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Abstract 18 

Although domestic dogs can respond to many facial cues displayed by other 19 

dogs and humans, it remains unclear whether they can differentiate individual dogs or 20 

humans based on facial cues alone and, if so, whether they would demonstrate the face 21 

inversion effect, a behavioural hallmark commonly used in primates to differentiate face 22 

processing from object processing. In this study we first established the applicability of 23 

the Visual Paired Comparison (VPC or preferential looking) procedure for dogs using a 24 

simple object discrimination task with 2D pictures. The animals demonstrated a clear 25 

looking preference for novel objects when simultaneously presented with prior-exposed 26 

familiar objects. We then adopted this VPC procedure to assess their face discrimination 27 

and inversion responses. Dogs showed a deviation from random behaviour, indicating 28 

discrimination capability when inspecting upright dog faces, human faces and object 29 

images; but the pattern of viewing preference was dependent upon image category. 30 

They directed longer viewing time at novel (vs. familiar) human faces and objects, but 31 

not at dog faces, instead, a longer viewing time at familiar (vs. novel) dog faces was 32 

observed. No significant looking preference was detected for inverted images regardless 33 

of image category. Our results indicate that domestic dogs can use facial cues alone to 34 

differentiate individual dogs and humans, and that they exhibit a non-specific inversion 35 

response. In addition, the discrimination response by dogs of human and dog faces 36 

appears to differ with the type of face involved.  37 

 38 

Keywords:  Preferential looking, Visual paired comparison, Face discrimination, 39 

Inversion effect, Dogs 40 
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Introduction 41 

Faces convey visual information about an individual’s gender, age, familiarity, intention 42 

and mental state, and so it is not surprising that the ability to recognize these cues and to 43 

respond accordingly plays an important role in social communication, at least in humans 44 

(Bruce and Young 1998). Numerous studies have demonstrated our superior efficiency 45 

in differentiating and recognizing faces compared with non-face objects, and have 46 

suggested a face-specific cognitive and neural mechanism involved in face processing 47 

(e.g. Farah et al. 1998; McKone et al. 2006; see also Tarr and Cheng 2003). For 48 

instance, neuropsychological studies have reported selective impairments of face and 49 

object recognition in neurological patients (prosopagnosia and visual agnosia) (Farah 50 

1996; Moscovitch et al. 1997), and brain imaging studies have revealed distinct 51 

neuroanatomical regions in the cerebral cortex, such as the fusiform gyrus, associated 52 

with face processing (McCarthy et al. 1997; Tsao et al. 2006). Likewise, 53 

behavioural/perceptual studies show that inversion (presentation of a stimulus upside-54 

down) results in a larger decrease in recognition performance for faces than for other 55 

mono-oriented objects (e.g. Yin, 1969; Valentine 1988; Rossion and Gauthier 2002). 56 

Although the precise cause of this so called ‘face inversion effect’ is still source of 57 

debate (qualitative vs. quantitative difference between the processing of upright and 58 

inverted faces; e.g. Sekuler et al. 2004; Rossion 2008, 2009; Riesenhuber and Wolff 59 

2009; Yovel 2009); it is generally associated with a more holistic processing for faces 60 

(both the shape of the local features (i.e. eyes, nose, mouth) and their spatial 61 

arrangement are integrated into a single representation of the face) than other objects. 62 

The face inversion effect is therefore considered as a hallmark for differentiating face 63 

from object processing.  64 

The capacity for differentiating individuals based on facial cues is not restricted 65 

to humans. Using match-to-sample or visual paired comparison tasks, previous studies 66 
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have found that non-human primates (e.g. chimpanzees (Pan troglodytes): Parr et al. 67 

1998, 2000, 2006; and monkeys (Macaca mulatta, Macaca tonkeana, Cebus apella): 68 

Pascalis and Bachevalier 1998; Parr et al. 2000, 2008; Gothard et al. 2003, 2009; 69 

Dufour et al. 2006; Parr and Heinz 2008) other mammals (e.g. sheep (Ovis aries): 70 

Kendricks et al. 1996; heifers (Bos Taurus): Coulon et al. 2009)), birds (e.g. budgerigars 71 

(Melopsittacus undulatus): Brown and Dooling, 1992), and even insects (e.g. paper 72 

wasps (Poliste fuscatus): Tibbetts 2002) could discriminate the faces of their own 73 

species (conspecifics), based on visual cues. Although it is not clear whether face 74 

processing in non-human animals share a similar neural mechanism as that in humans, 75 

some behavioural studies have noticed a face inversion effect, at least towards 76 

conspecific faces in chimpanzees (e.g. Parr et al. 1998), monkeys (e.g. Parr et al. 2008; 77 

Parr and Heinz 2008; Neiworth 2007; see also Parr et al. 1999) and sheep (Kendrick et 78 

al. 1996), suggesting that a similar holistic process may be used for face perception by 79 

these species. 80 

Many studies have suggested that the development of a face-specific cognitive 81 

process relies heavily on the animal’s extensive experience with certain type of faces. 82 

For instance, human adults have difficulties at recognizing faces from a different ethnic 83 

group and demonstrate weaker holistic processing towards these faces (O’Toole et al. 84 

1994; Tanaka et al. 2004). This so called ‘other-race effect’ can decrease and even 85 

reverse by experiencing another ethnic face type (e.g. Elliott et al. 1973; Brigham et al. 86 

1982; Sangrigoli et al. 2004). Furthermore, humans and some non-human primates 87 

present abilities of discrimination and/or an inversion effect toward faces of other 88 

species, provided that they have been frequently exposed to them (generally tested with 89 

other-primate species) (Parr et al. 1998, 1999; Martin-Malivel and Fagot 2001; Pascalis 90 

et al. 2005; Martin-Malivel and Okada 2007; Neiworth et al. 2007; Parr and Heinz 91 

http://en.wikipedia.org/wiki/Common_Chimpanzee
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2008; Sugita 2008). Finally, human performances in simple human-face identification 92 

task are known to depend primarily on the amount of preceding practice (Hussain et al. 93 

2009). Taken together, exposure seems to be an important determinant for holistic face 94 

processing.  95 

Given their long history of domestication (estimated at 12,000-100,000 years 96 

ago, Davis and Valla 1978; Vilà et al. 1997) and intensive daily interaction with humans, 97 

pet domestic dogs could be a unique animal model for the comparative study of face 98 

processing. Despite their extraordinary capacity for discriminating olfactory cues (e.g. 99 

Schoon 1997; Furton and Myers 2001), domestic dogs also process visual inputs 100 

efficiently. Although they could have less binocular overlap, less range of 101 

accommodation and colour sensitivity, and lower visual acuity (20/50 to 20/100 with 102 

the Snellen chart) compared with humans, they in general have a larger visual field and 103 

higher sensitivity to motion signals (for a review see Miller and Murphy 1995). 104 

Growing evidence has revealed that they can rely on facial cues for social 105 

communication. They can display a range of facial expressions and these are believed to 106 

be important in intraspecific communication (e.g. Feddersen-Petersen 2005). They also 107 

attend to and use human facial cues. For instance, they attend to human faces to assess 108 

their attentional state (Call et al. 2003; Gácsi et al. 2004; Viranyi et al. 2004) or in 109 

problem solving situations (Topál et al. 1997; Miklósi et al. 2003). They are particularly 110 

efficient at reading and understanding some human directional communicative cues, 111 

such as following human eye/head direction to find hidden food (e.g. Miklósi et al. 112 

1998; Soproni et al. 2001), and even exceed the ability of some non-human primates in 113 

such tasks (e.g. Povinelli et al. 1999; Soproni et al. 2001; Hare et al. 2002). In a recent 114 

study, Marinelli and colleagues (2009) observed the apparent attention of dogs while 115 

looking at their owner and a stranger entering and leaving a room. They showed that the 116 
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dogs’ attention towards their owner decreased if both the owner and the stranger were 117 

wearing hoods covering their heads. This could suggest that dogs use the face as a cue 118 

to recognize their owners. Moreover, another study suggests dogs may even have an 119 

internal representation of their owner’s face, and can correlate visual inputs (i.e. 120 

owner’s face) with auditory inputs (i.e. owner’s voice) (Adachi et al. 2007). Finally, our 121 

recent behavioural study (Guo et al. 2009) revealed that when exploring faces of 122 

different species, domestic dogs demonstrated a human-like left gaze bias (i.e. the right 123 

side of the viewer’s face is inspected first and for longer periods) towards human faces 124 

but not towards monkey or dog faces, suggesting that they may use a human-like gaze 125 

strategy for the processing of human facial information but not conspecifics. 126 

In this study, we examined whether domestic dogs (Canis familiaris) could 127 

discriminate faces based on visual cues alone, whether they demonstrate a face 128 

inversion effect, and to what extent these behaviour responses were influenced by the 129 

species viewed (i.e. human faces vs. dog faces), given their high level of natural 130 

exposure to both species.  131 

 132 

Experiment 1:  Object discrimination in domestic dogs measured by a visual 133 

paired comparison task  134 

Compared with other methodologies such as match-to-sample task, the visual 135 

paired comparison (VPC or preferential looking) task does not involve intensive 136 

training, is rapid to perform and is naturalistic. Consequently, it is commonly used in 137 

the study of visual discrimination performance in human infants (e.g. Fantz 1964; Fagan 138 

1973; Pascalis et al. 2002) and non-human primates (e.g. Pascalis and Bachevalier 139 

1998; Gothard et al. 2003, 2009; Dufour et al. 2006). It is based on behavioural changes 140 

stemming from biases in attention towards novelty. In this task, a single stimulus is 141 
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presented to the participant in a first presentation phase (familiarisation phase), followed 142 

by the simultaneous presentation of the same stimulus and a novel stimulus in the 143 

second presentation phase (test phase). It is assumed that if the individual can 144 

discriminate between the familiar and the novel stimulus, there will be increased 145 

attention shown towards the novel stimulus, which is evident from a longer viewing 146 

time. 147 

 To our knowledge, the VPC task has not been applied in the controlled testing of 148 

the perceptual ability of domestic dogs. Therefore, in the first experiment, we employed 149 

an object discrimination task to establish whether the domestic dog could fulfil the 150 

necessary criteria for using the VPC task in such studies.  151 

 152 

Method 153 

Animals 154 

Seven adult domestic pet dogs (Canis familiaris, 5.6±2.8 (mean±SD) years old; 155 

1 miniature Dachshund, 2 Lurchers, and 4 cross-breeds; 2 males and 5 females) were 156 

recruited from university staff and students for this experiment. The study was carried 157 

out at the University of Lincoln (UK) from May to June 2008. 158 

Visual stimuli  159 

Eighteen gray-scale digitized common object pictures (subtending a visual angle 160 

of 34×43°) were used in this experiment. The pictures were taken using a Nikon D70 161 

digital camera and further processed in Adobe Photoshop. Specifically, a single object 162 

was cropped from the original picture and was then resized (to ensure a similar height 163 

between objects) and overlapped with a homogenous white background to create object 164 

image used in the study. The object pictures were then paired according to similarity of 165 

their general shape, and each trial contained two different images of the same object 166 

(first picture and familiar picture) and one image of a different object (novel picture) 167 
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(see Fig.1 for an example).  All visual stimuli were back-projected on the centre of a 168 

‘dark’ projection screen using customized presentation software (Meints and Woodford 169 

2008). 170 

To reduce the chance of discriminating objects using a low level cognitive 171 

process, such as detecting differences in contrast or brightness, two precautions were 172 

taken: (1) for each trial the first and familiar images were two different images of the 173 

same object with a slight difference in the perspective to avoid repetition of the contrast 174 

and brightness distribution in the pictures; (2) the contrast and brightness of the three 175 

pictures forming each trial were visually adjusted to appear as similar as possible. 176 

Therefore, the dogs could not rely on the immediate change of contrast or brightness to 177 

differentiate the familiar and novel stimulus presented simultaneously in the test phase. 178 

Experimental protocol  179 

During the experiment, the dog was familiarised with a quiet, dim-lit test room 180 

and then sat about 60cm in front of the projection screen. A researcher stood behind the 181 

dog, put her hands on the shoulders or under the head of the dog but did not interfere 182 

with it during the image presentation or force it to watch the screen. The small dogs 183 

were sat on the lap of the researcher. A CCTV camera (SONY SSC-M388CE, 184 

resolution: 380 horizontal lines) placed in front of the dog was used to monitor and 185 

record the dog’s eye and head movements. Once the dog’s attention had been attracted 186 

towards the screen using a sound stimulus behind it (e.g. a call to the dog, tap on the 187 

screen), the trial was started with a small yellow fixation point (FP) presented in the 188 

centre of the screen at the dog’s eye level (also the centre of the project stimulus). The 189 

diameter of the FP was changed dynamically by expanding and contracting (ranging 190 

between 2.8 and 6.6°) to attract and maintain the dog’s attention. The dog’s head and 191 

eye positions were monitored on-line by a second researcher, in an annexe room, 192 

through CCTV. Once the dog’s gaze was oriented towards the FP a visual stimulus was 193 
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then presented. During the presentation, the dog passively viewed the images. No 194 

reinforcement was given during this procedure, neither were the dogs trained on any 195 

other task with these stimuli.  196 

In total, 6 trials were tested in a random order for each dog, and 3 pre-test trials 197 

were used to familiarise the dog with the general procedure. A typical trial consisted of 198 

two presentations (or phases). The first familiarisation phase had a single first picture 199 

presented at the centre of the screen for 5 seconds, and the second test phase had the 200 

familiar and novel pictures presented also for 5 seconds side-by-side with a 35° spatial 201 

gap between them (distance between the inner edges of two simultaneously presented 202 

pictures). The side location (left or right) of the novel picture was randomised and 203 

counterbalanced. The time between the familiarisation phase and the test phase (inter-204 

phase interval) varied between 1 and 4 seconds, depending on the time needed to re-205 

attract the attention of the dog towards the FP. A trial was aborted if the dog spent less 206 

than 1 second exploring the first picture during the familiarisation phase or if the 207 

researcher failed to re-attract dog’s attention towards the FP within a maximum of 4 208 

seconds during the inter-phase interval. The dogs were allowed short breaks when 209 

needed and were given treats during the breaks. All of the dogs tested successfully 210 

completed at least 67% of the trials (81%±11). Two dogs needed an extra session to 211 

retest missed trials to reach this criterion. 212 

The dog’s eyes and head movements were recorded and then digitised with a 213 

sampling frequency of 60 Hz. The image was replayed off-line frame by frame for 214 

accurate analysis by one researcher and the direction of the dog’s gaze toward the 215 

screen was manually classified as ‘left’, ‘right’, ‘central’ and ‘out’ looking accordingly 216 

(see Fig. 2 for an example). The coding of each trial was started with a “central” gaze 217 

(direct gaze towards the central FP) which was used as a reference position for the 218 

entire trial. The gaze direction was then coded as ‘left’ or ‘right’ once the dog’s eye 219 
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deviated from this reference position, assessed by a change of pupil position. The 220 

movement of head and/or eyebrows were also used to facilitate the coding. Establishing 221 

if a subject was looking ‘out’ was accomplished by training the observers. This 222 

involved repeatedly presenting them with video sequences in which a human subject 223 

oscillated her gaze between the outer edge of the image and beyond. The ‘out’ looking 224 

was always chosen when in doubt. 225 

The researcher was blind about the side location of the pictures on the screen 226 

during the test phase for each trial when performing off-line data analysis. 227 

Data analysis and statistics 228 

For each trial, the viewing time of gaze direction classified as ‘left’, ‘right’, ‘central’ 229 

and ‘out’ was calculated separately. As the amount of time spent looking at the pictures 230 

varied widely between subjects we calculated the proportion of ‘left’ and ‘right’ 231 

viewing time as a proportion of cumulative viewing time allocated within the screen 232 

(i.e. right+left+central) in order to normalize our data. The data were then unblinded so 233 

that the proportion of ‘left’ and ‘right’ viewing time could be contextualised according 234 

to the position of the familiar and novel pictures, and was averaged across trials for each 235 

dog. A two-tailed paired t-test was used to compare viewing time between two pictures 236 

for all the tested dogs.  237 

 238 

Results and Discussion 239 

Within a 5-second presentation time, the dogs spent on average 4.0s±0.6 looking 240 

at the first picture in the familiarisation phase, and 4.4s±0.48 looking at the familiar and 241 

novel pictures in the test phase. The two tailed paired t-test showed that the novel 242 

picture attracted a significantly longer viewing time than the familiar picture 243 

(41.1%±11.2 vs. 26.8%±7.2, t6=4.83, P=0.003), suggesting that the dogs demonstrated a 244 

clear preference for novelty and could differentiate two objects presented 245 
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simultaneously in the test phase. The VPC task, therefore, can be used for investigating 246 

face discrimination and inversion performance in domestic dogs. We should, however, 247 

acknowledge that the researcher stood behind the dog during the study was not blind 248 

towards the stimuli presented. As subtle unconscious cues may have been transmitted to 249 

the dogs by the experimenter, this potential factor was eliminated in our second 250 

experiment.  251 

 252 

Experiment 2: Face discrimination and inversion performance in the viewing of 253 

human and dog faces  254 

 In the second experiment, we employed VPC tasks to examine (1) whether 255 

domestic dogs could discriminate individual faces based on visual cues alone; (2) 256 

whether they show a face inversion effect as seen in human and non-human primates; 257 

and (3) to what extent their face discrimination and inversion performance were 258 

influenced by the species of viewed faces (i.e. human faces vs. dog faces). 259 

 260 

Method 261 

Twenty-six adult domestic pet dogs were recruited from university staff and 262 

students for this experiment, with fifteen of them successfully completing the 263 

experiment. The reasons for failure to complete were mainly due to a lack of attention, 264 

restlessness or distress. One of the fifteen dogs was also excluded from the data analysis 265 

because of producing scores above 2.5 standard deviations from the mean, and so was 266 

rejected as an outlier. The final sample contained fourteen dogs (4.3±3.2 (mean±SD) 267 

years old; 1 Alaskan Malamute, 1 miniature Dachshund, 2 Jack Russells, 2 Labradors, 3 268 

Lurchers and 5 cross-breeds; 6 males and 8 females). Four of them had also participated 269 

in the first experiment. All dogs were well socialised to humans and other dogs. The 270 

study took place at the University of Lincoln (UK) from October to December 2008. 271 
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A total of seventy-two gray scale digitized unfamiliar human face, unfamiliar 272 

dog face and common object images (24 images per category; 36×45 cm) were used in 273 

this experiment (see Fig.3 for examples). The human faces were taken from Caucasian 274 

students at the University of Lincoln (aged between 19 and 26 years old; 8 women and 275 

8 men) who did not present any distinctive facial marks, facial jewelleries and make-up. 276 

The faces of adult dogs (aged between 2 and 7 years old; 8 males and 8 females) were 277 

obtained from pedigree dog breeders (Poodle, miniature Dachshund, Spaniel and Border 278 

Terrier). All face images were judged to have neutral facial expressions with a straight 279 

gaze. The common object images contained pictures of generally seen upright items: 280 

table, lamp, chair and car. 281 

Eight trials were used for each image category to test discrimination 282 

performance (24 trials in total for each dog). Four of them were upright trials where all 283 

the pictures were presented in an upright orientation. The other 4 trials were inverted 284 

trials where the first picture was presented upright during the familiarisation phase but 285 

the familiar and the novel pictures were presented upside-down (180° rotation) during 286 

the test phase. For a given trial, the stimuli used as familiar or novel items were 287 

randomly determined. The human faces were paired by gender and age, the dog faces 288 

were paired by gender, age and breed, and the object pictures were paired by category 289 

type. The gender of human faces, the breed of dog faces and the type of objects were 290 

balanced between upright and inverted trials. Each pair of human and dog faces was 291 

also assessed as more similar or different based on hair/fur colour and facial marking, 292 

and was then balanced between upright and inverted trials. Furthermore, all the pictures 293 

presented within a given trial were digitally processed in the same way as described in 294 

Experiment 1 to control for some low-level image properties (i.e. background colour, 295 

size, contrast and brightness of the stimuli); the overall brightness (stimulus + 296 
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background) of the first picture presented in the familiarisation phase was also set as the 297 

mean brightness of the novel and familiar pictures presented in the test phase. The dogs, 298 

therefore, had to rely on differences in the face/object contained in the picture, rather 299 

than differences in overall picture brightness, to differentiate familiar and novel 300 

pictures. 301 

The experimental procedure and data analysis were identical to those described 302 

in Experiment 1. An additional precaution was, however, used here: the researcher 303 

behind the dog was instructed not to look at the pictures by keeping her head down 304 

during the trial to avoid potential influence on the dog’s viewing behaviour. The 15 305 

dogs tested successfully completed at least 75% of the trials (92%±5), and needed extra 306 

sessions to retest missed trials to reach this criterion (the dogs did not miss more trials 307 

with regards to one stimulus category than another, ANOVA, P>0.05). Two researchers 308 

coded the direction of the dog’s gaze in the same way as in experiment 1, and without 309 

prior knowledge about the side location of the familiar and novel pictures presented. 310 

The inter-rater reliability measures yielded correlations of 0.94 between the two 311 

researchers after coding data independently. 312 

Data analysis and statistics 313 

As in experiment 1, the cumulative viewing time directed at the ‘left’, ‘right’, ‘central’ 314 

and ‘out’ of the screen was calculated separately for each trial. We then calculated the 315 

proportion of ‘left’ and ‘right’ viewing time as a proportion of cumulative viewing time 316 

allocated within the screen in order to normalize our data. The proportion of ‘left’ and 317 

‘right’ viewing time was then referenced to the viewing time directed at the familiar and 318 

novel pictures and averaged between trials and across image categories for each dog. 319 

Data were checked for normality using a Kolmogorov-Smirnov test (P>0.05), therefore, 320 

analyses of variance with repeated measures were conducted on the proportion of 321 

viewing time at the stimuli considering the following factors: Stimulus Type (dog face 322 



 14

vs. human face vs. object), Orientation (upright vs. inverted) and Image novelty (novel 323 

vs. familiar assessed by gaze direction). We then used planned comparisons, run within 324 

the ANOVA, to determine if there was a significant attraction towards the novel 325 

stimulus in the different type of stimuli and in the different orientation.  326 

 327 

Results and Discussion 328 

During the familiarisation phase, the dogs spent on average 4.1s±0.7, 4.1s±0.8 329 

and 4.2s±0.7 viewing dog faces, human faces and object pictures. During the test phase, 330 

they spent 4.3s±0.78, 4.2s±0.8 and 4.3s±0.6 looking at the familiar and novel images of 331 

dog faces, human faces and objects. We did not observe a significant difference in 332 

viewing time across image categories or presented orientations (ANOVA, P>0.05). The 333 

averaged cumulative viewing time, in milliseconds, directed at the novel picture 334 

(looking ‘left’ or ‘right’ depending on the side location of the stimuli), ‘familiar’ picture 335 

(looking ‘right’ or ‘left’), ‘central’ and ‘out’ of the screen are presented in Table 1. 336 

Our ANOVA analysis conducted on the proportion of viewing time allocated to 337 

the stimuli revealed no significant effect for Image novelty (F1,13=3.84; P=0.0717) but a  338 

significant interaction between Stimulus Type and Image novelty (F2,26=5.98; 339 

P=0.0073). Planned comparisons show that during the test phase with the upright 340 

images, the novel object and novel human face picture attracted a significantly longer 341 

viewing time than the familiar object and familiar human face (object: F1=8.15, 342 

P=0.0135; human face: F1=7.09, P=0.0195), and that the familiar dog face attracted a 343 

significantly longer viewing time than the novel dog face (F1=5.43, P=0.037) (Figure 344 

4.A). For inverted stimuli, the novel and familiar pictures in the test phase resulted in no 345 

significant difference in the viewing time for each image category (object: F1=1.08, 346 

P=0.32; human face: F1=1.13, P=0.31; dog face: F1=0.005, P=0.94) suggesting that the 347 
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dogs did not reliably differentiate between the two inverted pictures presented 348 

simultaneously (Fig 4.B). 349 

The absence of an interaction between Stimulus Type and Orientation suggests 350 

that the observed inversion effect was neither face-specific nor species-specific. 351 

 352 

General Discussion 353 

In this study we first demonstrated that the Visual Paired Comparison (VPC) 354 

procedure can be successfully applied to domestic dogs for the study of visual 355 

discrimination. To the authors’ knowledge, this is the first report of the use of VPC in 356 

non-primate animals. 357 

Using a VPC task, we observed a clear difference between the proportion of 358 

viewing time directed at a simultaneously presented novel image and prior-exposed 359 

familiar image, suggesting the dogs could make a within-category discrimination 360 

between upright dog faces, human faces and object images. Therefore, the capacity for 361 

differentiating individual faces based on visual cues alone, which is evident in humans 362 

and non-human primates (e.g. Bruce and Young 1998; Pascalis and Bachevalier 1998; 363 

Parr et al. 2000; Dufour et al. 2006), extends to domestic dogs. Interestingly, their 364 

viewing preferences seemed to differ for the processing of faces of different species. 365 

The dogs demonstrated a preference for the novel face when presented with human 366 

faces, but a preference for the familiar face when presented with dog faces. This 367 

discrepancy may reflect different cognitive processes in the initial perception of dog and 368 

human faces. 369 

When applying a VPC task in infant studies, a preference for novelty has been 370 

reported frequently and used as the criterion for determining discrimination abilities 371 

(e.g. Fantz 1964; Fagan 1973; Pascalis et al. 2002). However, cases of preference for 372 

familiarity have also been observed (for a review see Pascalis and de Haan 2003). The 373 
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completeness of the encoding has been identified as a major factor influencing 374 

children’s viewing preferences. In general, a well-encoded stimulus will tend to result in 375 

a preference for novelty and an incomplete encoding of a stimulus will tend to result in 376 

a preference for familiarity in order to complete the encoding of the stimulus (e.g. 377 

Wagner and Sakovits 1986; Hunter and Ames 1988). Incomplete encoding is generally 378 

due to a lack of familiarisation time compared to the complexity of the stimulus (the 379 

more complex the stimulus is, the more familiarisation time is needed). In our study, 5 380 

seconds were given to the dogs as a familiarisation time and, in average, dogs paid 381 

attention to the stimuli for 4.1 seconds, whatever the stimulus type. A possible 382 

explanation of our results could therefore be that dog faces are more complex than 383 

human faces to encode for dog observers. Alternatively, our results could also be due to 384 

our methodology. Indeed, some cases of preference for familiarity in children have been 385 

observed when the familiar stimulus was similar, but not identical to the stimulus 386 

previously seen (Gibson and Walker 1984). In our study, the first stimulus presented in 387 

the familiarisation phase and the familiar stimulus presented in the test phase were not 388 

identical (same face/object but different picture) in order to avoid a discrimination based 389 

simply on contrast/brightness similarities. Thus, it could be possible that dogs detected 390 

the difference between the first and the familiar stimulus for dog faces but not for 391 

human faces. Finally, the discrepancy of dog preferences between dog and human faces 392 

could also correspond to a different social response towards conspecifics versus humans 393 

in dogs or to differential exposure to conspecifics and humans. These possibilities 394 

warrant future research in the area. 395 

In this study we also observed that the dogs did not make reliable within-396 

category discriminations once the images were inverted. The inversion of dog faces, 397 

human faces and object images had a similar deteriorative effect on their discriminative 398 

responses. If we apply the same arguments as have been used in human studies, then we 399 
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might be tempted to conclude that there is a similar cognitive strategy in processing of 400 

dog faces, human faces and common objects in domestic dogs. However, our previous 401 

study suggests this is not the case as dogs seem to present a different gaze strategy 402 

while viewing human faces (left gaze bias) compared to dog faces and objects (no bias) 403 

(Guo et al. 2009). Using both face and non-face stimuli, a face-specific inversion effect 404 

has been observed in some non-human primates, such as chimpanzees (e.g. Parr et al. 405 

1998), rhesus monkeys (Parr et al. 2008; Parr and Heinz 2008) and cotton-top tamarins 406 

(Neiworth et al. 2007), but other studies have failed to observe this effect in rhesus 407 

monkeys (Parr et al. 1999). In this latter experiment, Parr and her colleagues found a 408 

non-face-specific inversion effect: i.e. monkeys demonstrated an inversion effect 409 

towards faces of different species (rhesus monkey and capuchin) and objects 410 

(automobile). Our study produces similar results for domestic dogs, i.e. a more general 411 

inversion effect toward faces and objects. However, it should be noted that our 412 

methodology for assessing the inversion effect was very conservative. As the first 413 

picture in the familiarisation phase was presented upright to show normal configuration, 414 

a mental rotation was needed to compare the inverted familiar picture with the encoded 415 

upright first picture during the test phase. If dogs have a poor capacity for mental 416 

rotation, then they would treat both the inverted familiar picture and inverted novel 417 

picture as new pictures, and not present any gaze preference. It would be worthwhile to 418 

revisit this face inversion response with different methodologies (e.g. present inverted 419 

stimuli in both the familiarisation and test phases) in future research. 420 

 421 

In conclusion, a Visual Paired Comparison (VPC) procedure can be used successfully to 422 

study discrimination abilities of dogs and thus can provide an effective tool to study 423 

canine cognition. Furthermore, we found no evidence that domestic dogs show a face-424 

specific inversion response, but they do have the ability to discriminate both individual 425 

human and dog faces using 2-dimensional visual information only. These images do not 426 
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appear to be processed equivalently, with the looking response differing according to 427 

the type of face involved. 428 
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Figure and Table Legends 603 

 604 

 605 

 606 

Figure 1.  Demonstration of visual stimuli used in a trial. 607 

 608 

 609 

 610 

 611 

Figure 2. Example of gaze direction sampled from a dog while viewing the visual 612 

presentation. 613 

 614 

 615 

 616 

 617 

 618 

 619 
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Figure 3.  Example of human faces, dog faces and object images used in the testing of   620 

face discrimination and inversion performance in dogs.  621 
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Figure 4.  Mean percentage and standard deviation of time spent looking at the novel 635 

and the familiar picture in experiment 2 for each image category (object, 636 

human faces and dog faces) in A upright trials and B inverted trials. 637 

*Significant difference between the novel and the familiar picture (two tailed 638 

paired t-test, P<0.05).  639 
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Table 1.   Mean time and standard deviation (mean±SD), in seconds, spent looking at the 647 

novel picture, the familiar picture, ‘central’ and ‘out’ of the screen for each 648 

image category in upright and inverted trials in experiment 2.  649 

 650 

  Novel Familiar Central Out 
Upright 1.73 ± 0.64 1.12 ± 1.80 1.49 ± 0.94 0.92 ± 0.13 Object 
Inverted 1.58 ± 0.90 1.34 ± 0.58 1441 ± 731 911 ± 0.13 
Upright 1.48 ± 0.75 0.99 ± 0.60 1.55 ± 0.89 1.31 ± 0.15 Human face 
Inverted 1.53 ± 0.81 1.28 ± 0.68 1.62 ± 0.67 1.84 ± 0.15 
Upright 1.14 ± 0.55 1.73 ± 0.56 1.49 ± 0.59 0.74 ± 0.71 Dog face 
Inverted 1.46 ± 0.77 1.33 ± 0.89 1.56 ± 0.73 0.87 ± 1.20 
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