
Z. Phys. B - Condensed Matter 55, 57-60 (1984) Condensed 
Zeitschrift Matter 
for Physik B 

�9 Springer-Verlag 1984 

Monte Carlo Calculations on the Gauge Potts Model* 

H. Fanchiotti, S.J. Sciutto, and H. Vucetich 

Laboratorio de Fisica Te6rica, Departamento de Fisica, Universidad Nacional de La 
Plata, La Plata, Repfblica Argentina 

Received December 28, 1983 

The q-state gauge Potts model Pq in d-dimensions has been studied using Monte Carlo 
techniques. For  d = 2 no phase transitions were detected. The P2 model for d--3 shows a 
second order phase transition. On the other hand, all the d = 3  (q=t=2) and d = 4  cases 
studied show first order phase transitions. In these cases, it was possible to estimate 
transition coupling parameters as well as latent heat. For selected cases, a study of the 
behavior of the Wilson loop factor was done. 

1. Introduction 

In studying simple gauge models, one can acquire a 
great amount of experience that could be useful 
when attacking more realistic (and generally, more 
difficult) models. The gauge Potts model [1,2] is 
certainly a very good example of such a case. There 
exist several attempts, and different approaches, for 
solving this model, such as series expansion [1, 2, 3, 
4] mean field techniques [5, 6], and variational 
methods [7]. However, it is worthwhile mentioning 
that different approaches give in same cases, dif- 
ferent results. 
The main purpose of this paper is to report the 
results of Monte Carlo [8] calculations on the q- 
state gauge Potts model, Pq, in d-dimensions, for q 
up to 12 and d=2 ,  3 and 4. 
The previous Monte Carlo studies of the Potts mod- 
el, refer to the case of a global symmetry [9]. There 
are also studies of more general models which re- 
duce to a Potts model in particular cases [10]. We 
present a more exhaustive study of the model, which 
includes the analysis of the q-dependence of tran- 
sition coupling parameters and latent heats, and the 
influence of the dimensionality of the lattice on the 
phase structure. Moreover, we have done a study of 
the behavior of the corresponding Wilson loop [11] 
in several cases. In Sect. 2 there is a brief description 
of the model, together with the definitions of the 
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magnitudes used throughout the paper. Section 3 
contains the results of the calculations and our con- 
clusions are included in Sect. 4. 

2. The Model 

The euclidean action of the gauge Potts model is 

S = - / 3  ~ 6v~.1 (1) 
plaq. 

where plaq. denotes a primitive square (plaquette) 
on the d-dimensional lattice, /3, is the coupling pa- 
rameter, Up= U 1 U 2 U 3 U 4 is the product of link vari- 
ables U (taking the values exp(i.2rc.k/q), k=0,  1, 2, 
..., q - 1 )  around the plaquette and 6 is the standard 
Kronecker symbol. 
The action (1) allows the definition of the partition 
function: 

Z(fi)= ~, exp(-S(conf.))  (2) 
{conf.} 

where the sum runs over all possible configurations 
of the system, that is, all possible values of the link 
variables U i. 
The magnitudes of interest of Monte Carlo calcu- 
lations are: 
The average action per plaquette (the "internal en- 
ergy") that reads: 
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<s> 
E - ( 3 )  

Np 

with N p  being the number of plaquettes on the lat- 
tice. 
The "specific heat" 

C=-fl2 ~ (fl)=(<S2)-(S)2)/Np (4) 

And the Wilson loop W, defined by 

W=<Re(U 1U 2 ... U,)> (5) 

where the links 1, 2, ..., n form a closed loop in the 
lattice. 
We recall that at a first order phase transition, the 
internal energy E, is discontinuous in /3. On the 
other hand, at a second order one E is continuous 
and the specific heat C, diverges if the lattice is 
infinite. For finite lattices, C presents a peaked curve 
which sharpens as lattice size increases. It is also 
known that in an infinite lattice the Wilson loop W 
approaches zero when the loop is increased, follow- 
ing an area (perimeter) law in a disordered (ordered) 
phase [11, 12]. This behavior can be observed in a 
finite lattice if the size of the loops considered is 
small when compared with the total lattice size. 

3. Results 

We present our results for the Potts model for the 
already mentioned values of q, and for two, three or 
four-dimensional lattices with periodic boundary 
conditions. All the Monte Carlo computations were 
done using the Metropolis algorithm [13]. First we 
have determined the phase structure of the different 
systems. The "thermal cycle method" [12] (calculat- 
ing E for different values of fl as usual) was used to 
detect first-order phase transitions, and the "specific 
heat divergence" method [14] for second order ones. 
Neither first nor second order phase transitions were 
detected in the two dimensional systems, in agree- 
ment with previous theoretical results for infinite 
lattices [15]. We should mention that q=2,  3, 4, 5, 
6, 8, 10, 12; N2=362 and f l~[0 ,5]  were the values 
of q, the lattice size and the interval of/3 considered, 
respectively. 
The P2 model, being equivalent to the Z 2 model has 
been widely studied [12, 14, 16] and our results are 
in agreement with these previous analysis. For  ex- 
ample, in d=3 ,  P2 shows a second order phase tran- 
sition for/3c = 1.400 _+ 0.025. 
All the other cases studied in three and four dimen- 
sions show first-order phase transitions. The results 

Table 1. Geometric parameters, fl-interval and transition parame- 
ters for the three-dimensional systems studied 

q N fl-interval tic-interval AE l 

3 11 [0.01; 3.00] [1.43; 1.90] 
4 11 [0.01; 3.00] [1.43; 1.97] 
6 11 [0.01; 4.00] [1.59; 2.15] 
8 1i [0.01; 5.003 [1.63; 2.38] 

10 11 [0.01; 5.00] [1.70; 2.38] 
12 11 [0.01; 5.00] [1.73; 2.51] 

0.216 +-0.037 
0.318 +-0.047 
0.49 _+0.10 
0.65 +-0.13 
0.76 +_0.10 
0.95 +0.14 

Table 2. The same, but for four-dimensional systems 

q N /Mnterval /~c-interval AE l 

3 8 [0.01; 3.00] [0.83; 1 .33]  0.315+__0.047 
4 6 [0.01; 3.00] [0.87; 1 .59]  0.429+__0.067 
5 8 [0.01; 4.00] [0.92; 1 .70]  0.517__+0.079 
6 6 [0.01; 4.00] [0.98; 1 .74]  0.610+_0.081 
8 6 [0.01; 5.00] [1.08; 1 .89]  0.740+_0.084 

10 6 [0.01; 5.00] [1.07; 2.13] 0.88 __+0.10 
12 6 [0.01; 5.00] [1.17; 2.20] 0.90 __+0.10 

are summarized in Tables 1 and 2. The transition 
values for the coupling parameter and the corre- 
sponding latent heat, AE z were obtained from direct 
measurement on the thermal cycles, and for that 
reason they should be regarded as rough esti- 
mations. 
In d = 4  the gauge Potts model is self-dual allowing 
the parametrization of the coupling parameter in the 
self-dual point by [3]: 

fl~ = ln(1 + @) (6) 

Figure 1 shows both the results obtained from our 
Monte Carlo calculations and the self-dual predic- 
tion (6). There we have also included an accurate 
estimation for q = 6. This estimation was obtained in 
the following way: First, long runs with mixed initial 
configurations [16] were used to evaluate E, C and 
W, for values of/~ belonging to the "transition in- 
terval" obtained with the thermal cycle method, la- 
belled /3~-interval in Tables 1 and 2. Then, accurate 
bounds for ]~ were obtained by taking into account 
the discontinuity of E and the change in the be- 
havior of W. 
The results obtained for the latent heat together 
with the values coming fi'om the 1/q-expansion [2]: 

AE~=I 20/9 1412/675 1.239091001 
- ~ + . . .  ( 7 )  q q2 q3 

are shown in Fig. 2. 
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Fig. 1. Transition coupling parameter vs. q for four-dimensional 
systems. The vertical bars represent the thermal cycle bounds and 
the solid curve is the self dual prediction (6). The square dot at q 
= 6 shows an accurate estimation for fl, 
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Fig. 3. Wilson loop factor vs. /~ for the P4 model (d = 2). Circular 
and square dots show the values of W for single and double 
plaquette, respectively. The solid (dashed) line represents the pe- 
rimeter (area) law prediction 
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Fig. 2. Latent heat vs. q for four-dimensional systems. The circles 
show the values obtained from thermal cycle calculations and the 
solid curve is the 1/q-expansion (7) 

Lack  of c o m p u t a t i o n a l  t ime m a d e  imposs ib le  the 
ca lcu la t ion  of  a comple te  set of  accura te  es t imat ions  
for/~c and  A E  I. 

Final ly ,  we have s tudied in detai l  the behav io r  of the 
Wi l son  loop  for the mode l  in two and th ree-d imen-  
s ional  lat t ices wi th  36 and  9 sites per  d imens ion  
respectively,  and  var ious  values of  q. F igures  3 and 4 
show the results  ob t a ined  for q = 4 .  The  lines iden-  
tified as "pe r ime te r  law" and " a r e a  l aw"  were ob-  
ta ined  by p lo t t ing  the 2nd and  the 4th power  of the 
cor respond ing  single p laque t t e  value,  respectively�9 
The  square  poin ts  show the values ob ta ined  for a 
doub le  plaquet te ,  that  is a square  " p l a q u e t t e "  with 
two links at  each side. The  da t a  ob ta ined  for d = 2  

(Fig. 3) show an a rea  law behavior .  In  the d = 3 case 
(Fig. 4), the existence of  a f i rs t -order  phase  t rans i t ion  
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Fig. 4. As Fig. 3, but for d = 3 
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shows up in the change in the behav io r  of  W. Fur -  
thermore ,  it can be easily seen the agreement  with 
an a rea  law in the d i so rde red  phase  ( lower values of 
/~) and  with a per imeter  law in the o rdered  one. The  
t rans i t ion  be tween one law to the o ther  takes  place 
in a small  n e i g h b o u r h o o d  of the cri t ical  pa r ame te r  
]?c. 

4. Conclusions 

W e  have carr ied out  an exhaust ive s tudy of the 
phase  s t ructure  of  the gauge Pot t s  mode l  by means  
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of M o n t e  Car lo  computa t ions .  The  results ob ta ined  
are useful to check a p p r o x i m a t e  methods .  If qc is 
the cri t ical  q -pa ramete r  (that  is, the pa r t i cu la r  value 
of q with the p rope r ty  tha t  for any  given q>qc, 
the Pq mode l  has a f i rs t -order  phase  transi t ion),  we 
conf i rmed that  qc < 3 for d = 3 and  qc < 2 for d = 4, in 
agreement  with 1/q-expansion pred ic t ions  [2, 4]. I t  is 
i m p o r t a n t  to r e m a r k  that  the mean  field a p p r o x i m a -  
t ion [6] predic ts  a f i rs t -order  phase  t rans i t ion  for 
the P2 mode l  with d = 3 ,  showing the l imi ta t ions  of 
that  method.  However ,  the mean  field results  for the 
la tent  hea t  are in good  agreement  wi th  our  data.  
Studies abou t  the influence of  finite la t t ice size and  
b o u n d a r y  condi t ions  as well as the inclusion of bo-  
sonic and fermionic  mat te r  fields in the act ion,  
should  be deve loped  in future works.  

We are indebted to C.A. Garcia Canal for critically reading the 
manuscript, and to L.N. Epele and C. Camarata for enlightening 
discussions. One of the authors, S.S., wants to thank R. Gianotti 
for useful conversations about Monte Carlo techniques. 
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