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The g-state gauge Potts model P, in d-dimensions has been studied using Monte Carlo
techniques. For d=2 no phase transitions were detected. The B model for d=3 shows a
second order phase transition. On the other hand, all the d=3 (¢+2) and d=4 cases
studied show first order phase transitions. In these cases, it was possible to estimate
transition coupling parameters as well as latent heat. For selected cases, a study of the
behavior of the Wilson loop factor was done.

1. Introduction

In studying simple gauge models, one can acquire a
great amount of experience that could be useful
when attacking more realistic (and generally, more
difficult) models. The gauge Potts model [1,2] is
certainly a very good example of such a case. There
exist several attempts, and different approaches, for
solving this model, such as series expansion [1, 2, 3,
4] mean field techniques [5,6], and variational
methods [7]. However, it is worthwhile mentioning
that different approaches give in same cases, dif-
ferent results.

The main purpose of this paper is to report the
results of Monte Carlo [8] calculations on the g-
state gauge Potts model, P, in d-dimensions, for ¢
up to 12 and d=2, 3 and 4.

The previous Monte Carlo studies of the Potts mod-
el, refer to the case of a global symmetry [9]. There
are also studies of more general models which re-
duce to a Potts model in particular cases [10]. We
present a more exhaustive study of the model, which
includes the analysis of the g-dependence of tran-
sition coupling parameters and latent heats, and the
influence of the dimensionality of the lattice on the
phase structure. Moreover, we have done a study of
the behavior of the corresponding Wilson loop [11]
in several cases. In Sect. 2 there is a brief description
of the model, together with the definitions of the
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magnitudes used throughout the paper. Section 3
contains the results of the calculations and our con-
clusions are included in Sect. 4.

2. The Model

The ecuclidean action of the gauge Potts model is

S=-p Z 5UP.1 (1

plaq.

where plaq. denotes a primitive square (plaquette)
on the d-dimensional lattice, f, is the coupling pa-
rameter, U,=U, U,U, U, is the product of link vari-
ables U (taking the values exp(i-2=-k/q), k=0, 1, 2,
..., g—1) around the plaquette and ¢ is the standard
Kronecker symbol.

The action (1) allows the definition of the partition
function:

Z(B)= ), exp(—S(conf)) 2

{conf.}

where the sum runs over all possible configurations
of the system, that is, all possible values of the link
variables U,.

The magnitudes of interest of Monte Carlo calcu-
lations are:

The average action per plaquette (the “internal en-
ergy”) that reads:
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with N, being the number of plaquettes on the lat-
tice.
The “specific heat”
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And the Wilson loop W, defined by
W={(Re(U, U, ... U)> (%)

where the links 1,2,...,n form a closed loop in the
lattice.

We recall that at a first order phase transition, the
internal energy E, is discontinuous in f. On the
other hand, at a second order one E is continuous
and the specific heat C, diverges if the lattice is
infinite. For finite lattices, C presents a peaked curve
which sharpens as lattice size increases. It is also
known that in an infinite lattice the Wilson loop W
approaches zero when the loop is increased, follow-
ing an area (perimeter) law in a disordered (ordered)
phase [11, 127]. This behavior can be observed in a
finite lattice if the size of the loops considered is
small when compared with the total lattice size.

3. Results

We present our results for the Potts model for the
already mentioned values of ¢, and for two, three or
four-dimensional lattices with periodic boundary
conditions. All the Monte Carlo computations were
done using the Metropolis algorithm [13]. First we
have determined the phase structure of the different
systems. The “thermal cycle method” [12] (calculat-
ing E for different values of § as usual) was used to
detect first-order phase transitions, and the “specific
heat divergence” method [14] for second order ones.
Neither first nor second order phase transitions were
detected in the two dimensional systems, in agree-
ment with previous theoretical results for infinite
lattices [15]. We should mention that g=2, 3, 4, 5,
6, 8, 10, 12; N*=362 and Be[0,5] were the values
of g, the lattice size and the interval of B considered,
respectively.

The P, model, being equivalent to the Z, model has
been widely studied [12, 14, 16] and our results are
in agreement with these previous analysis. For ex-
ample, in d=3, P, shows a second order phase tran-
sition for f,=1.4004-0.025.

All the other cases studied in three and four dimen-
sions show first-order phase transitions. The results

Table 1. Geometric parameters, S-interval and transition parame-
ters for the three-dimensional systems studied

q N f-interval f-interval AE,
3 11 [0.01; 3.00] [1.43; 1.90] 0.216 +0.037
4 11 [0.01; 3.00] [1.43;197] 0.318 +£0.047
6 11 [0.01; 4.00] [1.59; 2.15] 049 +0.10
g 11 [0.01; 5.00] [1.63; 2.38] 0.65 £0.13
10 11 [0.01; 5.00] [1.70; 2.38] 076 +0.10
12 11 [0.01; 5.00] [1.73; 2.51] 095 +0.14

Table 2. The same, but for four-dimensional systems

q N p-interval p.-interval AE,
3 8 [0.01; 3.00] [0.83; 1.33] 0.315+0.047
4 6 [0.01; 3.007 [0.87; 1.59] 0.429 +0.067
5 8 [0.01; 4.00] [0.92; 1.70] 0.517+0.079
6 6 [0.01; 4.001 [0.98; 1.74] 0.610+0.081
8 6 [0.01; 5.00] [1.08; 1.89] 0.740 +0.084
10 6 [0.01; 5.00] [1.07; 2.13] 0.88 +0.10
12 6 [0.01; 5.00] [1.17; 2.20] 0.90 +0.10

are summarized in Tables 1 and 2. The transition
values for the coupling parameter and the corre-
sponding latent heat, A4E;, were obtained from direct
measurement on the thermal cycles, and for that
reason they should be regarded as rough esti-
mations.

In d=4 the gauge Potts model is self-dual allowing
the parametrization of the coupling parameter in the
self-dual point by [37:

B.=In(l+4g? (6)

Figure 1 shows both the results obtained from our
Monte Carlo calculations and the self-dual predic-
tion (6). There we have also included an accurate
estimation for g=6. This estimation was obtained in
the following way: First, long runs with mixed initial
configurations [16] were used to evaluate E, C and
W, for values of § belonging to the “transition in-
terval” obtained with the thermal cycle method, la-
belled f -interval in Tables 1 and 2. Then, accurate
bounds for f§, were obtained by taking into account
the discontinuity of E and the change in the be-
havior of W.

The results obtained for the latent heat together
with the values coming from the 1/g-expansion [2]:
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are shown in Fig. 2.
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Fig. 1. Transition coupling parameter vs. ¢ for four-dimensional
systems. The vertical bars represent the thermal cycle bounds and
the solid curve is the self dual prediction (6). The square dot at g
=6 shows an accurate estimation for f,
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Fig. 2. Latent heat vs. ¢ for four-dimensional systems. The circles

show the values obtained from thermal cycle calculations and the
solid curve is the 1/g-expansion (7)

Lack of computational time made impossible the
calculation of a complete set of accurate estimations
for f, and AE,.

Finally, we have studied in detail the behavior of the
Wilson loop for the model in two and three-dimen-
sional lattices with 36 and 9 sites per dimension
respectively, and various values of ¢. Figures 3 and 4
show the results obtained for g=4. The lines iden-
tified as “perimeter law” and “area law” were ob-
tained by plotting the 2nd and the 4th power of the
corresponding single plaquette value, respectively.
The square points show the values obtained for a
double plaquette, that is a square “plaquette” with
two links at each side. The data obtained for d=2
(Fig. 3) show an area law behavior. In the d=3 case
{Fig. 4), the existence of a first-order phase transition
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Fig. 3. Wilson loop factor vs. f for the P, model (d=2). Circular
and square dots show the values of W for single and double
plaquette, respectively. The solid (dashed) line represents the pe-
rimeter (area) law prediction
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Fig. 4. As Fig. 3, but for d=3

shows up in the change in the behavior of W. Fur-
thermore, it can be easily seen the agreement with
an area law in the disordered phase (lower values of
p) and with a perimeter law in the ordered one. The
transition between one law to the other takes place
in a small neighbourhood of the critical parameter

B..
4. Conclusions

We have carried out an exhaustive study of the
phase structure of the gauge Potts model by means
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of Monte Carlo computations. The results obtained
are useful to check approximate methods. If g, is
the critical g-parameter (that is, the particular value
of g with the property that for any given ¢>gq,,
the F, model has a first-order phase transition), we
confirmed that g, <3 for d=3 and g,<2 for d=4, in
agreement with 1/g-expansion predictions [2,4]. It is
important to remark that the mean field approxima-
tion [6] predicts a first-order phase transition for
the P, model with d=3, showing the limitations of
that method. However, the mean field results for the
latent heat are in good agreement with our data.
Studies about the influence of finite lattice size and
boundary conditions as well as the inclusion of bo-
sonic and fermionic matter fields in the action,
should be developed in future works.

We are indebted to C.A. Garcia Canal for critically reading the
manuscript, and to L.N. Epele and C. Camarata for enlightening
discussions. One of the authors, S.S., wants to thank R. Gianotti
for useful conversations about Monte Carlo techniques.
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