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ABSTRACT

Prolactin (PRL) has been shown to exert many different actions in various biological systems. Polyamines are known to
influence the growth and function of the seminal vesicles (SV). Furthermore, ornithine decarboxylase (ODC) is considered a

key enzyme In the biosynthesis of polyamines and Is regulated by PRL in certain target tissues. Adult Ames dwarf mice (df/df),

genetically deficient In PRL, were used for this study. The experimental groups were as follows: Group 1, pituitary-grafted; Group

2, sham-operated; Group 3, castrated + testosterone propionate (TP)-treated (25 sag/mouse, 3 times/wk, s.c.) + grafted; and

Group 4, castrated + TP as above. The animals were killed 40 days later, and polyamines and ODC activity in SV and liver were

determined. Serum PRL, FSH, and testosterone (T) were also measured. In the grafted groups, there were significant elevations

in serum PRL and FSH levels. In the gonad-intact, pituitary-grafted group, animals exhibited an elevation in plasma T levels, and

similar levels were achieved in the castrated, androgen-replaced groups. In hyperprolactinemic mice, the weights of SV were
significantly greater than in the corresponding control groups. The relative weights of the SV showed a similar pattern. An increase

in ODC activity was observed in both SV and liver in hyperprolactinemic groups. In those animals in which senam T levels were

held constant, an increase in the enzyme activity in SV was detected in hyperprolactinemic group whereas in liver, no significant

difference was observed. Concentrations of polyamines in the SV were increased in hyperprolactinemic, castrated, TP-treated

mice. The present results indicate that PRL can exert a direct stimulatory effect on the growth, ODC activity, and polyamine

levels in the SV.

INTRODUCTION

The abi!ity of prolactin (PRL) to affect the growth of male

accessory reproductive g!ands was described several de-

cades ago (for a review, see Bartke [1]), and this earlier

suggestion received strong support from the demonstration

of specific PRL receptors in the prostate g!and, the seminal

vesicles (SV), and the coagulating glands [2-5].

It is not known how the PRL-receptor interaction trans-

mits its signal to elicitintracellular metabolic changes. Since

intrace!lu!ar second messengers are usua!ly involved in the

action of polypeptide hormones, the possibility remains that

the effect of PRL involves some intracellular mediators. Pre-

vious studies suggested several possible candidates, includ-

ing cyclic GMP, calcium ions, prostaglandins, and polyam-

ines [6].

Ornithine decarboxylase (ODC) is considered to be the

key enzyme in the biosynthesis of polyamines. The regu-

lation of ODC is apparently complex, and its activity can be

influenced by alterations in the rate of synthesis and turn-
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over, by conversion of active to inactive forms, as well as

by interactions with an anti-enzyme, a specific protein in-

hibitor of ODC [7,8].

Mice with hereditary dwarfism (Ames dwarf, df/df) de-

scribed by Schaible and Gowen [9] are PRL- and growth

hormone-deficient [10, 11]. Because of their congenital PRL

deficiency, dwarf mice are particularly useful in defining

the role of this pituitary hormone.

The structural and functional integrity of the SV has been

shown to be maintained by PRL and androgens [12-14]. In

the present study, we have examined the effects of experi-

mentally induced long-term hyperprolactinemia in adult

dwarf mice on the growth, polyamine content, and ODC

activity of the SV, and on several parameters of pituitary-

testicular function. In addition, another PRL target organ,

the liver, was studied for comparison.

Chemicalc

MATERLALS AND METhODS

L[1-1C]omithine (sp. act. 49-56 mCi/mmol) and 1, 2, 6,

7-3H(N)-testosterone (sp. act. 85-105 mCi/mmol) were

purchased from New England Nuclear Corp. (Boston, MA).
The purity of the steroid was regularly checked by thin-

layer chromatography and [‘4Cjornithine was purified as

described previously [15]. L-Ornithine hydrochloride, di-

thiothreitol (D1T), Tris, EDTA, pyridoxal 5-phosphate, and
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testosterone propionate (TP) were obtained from Sigma

Chemical Co. (St. Louis, MO). All other chemicals and re-

agents were of analytical grade.

Animals and Treatments

Ames dwarf mice (df/df) and their normal littermates

(DF/-) were produced in our breeding colony (SIU, Car-

bondale) by mating heterozygous normal carriers of the df

gene [11]. All animals were maintained in a room with con-

trolled illumination (14L: 1OD) and temperature (22 ± 2#{176}C)
with free access to commercial food (TekLad, Madison, WI)

and tap water.

Adult mice were divided into four groups and were treated

as follows: Group 1: two pituitaries from young adult fe-

males of the same strain were implanted under the capsule

of the right kidney of individual male mice; Group 2: ani-

mals were sham-operated; Group 3: the animals were

castrated through a midline incision, grafted as described

before, and immediately treated with TP in corn oil (25 p.g/

mouse, 3 times/wk, s.c.); Group 4: the animals were cas-

trated and treated with TP as above. Forty days later, 16 h

after the last injection, the animals were weighed, blood

was obtained via cardiac puncture under ether anesthesia,

and the animals were killed by overexposure to ether, fol-

lowed by cervical dislocation. Plasma was obtained and fro-

zen until assayed for PRL, FSH, and testosterone (1). The

SV were removed, blotted, and extruded before weighing.

In addition, a fragment from the central region of the liver

was removed and weighed. Tissues were kept at - 20#{176}Cun-

til processing.

Preparation of Tissue Extracts

The frozen tissues were thawed, cut with scissors into

small pieces, and homogenized; and 20 000 X g superna-

tants were prepared for the enzyme assay as previously de-

scribed [15].

ODC Assay

ODC activity was measured in duplicates according to

the original method [16], as previously described [15]. De-

tectable levels of ODC activity were found when 0.5-1.0 mg

protein [171 per sample was used. The enzymatic activity

was expressed in terms of pmol ‘4C02 released/mg pro-

tein/h, pmol/g tissue or pmol/organ.

Polyamine Measurements

Polyamine concentrations in SV were determined by thin-

layer chromatography as described previously [181.

Hormone Assays

Plasma levels of FSH were determined by a heterolo-

gous RIA system utilizing rat reference preparation (rFSH-

RP-2) and rat FSH antiserum (rFSH-A/S-S-1 1). We have de-

scribed this RIA method [191 and validated this assay for

measuring FSH levels in mice [20]. Plasma PRL levels were

measured by a specific homologous RIA using mouse ref-

erence preparation (AFP-6476C) and mouse PRL antiserum

(AFP-131078), kindly donated by Dr. AF. Parlow, as de-

scribed previously [201. Plasma T concentrations were also

measured by an RIA system [21,22]. The sensitivities of these

assays were as follows: FSH, 0.25 ng/tube; PRL, 0.1 ng/tube;

and T, 5 pg/tube. All samples for measuring FSH and PRL

levels were included in the same assay, and the intraassay

coefficients of variation were FSH, 5.3%, and PRL, 3.8%. The

intraassay and interassay coefficients of variation for the T

assay were 6.4% and 7.4%, respectively.

Other Methods

Protein concentration was measured by the method of

Lowry et al. [17] with BSA as a standard.

Statistical analysis was carried out using nonparametric

Mann-Whitney U-test (one-tail), or by using Student’s t-test.

RESULTS

Hormone Levels in Dwarf Mice

As expected, PRL was undetectable in sham-operated,

gonad-intact dwarf mice. Plasma FSH and T levels were de-

tectable in these animals. Treatment of male dwarf mice

with PRL-producing ectopic pituitary homografts caused the

expected increase in plasma PRL levels, and a significant

elevation in plasma FSH levels in both intact and castrated

mice (Table 1). An elevation in plasma T levels was also

TABLE 1. Effects of ectopic pituitary transplants on plasma PRL, FSH, and T levels in adult
Ames dwarf mice (df/df).

Treatment No. of mice PRL (ng/ml) FSH (ng/ml) T (ng/ml)

Graft 9 51.7 ± 6.4” 4.7 ± 0.4 4.1 ± 1.7

Sham 9 NOt 3.1 ± 0.4 1.8 ± 0.1

Castrated
Castrated

+ TI’ +

+ TI’ +

graft
sham

8
12

59.2 ± 5.5”
NOt

7.9 ± 0.9
3.5 ± 0.2

5.4 ± 0.9
5.3 ± 0.5

Results are expressed as mean ± SE. For more details of experimental groups, see Materials
and Methods.

‘“Asterisks denote different levels of significance: #{149}p< 0.05, “p < 0.005, compared to the cor-
responding groups of controls.

tND: not detectable.
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FIG. 1. Effects of PRL-secreting ectopic pituitary transplants on ODC

activity in SV and liver of adult dwarf mice. Values are expressed as mean
± SEM (n = 5-6 mice/group). Values without the same letter differ at a
significance level of at least p < 0.05.
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detected in the gonad-intact, grafted mice in comparison to

the sham-operated animals.

In dwarf mice that were castrated, treated with TP, and

grafted or sham-operated, plasma T levels were similar to

those measured in the gonad-intact, grafted group and higher

than the values found in intact dwarf mice or in normal

adult male mice (data now shown).

Effects of PRL on SV Weight

Absolute weights of SV in both hyperprolactinemic groups

were significantly greater than in the corresponding groups

of control animals (Table 2). However, the increase in ab-

solute SV weight was more pronounced in intact, grafted

mice than in castrated, TP-treated, grafted mice. Relative

weight of the SV was similarly increased in the hyperpro-

lactinemic groups (Table 2).

Effect of PP.1 on ODC Activities in the SV and Liver

Hyperprolactinemia produced a significant elevation in

ODC activity in SV relative to that in sham-operated mice

(358 ± 30 vs. 232 ± 39 pmol/mg protein/h,p < 0.05) (Fig.

1). A similar increase was observed in castrated and andro-

gen-treated groups in which peripheral T levels did not dif-

fer (pituitary grafted + castrated + TP-treated: 366 ± 50

vs. castrated + TP-treated: 255 ± 32 pmol/mg protein/h,

p < 0.05). The same pattern was obtained if the ODC ac-

tivity was expressed as pmol/mg protein/h, pmol/mg tis-

sue or pmol/organ.

Treatment of dwarf mice with pituitary grafts for 40 days

produced a significant increase in ODC activity in the liver

as compared to values measured in sham-operated mice

(Fig. 1: 180 ± 25 vs. 81 ± 14 pmol/mg protein/h, p <

0.005). However, in castrated, androgen-treated mice, no

difference was detected in the enzyme activity between

groups with pituitary graft (102 ± 8) vs. without pituitary

graft (110 ± 9 pmol/mg protein/h). The same pattern was

obtained if the ODC activity was expressed as pmol/mg

prot/h or pmol/mg tissue.

Effect of PP.1 on Polyamines in SV

Treatment of TP-injected, castrated dwarf mice with ec-

topic pituitary transplants significantly increased putrescine

(0.49 ± 0.06 vs. 0.32 ± 0.05 nmol/mg SV; p < 0.005) and

spermidine (0.56 ± 0.1 vs. 0.40 ± 0.09 nmol/mg SV;p <

0.01) levels in SV relative to those in SV of TP-treated, cas-

trated, non-grafted dwarf mice (Fig. 2).

DISCUSSION

One of the physiological roles of PRL in male animals is

concerned with the growth and function of the reproduc-

tive and other androgen-sensitive organs [23]. A complete

deficiency in PRL and growth hormone and reduced levels

of thyroid-stimulating hormone and gonadotropins have been

demonstrated in Ames dwarf mice (df/df) [10, 24]. We have

treated these animals with ectopic pituitary tissue because

it secretes biologically active PRL [25, 26].

The observed increase in plasma FSH levels in both in-

tact and castrated, TP-treated male dwarf mice implanted

with pituitary grafts confirms previous findings that PRL may

stimulate FSH release in the male mouse [27, 28]. In addi-

tion, the present results suggest that the positive feedback

of T on FSH may be reduced when PRL levels are unde-

tectable (androgen-treated, castrated animals without the

pituitary graft). Apparently, hereditary PRL deficiency in dwarf

mice is associated with altered physiological input to the

hypothalamic centers responsible for the increase of syn-

thesis and/or release of pituitary FSH. Moreover, neither

TABLE 2. Effects of ectopic pituitary transplants on SV and body weights (BW) in adult

Ames dwarf mice (df/df).

Treatment No. of mice
BW
(g)

SV weight
(mg) mg/100 g BW

Graft 9 24 ± 2 134 ± 9” 582 ± 62
Sham 9 20 ± 3 72 ± 6 393 ± 37

Castrated
Castrated

+TP+graft
+ TI’ + sham

8
12

23±1
24 ± 2

85±6*
64 ± 4

339±
256 ±

42*
15

Results are expressed as mean ± SE. For more details of experimental groups, see Ma-
terials and Methods.

*,**Asterisks denote different levels of significance: *p < 0.05, **p < 0.005, compared to the
corresponding groups of controls.
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FIG. 2. Effects of PRL-secreting ectopic pituitary transplants on p0-
lyamine levels in SV of adult dwarf mice. Values are expressed as mean

± SEM (n = 5-6 mice/group). Values without the same letter differ at a
significance level of at least p < 0.05.

endogenously increased nor exogenously administered I

suppressed plasma FSH levels in pituitary-grafted dwarf mice.

The ability of PRL to increase hypothalamic noradrenergic

activity and, thus, presumably LHRH release in this species

[29] provides a plausible explanation for these effects. In

gonad-intact dwarf mice, it is also possible that PRL influ-

enced production of testicular products other than T to ac-

count for these effects. For example, reduced secretion of

inhibin may have contributed to the observed increase in

plasma FSH levels [30,31].

The significant elevation of peripheral T levels seen in

grafted mice is probably due to PRL increasing gonadotro-

pin release [27-29], and the ability of the testis to produce

androgens [23] as has been shown in PRL-injected imma-

ture rats [5].
The true growth of any organ involves a concomitant

increase in total organ weight and DNA content [32]. The

structural and functional integrity of male sexual accessory

organs, such as SV, are stimulated and maintained by an-

drogens [33,34]. Testosterone exerts, at least in part, its an-

drogenic trophic effects through 5a-reduction to dihydro-

testosterone (DHT). The androgen growth response in adult

mice is imprinted by neonatal endogenous androgens [35],

which exhibit a developmental pattern described previ-

ously [36]. Part of such biological response could be me-

diated by specific androgen receptors. These binding sites

decrease with aging independently from tissue androgen

levels, leading to a diminished sensitivity to androgens in

adult mice [36]. A more recent observation from the same

group [37] confirmed lack of a significant correlation be-

tween androgen levels and concentration of androgen-

binding sites. Therefore, at present, the mechanism by which

androgens regulate the growth of SV is incompletely under-

stood.

Apart from androgens, PRL also influences the SV in a

number of species, most likely through specif Ic binding sites

[2,38], and these effects appear to be particularly important

in mice [29].

Prolactin action on male accessory reproductive glands

appears to require the presence of androgens [39,40], since

hyperprolactinemia alone does not induce trophic effects

in the SV of adult castrated rats [12] or mice [13]. However,

recent data indicate that in mice, hyperprolactinemia alone

can have a stimulatory effect on DNA synthesis in the epi-

thelial cells of the SV and that it can delay the involution

of the SV until 30 days following castration plus adrenalec-

tomy [14]. The present results are in agreement with these

recent findings. Plasma T levels were similarly increased in

the gonad-intact, pituitary-grafted, and castrated T-treated

mice; yet, SV weight was increased only in the first group.

The effect of pituitary transplants on SV weight was greater

in gonad-intact than in castrated, I-replaced mice in spite

of very similar plasma PRL levels. This raises a possibility

that stimulation of SV growth in gonad-intact mice may have

involved androgen metabolite(s) other than I. Testoster-

one metabolism and its disposition are probably different

in intact as compared to T-replaced, castrated mice [37,41].

It is also possible that various intratesticular factors, such

as testicular peptides, may influence the effect of T on SV

growth.

Forty days after grafting, the relative SV weight was mod-

erately but significantly increased. This increase was com-

parable to that described in the C57BL PRL-deficient mice

1 or 2 mo after receiving pituitary grafts at the age of 30

or 90 days [42,43]. In addition, these authors indicated that

the displastic epithelium of the SV of untreated mice was

normalized by pituitary isografts. These and the observa-

tions presented here strongly suggest that PRL displays a

specific trophic effect on SV.

Ornithine decarboxylase (EC 4.1.1.17) is the initial and

rate-limiting enzyme in polyamine biosynthesis under nor-

mal conditions [44]. Activation of ODC and polyamine pro-

duction are associated with cell growth, differentiation, and

proliferation, whereas reduction in ODC activity and poly-

amine levels results in a decrease in growth and differen-

tiation of cells [45,46]. Measurements of ODC have been

used as the most sensitive marker for assessing androgen

activity in prostatic [47] and epididymal tissue [15], as well

as in SV [48,49].

Since PRL has been shown to increase the nuclear con-

centration of DHT in perfused male accessory reproductive

glands [50] and specific PRL receptors have been described

in SV [51], the stimulation of ODC activity was considered

a valuable tool in evaluating the PRL-androgen interactions
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and as particularly pertinent to the present experimental

model. The effects of pituitary grafts in dwarf mice in the

present study suggest that PRL exerts a clear-cut effect upon

growth and ODC activity of the SV.

Rat liver contains specific binding sites for lactogenic

hormones [52], which can be induced by pituitary trans-

plants [53], PRL injections [54], or stimulation of endoge-

nous PRL release [55]. Moreover, PRL has been reported to

stimulate ODC activity in the liver [56] and, although the

regulation of ODC activity is very complex, the magnitude

of this response appears to correlate well with the number

of receptor sites [57]. To further assess the organ specificity

of PRL action and the efficacy of T, the ODC activity was

also measured in the liver in the present study. The ob-

served increase in the specific ODC activity in the liver was

probably due to the increase in plasma I levels induced by

PRL rather than to the actions of PRL itself. In support of

this conclusion, hepatic ODC activity was not affected by

the grafts in animals that had been castrated and given I

replacement. In contrast to these observations, Grahn et al.

[58] reported that I injections failed to increase ODC ac-

tivity in the liver. These discrepancies could be ascribed to

the fact that Grahn et al, [58] used intact females rather than

castrated males and a different protocol of administration.

In summary, results obtained in our experimental model

under the conditions described allow us to conclude that

in SV of adult mice PRL produces a trophic response that

differs from the response seen in the liver in terms of growth

and ODC activity.
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