et al. [12] represented the medical 
events as a temporal matrix where time is one dimension and event type 
the other one. 

Few researchers attempted to combine both structured and un-
structured EHRs data. How to best utilize all the available information 
from the EHRs, both structured and unstructured, has still been under- 
explored. An example is a project carried out across three European 
countries, where a ranked list of high-priority event types is created 
using a variety of structured and free texts queries [13]. Based on these, 
a number of statistical methods were developed for drug safety signal 
detection, however, the feature extraction mainly focused on the lon-
gitudinal records [14]. In this study, we further explore whether it is 
beneficial to combine various data types from the EHRs for the task of 
supervised ADE-preventability prediction. 

2.2. Imbalanced classification problem 

Many supervised classification tasks in the healthcare domain face 
the class imbalance problem. Preventable-ADE cases also constitute only 
a small fraction of all ED-visits by elderly patients, resulting in an un-
balanced labeled training dataset. A mainstream approach to relieving 
such imbalance problems among classes is resampling, either through 
oversampling of the minority class or undersampling of the majority 
class. However, the randomness in the sample selection process may 
then lead to unstable model performance. Another approach is the use of 
generative models to synthesize simulated samples of the minority 
classes. Popular generative models include Generative Adversarial 
Network (GAN) [15] and Variational Auto-Encoder (VAE) [16], which 
were applied to solve the class imbalance problem or integrate new 
samples in several clinical data science and biomedical projects [17–20]. 
Considering that the differences in feature performance between pre-
ventable ADE and non-preventable ADE cases are minor, the synthetic 
minority samples may partially overlap with the majority class. 

In contrast to just seeking ways to balance the classes and train a 
single model that captures different class patterns in the supervised 
classification task, some researchers also adopted an approach in which 
multiple weak learners are trained on different classes. Many of them 
used autoencoder as the weak learner. Autoencoder, introduced by 
Hinton et al., in 1986 [21] is the foundational structure of the generative 
model VAE. It is a type of artificial neural network used to learn a rep-
resentation for a set of data, which is trained by minimizing the recon-
struction errors between the same set of input and output. A single 
autoencoder based model showed promising performance in prediction 
tasks using imbalanced clinical data [22]. However, some studies 
showed that better classification and anomaly detection results are 
achieved by using an ensemble of autoencoders. In a fraud detection 
project [23], two autoencoders were trained on the normal and fraud 
datasets, respectively. During the testing phase, the samples were 
encoded by both autoencoders where two sets of features were gener-
ated, combined, and fed into a neural network. Similarly, a study by Ng 
et al. [24] constructed two stacked autoencoders with different activa-
tion functions to capture different characteristics in the binary classes. 
Two sets of features were learned by the dual autoencoders and were 
combined to form the final feature set. The study by Chen et al. [25] 
went a step further. After obtaining multiple autoencoders trained from 
different classes, during the testing phase, they calculated the recon-
struction errors from each autoencoder instead of combining the feature 
sets generated by multiple autoencoders. The prediction was made by 
summarizing these reconstruction errors. Inspired by these previous 
approaches, we evaluated a similar framework consisting of two 
autoencoders to handle the class imbalance problem inevitably 
embedded in the preventable ADE classification task. 

3. Methods 

In this section, we first introduce the data source and the study 
population characteristics. We then describe the data types involved in 
the datasets. Different strategies are proposed to fit the heterogeneous 
temporal data and unstructured free texts into predictive models. 
Finally, we derive in detail the proposed Dual Autoencoders (2AE) 
framework. 

3.1. Data source 

The study material is provided by the Jeroen Bosch Hospital (JBZ), ‘s- 
Hertogenbosch, The Netherlands. Estimates of ADE related hospital 
admissions in the Netherlands were only based on retrospective analysis 
of admission and discharge letters, thereby missing a lot of relevant 
information. Therefore, the clinical pharmacologists at JBZ initiated a 
project to study if routine assessment by clinical pharmacologists of 
hospital admissions of elderly persons (≥70 years of age) - in order to 
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detect potential preventable ADE related admissions - is (cost)-effective. 
In 2019, a multidisciplinary team, the F (“Farmacologie”)-team, was 
formed to conduct the identification process. The F-team consists of 
clinical pharmacologists with a mix of professional backgrounds: hos-
pital pharmacist, geriatrician, and ED-physician. 

From January to July 2019 the F-team two times a week evaluated 
all eligible ED-visit patients for medical departments with acute hospital 
admissions (surgery, urology, internal medicine, gastro-enterology, 
cardiology, and neurology). Since medication evaluation is standard 
procedure for geriatricians and additional analysis of medication by the 
F-team therefore seemed unnecessary, admissions for the geriatric 
department were not analyzed. The number of patients studied for each 
department varied and was determined by the F-team. If after a number 
of assessments, the F-team was convinced that they had a clear view on 
the prevalence of ADEs for that department, another department was 
chosen for further evaluation. 

For each admission, the F-team checked first if a patient had symp-
toms that are highly associated with ADEs, such as falls, syncope, frac-
tures, constipation, delirium, and bleeding. Second, the team looked for 
involvement of the geriatric department. Patients who were also seen by 
a geriatrician during the ED visit were excluded. Third, for those patients 
with relevant symptoms, the F-team checked whether a patient’s ED- 
visit could be classified as an ADE case by looking into their EHRs in 
detail. Fourth, for the identified ADE cases, the F-team made a binary 
judgment on its preventability (yes or no). 

Table 1 shows the characteristics of the study population. We treated 
the preventable ADE cases (true-case) as the minority class and grouped 
all the other clusters together to form the majority class. Patient infor-
mation was extracted from the JBZ EHRs database and transformed to 
separate datasets in CSV-format based on different fields as shown in 
Table 2. 

3.2. Feature construction 

Feature engineering is the process to construct representation vec-
tors from the raw EHRs data that can be recognized by machine learning 
algorithms. Each vector represents the information of one patient and is 
a concatenation of multiple feature vectors constructed from different 
datasets. During feature construction, only data in the observation 
window was considered. We set the default observation window at two 
weeks before the preventable ADE assessment day. This is in alignment 
with the actual clinical practice, for example, when assessing the 
complaint-medication associations, domain experts usually only inspect 
the medications currently in use. 

The datasets can be classified into three categories. The first category 
consists of data sets that are in a structured tabular format, such as the 

demographics dataset where each patient has only one unique record. 
These categorical records are therefore one-hot encoded, which results 
in a vector space where each category is orthogonal and equidistant to 
the others. 

The second category consists of datasets that have a structured lon-
gitudinal format, where repeated observations of the same clinical 
events over some extended time frame are recorded for one patient. 
Different strategies are made depending on their characteristics. For 
example, on the one hand, medication history is encoded by a hierar-
chical classification system, ATC code, thus the medication feature is 
constructed as the count number aggregation of the times an ATC code 
was prescribed (see Fig. 1). Clinical measurements, on the other hand, 
address various types of patient measurements. Each measurement has 
multiple occurrences with potentially different numerical values. 
Therefore, clinical measurement features are constructed such as mean, 
minimum, and maximum of observed measurement values (see Fig. 2). 
The dataset with laboratory test results shares a similar format with 
clinical measurements but is slightly different in that the test abnor-
mality levels are described by three ordinal scales (high, normal, low). 
These ordinal representations were encoded to numbers and a single 
point feature was extracted by averaging the encoded numerical values. 
A different observation window of two years was considered for the 
frequency of specific clinical department visits because certain depart-
ment visit patterns may indicate the presence of chronic disease. 

In this study, the feature engineering on structured longitudinal 

Table 1 
The characteristics of the study population (Non-1: Patients who do not have 
ADE-related symptoms; Non-2: Patients who have potentially ADE-related 
symptoms but are not classified as having an ADE; Non-3: Patients who have 
non-preventable ADEs; True-case: Patients who have a preventable ADE).  

Characteristics Non-1 Non-2 Non-3 True-case 

Population size 390 152 81 91 
Age, median (IQR) 79 (75/84) 79.5 (75/ 

85) 
82 (78/86) 82 (77/ 

86.5) 
Sex, Female (%) 43.9% 52.6% 53.1% 55.0% 
BMI, median (IQR) 26.3 (23.7/ 

29.34) 
26.3 
(23.4/ 
28.4) 

23.1 
(25.4/ 
29.4) 

26.2 
(23.2/ 
29.6) 

Birth Country, NL (%) 96.4% 94.7% 97.5% 94.5% 
Total Current-in-use 

Unique Medication, 
median (IQR) 

12 (8/17) 12 (7.75/ 
16.25) 

11 (8/ 
16.25) 

14 (11/ 
18.5) 

Smokes 12.1% 7.2% 7.4% 12.1% 
Drinks alcohol 48.0% 46.1% 44.4% 44.0% 
Drug user 0 0 0 0  

Table 2 
Datasets extracted from Electronic Health Records.  

Fields Description 

Demographics The basic information of each patient such as sex, age, 
and birthplace 

ED-visit complaints The ED-visit date and the reason for visiting the ED 
Clinical admissions The clinical admission date and the reason for clinical 

admission 
Clinical 

measurements 
The longitudinal records such as height, weight, heart 
rate, and blood pressure 

Medication history The medication prescriptions 
Medication signals 

history 
The medication signals such as double medication 

Anamnesis history The records of alcohol drinking, smoking, drug use 
Allergies history The records of allergic reactions 
Diagnosis history The doctor’s diagnoses in the form of free texts 
Decursus history The free texts such as conclusions written by the doctors 
Lab tests history The longitudinal record of laboratory tests 
Vulnerability history The records of the qualitative vulnerability analysis 
Appointments history The longitudinal record of the patient’s appointments  

Fig. 1. Illustration of the feature construction process for medication history. A 
type of ATC prescription is represented as its total number of occurrences 
during the observation period. 
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format data can be summarized as integrating an event’s multiple oc-
currences into a single-point representation. This approach ignores the 
intervals between an event’s multiple occurrences. Arguably, this study 
considered a relatively short two-week observation window for most 
feature extraction processes of the temporal information. Under this 
scenario, single-point features are sufficient to represent the short-term 
temporal information. 

The third category consists of datasets that contain free texts 
including clinical admission information, ED-visit complaints, diag-
nosis, and decursus (the free texts section of the JBZ EHRs system, which 
contains the conclusion and any other notes written by the doctors). The 
raw texts went through a processing pipeline before the natural lan-
guage processing models were built. The processed texts were lower-
cased and de-accented with grammatical symbols and numbers 
excluded. First, we trained a customized word embedding from all text 
corpus using the CBOW Word2Vec algorithm, which is a neural network 
based technique that learns word associations from a large corpus of text 
[26]. We used the word embedding to convert each patient’s decursus 
records to a 64-dimensional vector by averaging the word embedding 
vectors of the words that compose the decursus. The converting process 
only takes records that falls within the observation window. Second, we 
trained a bag-of-words (BoW) model from all free texts filtered by the 
observation window with stop words excluded. The filtered free texts 
were vectorized to a term frequency vector using the BoW model, where 
2194 vocabularies are included after adjusting the maximum and min-
imum document frequency. Third, after we had asked the domain expert 
to create a list of keywords that are highly associated with ADE syn-
dromes, we constructed a Boolean vector to represent the existence of 
such words in the filtered free texts. Forth, a separate BoW vector was 
created specifically from diagnosis notes with an extended two-year 
observation window. From the time dimension’s perspective, a sepa-
rate BoW is needed because the overall free texts BoW vector whose 
observation window is set to two weeks, only captures the most recent 
information of a patient. In addition, reducing the corpus scope to 
diagnosis enables the separate BoW vector to incorporate 
domain-specific vocabularies. 

An outlier scheme was designed on the basis of domain knowledge. 
The numerical values in clinical measurements that were beyond the 
normal range were set to null values, as described in Ref. [27]. Subse-
quently, the numerical missing values in the feature data frame were 
imputed with the mean of each column in which the missing values were 

located. The categorical missing values were all imputed with the value 
0. Finally, we applied a Max-Min scaler to normalize the concatenated 
representation vector. 

3.3. Predictive modeling 

2AE consists of two parallel simple autoencoders. In the training 
phase, one autoencoder is used to estimate the pattern of the prevent-
able ADE group. The other one estimates the pattern from the rest of the 
samples, which include non-preventable ADE cases and non-ADE cases. 
The pattern learned by an autoencoder can be regarded as the phenotype 
of a patient group. Fig. 3 illustrates the process of the testing phase. 
When a testing sample is fed into the 2AE model, two reconstruction 
errors can be obtained according to the equation (Eq. (1)), 

REi =Y*
i − Y2

2 , i= 1, 2 (1)  

where REi is the reconstruction error generated by the ith autoencoder 
and Y*

i is the reconstruction result according to the input sample rep-
resentation vector Y. When the second autoencoder is trained from the 
preventable ADE group, a score in the range from 0 to 1 can be obtained 
according to the equation (Eq. (2)), which is a normalized exponential 
function based on the softmax function. The hyperparameter α makes 
the reconstruction error difference between two autoencoders adjust-
able, and, is by default 1. When the score is higher than a threshold th, 
we consider the testing sample to be a preventable ADE case. 

score(i= 2)=
1

1 + eα(RE2 − RE1)
(2)  

4. Experiments 

In this section, we assess the effectiveness of the proposed 2AE 
framework. The architecture of each autoencoder in the 2AE framework 
is identical and was determined following similar settings from existing 
work [28]. For a single autoencoder, the input and output dimensions 
are the feature space. The number of neurons for the encoder layers are 
128 and 64 respectively. The decoder layers are symmetric to the 
encoder layers and all layers are fully connected. A linear activation 
function is used in the second hidden layer for the decoder, and Relu is 
used for the remaining hidden layers. The autoencoder model uses Adam 
optimizer with Mean Squared Error as loss function. Glorot uniform [29] 
was utilized for network weights initialization and an L1 activity regu-
larizer was applied on encoder’s first hidden layer to avoid overfitting. 

We included five other commonly used machine learning algorithms 
for the purpose of comparison: (1) K Nearest Neighbor (KNN) classifier, 
a lazy-learner algorithm by which all available cases can be stored and 
new cases are classified based on a similarity measure that performs well 
on unbalanced data; (2) Multi-Layer Perceptron (MLP) classifier, an 

Fig. 2. Illustration of the feature construction from multivariate time series.  

Fig. 3. The process of the testing phase, where a preventable ADE score 
is generated. 
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algorithm by which we can model non-linear and complex relationships 
embedded in the dataset; (3) Random Forest and (4) Adaboost that are 
based on bagging and boosting approaches during training, respectively; 
and (5) Single Autoencoder (SE), which is included to compare with the 
two autoencoders structure. 

Experiments in this study were conducted in Python3.7 environ-
ment. For feature engineering, the CBOW Word2Vec based word 
embedding model was implemented using Gensim [30] and the BoW 
model using Scikit-learn [31]. All comparison algorithms except for the 
Autoencoder were implemented using Scikit-learn [31]. Keras [32] was 
adopted to implement the single and dual autoencoder structure. 
Hyperparameters for the comparison models were chosen via grid 
search and stratified 5-fold cross-validation, where the distribution of 
classes and the distribution of types of non-cases are evenly stratified in 
the train and test data split. The grid search range setting takes reference 
from Scikit-learn’s default setting as well as similar studies [10,27]. 
Hyperparameters that yield the highest minority class F1 score were 
chosen. All the comparison models other than autoencoder based 
methods (SE and 2AE) take the up-sampled training data in which the 
minority class is randomly up-sampled to match the size of the majority 
class. The up-sampling was applied to each of the folds in the 
cross-validation process. Detailed experiment configurations are shown 
in Table 3. 

Evaluation was done through stratified 5-fold cross-validation. The 
model performance evaluation metrics include recall, precision, and F1 
score. These metrics were measured at the default decision threshold of 
0.5. Besides, we included the area under the precision and recall curve 
(AUPRC), which is not dependent on a chosen decision threshold and 
can provide the performance summary of a classifier. AUPRC is rec-
ommended in the case of class imbalance and when the minority class is 
of more interest [33,34]. 

The experimental results are summarized in Table 4. Our proposed 
method, 2AE, yields the highest F1 score for the minority class, the 
preventable ADE cases, while keeping a relatively high AUPRC score in 
comparison with the other five models. Fig. 4 illustrates the model 
performance under different thresholds. It shows that 2AE has the po-
tential to reach a high minority class precision by increasing the 
threshold while keeping a relatively high minority class F1 score. 
Meanwhile, we examined the impact of the hyperparameter α. Fig. 5 
shows the F1 score for the minority class using different thresholds with 
different choices of α, respectively. When the threshold is set to 0.5, the 
hyperparameter α does not impose power on the model performance. 
When a different threshold is chosen, the best evaluation metrics score 
can be achieved by tuning the hyperparameter α. As α increases, the 
minority class F1 score increases and finally reaches a stable state. 

We also evaluated the performance of the other models under 
different thresholds. None could outperform the 2AE on the best ach-
ieved minority class F1 score under our experimental setting. The 
advantage in 2AE’s best-achieved minority class F1 score was at sig-
nificance 5% greater than Random Forest’s best achieved result, which 
is the second highest among the best achieved results of other compar-
ison models. 

5. Discussion 

In this work, we analyzed the dual autoencoder framework to detect 
preventable ADE cases under an unbalanced class situation. To our 
knowledge, this is the first report of machine learning comprising both 
structured and unstructured data for the detection of preventable-ADE. 
The feature engineering module on the unstructured free texts in this 
project was constructed for a Dutch language context. The high 

Table 3 
The algorithms used for comparison, and their configurations.  

Classifier Description Configuration 

KNN K nearest neighbors K = 9 
RF Random Forest Tree quantity = 100 
AdaBoost Adaptive Boosting Boosting is terminated at a maximum of 50 

estimators 
MLP Multi-layer Perceptron 

classifier 
Optimizer: ‘Adam’, hidden layer: 100, L2 
penalty parameter = 0.0001 

SE A single autoencoder 
structure 

Error threshold = 0.5, epoch = 50 

2AE The proposed method Error threshold = 0.5, epoch = 50  

Table 4 
Predictive performance of the 2AE and comparison models. True-case stands for 
the samples which are labeled as preventable ADE cases and non-case stands for 
all the other samples.  

Model True-case Non-case AUPRC 

Recall Precision F1 Recall Precision 

KNN 0.354 0.316 0.331 0.894 0.905 0.362 
RF 0.321 0.576 0.391 0.958 0.906 0.418 
AdaBoost 0.408 0.368 0.380 0.896 0.912 0.365 
MLP 0.210 0.663 0.300 0.974 0.894 0.406 
SE 0.143 0.251 0.174 0.934 0.882 0.250 
2AE 0.486 0.559 0.501 0.939 0.926 0.481  

Fig. 4. The predictive performance of the 2AE model with respect to different 
thresholds set for the preventable ADE score. Precision, recall, and F1 score for 
the minority class, the preventable ADE cases, are shown. 

Fig. 5. The F1 score for preventable ADE prediction using different thresholds 
with respect to different choices of alpha. 
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similarity among western Germanic languages means that the same 
methodologies used in this project can probably be transferred to other 
related languages. 

This study included AUPRC and F1 score to evaluate the model’s 
performance under the imbalanced classification scenario. The expected 
value for random guessing of the AUPRC is close to 0 when prevalence is 
low [33–36]. For the data provided, the fraction of positives (prevent-
able ADE cases) is 12.7%; therefore, the baseline AUPRC score is 0.127. 
The best configuration of 2AE yields an AUPRC score of 0.481 and a 
minority class F1 score of 0.501. The performance can be considered 
adequate, which is consistent with conclusions in similar recent re-
searches. In Ref. [37], the best achieved AUPRC reported on the Car-
diovascular Event prediction is 0.285 when training model with 
longitudinal EHRs (prevalence of 8.97%), and 0.427 when training 
model with sub-group that has genetic data (prevalence of 24.13%). In 
Ref. [38], the best achieved AUPRC reported on the Sepsis from onset 
time prediction (prevalence of 2.44%) is 0.43. In Ref. [39], the 
best-achieved F1 score reported on the readmission prediction (imbal-
ance ratio of 0.28) is 0.51, and in Ref. [40], 0.5 for the breast cancer 
distant recurrence prediction (prevalence of 6.92%). These are all 
considered satisfactory predictive performances by the authors. Our 
experiment results show that 2AE can capture the patterns of the mi-
nority class without incorporating an extra process for class balancing. 
2AE itself consists of two simple multi-layer perception structures as 
opposed to more sophisticated neural network architectures. All this 
renders our proposed model easy to implement and time-efficient to 
train. 

It is important to realize that a machine learning model, though 
effective, can never replace the ‘human-in-the-loop’. Within the clinical 
context, the predicted cases should always be checked by doctors and 
pharmacists. Therefore, from a pragmatic model deployment’s 
perspective, the precision, which represents the percentage of true 
positive cases among all predicted true cases, is the parameter of para-
mount importance for successful implementation in everyday practice 
considering the limited checking capacity of the evaluators. The higher 
the precision, the less time will be wasted on checking false positive 
cases. The experimental results show that by tuning the threshold and 
hyperparameter, 2AE can achieve a precision higher than 60% while 
keeping the minority class F1 score high. 

5.1. Bias cancellation 

During the ADE preventability assessment, the F-team would note 
down remarks in the decursus regarding the ADE preventability situa-
tion. Thus, the extracted raw training data inevitably contain texts that 
make the machine learning model biased towards the cases that contain 
texts written by the F-team. In order to cancel this bias, we asked the 
domain experts to create an ‘F-team words’ list, which contained the 
vocabularies that are only used by the F-team for ADE status description. 
These vocabularies were now eliminated during BoW and word2vec 
feature construction. However, if we would have the chance to test a 
new group of patients in the future, we would include these ‘F-team 
words’ in the word2vec features. The rationale behind this is that for 
such new cases, the F-team has not yet been involved. When analyzing a 
cluster of free texts from such new cases, if the averaged free texts vector 
shows similarity with the word embedding vector of one of the ‘F-team 
words’, it suggests that the new cases might share the same traits as the 
cases that have been labeled as preventable ADE in the current study. 

5.2. Pitfalls and limitations 

One pitfall in this study derives from the accuracy of the labeling of 
the training data. As shown in Table 1, besides the minority class (pre-
ventable ADE cases), there are three other clusters of cases. These 
clusters resulted from the logistics of the domain expert’s labeling pro-
cess. While assessing the ADE preventability, the domain experts first 

excluded those who didn’t have any predefined ADE-related symptoms. 
For the rest of the patients, the ADE-medication association was 
checked. If no links were found, a patient would not be considered as an 
ADE case. There is a possibility that some ADE cases show non-specific 
complaints or showed obvious symptoms but had a weak link to the 
suspicious medications [41]. If such ADE cases were indeed preventable, 
then they formed falsely labeled cases. If the labeling process could have 
been re-designed, a thorough check on the ADE-preventability would 
have been applied to every patient. 

Another issue involving labeling accuracy was the consensus rate. 
For some not so clear-cut cases, different domain experts may hold 
different opinions regarding their ADE preventability. The labeling 
process had been designed in such a way that every case was checked 
multiple times by different persons. With an uncertain consensus, it is 
inevitable that the precision in the definition of preventable ADE is 
affected, thus leading to the inaccuracy of data labels. 

The framework designed in this study provides a score-based 
mechanism to assist doctors in prioritizing which patient should go 
through the ADE-preventability assessment. A limitation is that the 
explainability of the probability score generation process is not covered 
in our design. As opposed to some other models that incorporate the 
feature importance study such as tree-based models, 2AE is neural 
network based, thus its computational reasoning is essentially a black 
box for end-users. Nevertheless, there are multiple ways to overcome 
this obstruction. A prominent technique is Permutation Feature Impor-
tance (PFI) [42], a method that can be applied to any machine learning 
model to calculate the model’s prediction error variation after 
permuting values of a single feature while keeping the other feature 
values unchanged. This method interprets that a feature is important if 
shuffling its values significantly increases the model error. In this study, 
the PFI computation for the proposed 2AE model was realized using a 
Python package ELI5 [43] and is presented in Appendix A. When model 
explainability and interpretability are top concerns, Random Forest, 
which provides straightforward Gini-based importance measures [44], 
may serve as an alternative. Our experiments reveal that with a carefully 
selected threshold, Random Forest performs almost on par with the 2AE 
model and with considerable distance to the other tested comparison 
algorithms. 

This study also has some limitations in the feature engineering pro-
cess. One exists in that the natural language processing techniques used 
in this study could not accurately identify the negation status of clinical 
concepts in sentences. In particular, we only considered unigrams when 
building the BoW model in order to restrict the feature size. Incorpo-
rating bigrams or trigrams may potentially capture the negation fea-
tures. Another point worth deliberating is the processing of structured 
longitudinal format data. Features such as the total number of occur-
rences of a medication and the mean value of a clinical measurement’s 
time series readings do not reflect the temporal information. There are 
various algorithms to extract features from time series without losing the 
underlying temporal order, such as Symbolic Aggregate approXimation 
(SAX) [45]. Although we argue that the single-point features are suffi-
cient to represent the short-term temporal information, the limited 
observation window could in itself be a potential limitation. Therefore, 
data mining on the long period history might reveal some unexpected 
hidden insights that help to improve the machine learning model 
performance. 

6. Conclusion 

We have demonstrated how machine learning can be employed to 
analyze both structured and unstructured data from the EHRs for the 
purpose of preventable ADE prediction. In this study, we proposed a 
dual-autoencoder algorithm that learns patterns from differently labeled 
groups. The empirical experimental results show that our approach 
yields good performance and outperforms other more mainstream ap-
proaches. The proposed method can be further adapted to detect ADE 
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incidence only. The proposed 2AE model can be configured using the 
threshold and hyperparameters according to the actual needs, such as to 
give more attention to the precision level to accommodate practical use 
by an evaluator working under time constraints. 

In our future work, we plan to validate the model in a real-world 
clinical context at the JBZ hospital, and potentially integrate this 
framework into a clinical AI assistant. With such a tool, the doctors and 
pharmacists would be supported to detect preventable ADE or general 
ADE cases upon a patient’s ED-visit more efficiently, where preventable 
ADE or general ADE probability score generated by the AI assistant can 
be a reference for the doctors and pharmacists to decide the patient 
checking priority. We plan to construct a feedback loop where the 
doctors and pharmacists can assess the predicted cases and feed back 

their manual assessment to the model enabling continuous learning, 
resulting in a model representing up to date almost real-time clinical 
knowledge. Parallelly, to enrich the training data, 2AE model can be 
applied to historical patient data or data from other hospitals to quickly 
narrow down the checking scope, where additional preventable ADE 
cases can be built up with the help of domain experts’ judgment. 
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The authors declare that they have no known competing financial 
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Appendix A 

Figure A1 presents the prediction performance of the comparison models with respect to different thresholds set for the preventable ADE score. The 
missing values in the images imply that they are null values in the results.

Fig. A.1. The prediction performance of the other five comparison models with respect to different thresholds set for the preventable ADE score  

As shown in Table A1, among the top 10 important features in the 2AE model, the majority are BoW features. The second most important feature 
group is current-in-use medication records, whose feature names have the prefix “CS” in them.  
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Table A.1 
The top 10 important features in the 2AE model 
computed by Python package ELI5. The importance 
score is defined as the decrease in minority class F1 
score when a feature’s values are shuffled.  

Feature Importance Score 

bow_centrum 0.027473 
bow_traumatische 0.014245 
bow_besproken 0.014245 
CS000034 0.014245 
CS000032 0.014245 
bow_mgl 0.014245 
CS000096 0.014245 
bow_presenteert 0.014245 
bow_farmacologie 0.014245 
J01DC02 0.014245  

References 

[1] Klopotowska JE, et al. The effect of an active on-ward participation of hospital 
pharmacists in Internal Medicine teams on preventable Adverse Drug Events in 
elderly inpatients: protocol of the WINGS study (Ward-oriented pharmacy in newly 
admitted geriatric seniors). BMC Health Serv Res 2011;11(1):124. 

[2] Leendertse AJ, Egberts ACG, Stoker LJ, van den Bemt PMLA. Frequency of and risk 
factors for preventable medication-related hospital admissions in The Netherlands. 
Arch Intern Med 2008;168(17):1890–6. 

[3] Leendertse AJ, Van Den Bemt PMLA, Poolman JB, Stoker LJ, Egberts ACG, 
Postma MJ. Preventable hospital admissions related to medication (HARM): cost 
analysis of the HARM study. Value Health 2011;14(1):34–40. 

[4] Ouchi K, Lindvall C, Chai PR, Boyer EW. Machine learning to predict, detect, and 
intervene older adults vulnerable for adverse drug events in the emergency 
department. J Med Toxicol 2018;14(3):248–52. 

[5] Gurwitz JH, et al. Incidence and preventability of adverse drug events among older 
persons in the ambulatory setting. JAMA 2003;289(9):1107–16. 

[6] Choi E, Biswal S, Malin B, Duke J, Stewart WF, Sun J. Generating multi-label 
discrete patient records using generative adversarial networks. In: Machine 
learning for healthcare conference; 2017. p. 286–305. 

[7] Eriksson R, Jensen PB, Frankild S, Jensen LJ, Brunak S. Dictionary construction and 
identification of possible adverse drug events in Danish clinical narrative text. J Am 
Med Inf Assoc May 2013;20(5):947–53. https://doi.org/10.1136/amiajnl-2013- 
001708. 

[8] Henriksson A, Kvist M, Hassel M, Dalianis H. Exploration of adverse drug reactions 
in semantic vector space models of clinical text. 2012. 

[9] LePendu P, et al. Pharmacovigilance using clinical notes. Clin Pharmacol 
Therapeut 2013;93(6):547–55. 

[10] Zhao J, Henriksson A, Asker L, Boström H. Predictive modeling of structured 
electronic health records for adverse drug event detection. BMC Med Inf Decis 
Making 2015;15(4):S1. https://doi.org/10.1186/1472-6947-15-S4-S1. 

[11] Zhao J, Papapetrou P, Asker L, Boström H. Learning from heterogeneous temporal 
data in electronic health records. J Biomed Inf 2017;65:105–19. 

[12] Cheng Y, Wang F, Zhang P, Hu J. Risk prediction with electronic health records: a 
deep learning approach. In: Proceedings of the 2016. SIAM International 
Conference on Data Mining; 2016. p. 432–40. 

[13] Trifirò G, et al. Data mining on electronic health record databases for signal 
detection in pharmacovigilance: which events to monitor? Pharmacoepidemiol 
Drug Saf 2009;18(12):1176–84. 

[14] Schuemie MJ, et al. Using electronic health care records for drug safety signal 
detection: a comparative evaluation of statistical methods. Med Care 2012;50(10): 
890–7. 

[15] Goodfellow I, et al. Generative adversarial nets. In: Advances in neural information 
processing systems; 2014. p. 2672–80. 

[16] D. P. Kingma and M. Welling, “Auto-encoding variational bayes,” arXiv preprint 
arXiv:1312.6114, 2013. 

[17] Yang Y, et al. GAN-based semi-supervised learning approach for clinical decision 
support in health-IoT platform. IEEE Access 2019;7:8048–57. 

[18] Zhang L, Yang H, Jiang Z. Imbalanced biomedical data classification using self- 
adaptive multilayer ELM combined with dynamic GAN. Biomed Eng Online 2018; 
17(1):181. 

[19] Lee D, et al. Generating sequential electronic health records using dual adversarial 
autoencoder. J Am Med Inf Assoc 2020;27(9):1411–9. 

[20] Simidjievski N, et al. Variational autoencoders for cancer data integration: design 
principles and computational practice. Front Genet 2019;10:1205. 

[21] Rumelhart DE, Hinton GE, Williams RJ. Learning internal representations by error 
propagation. California Univ San Diego La Jolla Inst for Cognitive Science; 1985. 

[22] Alhassan Z, Budgen D, Alshammari R, Daghstani T, McGough AS, Al Moubayed N. 
Stacked denoising autoencoders for mortality risk prediction using imbalanced 

clinical data. 2018 17th IEEE International Conference on Machine Learning and 
Applications (ICMLA) 2018:541–6. 

[23] Wu E, Cui H, Welsch RE. Dual autoencoders generative adversarial network for 
imbalanced classification problem. IEEE Access 2020;8:91265–75. 

[24] Ng WWY, Zeng G, Zhang J, Yeung DS, Pedrycz W. Dual autoencoders features for 
imbalance classification problem. Pattern Recogn 2016;60:875–89. 

[25] Chen Z, Tian Y, Zeng W, Huang T. Detecting abnormal behaviors in surveillance 
videos based on fuzzy clustering and multiple auto-encoders. 2015 IEEE 
International Conference on Multimedia and Expo (ICME) 2015:1–6. 

[26] Mikolov T, Chen K, Corrado G, Dean J. Efficient estimation of word representations 
in vector space. 2013. arXiv preprint arXiv:1301.3781. 

[27] Xie F, Chakraborty B, Ong MEH, Goldstein BA, Liu N. Autoscore: a machine 
learning–based automatic clinical score generator and its application to mortality 
prediction using electronic health records. JMIR Med Inform 2020;8(10):e21798. 

[28] Chollet F. Building autoencoders in keras. The Keras Blog 2016;14. 
[29] Glorot X, Bengio Y. Understanding the difficulty of training deep feedforward 

neural networks. In: Proceedings of the thirteenth international conference on 
artificial intelligence and statistics; 2010. p. 249–56. 
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