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Abstract

Scientific misconduct potentially invalidates findings in many scientific fields.
Improved detection of unethical practices like data fabrication is considered to
deter such practices. In two studies, we investigated the diagnostic performance
of various statistical methods to detect fabricated quantitative data from psycho-
logical research. In Study 1, we tested the validity of statistical methods to detect
fabricated data at the study level using summary statistics. Using (arguably)
genuine data from the Many Labs 1 project on the anchoring effect (k = 36) and
fabricated data for the same effect by our participants (k = 39), we tested the
validity of our newly proposed ‘reversed Fisher method’, variance analyses, and
extreme effect sizes, and a combination of these three indicators using the original
Fisher method. Results indicate that the variance analyses perform fairly well
when the homogeneity of population variances is accounted for and that extreme
effect sizes perform similarly well in distinguishing genuine from fabricated data.
The performance of the ‘reversed Fisher method’ was poor and depended on the
types of tests included. In Study 2, we tested the validity of statistical methods
to detect fabricated data using raw data. Using (arguably) genuine data from
the Many Labs 3 project on the classic Stroop task (k = 21) and fabricated data
for the same effect by our participants (k = 28), we investigated the performance
of digit analyses, variance analyses, multivariate associations, and extreme effect
sizes, and a combination of these four methods using the original Fisher method.
Results indicate that variance analyses, extreme effect sizes, and multivariate
associations perform fairly well to excellent in detecting fabricated data using
raw data, while digit analyses perform at chance levels. The two studies provide
mixed results on how the use of random number generators affects the detection
of data fabrication. Ultimately, we consider the variance analyses, effect sizes,
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and multivariate associations valuable tools to detect potential data anomalies
in empirical (summary or raw) data. However, we argue against widespread
(possible automatic) application of these tools, because some fabricated data
may be irregular in one aspect but not in another. Considering how violations of
the assumptions of fabrication detection methods may yield high false positive
or false negative probabilities, we recommend comparing potentially fabricated
data to genuine data on the same topic.

Introduction

Any field of empirical inquiry is faced with cases of scientific misconduct at
some point, either in the form of fabrication, falsification, or plagiarism (FFP).
Psychology faced Stapel; medical sciences faced Poldermans and Macchiarini;
life sciences faced Voignet; physical sciences faced Schön — these are just a few
examples of research misconduct cases in the last decade. Overall, an estimated
2% of all scholars admit to having falsified or fabricated research results at least
once during their career (Fanelli, 2009), which due to its self-report nature is
likely to be an underestimate of the true rate of misconduct. The detection
rate of data fabrication is likely to be even lower; for example, among several
hundreds of thousands of researchers working in the United States and the
Netherlands, only around a dozen cases become public each year. At best, this
suggests a detection rate below 1% among those 2% who admit to fabricating or
falsifying data — the tip of a seemingly much larger iceberg.

The ability to detect fabricated data may help deter researchers from fabricating
data in their work. Deterrence theory (e.g., Hobbes, 1651) states that improved
detection of undesirable behaviors decreases the expected utility of said behaviors,
ultimately leading to fewer people to engage in it. Detection techniques have
developed differently for fabrication, falsification, and plagiarism. Plagiarism
scanners have been around the longest (e.g., A. Parker & Hamblen, 1989) and are
widely implemented in practice, not only at journals but also in the evaluation
of student theses (e.g., with commercial services such as Turnitin). Various tools
have been developed to detect image manipulation and some of these tools have
been implemented at biomedical journals to screen for fabricated or falsified
images. For example, the Journal of Cell Biology and the EMBO journal scan
each submitted image for potential image manipulation (The Journal of Cell
Biology, 2015; 2017), which supposedly increases the risk of detecting (blatant)
image manipulation. Recently developed algorithms even allow automated
scanning of images for such manipulations (Koppers, Wormer, & Ickstadt, 2016).
The application of such tools can also help researchers systematically evaluate
research articles in order to estimate the extent to which image manipulation
occurs in the literature (4% of all papers are estimated to contain manipulated
images; Bik, Casadevall, & Fang, 2016) and to study factors that predict image
manipulation (Fanelli, Costas, Fang, Casadevall, & Bik, 2018).

Methods to detect fabrication of quantitative data are often based on a mix of
psychology theory and statistics theory. Because humans are notoriously bad
at understanding and estimating randomness (Haldane, 1948; Nickerson, 2000;
Amos Tversky & Kahneman, 1971; A. Tversky & Kahneman, 1974; Wagenaar,
1972), they might create fabricated data that fail to follow the fundamentally
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probabilistic nature of genuine data. Data and outcomes of analyses based on
these data that fail to align with the (at least partly probabilistic) processes that
are assumed to underlie genuine data may indicate deviations from the reported
data collecting protocol, potentially even data fabrication or falsification.

Statistical methods have proven to be of importance in initiating data fabrication
investigations or in assessing the scope of potential data fabrication. For example,
Kranke, Apfel, and Roewer skeptically perceived Fujii’s data (Peter Kranke, Apfel,
& Roewer, 2000) and used statistical methods to contextualize their skepticism.
At the time, a reviewer perceived them to be on a “crusade against Fujii and his
colleagues” (P. Kranke, 2012) and further investigation remained absent. Only
when Carlisle extended the systematic investigation to 168 of Fujii’s papers for
misconduct (Carlisle, 2012; Carlisle & Loadsman, 2016; Carlisle, Dexter, Pandit,
Shafer, & Yentis, 2015) did events cumulate into an investigation- and ultimately
retraction of 183 of Fujii’s peer-reviewed papers (“Joint Editors-in-Chief request
for determination regarding papers published by Dr. Yoshitaka Fujii,” 2013;
Oransky, 2015). In another example, the Stapel case, statistical evaluation of
his oeuvre occurred after he had already confessed to fabricating data, which
ultimately resulted in 58 retractions of papers (co-)authored by Stapel (Levelt,
2012; Oransky, 2015).

In order to determine whether the application of statistical methods to detect
data fabrication is responsible and valuable, we need to study their diagnostic
value. Specifically, many of the developed statistical methods to detect data
fabrication are quantifications of case specific suspicions by researchers, but
these applications do not inform us on their diagnostic value (i.e., sensitivity and
specificity) outside of those specific cases. Side-by-side comparisons of different
statistical methods to detect data fabrication has also been difficult through the
in-casu origin of these methods. Moreover, the efficacy of these methods based
on known cases is likely to be biased, considering that an unknown amount of
undetected cases is not included. Using different statistical methods to detect
fabricated data using genuine versus fabricated data yields information on the
sensitivity and specificity of the detection tools. This is important because of
the severe professional- and personal consequences of accusations of potential
research misconduct (as illustrated by the STAP case; Cyranoski, 2015). These
methods might have utility in misconduct investigations where the prior chances
of misconduct are high, but their diagnostic value in large-scale applications to
screen the literature are unclear.

In this article, we investigate the diagnostic performance of various statistical
methods to detect data fabrication. These statistical methods (detailed next)
have not previously been validated systematically in research using both gen-
uine and fabricated data. We present two studies where we try to distinguish
(arguably) genuine data from known fabricated data based on these statisti-
cal methods. These studies investigate methods to detect data fabrication in
summary statistics (Study 1) or in individual level (raw) data (Study 2) in
psychology. In Study 1, we invited researchers to fabricate summary statistics
for a set of four anchoring studies, for which we also had genuine data from
the Many Labs 1 initiative (https://osf.io/pqf9r; Klein et al., 2014). In Study
2, we invited researchers to fabricate individual level data for a classic Stroop
experiment, for which we also had genuine data from the Many Labs 3 initiative
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(https://osf.io/n8xa7/; Ebersole et al., 2016). Before presenting these studies,
we discuss the theoretical framework of the investigated statistical methods to
detect data fabrication.

Theoretical framework

Statistical methods to detect potential data fabrication can be based either
on reported summary statistics that can often be retrieved from articles or
on the raw (underlying) data if these are available. Below we detail p-value
analysis, variance analysis, and effect size analysis as potential ways to detect
data fabrication using summary statistics. P -value analyses can be applied
whenever a set of nonsignificant p-values are reported; variance analysis can be
applied whenever a set of variances and accompanying sample sizes are reported
for independent, randomly assigned groups; effect size analysis can be used
whenever the effect size is reported or calculated (e.g., an APA reported t- or
F-statistic; C. Hartgerink, Wicherts, & Van Assen, 2017). Among the methods
that can be applied to uncover potential fabrication using raw data, we consider
digit analyses (i.e., the Newcomb-Benford law and terminal digit analysis) and
multivariate associations between variables. The Newcomb-Benford law can be
applied on ratio- or count scale measures that have sufficient digits and that
are not truncated (Hill & Schürger, 2005); terminal digit analysis can also be
applied whenever measures have sufficient digits (see also Mosimann, Wiseman,
& Edelman, 1995). Multivariate associations can be investigated whenever there
are two or more numerical variables available and data on that same relation is
available from (arguably) genuine data sources.

Detecting data fabrication in summary statistics

P -value analysis

The distribution of a single or a set of independent p-values is uniform if the null
hypothesis is true, while it is right-skewed if the alternative hypothesis is true
(Fisher, 1925). If the model assumptions of the underlying process hold, the
probability density function of one p-value is the result of the population effect
size, the precision of the estimate, and the observed effect size, whose properties
carry over to a set of p-values if those p-values are independent.

When assumptions underlying the model used to compute a p-value are violated,
p-value distributions can take on a variety of shapes. For example, when optional
stopping (i.e., adding batches of participants until you have a statistically
significant result) occurs and the null hypothesis is true, p-values just below .05
become more frequent (C. H. Hartgerink, Aert, Nuijten, Wicherts, & Assen, 2016;
Lakens, 2015). However, when optional stopping occurs under the alternative
hypothesis or when other researcher degrees of freedom are used in an effort
to obtain significance (Simmons, Nelson, & Simonsohn, 2011; Wicherts et al.,
2016), a right-skewed distribution for significant p-values can and will likely still
occur (C. H. Hartgerink et al., 2016; Ulrich & Miller, 2015).

A failure of independent p-values to be right-skewed or uniformly distributed
(as would be theoretically expected) can indicate potential data fabrication.
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For example, in the Fujii case, baseline measurements of supposed randomly
assigned groups later turned out to be fabricated. When participants are
randomly assigned to conditions, measures at baseline are expected to statistically
equivalent between the groups (i.e., equivalent distributions), hence, produce
uniformly distributed p-values. However, in the Fujii case, Carlisle observed
many large p-values, which ultimately led to the identification of potential
data fabrication (Carlisle, 2012). The cause of such large p-values may be
that the effect of randomness is underappreciated when fabricating statistically
nonsignificant data due to (for example) widespread misunderstanding of what
a p-value means (Goodman, 2008; Sijtsma, Veldkamp, & Wicherts, 2015), which
results in groups of data that are too similar conditional on the null hypothesis
of no differences between the groups. As an illustration, we simulated normal
distributed measurements for studies and their t-test comparisons in Table 1,
under statistically equivalent populations (Set 1). We also fabricated independent
data for equivalent groups, where we fixed the mean and standard deviation for
all studies and subsequently added (too) little uniform noise to these parameters
(Set 2). The expected value of a uniform p-value distribution is .5, but the
fabricated data from our illustration have a mean p-value of 0.956.

Table 1: Examples of means and standard deviations for a continuous outcome
in genuine and fabricated randomized clinical trials. Set 1 is randomly generated
data under the null hypothesis of random assignment (assumed to be the genuine
process), whereas Set 2 is generated under excessive consistency with equal
groups. Each trial condition contains 100 participants. The p-values are the
result of independent t-tests comparing the experimental and control conditions
within each respective set of a study.

Set 1 Set 2
Experimental Control Experimental Control
M (SD) M (SD) P-value M (SD) M (SD) P-value

Study 1 48.432 (10.044) 49.158 (9.138) 0.594 52.274 (10.475) 63.872 (10.684) 0.918
Study 2 50.412 (10.322) 49.925 (9.777) 0.732 62.446 (10.454) 60.899 (10.398) 0.989
Study 3 51.546 (9.602) 51.336 (9.479) 0.877 62.185 (10.239) 55.655 (10.457) 0.951
Study 4 49.919 (10.503) 50.857 (9.513) 0.509 62.468 (10.06) 68.469 (10.761) 0.956
Study 5 49.782 (11.167) 50.308 (8.989) 0.714 67.218 (10.328) 55.846 (10.272) 0.915
Study 6 48.631 (9.289) 49.29 (10.003) 0.630 62.806 (11.216) 66.746 (11.14) 0.975
Study 7 49.121 (9.191) 47.756 (10.095) 0.318 50.19 (10.789) 55.724 (10.302) 0.960
Study 8 49.992 (9.849) 51.651 (10.425) 0.249 54.651 (11.372) 55.336 (10.388) 0.995
Study 9 50.181 (9.236) 51.292 (10.756) 0.434 63.322 (11.247) 53.734 (11.488) 0.941
Study 10 49.323 (10.414) 49.879 (9.577) 0.695 60.285 (10.069) 54.645 (11.211) 0.960

In order to test whether a distribution of independent p-values might be fab-
ricated, we propose using the Fisher method (Fisher, 1925; S. P. O’Brien et
al., 2016). The Fisher method originally was intended as a meta-analytic tool,
which tests whether there is sufficient evidence for an effect (i.e., right-skewed
p-value distribution). The original Fisher method is computed over the individual
p-values (pi) as

χ2
2k = −2

k∑
i=1

ln(pi) (1)
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where the null hypothesis of a zero true effect size underlying all k results is
tested and is rejected for values of the test statistic that are larger than a certain
value, typically the 95th percentile of χ2

2k, to conclude that true effect size differs
from zero for at least one of k results. The Fisher method can be adapted to test
the same null hypothesis against the alternative that the results are closer to
their expected values than expected under the null. The adapted test statistic
of this so-called ‘reversed Fisher method’ is

χ2
2k = −2

k∑
i=1

ln(1− pi − t
1− t ) (2)

where t determines the range of p-values that are selected in the method. For
instance, if t = 0, all p-values are selected, whereas if t = .05 only statistically
nonsignificant results are selected in the method. Note that each result’s contri-
bution (between the brackets) is in the interval (0,1), as for the original Fisher
method. The reversed Fisher method is similar (but not equivalent) to Carlisle’s
method testing for excessive homogeneity across baseline measurements in RCTs
(Carlisle, 2012, 2017a; Carlisle et al., 2015).

As an example, we apply the reversed Fisher method to both the genuine and
fabricated results from Table 1. Using the threshold t = 0.05 to select only
the nonsignificant results from Table 1, we retain k = 10 genuine p-values and
k = 10 fabricated p-values. This results in χ2

2×10 = 18.362, p = 0.564 for the
genuine data (Set 1), and χ2

2×10 = 66.848, p = 6× 10−7 for the fabricated data
(Set 2). Another example, from the Fujii case (Carlisle, 2012), also illustrates
that the reversed Fisher method may detect fabricated data; the p-values related
to fentanyl dose (as presented in Table 3 of Carlisle, 2012) for five independent
comparisons also show excessively high p-values, χ2

2×5 = 19.335, p = 0.036.
However, based on this anecdotal evidence little can be said about the sensitivity,
specificity, and utility of the reversed Fisher method.

We note that incorrectly specified one-tailed tests can also result in excessive
amounts of large p-values. For correctly specified one-tailed tests, the p-value
distribution is right-skewed if the alternative hypothesis were true. When the
alternative hypothesis is true, but the effect is in the opposite direction of the
hypothesized effect (e.g., a negative effect when a one-tailed test for a positive
effect is conducted), this results in a left-skewed p-value distribution. As such,
any potential data fabrication detected with this method would need to be
inspected for misspecified one-tailed hypotheses to preclude false conclusions. In
the studies we present in this paper, misspecification of one-tailed hypothesis
testing is not an issue because we prespecified the effect and its direction to the
participants who were requested to fabricate data.

Variance analysis

In most empirical research papers, sample variance or standard deviation esti-
mates are typically reported alongside means to indicate dispersion in the data.
For example, if a sample has a reported age of M(SD) = 21.05(2.11) we know
this sample is both younger and more homogeneous than another sample with
reported M(SD) = 42.78(17.83).
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Similar to the estimate of the mean in the data, there is sampling error in the
estimated variance in the data (i.e., dispersion of the variance). The sampling
error of the estimated variance is inversely related to the sample size. For
example, under the assumption of normality the sampling error of a given
standard deviation can be estimated as σ/

√
2n (p. 351, Yule, 1922), where n is

the sample size of the group. Additionally, if an observed random variable x is
normally distributed, the standardized variance of x in sample j is χ2-distributed
(p. 445; Hogg & Tanis, 2001); that is

var(x) ∼
χ2

nj−1

nj − 1 (3)

where n is the sample size of the jth group. Assuming equal variances of the J
populations, this population variance is estimated by the Mean Squares within
(MSw) as

MSw =

k∑
j=1

(nj − 1)s2
j

k∑
j=1

(nj − 1)
(4)

where s2
j is the sample variance and nj the sample size in group j. As such, under

normality and equality of variances, the sampling distribution of standardized1

variances in group j (i.e., z2
j ) is

z2
j ∼

(
χ2

nj−1

nj − 1

)
/MSw (5)

Using the theoretical sampling distribution of the standardized variances, we
bootstrap the expected distribution of the dispersion of variances. In other
words, we use the theoretical sampling distribution of the standard deviations
to formulate a null model of the dispersion of variances that is in line with the
probabilistic sampling processes for groups of equal population variances. First,
we randomly draw standard deviations for all j groups according to Equation 3.
Second, we calculate MSw using those previously drawn values (Equation 4).
Third, we standardize the standard deviations using Equation 5. Fourth, we
compute the measure of dispersion across the j groups as the standard deviation
of the standardized variances (denoted SDz, Simonsohn, 2013) or as the range
of the standardized variances (denoted maxz −minz). This process is repeated
for i iterations to generate a parametric bootstrap distribution of the dispersion
of variances according to the null model of equal variances across populations.

The observed dispersion of the variances, when compared to its expected distri-
bution, allows a test for potential data fabrication. To this end we compute the
proportion of iterations that show equally- or more extreme consistency in the dis-
persion of the variances to compute a bootstrapped p-value (e.g., P (X ≤ SDobs)),

1By dividing all variances by MSw their weighted average equals 1. This is what we call
standardization for this scenario.
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with SDobs the standard deviation of standardized variances and X the random
variable corresponding to the standard deviation of standardized variances under
the null model. In other words, we compute how many samples of j groups
under the null show the observed consistency of the dispersion in the variances
(or more consistent), to test whether the data are plausible given a genuine
probabilistic sampling process (Simonsohn, 2013). Similar to the Fisher method,
this could be the result of the fabricator underappreciating the higher level
sampling fluctuations, resulting in generating too little randomness (i.e., error)
in the standard deviations across groups (Mosimann et al., 1995).

As an example, we apply the variance analysis to the illustration from Table
1 and the Smeesters case (Simonsohn, 2013). We apply the variance analysis
across the standard deviations from each set in Table 1. For the genuinely
probabilistic data (Set 1), we find that the reported mean standard deviation
is 9.868 with a standard deviation equal to 0.595. For the fabricated data
(Set 2), we find that the reported mean standard deviation is 10.667 with a
standard deviation equal to 0.456. Such means illustrate the differences, but
are insufficient to test them. Using the standard deviation of variances as the
dispersion of variances measure, we can quantify how extreme this difference
is using the previously outlined procedure. Results indicate that Set 1 has no
excessive consistency in the dispersion of the standard deviations (p = 0.214),
whereas Set 2 does show excessive consistency in the dispersion of the standard
deviations (p = 0.006). In words, out of 100,000 randomly selected samples
under the null model of independent groups with equal variances on a normally
distributed measure, 2.142× 104 showed less dispersion in standard deviations
for Set 1, whereas only 572 showed less dispersion in standard deviations for Set
2. As a non-fictional example, three independent conditions from a study in the
Smeesters case (nj = 15) were reported to have standard deviations 25.09, 24.58,
and 25.65 (Simonsohn, 2013). Here too, we can use the outlined procedure to
see whether these reported standard deviations are too consistent according to
sampling fluctuations of the second moment of the data according to theory.
The standard deviation of these standard deviations is 0.54. Comparing this to
100,000 randomly selected replications under the theoretical null model, such
consistency in standard deviations (or even more) would only be observed in
1.21% of those (Simonsohn, 2013).

Extreme effect sizes

There is sufficient evidence that data fabrication can result in (too) large effects.
For example, in the misconduct investigations in the Stapel case, large effect
sizes were used as an indicator of data fabrication (Levelt, 2012) with some
papers showing incredibly large effect sizes that translate to explained variances
of up to 95% or these effect sizes were larger than the product of the reliabilities
of the related measures. Moreover, Akhtar-Danesh & Dehghan-Kooshkghazi
(2003) asked faculty members from three universities to fabricate data sets and
found that the fabricated data generally showed much larger effect sizes than
the genuine data. From our own anecdotal experience, we have found that large
effect sizes raised initial suspicions of data fabrication (e.g., d > 20). In clinical
trials, extreme effect sizes are also used to identify potentially fabricated data in
multi-site trials while the study is still being conducted (Bailey, 1991).
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Effect sizes can be reported in research reports in various ways. For example,
effect sizes in psychology papers are often reported as a standardized mean
difference (e.g., d) or as an explained variance (e.g., R2). A test statistic can be
transformed into a measure of effect size. A test result such as t(59) = 3.55 in a
between-subjects design corresponds to d = 0.924 and r = 0.176 (C. Hartgerink
et al., 2017). These effect sizes can readily be recomputed based on data
extracted with statcheck across thousands of results (Hartgerink, 2016; Nuijten,
Hartgerink, Assen, Epskamp, & Wicherts, 2015).

Observed effect sizes can subsequently be compared with the effect distribution
of other studies investigating the same effect. For example, if a study on the
‘foot-in-the-door’ technique (Cialdini & Goldstein, 2004) yields an effect size of
r = .8, we can collect other studies that investigate the ‘foot-in-the-door’ effect
and compare how extreme that r = .8 is in comparison to the other studies. If the
largest observed effect size in the distribution is r = .2 and a reasonable number
of studies on the ‘foot-in-the-door’ effect have been conducted, an extremely large
effect might be considered a flag for potential data fabrication. This method
specifically looks at situations where fabricators would want to fabricate the
existence of an effect (not the absence of one).

Detecting data fabrication in raw data

Digit analysis

The properties of leading (first) digits (e.g., the 1 in 123.45) or terminal (last)
digits (e.g., the 5 in 123.45) may be examined in raw data. Here we focus
on testing the distribution of leading digits based on the Newcomb-Benford
Law (NBL) and testing the distribution of terminal digits based on the uniform
distribution in order to detect potentially fabricated data.

For leading digits, the Newcomb-Benford Law or NBL (Benford, 1938; Newcomb,
1881) states that these digits do not have an equal probability of occuring under
certain conditions, but rather a monotonically decreasing probability. A leading
digit is the left-most digit of a numeric value, where a digit is any of the nine
natural numbers (1, 2, 3, ..., 9). The distribution of the leading digit is, according
to the NBL:

P (d) = log10
1 + d

d
(6)

where d is the natural number of the leading digit and P (d) is the probability
of d occurring. Table 2 indicates the expected leading digit distribution based
on the NBL. This expected distribution is typically compared to the observed
distribution using a χ2-test (df = 9− 1). In order to make such a comparison
feasible, it requires a minimum of 45 observations based on the rule of thumb
outlined by Agresti (2003) (n = I×J×5, with I rows and J columns). The NBL
has been applied to detect financial fraud (e.g., Cho & Gaines, 2007), voting
fraud (e.g., Durtschi, Hillison, & Pacini, 2004), and also problems in scientific
data (Bauer & Gross, 2011; Hüllemann, Schüpfer, & Mauch, 2017).
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Table 2: The expected first digit distribution, based on the Newcomb-Benford
Law.

Digit Proportion
1 0.301
2 0.176
3 0.125
4 0.097
5 0.079
6 0.067
7 0.058
8 0.051
9 0.046

However, the NBL only applies under specific conditions that are rarely fulfilled
in the social sciences. Hence, its applicability for detecting data fabrication
in science can be questioned. First, the NBL only applies for true ratio scale
measures (Berger & Hill, 2011; Hill, 1995). Second, sufficient range on the
measure is required for the NBL to apply (i.e., range from at least 1− 1000000
or 1− 106; Fewster, 2009). Third, these measures should not be subject to digit
preferences, for example due to psychological preferences for rounded numbers.
Fourth, any form of truncation undermines the NBL (Nigrini, 2015). Moreover,
some research has even indicated that humans might be able to fabricate data
that are in line with the NBL (Burns, 2009; Diekmann, 2007), immediately
undermining the applicability of the NBL in context of detecting data fabrication.

For terminal digits, analysis is based on the principle that the rightmost digit is
the most random digit of a number, hence, is expected to be uniformly distributed
under specific conditions (Mosimann & Ratnaparkhi, 1996; Mosimann et al.,
1995). Terminal digit analysis is also conducted using a χ2-test (df = 10− 1) on
the digit occurrence counts (including zero), where the observed frequencies are
compared with the expected uniform frequencies. The rule of thumb outlined
by Agresti (2003) indicates at least 50 observations are required to provide a
meaningful test of the terminal digit distribution (n = I × J × 5, with I rows
and J columns). Terminal digit analysis was developed during the Imanishi-Kari
case by Mosimann & Ratnaparkhi (1996; for a history of this decade long case,
see Kevles, 2000).

Figure 1 depicts simulated digit counts for the first- through fifth digit of a
random, standard normally distributed variable (i.e., N ∼ (0, 1)). The first-
and second digit distributions are clearly non-uniform, whereas the third digit
distribution seems only slightly non-uniform. As such, the rightmost digit can be
expected to be uniformly distributed if sufficient precision is provided (Mosimann
et al., 1995). What sufficient precision is, depends on the process generating the
data. In our example with N ∼ (0, 1), the distribution of the third and later
digits seem well-approximated by the uniform distribution.

Multivariate associations
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Figure 1: Frequency distributions of the first-, second-, and third digits. We
sampled 100,000 values from a standard normal distribution to create these digit
distributions.

Variables or measurements included in one study can have multivariate associa-
tions that might be non-obvious to researchers. Hence, such relations between
variables or measurements might be overlooked by people who fabricate data.
Fabricators might also simply be practically unable to fabricate data that reflect
these multivariate associations, even if they are aware of these associations. For
example, in response time latencies, there typically is a positive relation between
mean response time and the variance of the response time. Given that the
genuine multivariate relations between different variables arise from stochastic
processes and are not readily known in either their form or size, these might
be difficult to take into account for someone who wants to fabricate data. As
such, using multivariate associations to discern fabricated data from genuine
data might prove worthwhile.

The multivariate associations between different variables can be estimated from
control data that are (arguably) genuine. For example, if the multivariate
association between means (Ms) and standard deviations (SDs) is of interest,
control data for that same measure can be collected from the literature. With
these control data, a meta-analysis provides an overall estimate of the multivariate
relation that can subsequently be used to verify the credibility of a set of statistics.

Specifically, the multivariate associations from the genuine data are subsequently
used to estimate the extremity of an observed multivariate relation in investigated
data. Consider the following fictitious example, regarding the multivariate
association between Ms and SDs for a response latency task mentioned earlier.
Figure 2 depicts a (simulated) population distribution of the association (e.g., a
correlation) between Ms and SDs from the literature (N ∼ (.123, .1)). Assume
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we have two papers, each coming from a pool of direct replications providing
an equal number of Ms and corresponding SDs. Associations between these
statistics are 0.5 for Paper 1 and 0.2 for Paper 2. From Figure 2 we see that
the association in Paper 1 has a much higher percentile score in the distribution
(i.e., 99.995th percentile) than that of Paper 2 (i.e., 78.447th percentile).
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Figure 2: Distribution of 100 simulated observed associations between Ms and
SDs for a response latency task; simulated under N(.123, .1). The red- and blue
dots indicate observed multivariate associations from fictitious papers. Paper
1 may be considered relatively extreme and of interest for further inspection;
Paper 2 may be considered relatively normal.

Study 1 - detecting fabricated summary statistics

We tested the performance of statistical methods to detect data fabrication
in summary statistics with genuine and fabricated summary statistics with
psychological data. We asked participants to fabricate data that were supposedly
drawn from a study on the anchoring effect (Jacowitz & Kahneman, 1995; A.
Tversky & Kahneman, 1974). The anchoring effect is a well-known psychological
heuristic that uses the information in the question as the starting point for
the answer, which is then adjusted to yield a final estimate of a quantity. For
example:

Do you think the percentage of African countries in the UN is above
or below [10% or 65%]? What do you think is the percentage of
African countries in the UN?
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In their classic study, A. Tversky & Kahneman (1974) varied the anchor in this
question between 10% and 65% and found that they yielded mean responses
of 25% and 45%, respectively (A. Tversky & Kahneman, 1974). We chose the
anchoring effect because it is well known and because a considerable amount
of (arguably) genuine data sets on the anchoring heuristic are freely available
(https://osf.io/pqf9r; Klein et al., 2014). This allowed us to compare data
knowingly and openly fabricated by our participants (researchers in psychology)
to actual data that can be assumed to be genuine because they were draw
from a large-scale international project involving many contributing labs (a so-
called Many Labs study). Our data fabrication study was approved by Tilburg
University’s Ethics Review Board (EC-2015.50; https://osf.io/7tg8g/).

Methods

We collected genuine summary statistics from the Many Labs study and fabricated
summary statistics from our participating fabricators for four anchoring studies:
(i) distance from San Francisco to New York, (ii) human population of Chicago,
(iii) height of the Mount Everest, and (iv) the number of babies born per
day in the United States (Jacowitz & Kahneman, 1995). Each of the four
(genuine or fabricated) studies provided us with summary statistics in a 2
(low/high anchoring) × 2 (male/female) factorial design. Our analysis of the
data fabrication detection methods used the summary statistics (i.e., means,
standard deviations, and test results) of the four anchoring studies fabricated by
each participant or the four anchoring studies that had actually been conducted
by each participating lab in the Many Labs project (Klein et al., 2014). The test
results available are the main effect of the anchoring condition, the main effect of
gender, and the interaction effect between the anchoring conditions and gender
conditions. For current purposes, a participant is defined as researcher/lab where
the four anchoring studies’ summary statistics originate from. All materials,
data, and analyses scripts are freely available on the OSF (https://osf.io/b24pq)
and a preregistration is available at https://osf.io/tshx8/. Throughout this
report, we will indicate which facets were not preregistered or deviate from the
preregistration (for example by denoting “(not preregistered)” or “(deviation
from preregistration)”) and explain the reason of the deviation.

Data collection

We downloaded thirty-six genuine data sets from the publicly available Many
Labs (ML) project (https://osf.io/pqf9r; Klein et al., 2014). The ML project
replicated several effects across thirty-six locations, including the anchoring
effect in the four studies mentioned previously. Considering the size of the ML
project, the transparency of research results, and minimal individual gain for
fabricating data, we felt confident to assume these data are genuine. For each
of the thirty-six labs we computed three summary statistics (i.e., sample sizes,
means, and standard deviations) for each of the four conditions in the four
anchoring studies (i.e., 3× 4× 4; data: https://osf.io/5xgcp/). We computed
these summary statistics from the raw ML data, which were cleaned using the
original analysis scripts from the ML project.
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The sampling frame for the participants asked to fabricate data consisted of
2,038 psychology researchers who published a peer-reviewed paper in 2015, as
indexed in Web of Science (WoS) with the filter set to the U.S. We sampled
psychology researchers to improve familiarity with the anchoring effect (Jacowitz
& Kahneman, 1995; A. Tversky & Kahneman, 1974). We filtered for U.S.
researchers to ensure familiarity with the imperial measurement system, which
is the scale of some of the anchoring studies and in order to reduce heterogeneity
across fabricators.2 We searched WoS on October 13, 2015. In total, 2,038
unique corresponding e-mails were extracted from 2,014 papers (due to multiple
corresponding authors).

From these 2,038 psychology researchers, we e-mailed a random sample of 1,000
researchers to participate in our study (April 25, 2016; osf.io/s4w8r). We used
Qualtrics and removed identifying information not essential to the study (e.g.,
no IP-addresses saved). We informed the participating researchers that the
study would require them to fabricate data and explicitly mentioned that we
would investigate these data with statistical methods to detect data fabrication.
We also clarified to the participants that they could stop at any time without
providing a reason. If they wanted, participants received a $30 Amazon gift
card as compensation for their participation if they were willing to enter their
email address. They could win an additional $50 Amazon gift card if they
were one of three top fabricators (participants were not informed about how we
planned to detect data fabrication; the procedure for this is explained in the
Data Analysis section). We did not inform participants about how we planned
to detect data fabrication. The provided e-mail addresses were unlinked from
individual responses upon sending the bonus gift cards. The full Qualtrics survey
is available at osf.io/rg3qc.

Each participant was instructed to fabricate 32 summary statistics (4 studies × 2
anchoring conditions × 2 sexes × 2 statistics [mean and SD]) that corresponded to
three hypotheses. We instructed participants to fabricate results for the following
hypotheses: there is (i) a positive main effect of the anchoring condition, (ii)
no effect of sex, and (iii) no interaction effect between condition and sex. We
fixed the sample sizes in the fabricated anchoring studies to 25 per cell so that
participants did not need to fabricate sample sizes. These fabricated summary
statistics and their accompanying test results for these three hypotheses serve as
the data to examine the properties of statistical tools to detect data fabrication.

We provided participants with a template spreadsheet to fill out the fabricated
data, in order to standardize the fabrication process without restraining the
participant in how they chose to fabricate data. Figure 3 depicts an example
of this spreadsheet (original: https://osf.io/w6v4u). We requested participants
to fill out the yellow cells with fabricated data, which included means and
standard deviations for the four conditions. Using these values, the spreadsheet
automatically computed statistical tests and immediately showed them in the
“Current result” column instantaneously. If these results supported the (fabrica-

2We discovered that we included several non-U.S. researchers against our initial aim. We
filtered Web of Science on U.S. origin, but found out that this meant that one of the authors
on the paper was U.S. based. As such, corresponding authors might still be non-U.S. Based
on a search through the open ended comments of the participant’s responses, there was no
mention of issues in fabricating the data related to the metric or imperial system.
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tion) hypotheses, a checkmark appeared as depicted in Figure 3. We required
participants to copy-paste the yellow cells into Qualtrics. This provided a stan-
dardized response format that could be automatically processed in the analyses.
Technically, participants could provide a response that did not correspond to
the instructions but none of them did.

Figure 3: Example of a filled out template spreadsheet used in the fabrication
process of Study 1. Respondents fabricated data in the yellow cells, which were
used to automatically compute the results of the hypothesis tests, shown in
the column "Current result". If the fabricated data confirm the hypotheses, a
checkmark appeared in a green cell (one of four template spreadsheets available
at https://osf.io/w6v4u).

Upon completion of the data fabrication, we debriefed respondents within
Qualtrics (full survey: osf.io/rg3qc/). Respondents self-rated their statisti-
cal knowledge (1 = extremely poor, 10 = excellent), what statistical analysis
programs they used frequently (i.e., at least once per week), whether they had
ever conducted an anchoring study themselves, whether they used a random
number generator to fabricate data in this study, whether they fabricated raw
data to get summary statistics, how many combinations of means and standard
deviations they created for each study (on average), and a free-text description
of their fabrication procedures per study. Lastly we reminded participants that
data fabrication is widely condemned by professional organizations, institutions,
and funding agencies alike. This reminder was intended to minimize potential
carry-over effects of the unethical behavior into actual research practice (Mazar,
Amir, & Ariely, 2008). Using quotum sampling, we collected as many responses
as possible for the available 36 rewards, resulting in 39 fabricated data sets
(https://osf.io/e6zys; 3 participants did not participate for a bonus).

Data analysis

We analyzed the genuine and fabricated data sets (36 and 39, respectively), with
each data set consisting of summary statistics of four anchoring studies. The
data set is the unit of analysis. Four types of analyses are conducted on each of
the 75 data sets; (i) the reversed Fisher method, (ii) variance analyses, (iii) the
Fisher method applied to the results of the former two, and (iv) analysis of the
effect sizes of the statistically significant anchoring effect of the four anchoring
studies. Per type of analysis, we examine if we can distinguish the 36 genuine
from the 39 fabricated data sets, mainly using Area Under Receiving Operator
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Characteristic (AUROC) curves. Below we first describe each of the four types
of analyses, followed by a description of the AUROC curve analysis.

We conducted two analyses to detect data fabrication using the reversed Fisher
method. More specifically, we conducted one reversed Fisher method analysis for
the four statistically nonsignificant results of the gender effect (one per anchoring
study) and one for the four statistically nonsignificant interaction effects (one
per anchoring study). This results in two reversed Fisher method results (based
on k=4) per data set.

For the variance analyses, we substantially deviated from the preregistration
(https://osf.io/tshx8/) and added multiple analyses. We analyzed the 16 sample
variances (four anchoring studies × four conditions per anchoring study) per lab
or participant in fourteen different ways. Each of the fourteen variance analyses
was conducted using two dispersion of variance measures. One measure inspects
the standard deviation of the sample variances (i.e., SDz); one measure inspects
the range of the sample variances (i.e., maxz−minz); we ran all 28 analyses with
100,000 iterations from which we computed the bootstrapped p-value (see also the
Theoretical Framework). Of these 28 variance analyses (14 for each dispersion of
variances measure), only one was preregistered. This was the variance analysis
combining all 16 sample variances of the four anchoring studies. Upon analyzing
the results of this preregistered variance analysis, however, we realized that
the variance analyses assume that the included variances are from the same
population distribution. Assuming homogeneous populations of variances is
unrealistic for the four very different anchoring conditions or studies (i.e., they
have outcome measures on very different scales, such as distances in miles and
babies born). Hence, we included variance analyses based on subgroups, where
we analyzed each anchoring study separately (four variance analyses) or analyzed
each anchoring condition of each study separately (i.e., the low/high anchoring
condition collapsed across gender; eight variance analyses). We also conducted
one variance analysis that combined all variances across studies but takes into
account the subgroups per anchoring condition per study.

We also combined the reversed Fisher method results with the results from
the variance analyses using the original Fisher method. More specifically, we
combined the results from the two reversed Fisher method analyses (one analysis
for the four gender effects and one analysis for the four interaction effects)
with the preregistered variance analysis (the result of this analysis was used to
determine the three most difficult to detect fabricated datasets and subsequently
to reward the ‘best fabricators’). We additionally applied the Fisher method
to results of the reversed Fisher method (two results) with three different
combinations of results of the variance analyses; based on variance analyses per
anchoring study (four results), per anchoring study × condition combination
(eight results), and across all studies and conditions but taking into account
heterogeneous variances per anchoring condition for each study (one result).
Hence, the additional Fisher method analyses were based on six, ten, and three
results, respectively. Throughout these combinations, we only use the SDz

dispersion of variance measure for parsimony. Note that the performance of
the Fisher method combining results of various analyses (the reversed Fisher
method and the variance analyses) as we do here is naturally dependent on the
performance of the individual results included in the combination; if all included
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results perform well the Fisher method is bound to perform well and vice versa.

Finally, we looked at statistically significant effect sizes. We expected fabricated
statistically significant effects to be larger than genuine statistically significant
effects. As such, we compared the 75 statistically significant anchoring effects
for each of the four anchoring studies separately (not preregistered).

For each of the previously described statistical methods to detect data fabrica-
tion, we carried out AUROC curve analyses. AUROC analyses summarize the
sensitivity (i.e., True Positive Rate [TPR]) and specificity (i.e., True Negative
Rate [TNR]) for various decision criteria (e.g., α = 0, .01, .02, ..., .99, 1). For
our purposes, AUROC values indicate the probability that a randomly drawn
fabricated and genuine dataset can be correctly classified as fabricated or genuine
based on the result of the analysis (Hanley & McNeil, 1982). In other words,
if AUROC = .5, correctly classifying a randomly drawn dataset as fabricated
(or genuine) is equal to 50% (assuming equal prevalences). For this setting, we
follow the guidelines of Youngstrom (2013) and regard any AUROC value < .7
as poor for detecting data fabrication, .7 ≤ AUROC < .8 as fair, .8 ≤ AUROC
< .9 as good, and AUROC ≥ .9 as excellent. We conducted all analyses using
the pROC package (Robin et al., 2011).

Results

Figure 4 shows a group-level comparison of the genuine- (k = 36) and fabricated
(k = 39) datasets, which contain four p-values and relevant effect sizes (r) for
each type of effect (gender, anchoring, interaction) per dataset (i.e., 75 × 4
data points for each plot). These group-level comparisons provide a general
overview of the differences between the genuine and fabricated data. Figure 4
(right and left column) already indicates that there are few systematic differ-
ences between fabricated and genuine summary statistics from the anchoring
studies when statistically nonsignificant effects are inspected (i.e., gender and
interaction hypotheses). However, there seem to be larger differences when we
required participants to fabricate statistically significant summary statistics (i.e.,
anchoring hypothesis; middle column). We discuss results bearing on the specific
tests for data fabrication next.

P -value analysis

When we applied the reversed Fisher method to the statistically nonsignificant
effects, results indicated its performance is approximately equal to chance clas-
sification. We found AUROC = 0.501, 95% CI [0.468-0.535] for statistically
nonsignificant gender effects and AUROC = 0.516, 95% CI [0.483-0.549] for
statistically nonsignificant interaction effects. For the gender effects, we classified
12 of the 39 fabricated summary statistics as fabricated (α = .01) and 6 of the
36 genuine summary statistics as fabricated (results per respondent available at
osf.io/a6jb4). For the interaction effects, we classified 11 of the 39 fabricated
summary statistics (α = .01) and 8 of the 36 genuine summary statistics as
fabricated (results per respondent available at osf.io/jz57p). In other words,
results from this sample indicated that detection of fabricated data using the
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Figure 4: Density distributions of genuine and fabricated summary statistics
across four anchoring studies, per effect (gender, anchoring, or interaction across
columns) and type of result (p-value or effect size across rows).

distribution of statistically nonsignificant p-values to detect excessive amounts
of high p-values does not seem promising.

Variance analysis

We expected the dispersion of variances to be lower in fabricated data as opposed
to genuine data. We computed the AUROC values for the variance analyses with
the directional hypothesis that genuine data shows more variation than fabricated
data, using either the dispersion of variance as captured by the standard deviation
of the variances (i.e., SDz) or the range of the variances (i.e., maxz −minz).
AUROC results of all 14 analyses (as described in the Data analysis section)
are presented in Table 3, one result for each dispersion of variance measure.
Of these 14 results, we only preregistered the variance analysis inspecting the
standardized variances across all studies under both the SDz and maxz −minz

operationalizations, assuming unrealistically homogeneous population variances
(https://osf.io/tshx8/; second row of Table 3). As we did not preregister the
other variance analyses, these should be considered exploratory.

Under the (in hindsight unrealistic) assumption of homogeneous population
variances, our preregistered variance analyses did not perform above chance
level. Using the standard deviation of the variances (i.e., SDz) as dispersion of
variance measure, the results are: AUROC = 0.264, 95% CI [0.235-0.293]. With
this statistic, we classified 0 of the 39 fabricated summary statistics (α = .01)
and 0 of the 36 genuine summary statistics as fabricated (results per respondent
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Table 3: Area Under Receiving Operator Characteristic (AUROC) values of each
variance analysis and operationalization, including its 95 percent Confidence
Interval. ’Heterogeneity’ assumes unequal population variances for the low- and
high anchoring conditions, whereas ’homogeneity’ assumes equal population
variances across anchoring conditions in the same study. We preregistered only
the analyses in the second row.
Population variance assumption Study SDz maxz −minz

Heterogeneity Overall 0.761 [0.733-0.788] 0.827 [0.8-0.853]
Homogeneity Overall 0.264 [0.235-0.293] 0.544 [0.507-0.58]
Homogeneity Study 1 0.373 [0.339-0.406] 0.488 [0.474-0.502]
Homogeneity Study 2 0.395 [0.36-0.429] 0.634 [0.608-0.66]
Homogeneity Study 3 0.498 [0.463-0.533] 0.563 [0.539-0.588]
Homogeneity Study 4 0.401 [0.367-0.435] 0.561 [0.527-0.594]
Heterogeneity Study 1, low anchoring 0.438 [0.406-0.47] 0.487 [0.481-0.493]
Heterogeneity Study 1, high anchoring 0.615 [0.582-0.647] 0.501 [0.492-0.51]
Heterogeneity Study 2, low anchoring 0.652 [0.621-0.683] 0.625 [0.607-0.643]
Heterogeneity Study 2, high anchoring 0.556 [0.523-0.589] 0.528 [0.515-0.541]
Heterogeneity Study 3, low anchoring 0.643 [0.612-0.674] 0.542 [0.53-0.553]
Heterogeneity Study 3, high anchoring 0.747 [0.719-0.775] 0.691 [0.669-0.712]
Heterogeneity Study 4, low anchoring 0.667 [0.636-0.697] 0.595 [0.577-0.614]
Heterogeneity Study 4, high anchoring 0.798 [0.773-0.823] 0.756 [0.733-0.779]

available at osf.io/9cjdh). Using the range of the variances (i.e., maxz −minz)
as dispersion of variance, the results are: AUROC = 0.544, 95% CI [0.507-0.58].
With this statistic, we detected 39 of the 39 fabricated summary statistics as
fabricated (α = .01) and 36 of the 36 genuine summary statistics as fabricated
(results per respondent available at osf.io/2ts6b). Comparing the results between
SDz and maxz −minz indicates that the range of the variances measure seems
more robust to the violations of the assumption of homogeneous variances than
the standard deviation of the variances measure. Overall these results indicate
that a violation of the homogeneity assumption may undermine analyses on
heterogeneous variances. These assumptions should be made more explicit and
checked whenever possible, to prevent improper use.

We conducted exploratory analyses that take into account the heterogeneity
of variances across conditions and studies, which sometimes also resulted in
improved performance to detect data fabrication. Analyses separated per study
or anchoring condition show variable AUROC results (ranging from 0.373-0.798;
rows 3-14 in Table 3). Using the standard deviation of variances (i.e., SDz;
row 1 in Table 3) in a heterogeneous manner across the conditions and studies,
AUROC = 0.761, 95% CI [0.733-0.788]. With this statistic, we classified 9 of
the 39 fabricated summary statistics as fabricated (α = .01) and 0 of the 36
genuine summary statistics (results per respondent available at osf.io/srpg9).
Using the range of variances (i.e., maxz −minz) in a heterogeneous manner
across the conditions and studies, AUROC = 0.827, 95% CI [0.8-0.853]. With
this statistic, we classified the same 9 of the 39 fabricated summary statistics
as fabricated (α = .01) and 0 of the 36 genuine summary statistics (results per
respondent available at osf.io/93rek).

Combining p-value and variance analyses
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Our preregistered analysis combined the homogeneous variance analysis across
studies and conditions with the p-value analyses of the gender and interaction
effects. This combined analysis yielded AUROC = 0.58, 95% CI [0.548-0.611].
With this statistic, we classified 19 of the 39 fabricated summary statistics as
fabricated (α = .01) and 16 of the 36 genuine summary statistics (results per
respondent available at osf.io/hq29t). Given that the combination method would
be expected to perform not much better than its constituent results it logically
follows that the combination of p-values and variance analyses performs this
poorly.

The poor performance is in part is due to the unrealistic assumption of homo-
geneous variances in the variance analysis; we explored the efficacy of other
combinations that loosen this assumption. First, we split the variance analy-
ses per study and included four variance analysis results instead of one when
we analyzed them overall; AUROC = 0.605, 95% CI [0.573-0.636]. With this
statistic, we classified 20 of the 39 fabricated summary statistics as fabricated
(α = .01) and 13 of the 36 genuine summary statistics (results per respondent
available at osf.io/r8pf5). Second, we split the variance analyses further, splitting
across conditions within studies. This adds another four variance analyses (a
total of eight); AUROC = 0.684, 95% CI [0.655-0.714]. With this statistic, we
classified 25 of the 39 fabricated summary statistics as fabricated (α = .01) and
15 of the 36 genuine summary statistics (results per respondent available at
osf.io/sv35k). Finally, we replaced the original homogeneous variance analysis
(row 2 in Table 3) with the overall and heterogeneous variance analysis (row
1 in Table 3); AUROC = 0.647, 95% CI [0.616-0.677]. With this statistic, we
classified 23 of the 39 fabricated summary statistics as fabricated (α = .01) and
16 of the 36 genuine summary statistics (results per respondent available at
osf.io/zt3nk). As the AUROCs of the combination method did not exceed that
of the variance analyses alone, we conclude that the combination method failed
to outperform the variance analyses.

Extreme effect sizes

Using the statistically significant effect sizes from the anchoring studies, we
differentiated between the fabricated and genuine results fairly well. Figure 4
(middle column, second row) indicates that the fabricated statistically significant
effects were considerably different from the genuine ones. When we inspected
the effect size distributions (r), we saw that the median fabricated effect size
across the four studies was 0.891 whereas the median genuine effect size was
considerably smaller (0.661; median difference across the four anchoring effects
0.23). In contrast to the fabricated nonsignificant effects, which resembled the
genuine data quite well, the statistically significant effects seem to have been
harder to fabricate for the participants. More specifically, the AUROC for the
studies approximate .75 each (0.743, 95% CI [0.712-0.774]; 0.734, 95% CI [0.702-
0.767]; 0.737, 95% CI [0.706-0.768]; 0.755, 95% CI [0.724-0.786]; respectively).
Figure 5 depicts the density distributions of the genuine and fabricated effect
sizes per anchoring study, which shows the extent to which the density of the
fabricated effect sizes exceeds the maximum of the genuine effect sizes. For
instance, the percentage of fabricated statistically significant anchoring effect
sizes that is larger than all 36 genuine statistically significant anchoring effect
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sizes is 59% in Study 1, 64.1% in Study 2, 53.8% in Study 3, and 66.7% in Study
4. Based on these results, it seems that using extreme effect sizes to detect
potential data fabrication may be is a parsimonious and fairly effective method.
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Figure 5: Density distributions of genuine and fabricated anchoring effect sizes
for each of the four anchoring studies.

Fabricating effects with Random Number Generators (RNGs)

Fabricated effects might seem more genuine when participants used Random
Number Generators (RNGs). RNGs are typically used in computer-based
simulation procedures where data are generated that are supposed to arise from
probabilistic processes. Given that our framework of detecting data fabrication
rests on the lack of intuitive understanding of humans at drawing values from
probability distributions, those participants who used an RNG might come
closer to fabricating seemingly genuine data, leading to more difficult to detect
fabricated data. The analyses presented next were not preregistered.

We split our analyses for those 11 participants who indicated using RNGs and
the remaining 28 participants who indicated not to have used RNGs. Figure 6
shows the same density distributions as in Figure 4, except that this time the
density distributions of the fabricated data are split between these two groups.

Figure 6 suggests that using RNGs may have resulted in less exaggerated
anchoring effect sizes, but still larger than genuine ones. Furthermore, it seems
that the use of RNGs produced somewhat more uniformly distributed statistically
nonsignficant p-values than those without RNGs. For effect sizes, Table 4
specifies the differences in sample estimates of the AUROC between the groups
of fabricated results with and without RNGs (as compared to the genuine data).
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Figure 6: Density distributions of p-values and effect sizes for the gender effect,
the anchoring effect, and the interaction effect across the four anchoring studies.
This figure is similar to Figure XXX, except that each panel now separates the
density distributions for fabricated results using a random number generator
(RNG), fabricated results without using a RNG, and genuine effects. Respondents
self-selected to use (or not use) RNGs in their fabrication process.
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Table 4: AUROC values for detecting data fabrication based on effect sizes for
those participants who used Random Number Generators (RNGs) and those
participants who did not use RNGs, including 95 percent confidence interval.
Split based on self-report data on whether RNGs were used by the participant.

Study AUROC RNG, k = 11 AUROC no RNG, k = 28
Study 1 0.553 [0.489-0.617] 0.817 [0.785-0.85]
Study 2 0.641 [0.578-0.705] 0.771 [0.734-0.807]
Study 3 0.578 [0.512-0.645] 0.8 [0.767-0.832]
Study 4 0.641 [0.581-0.702] 0.8 [0.764-0.835]

These results indicate that the fabricated effect sizes from participants who used
RNGs are relatively more difficult to detect compared to data from participants
who did not use a RNG (illustratively, the simple mean of the left column of
Table 4 is 0.604 compared to the right column simple mean of 0.797). The
numbers presented inTable 4 can be interpreted as the probability that the
larger effect is fabricated, when presented with one genuine and fabricated
effect size. For nonsignificant p-values, we obtained the following AUROC
values; gender, with RNG AUROC = 0.455 95% CI [0.405-0.504], without RNG
AUROC = 0.52 95% CI [0.482-0.557]; interaction, with RNG AUROC = 0.601
95% CI [0.558-0.644], without RNG AUROC = 0.482 95% CI [0.444-0.52]). For
the best performing variance analysis (i.e., heterogeneity over all four anchoring
studies with maxz − minz) classification performance does not seem to be
systematically different between those data fabricated with (AUROC = 0.78
95% CI [0.728-0.833]) or without RNGs (AUROC = 0.845 95% CI [0.817-0.874]).

Note that participants self-selected the use of RNGs or not, and that we did not
preregister these analyses. Given the small number of results (11 versus 28), we
did not statistically test the differences due to lack of statistical power, and only
present descriptive results.

Discussion

We presented the first controlled study on detecting data fabrication at the level
summary statistics. As far as we could tell, previous efforts only looked at group-
level comparisons of genuine and fabricated data (Akhtar-Danesh & Dehghan-
Kooshkghazi, 2003), inspected properties of individually fabricated sets of data
without comparing them to genuine data, or did not contextualize these data in
a realistic study with specific hypotheses (Mosimann et al., 1995). We explicitly
asked researchers to fabricate results for an effect within their research domain
(i.e., the anchoring effect), which was contextualized in realistic hypotheses,
and compared them to genuine data on the same effect. We investigated the
performance of the reversed Fisher method, variance analyses, combinations of
these two methods, and statistically significant effect sizes to detect fabricated
data.

Methods related to classifying statistically significant summary statistics (i.e.,
effect sizes and variance analyses) performed fairly well, whereas those relating to
statistically nonsignificant summary statistics (i.e., p-value analyses) performed
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poorly. Non-preregistered results suggest that variance analyses performed simi-
larly or marginally better than using statistically significant effect sizes in this
sample. Hence, we recommend using methods that investigate statistically sig-
nificant effects to detect potential data fabrication, but prior to their application
their assumptions should be well understood and tested.

We noted that the assumption of homogeneous population variances in the
variance analyses has not previously been explicated nor tested for robustness to
violations. In Simonsohn (2013) it remains implicit that the variances grouped
together in an analysis should arise from a homogeneous population distribution.
Our results indicated that the classification performance of variance analyses
may strongly depend on satisfying this assumption, that is, the performance
of the method is not robust to violations of the homogeneity assumption. The
alternative approach to variance analyses using the range of variances instead
of their standard deviation (i.e., maxz −minz rather than SDz) seemed to be
more robust to violations of the homogeneity assumption. This comparison was
not preregistered and its performance could be studied further. Nonetheless,
based on the success of using the dispersion of variances, we recommend to use
variance analyses with subgrouping of variances into those that are likely to be
from the same population distribution (e.g., based on anchoring condition in the
datasets studied here) and also consider using the range of standard deviations
maxz −minz).

Of all methods we applied, we obtained the best performance using the hetero-
geneous variance analyses, which resulted in detecting 9 out of 39 fabricated
data sets (23%) and no false positives (0; α = .01). Performance using (only)
the statistically effect sizes was comparably good. Consequently, we failed to
detect the majority of the fabricated datasets using statistical methods based on
nonsignificant p-values, consistency of variances, and effect sizes. More worrisome
is that for many methods the false positive rate was high, in one case even 100%
(using maxz −minz based on the assumption of homogeneity of all variances).

Our finding that statistical analyses of data with fabrication detection tools
may not be robust to violations of their assumptions has implications for in-
vestigations of research misconduct. Our results demonstrate that improper
model specification can result in classifying anything as potentially fabricated
(i.e., high false positive rate), which comes at high costs for all parties involved.
Moreover, improper model specification may also result in a high false negative
rate, as in our homogeneous variance analyses, resulting in a much too low
AUROC values (e.g., AUROC = .264). Our sometimes high false positive and
false negative rates are especially worrisome in light of widespread application
of statistical methods to screen for potential problematic studies (e.g., Carlisle,
2017a; Loadsman & McCulloch, 2017), when their validation is based on the
criterion that the methods proved useful to detect problematic data in isolated
research misconduct cases the past (e.g., Carlisle, 2012; Carlisle & Loadsman,
2016; D. R. Miller, 2015). For instance, the usefulness of the reversed Fisher
method to detect problematic data in the past (Anonymous, 2012; Levelt, 2012)
should not be taken as evidence of its validity for general application. Our
study highlights the importance of validating methods with genuine reference
data, before using these tools to flag potential problematic papers. Note that
concerns like this have been expressed before (Evan D. Kharasch & Houle, 2017;
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E. D. Kharasch & Houle, 2017; Mascha, Vetter, & Pittet, 2017; Moppett, 2017;
Piraino, 2017).

Our results warrant further research on the underlying assumptions and validity
of statistical approaches to detect potential data fabrication using summary
statistics. This further research can help determine or prevent model misspeci-
fication, both in the assumptions of the statistical models and the psychology
theory for specific ways of fabricating data before standard application of these
methods in practice (see also Carlisle, 2017b).

For the reversed Fisher method that focused on the overly consistent results for
effects that are expected to follow the null hypothesis, results indicated that
participants did not fabricate excessive amounts of high p-values (i.e., closer to
1 than expected by chance) when told to fabricate statistically nonsignificant
effects. This ran against our prediction that the absence of a true effect would
prompt fabricators to fabricate results that do not contain enough randomness,
resulting in too many high p-values. This is particularly noteworthy because
this tenet has been helpful or even central to several known cases of research
misconduct (Anonymous, 2012; Levelt, 2012). However, different from these
specific cases, the results we asked participants to fabricate were first-order
results (i.e., those immediately observable to the participants), whereas in the
Stapel and Förster case, the reversed Fisher method showed potential data
fabrication across second order results (i.e., similarity of means of experiments
of different papers in the case of Stapel, or linearity test of first-order results in
case of Förster). Hence, although our results indicate that the reversed Fisher
method often does not perform well for inspecting first-order results, it may still
perform well in isolated cases, particularly when applied to higher order results
(see also Haldane, 1948).

Results of our reversed Fisher method are inexact because we used dependent
fabricated results, which we did not take into account in our analyses. More
specifically, for the p-value analyses we analyzed the four p-values from (for
example) the gender effect across the four fabricated studies for one participant.
This might have violated the assumption of independence, hence may have
resulted in biased results of this test. Neither our analyses of the effect sizes nor
our variance analyses suffer from this issue.

Analyses combining different data fabrication tools may not perform better
than analyses based on a single tool, which also has implications for research
misconduct investigations. First, a fabricated dataset does not imply that all
tools should hint at data fabrication; fabricated data may resemble genuine data
in some respects but not in others. Second, focusing on one aspect that best
distinguishes fabricated from genuine data may perform best. The problem is then
to identify that aspect, preferably before conducting the investigation. Our study
suggests to focus on the analysis of properties of statistically significant effect
sizes, whereas some fraud cases suggested to focus on properties of statistically
nonsignificant effect sizes. We recommend, in cases of multiple independent
possibly fabricated studies, to use several tools to identify possible fabrication in
one study, and then apply and test the tools that worked to the other possibly
fabricated studies (cross-validation). Importantly, we wish to emphasize that it
does not make sense to require that all tools signal fabrication; as fabricated
data may resemble genuine data in some respects, absence of one or several
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signals should not be considered as evidence of no fabrication.

We also considered the possibility that the use of a Random Number Generator
(RNG) to fabricate summary statistics could decrease the probability of detecting
a fabricated dataset. Although we did not preregister these analyses, descriptive
results suggest that using RNGs decreases the performance of using effect sizes
to classify fabricated from genuine data. On the other hand, using RNGs did not
substantially decrease the performance of the variance analysis that analyzed the
effect sizes bearing on anchoring. Note that our results are solely descriptive due
to too small group sizes for meaningful comparisons. We will investigate in Study
2 whether using RNGs affects the performance of detecting data fabrication in a
similar fashion and revisit this issue in the general discussion.

We note that our presented results might be particular to the anchoring effect
and not replicable with other effects. First, as opposed to many other effects
in psychology, many data on the anchoring effect are already available and
fabricators may have used these data when fabricating theirs. Second, fabrication
strategies may be dependent on the type of effect or measurement that is being
fabricated. In the anchoring studies, data needed to be fabricated for numbers
that are in the hundreds or thousands. Such relatively large values might feel
more unintuitive to think about than smaller numbers in the singles or tens that
might appear in other research contexts. Hence, we might be better at detecting
potential data fabrication in data of our study compared to most other studies
because of this increased lack of intuitiveness. Other kinds of studies that are
easier for fabricators to think about in terms of fabricating realistic data might
prove more difficult to classify. For example, fabrication of data of Likert scales
may be more difficult (or easier) to detect than fabrication of continuous data.

Despite testing various statistical methods to detect data fabrication, we did
not test all available statistical methods to detect data fabrication in summary
statistics. SPRITE (J. A. Heathers, Anaya, Zee, & Brown, 2018), GRIM
(N. J. L. Brown & Heathers, 2016), and GRIMMER (Anaya, 2016) are some
examples of other statistical methods that test for problematic or fabricated
summary statistics (see also Buyse et al., 1999). However, these methods were
not applicable in the studies we presented, because they require ordinal scale
measures. It seems that, combined with the question of whether current results
of detecting fabricated data replicate in Likert scale studies, validating these
other methods would be a fruitful avenue for further research.

Study 2 - detecting fabricated individual level data

In Study 2 we tested the performance of statistical methods to detect fabrication
of individual level (or raw) data. Our procedure is comparable to that used in
Study 1: We again asked actual researchers to fabricate data that they thought
would go undetected. However, instead of summary statistics, in Study 2 we
asked participants to fabricate lower level data (i.e., individual level data) and
included a face-to-face interview in which we debriefed participants on how they
fabricated their data (C. H. J. Hartgerink, Voelkel, Wicherts, & Assen, 2017). A
preregistration of this study occurred during the seeking of funding (Hartgerink,
Wicherts, & Assen, 2016) and during data collection (https://osf.io/fc35g). Just
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like Study 1, this study was approved by the Tilburg Ethics Review Board
(EC-2015.50; https://osf.io/7tg8g/).

To test the validity of statistical methods to detect data fabrication in individual
level data, we investigated individual level data of the classic Stroop experiment
(Stroop, 1935). In a Stroop experiment, participants were asked to determine
the color a word is presented in (i.e., word colors) and where the word also reads
a color (i.e., color words). The presented word color (i.e., ‘red’, ‘blue’, or ‘green’)
can be either presented in the congruent color (e.g., ‘red’ presented in red) or an
incongruent color (e.g., ‘red’ presented in green). The dependent variable in a
Stroop experiment is the response latency, typically in milliseconds. Participants
in actual Stroop studies are usually presented with a set of these Stroop tasks,
where the mean and standard deviation per condition serve as the individual
level data for analyses (see also Ebersole et al., 2016). The Stroop effect is often
computed as the difference in mean response latencies between the congruent
and incongruent conditions.

Methods

Data collection

We collected twenty-one genuine data sets on the Stroop task from the Many
Labs 3 project (https://osf.io/n8xa7/; Ebersole et al., 2016). Many Labs 3
(ML3) includes 20 participant pools from universities and one online sample
(the original preregistration mentioned 20 data sets, accidentally overlooking
the online sample; Hartgerink et al., 2016). Similar to Study 1, we assumed
these data to be genuine due to the minimal individual gains for fabricating
data and the transparency of the project. Using the original raw data and
analysis script from ML3 (https://osf.io/qs8tp/), we computed the mean (M)
and standard deviation (SD) of response latencies for each participant in both
within-subjects conditions of congruent trials and incongruent trials (i.e., two
M -SD combinations for each participant). This format was also the basis for
the template spreadsheet that we requested participants to use to supply the
fabricated data (see also Figure 7 or https://osf.io/2qrbs/). We calculated the
Stroop effect as a t-test of the difference between the congruent and incongruent
conditions (H0 : µX̄1−X̄2

= 0).

We collected 28 fabricated data sets on the Stroop task in a two-stage sampling
procedure. First, we invited 80 Dutch and Flemish psychology researchers
who published a peer-reviewed paper on the Stroop task between 2005-2015
as available in the Thomson Reuters’ Web of Science database. We selected
Dutch and Flemish researchers to allow for face-to-face interviews on how the
data were fabricated. We chose the period 2005-2015 to prevent a decrease in
the probability that the corresponding author would still be reachable via the
given corresponding e-mail address. The database was searched on October
10, 2016 and 80 unique e-mails were retrieved from 90 publications. Two of
these 80 researchers (2.5%) we contacted actually ended up participating in
our study. Subsequently, we implemented a second, unplanned sampling stage
where we collected e-mails from all PhD-candidates, teachers, and professors of
psychology-related departments at Dutch universities. This resulted in 1,659
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Figure 7: Example of a filled out template spreadsheet used in the fabrication
process for Study 2. Respondents fabricated data in the yellow cells and green
cells, which were used to compute the results of the hypothesis test of the
condition effect. If the fabricated data confirmed the hypotheses, a checkmark
appeared (upper right). This template is available at https://osf.io/2qrbs.
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additional unique e-mails that we subsequently invited to participate in this
study. Due to a malfunction in Qualtrics’ quotum sampling, we oversampled,
resulting in 28 participants instead of the originally intended 20 participants.
The second sampling scheme was not part of the original ethics application, but
was considered crucial to obtain a sufficiently large sample.

Each participant received instructions on the data fabrication task via Qualtrics
and was allowed to fabricate data until the face-to-face interview took place.
In other words, each participant could take the time they wanted or needed
to fabricate the data as extensively as they liked. Each participant received
downloadable instructions (original: https://osf.io/7qhy8/) and the template
spreadsheet via Qualtrics (see Figure 7; https://osf.io/2qrbs/). The interview
was scheduled via Qualtrics with JGV, who blinded the rest of the research
team from the identifying information of each participant and the date of the
interview. All interviews took place between January 31 and March 3, 2017. To
incentivize researchers to participate, they received 100 euros for participation;
to incentivize them to fabricate (supposedly) hard to detect data they could win
an additional 100 euros if they belonged to one out of three top fabricators (see
Data Analysis section for exact method used). Participants were not informed
about how we planned to detect data fabrication; we used the combined Fisher
method (described next). JGV transcribed the contents of the interview and
CHJH blind-reviewed these transcripts to remove any potentially personally
identifiable information (these transcripts are freely available for anyone to use
at https://doi.org/10.5281/zenodo.832490).

Data analysis

To detect data fabrication in individual level data using statistical tools, we
performed a total of sixteen analyses per dataset (preregistration: https://osf.
io/ecxvn/) for each of the 21 genuine datasets and 28 fabricated datasets. These
sixteen analyses consisted of four Newcomb-Benford Law (NBL) digit analyses,
four terminal digit analyses, two variance analyses, four multivariate association
analyses (deviated from preregistration in that we used a parametric approach
instead of the planned non-parametric approach), a combination test of these
methods, and effect sizes at the summary statistics level (the latter test replicated
Study 1 and was not preregistered). We had one dataset for each participant
fabricating data and for each lab in the Many Labs study, amounting to 49
datasets.

For the digit analyses (NBL and terminal), we separated the 25 Ms and 25 SDs
per within-subjects condition and conducted χ2-tests for each per data set. As
such, for one data set, we conducted digit analyses on the digits of (i) the mean
response latencies in the congruent condition, (ii) the mean response latencies in
the incongruent condition, (iii) the standard deviation of the response latencies in
the congruent condition, and (iv) the standard deviation of the response latencies
in the incongruent condition. For the NBL, we used the first (or leading) digit,
whereas for the terminal digit analyses we tested the same sets but on the final
digit.

For the variance analyses, we analyzed the 25 standard deviations of the response
latencies in the congruent condition for excessive consistency separately from the
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25 standard deviations of the incongruent condition. We conducted this analysis
for each genuine and fabricated dataset, using themaxz−minz operationalization
(not preregistered; based on results from Study 1 indicating that it is more robust
to violations of the assumption of equal variances).

For the multivariate association analyses, we analyzed four correlations between
25 pairs of fabricated statistics (both Ms and SDs) and compared this corre-
lation to the corresponding distribution of correlations for genuine data. More
specifically, we did this for the (i) correlation between the means of congruent-
and incongruent conditions, (ii) standard deviations of both conditions, (iii)
means and standard deviations within the congruent condition, and (iv) means
and standard deviations within the incongruent condition. We compared these
correlations to the corresponding correlations for the genuine data after comput-
ing a random-effects estimate of the observed (Fisher transformed) correlations
from the Many Labs 3 data. The estimated effect distribution served as the
parametric model for each of those four relations under investigation (N ∼ (µ, τ)).
Using the estimated parametric distribution, we computed two-tailed p-values
for each fabricated and genuine dataset.

We also combined the terminal digit analyses, the variance analyses, and the anal-
yses based on multivariate associations using the Fisher method for each dataset.
More specifically, we included the p-values of ten statistical tests; four terminal
digit analyses, two variance analyses, and four analyses of the multivariate asso-
ciations. The results of this test served as the basis for selecting the top three
fabricators. We excluded the NBL digit analyses because we a priori expected
that psychological measures (e.g., response times) are rarely true ratio scales
with sufficient range to show the NBL properties in the first digit (Diekmann,
2007), hence that this type of analysis would not be productive in detecting data
fabrication in these types of data (preregistration: doi.org/10.3897/rio.2.e8860).

Study 1 showed that effect sizes are a potentially valuable tool to detect data
fabrication, which we exploratively replicate in Study 2. This was not prereg-
istered because we had not yet determined results of Study 1 before designing
Study 2. Based on the genuine and fabricated data sets, we computed effect
sizes for the Stroop effect based on the effect computation from the Many Labs
3 scripts (https://osf.io/qs8tp/). Using a t-test of the difference between the
congruent and incongruent conditions (H0 : µ = 0) we computed the t-value and
its constituent effect size as a correlation using (C. Hartgerink et al., 2017)

r =

√√√√ F ×df1
df2

F ×df1
df2

+ 1

where df1 = 1, F = t2, and df2 is the degrees of freedom of the t-test.

Similar to Study 1, we computed the AUROC for each of these statistical
methods to detect data fabrication. We again conducted all analyses using the
pROC package (Robin et al., 2011). We also explored whether using Random
Number Generators (RNGs) may have affected the detection of fabricated data in
our sample by running AUROC analyses comparing genuine data and fabricated
data with RNGs, or by comparing genuine data and fabricated data without
RNGs.
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Figure 8: First (Benford) digit distributions of the (in)congruent means and stan-
dard deviations, aggregated across all Many Labs 3 datasets, across the datasets
fabricated by the participants, and the theoretically expected proportions.

Results

Digit analyses

Figure 8 shows the aggregated first digit distributions of the genuine and fabri-
cated data side-by-side with the expected first digit distributions according to
the NBL. In the first row the first digit distributions of the means are presented,
for both the congruent condition (left column) and incongruent condition (right
column). The first row indicates that the first digit distributions of the genuine
and fabricated mean response times do not adhere to the NBL. The first digit
distributions of the standard deviations (second row) adhere to the NBL more
than the means at first glance, but still deviate substantially from what would
be expected according to the NBL. These aggregate results already suggest
that using the NBL to test for data fabrication is definitely not appropriate for
means and probably also not appropriate for standard deviations. Figure 8 also
shows that fabricated means and standard deviations differ from genuine means
and SDs. Fabricated means seem systematically larger, with more dispersion
than their genuine counterparts. Fabricated incronguent SDs seem smaller than
those of genuine SDs. Note, however, that we did not plan to detect fabricated
data using values or distributions of means and SDs directly (but see also the
Variance analyis section next).

The AUROC results indicate that using the Newcomb-Benford Law is at best
on par with chance level classification of genuine and fabricated data. More
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specifically, for the congruent standard deviations, using the results of the
NBL test are on par with chance classification (AUROC = 0.553, 95% CI
[0.389-0.717]). Using the congruent standard deviations, we detected 19 of the 28
fabricated ones as fabricated (α = .01) and 13 of the 21 genuine ones as fabricated
(results per respondent available at osf.io/dsbge). Values from other measures
showcase that the fabricated data are actually more in line with the NBL than
the genuine data. Consequently, the genuine data and fabricated data are often
wrongly classified. This is reflected by the AUROC values that are significantly
smaller than .5. For congruent means, AUROC = 0.039, 95% CI [0-0.087]; Using
the congruent means, we detected 28 of the 28 fabricated ones as fabricated
(α = .01) and 21 of the 21 genuine ones as fabricated (results per respondent
available at osf.io/sgda8). For incongruent means, AUROC = 0.024, 95% CI
[0-0.059]; Using the incongruent means, we detected 28 of the 28 fabricated
ones as fabricated (α = .01) and 21 of the 21 genuine ones as fabricated
(results per respondent available at osf.io/xjsd6). For incongruent standard
deviations, AUROC = 0.156, 95% CI [0.045-0.268]; Using the incongruent
standard deviations, we detected 18 of the 28 fabricated ones as fabricated
(α = .01) and 21 of the 21 genuine ones as fabricated (results per respondent
available at osf.io/2sd7w).

Figure 9 shows the aggregated terminal digit distributions of the genuine and
fabricated data side-by-side with the expected terminal digit distributions. The
first row depicts the terminal digit distributions of the means, for both the
congruent (left column) and incongruent (right column) conditions. The first
row shows that the terminal digit distributions of the genuine and fabricated
mean response times are approximately uniform with only minor differences
between the genuine and fabricated data. The terminal digit distributions of the
standard deviations (second row) show slightly more deviation from uniformly
distributed digits, but still approximate the expected distribution of terminal
digits reasonably well. Based on these aggregate digit distributions, it seems
like the classification based on the terminal digit analyses will not be able to
differentiate between genuine and fabricated data particularly well.

The AUROC results indeed show that terminal digit analyses perform close
to chance level classification of genuine and fabricated data. More specifically,
for the incongruent standard deviations, AUROC = 0.511, 95% CI [0.343-
0.679]; congruent means, AUROC = 0.383, 95% CI [0.222-0.543]; incongruent
means, AUROC = 0.387, 95% CI [0.226-0.548]; congruent standard deviations,
AUROC = 0.401, 95% CI [0.241-0.562]. The terminal digit analysis classified at
most 2 of the 28 fabricated datasets as being fabricated (and 2 of the 21 genuine
data as being fabricated; α = .05).

Variance analysis

Figure 10 indicates that the standard deviations of genuine data are larger on
average and more dispersed. Results indicate that the fabricated and genuine
data can be perfectly separated based on results from the variance analyses
(maxz −minz). More specifically, the AUROC of both the variance analyses for
the congruent standard deviations and the incongruent standard deviations is
AUROC = 1 (confidence intervals cannot be reliably computed in this case). We
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Figure 9: Terminal digit distributions for the (in)congruent means and standard
deviations, aggregated across all Many Labs 3 datasets or across the datasets
fabricated by the participants.

note that these results are likely to be sample specific and do not mean to imply
that this method will always be able to separate the genuine- from fabricated
data perfectly. However, they also indicate that given the number of standard
deviations participants had to fabricate (k = 25), it was difficult for participants
to make them look similar to those found in the genuine data. This method is
particularly difficult to apply if no reference distribution of (arguably) genuine
data is available.

Upon closer inspection of the individual level results of the variance analyses
per data set, all p-values are statistically significant if compared to traditional
α levels (i.e., .05; maximum 0.006 across both the genuine- and the fabricated
data). As a result, we recommend that variance analyses are only used when a
reference model is available (in line with the results from Study 1).

Multivariate associations

We expected that fabricated multivariate associations would be different from
genuine multivariate associations. Using the parametric test of multivariate
associations, results indicate classification is fair to good in the current sample.
Figure 11 shows the density distributions of the various multivariate associations
(rows 1-2), which already indicates that genuine data are less dispersed and more
normally distributed when compared to the fabricated multivariate associations.
Using the parametric estimates of the associations to test the various sets of
multivariate relations between the (in)congruent means and standard deviations,
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Figure 10: Density distributions of the standard deviations of the response times
in the congruent conditions (left) and the incongruent conditions (right), split
for the genuine and fabricated data. X-axis truncated at 1000.
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Figure 11: Density distributions of the multivariate relations (first two rows)
and the effect sizes (final row), split for the genuine and fabricated data.

AUROC values range from 0.549 through 0.842. More specifically, the AUROC
for the various sets of relations (going clockwise with the first four figures
in Figure 11) are AUROC = 0.818, 95% CI [0.689-0.947] for M -SD in the
congruent condition, AUROC = 0.833, 95% CI [0.705-0.962] for M -SD in the
incongruent condition, AUROC = 0.714, 95% CI [0.568-0.861] for M -M across
conditions, AUROC = 0.549, 95% CI [0.379-0.72] for SD-SD across conditions.
The percentage of fabricated multivariate relations that is larger than all 21
genuine multivariate relations is 7.1% for M -SD congruent, 0% for M -SD
incongruent, 7.1% for M -M across, and 14.3% for SD-SD across. Overall, it
seems that comparing multivariate associations to known genuine ones is a good
way to detect (potential) data fabrication, with the connotation that a reference
distribution is needed.

Combining variance, terminal digit, and associational analyses

As preregistered, we combined both variance analyses, the terminal digit analyses,
and the tests of the multivariate associations with the Fisher method (10 results
in total). Results of the combined analysis perform excellent at classifying
fabricated and genuine data in this sample. More specifically, the results for
the combination method indicate AUROC = 0.959 (95% CI [0.912-1]). This
combination method is affected by the effectiveness of the individual methods
involved; given that the performance of the multivariate associations and variance
analyses ranged from sufficient to excellent, it makes sense that this combination
method also performs quite well. The maximum p-value of the combination
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of these tests for either the genuine or fabricated data is 0.003 (results per
respondent available at osf.io/rke9q), indicating that all datasets would be
classified as fabricated if we did not compare the results from the genuine and
fabricated data.

Extreme effect sizes

Figure 11 (final row) shows the density distributions of the fabricated and genuine
Stroop effect sizes, which is an excellent classifier of fabricated/genuine data
in this sample. More specifically, the classification performance for detecting
fabricated data in this sample is AUROC = 0.981, 95% CI [0.954-1] (the 95%
CI is truncated at 1), with fabricated effect sizes generally being larger than
genuine effect sizes. Upon closer inspection of the effect sizes, we note that only
three (of 28) fabricated effect sizes fall within the range of genuine effect sizes
(results per respondent available at osf.io/). As such, this is a particularly good
result within this sample (we did not preregister this analysis).

Fabricating effects with Random Number Generators (RNGs)

Using Random Number Generators (RNGs) in the individual level data fabri-
cation procedure did not seem to have a substantial effect on how genuine the
fabricated results appeared. We explored this in our data (i.e., not preregis-
tered) and Table 5 presents the AUROC values split on participating researchers
who said they used (k = 19) or did not use RNGs (k = 9) to fabricate data
(based on manual coding of the interview transcripts). Noteworthy from our
exploration is that the effect size distribution seems approximately similar for
both data fabricated with and without RNGs (Figure 12). Given these minor
and inconsistent changes to the density distributions, we do not regard RNGs as
having substantial effects on the effectiveness of statistical methods to detect
data fabrication in this sample.

Discussion

Our second study investigated how well statistical methods that use individual-
level (raw) data can distinguish fabricated data from genuine data. To this end,
we replicated the procedure from Study 1 and asked researchers to fabricate
data for individual participants for the classic Stroop task. We also collected
(arguably) genuine data from the labs involved in the Many Labs study, which
included the classic Stroop task. As such, we had both genuine and fabricated
data sets on the same effect.

Using these data sets we attempted to classify genuine and fabricated individual
level data using digit analyses, variance analyses, multivariate associations, and
effect sizes. Results of preregistered analyses indicate that digit analyses of
raw data performed at chance level, variance analyses of individual level data
performed excellently, and analyses of multivariate relations between variables in
the individual level data performed fairly to excellently. Moreover, the summary
statistic effect size appeared to strike a surprisingly good balance between
efficacy and parsimony for classifying fabricated- from genuine individual level
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Figure 12: Density distributions of the multivariate relations (first two rows)
and the effect sizes (final row), split for the genuine data, the fabricated data
without using Random Number Generators RNGs), and fabricated data with
using RNGs.
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Table 5: AUROC values with 95 percent confidence intervals for each test, when
split for those with Random Number Generators (RNGs) and those without.
Test With RNG (k=19) Without RNG (k=9)
Benford, congruent means 0.035 [0-0.087] 0.048 [0-0.144]
Benford, congruent sds 0.506 [0.315-0.698] 0.651 [0.431-0.87]
Benford, incongruent means 0.023 [0-0.064] 0.026 [0-0.082]
Benford, incongruent sds 0.115 [0.008-0.223] 0.243 [0.015-0.472]
Combination with Fisher method 0.957 [0.9-1] 0.963 [0.895-1]
Effect size (r) 0.985 [0.957-1] 0.974 [0.918-1]
Multivariate association, M-M across 0.662 [0.481-0.842] 0.825 [0.603-1]
Multivariate association, M-SD congruent 0.85 [0.707-0.992] 0.751 [0.488-1]
Multivariate association, M-SD incongruent 0.802 [0.637-0.967] 0.899 [0.702-1]
Multivariate association, SD-SD across 0.484 [0.272-0.695] 0.688 [0.421-0.955]
Parametric test of Multivariate association, M-M across 0.662 [0.481-0.842] 0.825 [0.603-1]
Parametric test of Multivariate association, M-SD congruent 0.85 [0.707-0.992] 0.751 [0.488-1]
Parametric test of Multivariate association, M-SD incongruent 0.802 [0.637-0.967] 0.899 [0.702-1]
Parametric test of Multivariate association, SD-SD across 0.847 [0.717-0.977] 0.831 [0.671-0.991]
Terminal digits, congruent means 0.388 [0.206-0.57] 0.37 [0.132-0.609]
Terminal digits, congruent sds 0.439 [0.253-0.624] 0.323 [0.087-0.559]
Terminal digits, incongruent means 0.36 [0.186-0.534] 0.444 [0.181-0.708]
Terminal digits, incongruent sds 0.573 [0.383-0.763] 0.381 [0.162-0.6]
Variance analysis, congruent sds (maxmin) 1 [1-1] 1 [1-1]
Variance analysis, incongruent sds (maxmin) 1 [1-1] 1 [1-1]

data (only superseded in performance by the more complex variance analyses).
This replicates the finding from Study 1 that effect sizes are a valuable piece of
information to discern genuine from fabricated data. Fabricators’ use of Random
Number Generators (RNGs) did not appear to have a consistent relation with
classification performance with individual level data.

Our results confirmed our prediction that leading digit analyses (i.e., NBL)
are not fruitful in detecting fabricated response times. The Newcomb-Benford
Law is frequently observed in various natural phenomena (e.g., population
numbers) but Figure 8 (clearly) indicates this is not the case for summary
statistics of response times. Response times are untruncated ratio measures in
theory that technically satisfy the NBL’s requirements, but in practice response
time measures are truncated severely (e.g., nobody can respond within <50
milliseconds and few take longer than 2000 milliseconds). If the NBL is being
considered for applications to detect (potential) misconduct, there need to be
indications that the data generation process is in line with the requirements of
the NBL, but we consider that this is hardly the case for experimental studies
in the social sciences.

Going against our predictions, participants fabricated individual level data that
was almost indistinguishable from the genuine individual level data when looking
at terminal digit analyses. Given the theoretical framework we use, wherein
humans are expected to be poor at fabricating stochastic processes that underlie
data collection procedures, we expected that our participants would be unable to
fabricate uniformly distributed terminal digits. Our sample indicates this is not
the case. Moreover, given that these stochastic processes are expected to be better
included when data is fabricated with RNGs, it was a surprise that this did not
affect classification performance. This raises questions with respect to whether
human’s lack of intuitive understanding of uniform probabilities manifests itself
in fabricated individual level data, and if so, under which conditions.
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Study 2 replicated the effectiveness of variance analyses (preregistered) and effect
sizes (not preregistered) to detect data fabrication, but failed to replicate the
potential effect of RNGs on detection rates (not preregistered). These mixed
results with respect to the effect of RNGs on the fabricated data suggests that a
lack of intuitions for probabilities does not necessarily manifest itself in fabricated
data. Hence, further research might look into correlating the (lack of) expertise
on probabilities and the kind of data being fabricated. With respect to variance
analyses and effect sizes, our results suggest that these are the most promising
methods when genuine data are available (we further discuss this in the General
Discussion).

Study 2 substantiates two conclusions from Study 1: (1) As methods may not
be robust to violations of its assumptions (e.g., NBL in Study 2), these methods
should be validated with genuine reference data if available, before using these
tools to flag potential problematic papers. This dependence on assumptions
also questions the validity of automatic large-scale scrutiny for data fabrication.
(2) Although some methods did not perform well in Study 2, these methods
have shown to work well to detect data fabrication in some isolated cases of
misconduct. For instance, both the NBL (Cho & Gaines, 2007) and the analysis
of terminal digits (Mosimann et al., 1995) have shown their usefulness in some
cases. Similarly, although some methods worked well in Study 2 (i.e. variance
analyses, effect size distributions, multivariate associations), this does not mean
that they always work well in detecting fabricated data, or that they could
exonerate anyone when these methods fail to flag any fabrication.

General discussion

We presented the first two empirical studies on detecting individual sets of
fabricated data, where the fabricated data pertained to existing experiments and
detection occurred purely by using statistical methods. By comparing results
from genuine and fabricated data across summary statistics and individual level
data from two well-known psychology research topics, it seems like classification
based on statistically significant effect sizes strikes the best balance between
parsimony, effectiveness, and usability. On the other hand, variance analyses are
a good option that is somewhat more complex in its application because one
has to identify the sets of variances that can be expected to be homogeneous.
The digit analyses based on the Newcomb-Benford law and the terminal digit
principle did not perform well. We bundled our functions for the variance
and digit analyses and the (reversed) Fisher method in the ddfab (short for
detecting data fabrication) package for R, which is available through GitHub
(https://github.com/chartgerink/ddfab) for application in further research and
development.

We designed the current studies to have sufficient information to detect data
fabrication within a given set of data, but not necessarily to generalize our
results to a larger population. As such, the sample sizes of the presented studies
and the type of effect we chose as the empirical context necessarily restrict the
drawing of more general inferences. Further research should consider whether
these results also apply to other types of data or effects. Nevertheless, our
studies have highlighted that variance- and effect size analysis and multivariate
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associations are methods that look promising to detect problematic data. Our
descriptive results with confidence intervals may be regarded as an initial step
in understanding the effectiveness of these methods to detect data fabrication
(although we note those of the Fisher method are incorrect due to dependent
p-values). Next, we highlight some of the difficulties that remain.

All presented results throughout the two studies pertain to relative comparisons
between genuine and fabricated data. Hence, all statements about the perfor-
mance of classification depends on the availability of unbiased genuine data to
compare to and cannot readily be done by using generic decision criteria such as
α-levels. As we saw for example in the variance analyses for Study 2, there was
excellent relative classification, but absolute classification as many researchers
are used to by comparing p < α remained impossible or problematic at best.
More specifically, we would have classified all datasets as fabricated if we had
used the traditional hypothesis testing approach. Hence, we agree with the call
to always include a control sample when applying these statistical tools to studies
that look suspicious (Simonsohn, 2013). It is for exactly this reason that we
refrain from formulating general decision rules for the methods presented in this
paper. This might also have implications for systematic applications of statistical
methods to detect potentially problematic data, such as the recent application
by Carlisle (2017a). Carlisle (2017a) used the same method applied in the Fujii
case to approximately 5,000 clinical trials without any further validation of the
methods (Bolland, Gamble, Avenell, & Grey, 2019). Our results suggest that
in practice aberrant effects are best detected in relative fashion, for example in
a meta-analysis (corroborating our own anecdotal experience), or to look for
excessively large effect sizes (e.g., r > .95) as an initial screening of a set of effects
(especially when that effect size is larger than the reliability of the product of the
measures involved). Using absolute classification (i.e., p < α) can be problematic,
considering that many of the methods we tested (e.g., variance analyses, digit
analyses) are not specific enough and rely on models with strong assumptions,
potentially flagging both genuine and fabricated data as problematic.

Because we included the Many Labs data (Ebersole et al., 2016; Klein et al.,
2014) we had (arguably) unbiased estimates of the effects under investigation,
which is key for relative comparisons. If we had used the peer-reviewed literature
on the anchoring effect (Study 1) or the Stroop effect (Study 2), we would likely
have found inflated effect size estimates of the anchoring- or Stroop effects due
to publication bias. These inflated effect size estimates could have resulted in
worsened classification of genuine and fabricated data because publication bias
results in inflated effect sizes (M. B. Nuijten, Assen, Veldkamp, & Wicherts, 2015)
and our studies indicate fabricating data has a similar effect. That publication
bias and fabricating data might have similar effects in turn conflates the detection
of fabricated data. Collecting an unbiased genuine effect distribution thus requires
careful attention; when arguably genuine effects are collected from a literature
ridden with publication bias and related biases, detection of data fabrication
may be undermined. We recommend retrieving unbiased effect size distributions
for an effect from large-scale replication projects, such as Registered Replication
Reports (e.g., Cheung et al., 2016) and building systemic efforts to reduce
publication bias (see also Hartgerink & Zelst, 2018).

Our results depend on the (majority of the) Many Labs data being genuine. We
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remain confident that (most of) the Many Labs data are genuine for a variety
of reasons. First, the sheer number of people involved in these projects results
in a distribution of responsibility that also limits the effect if one person were
to fabricate data. Second, the number of people involved also minimizes the
individual reward it would have to fabricate data given that any utility would
have to be shared across all researchers involved. Third, the projects actively
made all individual research files available and participating researchers in the
ML were made aware of this from the very start. Fourth, the analyses of the
Many Labs are not conducted by the same individuals who collected the data.
We of course cannot exclude the possibility of malicious actors in the ML studies,
but also have no evidence that suggests there would be.

Highly relevant to the application of these kinds of methods in screening for
problems in the published literature (e.g., Bik et al., 2016; Carlisle, 2017a) or
during peer review is that the diagnostic value of any instrument is dependent on
the base rate of afflicted cases (here: fabricated data). In our study design, we
built in a high prevalence of data fabrication, which directly affects the positive
predictive value of these statistical methods. The positive predictive value is the
chance of getting a true positive when a positive result is found. More specifically,
Study 1 by design has a prevalence of 52% of data fabrication and Study 2 has
a prevalence of 57%. This strongly affects the positive predictive value (PPV) of
these methods if they would be applied in a more general setting. After all, even
if we could classify all fabricated data correctly and falsely regard genuine data
as fabricated in 5% of the cases, then with a prevalence of 2% (Fanelli, 2009)
the positive predictive value would only be 29%. This is a best-case scenario
(see also Stricker & Günther, 2019) that would cause approximately 1 out of 3
cases of ‘detected data fabrication’ to be false. Hence, we do not recommend
attempting to detect data fabrication on statistical methods alone.

We do advise to use some of the more successful statistical methods as screening
tools in review processes and as additional tools in formal misconduct investi-
gations where prevalence is supposedly higher than in the general population
of research results. We note that this should only happen in combination with
evidence from other sources than statistical methods (e.g., focusing on practical,
methodological, or substantive aspects). As we mentioned before, excessively
large effect sizes might be used as a screening approach for further manual
or in-depth investigation, but we warn against the potential for confirmation
bias that results from these earlier tests might create. As such, if any of these
statistical tools are used, we recommend to solely use them to screen for indica-
tions of potential data anomalies, which are subsequently further inspected by a
blinded researcher to prevent confirmation bias and using a rigorous protocol
that involves due care and due process.

We note that our studies have been regarded as unethical by some due to the
nature of asking participants to fabricate data (see for example Naomi Ellemers,
2017). We understand and respect that asking researchers to show one of the
most widely condemned scientific behaviors is risky. While designing these
studies, we also asked ourselves whether this was an appropriate design and
ultimately regarded it was appropriate for several reasons. First, there was
little utility in simulating potential data fabrication strategies because there is
little to no knowledge of how researchers actually fabricate data. Second, the
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cases of data fabrication known to us are severely self-selected (i.e., based on
detection bias), which would limit the ecological validity of any tests we could
do on such suspect data. These two reasons made it necessary for us to collect
fabricated data. After we had come to that decision, we also regarded that we
should minimize the negative effect it had on the researchers participating. We
attempted to minimize any negative effect by using findings from psychology
research to decrease potential carry-over of this controlled misbehavior (Mazar et
al., 2008; although a recent multilab replication contested this effect, Verschuere
et al., 2018). Despite that some of our participants indicated that they felt initial
unease with fabricating data for the study, no participants reached out afterwards
indicating feeling conflicted. Moreover, we actively attempt to maximize returns
of the data collected by sharing all the information we gathered openly and
without restrictions. We consider these reasons to balance the design and ask of
our study from our participants.

Another ethical issue is the dual use of these kinds of statistical methods to
detect data fabrication. Dual use is the ethical issue where the development of
knowledge can be used for both good and evil purposes, hence, whether we should
want to morally conduct this research. A traditional example is the research into
biological agents that might be used for chemical warfare. For our research, a
data fabricator might use our research to test their fabricated data until it goes
undetected based on these methods. There is no inherent way to control whether
malicious actors do this and one might argue that this is sufficient reason to
shy away from conducting this kind of research to begin with. However, we
argue that the potential ethical uses of these methods are substantial (improved
detection of fabricated data by a potential many) and outweigh the potential
unethical uses of these methods (undermining detection by a potential few).
Secrecy in this respect would actually enhance the ability of malicious actors to
remain undetected, because when they find a way to exploit the system fewer
people can investigate suspicions they might have. Hence, we regard the ethical
issue of dual use to ultimately weigh in favor of doing the research, although
we recognize that this might start a competition in undermining detection of
problematic data.

Some of our participants in Study 2 indicated using the Many Labs (or other open)
data to fabricate their own dataset. During the interviews, some participants
indicated that they thought this would make it more difficult to detect their
data as fabricated. We did not investigate evidence for this claim specifically
(this could be avenue for further research) but we note that our detection in
Study 2 performed well despite some participants using genuine data. Moreover,
we note that open data might actually facilitate the detection of fabricated
data for two reasons. First, open data from preregistered projects improves
the unbiased estimation of effect sizes and multivariate associations, where the
peer-reviewed literature inflates estimated effect sizes due to publication bias and
often lacks the required information to compute these multivariate associations.
As we mentioned before, having these unbiased effect size estimates seem key to
detecting issues. Second, if data are fabricated based on existing data, it is more
likely to be detected if it is based on open data than when based on closed data.
For example, in the LaCour case data were fabricated based on existing data
(LaCour & Green, 2014; McNutt, 2015). Researchers detected that this data
had been fabricated because it seemed to be a(n almost) linear transformation
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of variables because they could access the relevant dataset (Broockman, Kalla,
& Aronow, 2015). As such, we see no concrete evidence to support the claim
that open data could lead to worsened detection of fabricated data, but we also
recognize that this does not exclude it as an option. As such, beyond being
fruitful for examining reproducibility (Munafò et al., 2017) and facilitating new
research, open data may also facilitate the improvement of detecting potential
data fabrication. We see the effect of open data on detection of data fabrication
as a fruitful avenue for further research.

All in all, we see a need for unbiased effect size estimates to provide meaningful
comparisons of genuine- and potentially fabricated data, but even when those are
available the (potentially) low positive predictive value of widespread detection of
data fabrication is going extremely difficult. Hence, we recommend meta-research
to focus on more effective systemic reforms to make progress on the root causes
of data fabrication possible. One root cause is likely to be the incentive system
that rewards bean-counts of outputs and does not put them in the context of
a larger collective scientific effort where validity counts. Our premise in these
two research studies was after the fact detection of a problem, but we recognize
that prior to the fact addressing of the underlying causes that give rise to data
fabrication is more sustainable and effective. Nonetheless, we also recognize that
there will always be dishonesty involved for some researchers, and we recommend
that research engage in more penetration testing of how those with dishonesty
can fool a system.
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