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Abstract 

Quantification of dissolved organic carbon (DOC) and iron (Fe) in surface waters is critical for 

understanding the water quality dynamics, brownification and carbon balance in the northern 

hemisphere. Especially in the remote areas, sampling and laboratory analysis of DOC and Fe content 

at a sufficient temporal frequency is difficult. Ultraviolet-visible (UV-Vis) spectrophotometry is a 

promising tool for water quality monitoring to increase the sampling frequency and applications in 

remote regions. The aim of this study was (1) to investigate the performance of an in-situ UV-Vis 

spectrophotometer for detecting spectral absorbances in comparison with a laboratory benchtop 

instrument; (2) to analyse the stability of DOC and Fe estimates from UV-Vis spectrophotometers 

among different rivers using multivariate methods; (3) to compare site-specific calibration of models 
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to pooled models and investigate the extrapolation of DOC and Fe predictions from one catchment to 

another. This study indicates that absorbances that were measured by UV-Vis sensor explained 96% 

of the absorbance data from the laboratory benchtop instrument. Among the three tested multivariate 

methods, multiple stepwise regression (MSR) was the best model for both DOC and Fe predictions. 

Accurate and unbiased models for multiple watersheds for DOC were built successfully, and these 

models could be extrapolated from one watershed to another even without site-specific calibration for 

DOC. However, for Fe the combination of different datasets was not possible. 
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1. Introduction 

Globally inland waters are a sink for 600 million tn C y-1 and deliver an additional ~900 million 

to 1 200 million tn C y-1 to the oceans of which a majority is in organic forms (Aufdenkampe et al., 

2011; Cole et al., 2007). With estimates of the global land sink to be around 2 400 million tn C y-1 

(Mercado et al., 2009), the C exports via inland waters would account for about half of the net 

terrestrial C sink. It has been frequently reported that water colour is becoming darker in many lakes 

and running waters of the Northern hemisphere (Asmala et al., 2019; Erlandsson et al., 2011; Haaland 

et al., 2010; Peltomaa et al., 2014). The drivers behind this trend, sometimes referred to as 

brownification, are heavily debated and have been ascribed to hydrological factors (Erlandsson et al., 

2008; Hongve et al., 2004) as well as an increase in temperature, changes in land-use and reduced acid 

deposition (Asmala et al., 2019). Although it is difficult to tease out any single factor causing 

brownification, brownification is directly due to the increased dissolved organic matter (DOM) and 

iron (Fe) concentrations (Haaland et al., 2010; Maloney et al., 2005). Much of the export of DOC and 
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Fe occurs during extreme rainfall or snowmelt events (Raymond et al., 2016), which makes the high 

frequency monitoring of pulse events necessary. However, pulse events are usually of short duration 

and challenging to capture using physical water sampling. 

The development of continuously operating water quality sensors has led to a transition from 

studying long-term trends and seasonal patterns to the investigation of highly dynamic phenomena, 

such as storm events and diurnal patterns, using high-frequency in situ measurements (Jacobs et al. 

2020). With the currently available technology and decreasing costs, in situ sensors are more 

frequently used for monitoring, especially in remote areas (Langergraber et al. 2003; Avagyan et al. 

2014; Rode et al. 2016). Although large amounts of data present challenges regarding storage, 

processing, and analysis (McDowell, 2015), long-term monitoring datasets provide an opportunity for 

detailed investigations of hydrological and biogeochemical processes in dynamic systems (Kirchner 

et al. 2004; Krause et al. 2015; Rode et al. 2016). 

UV-Vis sensors are an emerging technology to measure and monitor concentrations of dissolved 

organic carbon (DOC) in situ. These commercially available sensors are spectrophotometers in the 

UV-visible spectrum. They can be used for in situ real-time measurements at field sites and in the 

offline mode in the laboratory to determine the spectral absorbance of waters (Avagyan et al. 2014). 

Thereafter, algorithms calculate solute concentrations based on absorbance at a specific wavelength or 

multiple wavelengths. UV-Vis sensors can be applied to detect rapid changes in response to 

environmental conditions. They can also be used for an adaptive sampling approach with higher 

sampling frequency during high-flow events such as the snowmelt period and a reduced observation 

frequency during the base flow period (Pellerin et al., 2012). 

Recent efforts have been made to qualitatively and quantitatively characterise DOM in water 

bodies for ecological studies, and in-situ UV-Vis spectrophotometer plays an important role in this. 

Different wavelengths have been used to estimate DOC concentration from spectral absorbances. 
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Laudon et al., (2004) found that the absorbance at 254 nm could explain 78% to 97% of TOC 

concentration in seven streams. Waterloo et al. (2006) used absorbance at 255 and 350 nm as proxies 

for estimating DOC with calibration using a TOC analyser. Wallage and Holden (2010) tested the 

robustness of spectrophotometric measurements for DOC content based on absorbance at 400 nm. 

However, their DOC concentrations differed by up to 50% in comparison to the TOC analyser results. 

Therefore, methods relying on absorbance at more than one wavelength are suggested by several 

studies to improve the accuracy of DOC concentration measurements (Tipping et al. 2009; Sandford 

et al. 2010; Fichot and Benner 2011). Avagyan et al. (2014) concluded that using absorbance values 

as a proxy for DOC content determination should include 2-5 wavelengths in the absorbance-

concentration models. Few estimates of the interference of iron concentrations by UV-Vis have been 

presented (Xiao et al., 2013). Iron has been suggested to contribute to the absorption of solar ultraviolet 

radiation either directly or through interactions with DOC. Maloney et al. (2005) found a strong 

correlation between total Fe and absorbance from wavelength at 320 nm. 

More widespread use of UV-Vis spectrophotometers raises the question on how relationships 

between spectral absorbances and concentrations of various substances in water should be build and 

calibrated. Especially in remote sites, the acquisition of samples is expensive, and it may be difficult 

to obtain samples during critical high flow periods. In this article, we explore strategies for modelling 

DOC and Fe concentrations in three northern catchments. We compare the in-situ UV-Vis 

spectrophotometer to a laboratory benchtop instrument. Then we analyse the accuracy of DOC and Fe 

estimates from UV-Vis spectrophotometers across different rivers using multivariate methods. 

Especially we analyse various calibration strategies for the estimation of DOC and Fe concentrations. 

We compare site-specific calibration of models, to the construction of pooled models and investigate 

the extrapolation of DOC and Fe predictions from one catchment to another. These questions are of 

importance when planning the monitoring of water quality using spectral measurements in remote 

areas with limited calibration data. 
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2. Material and methods 

2.1 Study site 

There were three study sites in this research. Two sites locate in Krycklan, approximately 50 km 

northwest of the city of Umeå in northern Sweden (64˚14' N, 19 ˚46'E), where C4 (Kallkäls-myren) is 

a mire-dominated Svartberget sub-catchment and C5 is a lake outlet (Laudon et al., 2013; Fig. S1). 

The catchment area of C4 is 0.19 km2 and 40% of it is covered by wetlands and the rest is forest. There 

are no lakes in the catchment. The catchment area of C5 is 0.85 km2, of which forest accounts for 59% 

and wetlands constitute 36%. A small portion (5%) of the catchment is covered by a lake and the 

measurements were done at the lake outlet. The climate is characterised as a cold temperate humid 

type with persistent snow cover during the winter season. The 30-year mean annual temperature 

(1981–2010) is 1.8°C, January -9.5 °C, and July 14.7 °C, and the mean annual precipitation is 614 mm. 

During the experimental period, the average DOC and Fe concentrations were 33.01 mg L-1 and 1.56 

mg L-1 in C4, 20.72 mg L-1 and 1.69 mg L-1 in C5. The pH values varied in the range of 3.94-5.75, 

4.16-6.40 in C4, C5, respectively. 

Yli-Nuortti measurement station (Cold station) locates in Yli-Nuortti river (67˚44' N, 29 ˚27'E) in 

Värriö, Finland (Fig. S1). It is about 120 km north of the Arctic Circle close to the northern timberline. 

The catchment covers about 40 km2 with less than 25% of peatlands, which, however, dominating the 

riparian zone. Less than 5% of the area is covered by alpine vegetation while the rest of the catchment 

is dominated by pine forests on glacial tills. There are no lakes above the measurement station. 

According to the statistics of the Finnish Meteorological Institute, the mean annual air temperature is 

-0.5 °C. The mean temperature in January is -11.4 °C and in July 13.1 °C. The mean annual 

precipitation is 601mm. The average DOC and Fe concentrations were 4.96 mg L-1 and 0.21 mg L-1, 

and the pH values were 6.27-6.95 during the experimental period. 

 



6 
 

2.2 Sampling and filtration 

All sample bottles and reagent containers were made from high-density polyethylene and they 

were first cleaned in a Deko-2000 washer with detergent, then soaked for at least 24 h in 2% HNO3, 

and finally rinsed six times with Milli-Q water. All glassware used in this study was additionally pre-

combusted for 4 h at 450 ℃ before use. 

       The sampling in Yli-Nuortti river (Cold station) took place during the hydrological year 2018-

2019 and in Krycklan (C4 and C5) during the hydrological years 2016-2019. In Cold station, water 

samples were collected monthly in winter and fall, once a fortnight in spring, and every week in 

summer. In Kryclan, we sampled monthly during winter, once a fortnight during summer and fall, and 

every third day during the spring flood. The water samples were filtered through Filtration Assembly 

with Whatman GF/F Glass Microfiber Filters (pore size 0.45 µm).To precondition the filtration system 

and avoid contamination from the filter before collecting samples, 30 ml of sample water was filtered 

and then discarded. The samples for absorbance measurements were preserved using ZnCl2 and then 

stored at 4 ℃ until laboratory analysis. Samples for DOC and Fe measurements were frozen until 

further analysis.  

 

2.3 Measurement of in-situ and ex-situ spectral absorbances 

In site, submersible, portable multi-parameter UV–Vis probes (spectro::lyser, S::CAN 

Messtechnik GmbH, Austria) were used for absorbance measurements. The spectro::lyser measures 

absorbance across the UV–Vis range (220–732.5 nm, at 2.5 nm intervals) and saves these values in an 

internal datalogger. The measurement range of the probe depends on the optical path length, which 

can range from 2 to 100 mm. In this study, a probe with a path length of 35 mm was used. All of the 

control unit’s electronics, including the data logger, were placed in four tubular anodised aluminium 
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housings. The UV–Vis probe was installed in the Yli-Nuortti river on 12 June 2018 and in the Krycklan 

catchments on 9 May 2016.  

In the laboratory, spectral absorbance was measured with a UV-1800 UV-VIS spectrophotometer 

(Shimadzu, Kyoto, Japan) between 200 and 800 nm with a 10 mm pathlength quartz cell (acquisition 

step: 1 nm, scan speed: slow).  

 

2.4. Measurements of DOC and Fe concentration by laboratory techniques 

In Finland, dissolved organic carbon (DOC) was determined by thermal oxidation coupled with 

infrared detection (Multi N/C 2100, Analytik Jena, Germany) following acidification with phosphoric 

acid, and each sample was measured in triplicate with errors less than 3%. Fe concentrations were 

determined colorimetrically with ferrozine (Viollier et al., 2000) corresponding to an absorbance at 

562 nm by Victor3 1420 Multilabel Counter (PerkinElmer). 

In Sweden, DOC was measured with Shimadzu TOC-5000 using catalytic combustion (Laudon 

et al., 2004). Fe was analyzed using Inductively Coupled Plasma Optical Emission Spectroscopy (ICP-

OES Varian Vista Pro Ax). To ensure the accuracy of the analysis an external certified standard 

(Spectrapure Standards SPS-SW1) was analyzed on a regular basis. The uncertainty was always less 

than 2% (Björkvald et al., 2008). 

 

2.5. Multilinear regression methods for estimating DOC and Fe by spectral absorbance  

To test for an optimised estimate of DOC and Fe from the absorbance, a set of calibrations based 

on three different multilinear regression methods was performed with water samples (n = 183 for DOC, 

n=142 for Fe). The absorbance values from 220 nm to 732.5 nm at 2.5 nm intervals (207 variables) 

were used as input data for Fe analyses, while wavelengths shorter than 250 nm were excluded from 
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the DOC analyses (194 variables) because inorganic substances can lead to interference at the lower 

end of the UV–Vis range (Tipping et al., 1988). The multivariate models we are using in this paper 

rely on splitting the data into a training and testing data set. We tried 5 different splits of the data; 1. 

The training set contained 75% of observations that were randomly selected from all samples (C4, C5 

and Cold station) and the testing set contained the remaining 25% of observations; 2. The training set 

contained observations from C4 and C5 and the testing set consisted of observations from Cold station; 

3. The training set contained  75% of observations randomly selected from C4 and C5 and the testing 

set consisted of the rest 25% of observations; 4. The training set contained  75% of observations 

randomly selected from C4 and Cold station and the testing set contained the rest 25% of observations; 

5. The training set contained  75% of observations randomly selected from C5 and Cold station and 

the testing set contained the rest 25%. 

The tested three statistical methods were used for the multilinear prediction of DOC and Fe 

concentration obtained by the laboratory measurements. Measured concentrations were always the 

dependent variable, and the absorbance values at different wavelengths were the independent variables. 

We used three methods: multiple stepwise regression (MSR), partial least-squares regression (PLS), 

and principal component regression (PCR). These methods were selected due to their applicability to 

data sets containing collinear variables and datasets that may contain a larger number of independent 

variables than observations. Different approaches were used for the PLS and PCR regressions. These 

techniques reduce the number of dimensions in the data by computing latent linear variables (Miller 

and Miller, 2010; Varmuza and Filzmoser, 2009). However, the method by which these linear 

combinations are constructed differs. In PCR, the principal components are generated to describe the 

maximum variation in the predictors without considering the strength of the relationship between the 

predictor and predictand variables (Miller and Miller, 2010). In PLS, the variables exhibiting a high 

correlation with the response variables are given extra weight (Miller and Miller, 2010).  
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The PCR and PLS analyses were conducted with ‘pls’ package (Mevik et al., 2019) in R (R Core 

Team, 2019). Coefficients and p-values were estimated by jackknife T-test method using ‘jack.test’ 

function in ‘pls’ package. MSR analyses were performed with ‘caret’ package (Wing et al., 2019) in 

R (R Core Team, 2019). The correlation coefficient (R), root-mean-square deviation (RMSD), 

standard deviation (STD) and bias were used to check the performance of the models.  

 

3. Results 

3.1 Comparison of spectral absorbance measured by two methods 

      Comparison of the absorbance values measured by S::CAN (average daily absorbance) and the 

desktop UV-1800 for the same day in 2018-2019 at Cold station reveals that the shape of absorbance 

curves is very similar in the wavelength range from 220 to 732.5 nm (Fig.S2). Linear regression 

analysis indicated that absorbances that were measured by S::CAN explained 96% of the absorbances 

from UV-1800, though the slope of absorbance ratios differed among days (Fig.1a). There were some 

exceptions from February to April when the relationships between absorbances of the two methods 

were not linearly correlated (Fig.1b). 

Environmental factors such as water depth, temperature, turbidity and the voltage of S::CAN can 

be possible reasons for the differences in absorbance ratios (S::CAN / UV-1800) in different days. 

However, no significant linear correlations between absorbance ratio and water depth (a proxy for 

discharge), temperature, turbidity or the voltage of S::CAN  were found (Fig.S3).  
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Fig.1 Relationship between Spectral absorbance measured by UV-1800 and S::CAN  in different days 

 

 

 

3.2 Comparison of multilinear models for DOC-measurement  

When applied to data set 1, the DOC values from the PLS, PCR, MSR calibrations produced 

accurate estimates for the training set as can be seen from high explanatory power r2 values of the 

models (near to 1) (Table S1), as well as for the testing set proved by the models with low root-mean-

square deviations (RMSD) and high correlation coefficient values near to 1, as well as the standard 

deviations (STD) which are close to STD of the laboratory-measured DOC. The MSR produced the 

model with the highest r2 (0.971), lowest RMSD values (2.352 mg L-1) and lowest bias in each site. 

The PLS and PCR models performed similarly (Fig.2a). 
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When applied to data set 2, the DOC values from the PLS, PCR, MSR calibrations produced 

accurate estimates for Krycklan data set (training set) as can be seen from very low bias and high 

explanatory power r2 values of the models (near to 1) (Table S2). For the testing set, the correlation 

coefficients and RMSD of the three models are good and very similar. STD of predicted DOC values 

from PLS and MSR models are close to the STD of laboratory-measured DOC values. However, the 

bias showed that the PLS model seemed to underestimate and PCR model over-estimate the DOC 

concentrations. MSR model was the best one (Fig.2b).  

 

 
 

Fig.2.    Statistical parameters (testing set) of partial least-squares (PLS), principal component (PCR) and 

multiple stepwise (MSR) regressions of estimating DOC concentration by spectral absorbance, “Ref” shows the 

standard deviation of the laboratory-measured DOC concentration, the diamond symbol in each box plot 

represents the bias. a1&2 models are based on data set 1, where the training set contains 75% of the observations 

(n=140) randomly selected from all samples and the testing set contains the rest 25% of the observations (n=43). 

b1&2 models are based on data set 2 where training and testing data are from different locations where the 
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training set contains the observations from C4 and C5 (n=150) and the testing set contains the observations from 

the Cold station (n=33).  

Different combinations of spectral data from three rivers were applied to develop joint models. In 

each data set, the DOC values from MSR calibrations produced accurate estimates for the training set 

as can be seen by very high explanatory power r2 values of the models (near to 1). For the testing set, 

the model performances for all data sets were good with r2 values being higher than 0.8. The MSR 

calibration for data set 4 demonstrated the highest r2, lowest RMSD values and smallest bias.  

Table 1.  The goodness of fit statistics of MSR regression estimating DOC by spectral absorbance for different 

data sets. Data set 3 is observations from C4 and C5; Data set 4 is observations from C4 and Cold station; Data 

set 5 is observations from C5 and Cold station. The training set contains 75% of observations that were randomly 

selected from each data set and the testing set contains the rest 25% of observations.  

 

 

When models were built on data set 1, the normalised coefficients of PLS (p < 0.05) showed that 

the important wavelengths fell in band 250 nm to 295 nm, 310 nm to 370 nm, 377.5 nm to 410 nm, 

417.5 nm to 427.5 nm and 570 nm to 580 nm while in PCR they fell in band 250 nm to 297.5 nm, 

317.5 nm to 412.5 nm, 417.5 nm to 490 nm and 537.5 nm to 600 nm (Fig.3a). For data set 2, the 

coefficients of PLS (p < 0.05) showed that the important wavelengths fell in band 275 nm to 292.5 nm, 

342.5 nm to 365 nm, and 570 nm to 582.5 nm, while in 250 nm to 307.5 nm, 342.5 nm to 370 nm and 

412.5 nm to 440 nm in PCR (Fig.3b).   

MSR Statistical Parameters               Data set 3 

(C4&C5) 

Data set 4 

(C4&Cold station) 

Data set 5 

(C5&Cold 

station) 

Training Set  
 

 

 

 

Testing Set 
 

 

r2 0.903 0.973 0.959 

RMSE (mg L-1) 3.243 2.599 1.787 

 

 

r2 0.942 0.976 0.802 

RMSD (mg L-1) 2.797 2.424 4.177 

Bias (mg L-1) -0.288 -0.203 1.369 
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MSR method included 7 wavelengths for data set 1 (250, 290, 307.5, 437.5, 447.5, 630, 645 nm), 

5 wavelengths for data set 2 (282.5, 302.5, 487.5, 645, 665 nm) and data set 3 (252.5, 255, 257.5, 

447.5, 645 nm), 4 wavelengths for date set 4 (255, 260, 692.5, 722.5 nm) and data set 5 (257.5, 260, 

420, 722.5 nm). In MSR models of all data sets, 645 nm was the most important wavelength, followed 

by 255 nm, 260 nm and 722.5 nm (Table.2). 
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Fig.3. Normalised regression coefficients of PLS and PCR models from wavelength 250 nm to 732.5 nm at 2.5 

intervals to show the effects of absorbances on DOC concentration. a1&2 models are based on data set 1 where 

the training set contains 75% of the observations (n=140) randomly selected from all samples, and the testing 

set contains the rest 25% of the observations (n=43) to check the performance of the models. b1&2 models are 

based on data set 2 where the training set contains observations from C4 and C5 (n=150) while the testing set 

contains observations from the Cold station (n=33). “Sig” indicates p < 0.05; “No-sig” indicates p > 0.05. 
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 Table 2. Wavelengths used in MSR models for DOC and Fe prediction by different data sets. 

Data sets  Number of 

wavelengths 

Wavelengths used for 

DOC prediction, nm 

Number of 

wavelengths 

Wavelengths used for Fe 

prediction, nm 

Data set 1: 

Training set = 75% randomly from 

all samples, n=140 

Testing set = the rest 25%, n=43 

 

7 

 

250, 290, 307.5, 437.5, 

447.5, 630, 645 

 

7 

 

227.5, 297.5, 320, 342.5, 480, 

557.5, 635 

Data set 2: 

Training set = C4&C5, n=150 

Testing set = Cold station, n=33 

 

5 

 

305, 307.5, 632.5, 645, 

692.5 

 

- 

 

- 

 

Data set 3: 

Training set = 75% randomly from 

C4&C5, n=114 

Testing set = the rest 25%, n=36 

 

 

5 

 

252.5, 255, 257.5, 447.5, 

645 

 

9 

 

365, 370, 382.5, 397.5, 472.5, 480, 

545, 690, 710      

Data set 4: 

Training set = 75% randomly from 

C4&Cold station, n=86 

Testing set = the rest 25%, n=28 

 

 

4 

 

255, 260, 692.5, 722.5 

 

10 

 

252.5, 262.5, 277.5, 327.5, 417.5, 

455, 610, 680,707.5, 722.5 

Data set 5: 

Training set = 75% randomly from 

C5& Cold station, n=72 

Testing set = the rest 25%, n=24 

 

4 

 

257.5, 260, 420, 722.5 

 

4 

 

220, 222.5, 225, 230 

 

3.3 Comparison of multilinear models for Fe -measurement 

When applied to data set 1, the Fe concentrations from the PLS, PCR, MSR calibrations produced 

accurate estimates for the training set as can be seen from good explanatory power (r2 values) of the 

models (Table S3). For the testing set, the goodness of fit was evaluated using the RMSD and the 

correlation coefficient. The MSR calibration method produced the model with the highest correlation 

coefficient, lowest RMSD, and the smallest bias in each site. (Fig.4a).  

When applied to data set 2, the Fe concentrations from the PLS, PCR, and MSR calibrations 

produced good Fe estimates for Krycklan data set (training set) as can be seen by models with 

explanatory power r2 higher than 0.45 (Table S4). However, for the Värrio testing data set the 

measurements applying these three calibration methods showed poor correlation coefficients and high 

RMSD values. (Fig.4b).  
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Fig.4. Statistical parameters (testing set) of partial least-squares (PLS), principal component (PCR) and multiple 

stepwise (MSR) models for estimating the Fe concentration by spectral absorbance. “Ref” shows the standard 

deviation of the laboratory-measured Fe concentrations, and the diamond symbol in each box plot represents 

bias (b). a1&2 models are based on data set 1 where the training set contains 75% of the observations (n=108) 

randomly selected from all samples and the testing set contains the rest 25% of the observations (n=34). b1&2 

models are based on data set 2 where the training set contains observations from C4 and C5 (n=124), and the 

testing set contains observations from the Cold station (n=18).  

Different combinations of spectral data from several streams were applied to develop joint models. 

In each data set, the predicted Fe values from the PLS calibrations produced accurate estimates for the 

training set as can be seen by high explanatory power r2 values. For the testing set, the performances 

were not so good as with the DOC predictions. MSR calibrations by data set 4 produced the model 

with the highest r2 and lowest RMSD.  
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Table 3. The goodness of fit statistics of the MSR regression estimating Fe by spectral absorbance for different 

data sets. Data set 3 is observations from C4 and C5; Data set 4 is observations from C4 and Cold station; Data 

set 5 is observations from C5 and Cold station. Training sets are 75% of the observations randomly selected 

from each data set and testing sets are the rest 25% of the observations.  

 

 

For data set 1, the normalized coefficients of PLS (p < 0.05) showed that the important 

wavelengths were 225 nm, from 245 nm to 250 nm and 717.5, from 220 nm to 225 nm, from 240 nm 

to 282.5 nm, from 372.5 nm to 395 nm, from 440 nm to 472.5 nm, from 597.5 nm to 625 nm, from 

680 nm to 685 nm and from 715 nm to 732.5 nm in PCR (Fig.5).  

MSR models were based on 7 wavelengths for data set 1 (227.5, 297.5, 320, 342.5, 480, 557.5, 

635 nm), 9 wavelengths for data set 3 (365, 370, 382.5, 397.5, 472.5, 480, 545, 690, 710 nm), 10 

wavelengths for data set 4 (252.5, 262.5, 277.5, 327.5, 417.5, 455, 610, 680,707.5, 722.5 nm) and 4 

wavelengths for data set 5 (220, 222.5, 225, 230 nm) (Table.2). 

 

MSR Statistical Parameters               Data set 3 

(C4&C5) 

Data set 4 

(C4&Cold station) 

Data set 5 

(C5&Cold station) 

Training Set  
 

 

 

 

Testing Set 
 

 

r2 0.868 0.9889 0.672 

RMSE (mg L-1) 287.398 108.905 473.997 

 

 

r2 0.583 0.876 0.623 

RMSD (mg L-1) 619.901 378.814 479.334 

Bias (mg L-1) 179.009 -124.951 78.672 
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Fig.5. Normalised regression coefficients of PLS and PCR models from wavelength 220 nm to 732.5 nm at 2.5 

intervals to show the effects of absorbances on iron (Fe) concentration. Models are built on data set 1, the 

training set contains 75% observations (n=108) randomly selected from all samples, and the testing set which 

was used to check the performance of the models contains the rest 25% (n=34). “Sig” indicates p < 0.05; “No-

sig” indicates p > 0.05. 

 

4. Discussion 

Spectral measurement from the in-situ S: CAN uses different technologies than benchtop 

spectrophotometers. In situ instruments measure unfiltered water and are subject to variation in 

temperature. Ambient sunlight could disturb spectral measurements from the open path of the 

spectrophotometer and power supply is less reliable in situ than under lab conditions.  A comparison 

of the in-situ S: CAN and the UV1800 benchtop spectrophotometer usually showed a good linear 

correlation between the two instruments while there was some variation in slope. We tested if 

differences between the ex-situ and in-situ spectra could be caused by the changes in the operating 

conditions. These variations in the regression slope of ex-situ on in-situ spectral absorbances were not 
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dependent on temperature, water level (as a proxy for water discharge) or other factors like the voltage 

of the power supply. This shows that in general the in-situ spectral measurements were reliable, 

unbiased, and not affected by water temperature, low discharge or small changes in electricity supply. 

There were a few occasions on non-linear correlations from February to April which can probably be 

explained by the ice formation on the instruments. Ice formation was caused by the compressed air 

used to automatically clean the instrument and not by the freezing of the river.  Other possible reasons 

may be particles on the lenses of the instrument as well as the storage time of water samples before 

analysing by UV-1800. Avagyan et al. (2014) suggest that spectrophotometric measurements and 

laboratory method should be performed during the same day, otherwise the spectrophotometric 

features may change slightly during storage. In our case, the sample plot is located in remote areas 

which makes the sample storage unavoidable before laboratory analysis. Therefore, samples were 

protected using ZnCl2 against microbial decomposition. 

 

Analysis of spectral data for environmental monitoring aims to obtain reconstructions of 

environmental variables that are general, unbiased and accurate. We compared the performances of 

the three multivariate methods (PCR, PLS and MSR), and though the MSR analysis included a limited 

number of wavelengths in the model, it produced a model with the highest explanatory power, the 

lowest RMSD, and bias when applied to test data sets in different situations for both DOC and Fe 

predictions. Avagyan et al. (2014) found that the PCR model failed to produce accurate estimates for 

the testing set due to its possible over-parameterisation. In contrast, the differences in the three methods 

in our study were relatively minor.  

Wavelengths that have previously been used as proxies for DOC concentration include 254 nm 

(Baker et al. 2008; Tipping et al. 2009), 272 nm (Baker et al., 2008), 320 nm (Pastor et al., 2003), 340 

nm (Baker et al., 2008; Baker and Spencer, 2004; Grayson and Holden, 2012; E. Tipping et al., 2009; 

Tipping et al., 1988), 365 nm (Baker et al., 2008), 400 nm (Grayson and Holden, 2012; Wallage and 
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Holden, 2010) and 410 nm (Baker et al., 2008). Moreover, Avagyan et al. (2014) suggested that in 

addition to the widely used wavelength (254-400 nm), the inclusion of absorbance values at the 

wavelengths of 600 nm and 740 nm may significantly increase the accuracy of DOC estimates. In our 

case, according to PCR and PLS loadings, the most important ranges of wavelengths covered most of 

the widely used wavelengths in previous studies.  

DOC primarily controls UV absorbance in aquatic ecosystems. The role of Fe has also been 

suggested to contribute to UV absorbance either directly or by interaction with DOC (Maloney et al., 

2005). Moreover, Fe can also absorb UV-Vis radiation when present in mineral particles suspended in 

natural waters (Babin and Stramski, 2004). Wavelengths that have previously been used as proxies for 

Fe concentration include 245 nm (Weishaar et al., 2003), 280 nm (Weishaar et al., 2003), 320 nm 

(Maloney et al., 2005) and 410 (Xiao et al., 2013). In our case, according to PCR loadings, the most 

important ranges of wavelengths covered most of the widely used wavelengths in previous studies. In 

MSR models for different data sets, from 4 to 10 wavelengths were identified (Table.2). 

 

Our study demonstrated contrasting results on the use of in situ UV-Vis spectrophotometers to 

estimate DOC and Fe concentrations from northern catchments. While our catchments were 

representative for Northern Fennoscandia, relationships between spectral absorbance and DOC (or Fe) 

may be different in other regions with different pH or turbidities. Spectrophotometric estimates of 

DOC concentrations were usually in good agreement with laboratory measurements. The 

spectrophotometric DOC models (PLS, PCR and MSR) explained more than 95% of the variation in 

DOC in our data when we used DOC measurements from three catchments for the calibration of the 

relationship. Additionally, our analysis suggests that it is possible to develop joint models by 

combining spectral and calibration data from several rivers, reducing the need to acquire physical water 

samples for calibration of new sensor applications.  The joint calibration of all three sites resulted in 

low bias and a high R2. Even the spectrophotometric DOC model based only on observations from 
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Krycklan, Sweden did fit to measurements from Lapland, Finland reasonably well. The standard 

deviation of the predicted data was similar to the standard deviation of measured data indicating that 

the analysis was able to capture extreme events and that it had a realistic variance of measured values.  

In contrast, the spectrophotometric estimates of Fe concentrations were not as good as DOC 

measurements. The spectrophotometric Fe models (PLS, PCR and MSR) explain about 65% of the 

variation in Fe concentrations. However, spectrophotometric Fe models based on data from Krycklan, 

Sweden did not fit to measurements from the catchment in Lapland, Finland. Gledhill et al. (2004) 

found that in waters with pH >5, the concentration of inorganic free ferric Fe is very low, and the 

dissolved Fe is primarily associated with dissolved organic ligands such as humic substances and 

siderphores. In our case, pH in the Cold station (6.27-6.95) was much higher than in C4 (3.94-5.75) 

and in C5 (4.16-6.4). Additionally, the difference of soil redox conditions from one site to another 

could affect the results as well. In our study, the Krycklan catchments are more peatland dominated 

than the catchment in Finland. In peatland environments redox processes are predominant and they are 

the main source of terrestrial Fe in surface waters. The effect of Fe on watercolour varies depending 

on its oxidation state, hydration, and chemical complexation (Sarkkola et al., 2013).  Furthermore, the 

reason why Krycklan spectrophotometric Fe models do not fit to the estimates from Finnish Lapland 

could also be explained by the huge difference in Fe concentrations. In C4 and C5 of Krycklan, the 

concentration were  155 to 3730 µg L-1, and in Cold station of Lapland 32 to 539 µg L-1. 

The results indicate that our model was successful for building accurate and unbiased models for 

multiple watersheds for DOC. The models were, at a certain loss of precision, appropriate to be 

extrapolated from one watershed to another even without site-specific calibration for DOC. However, 

for Fe the combination of different datasets was not possible. This means that the remote DOC sensors 

based on spectrophotometry could operate with a low number of samples and that a set of DOC sensors 

could be calibrated jointly with little loss of accuracy, but the same approach seems to be not working 

well for Fe.  
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5. Conclusions 

The in-situ S: CAN worked well except for February to April when the ice formation on the 

instruments may have somehow reduced the accuracy.  Eventhough, this did not affect successfully 

using absorbance from S: CAN to build accurate and unbiased models for multiple watersheds for 

DOC, and these models could be extrapolated from one watershed to another even without site-specific 

calibration for DOC. For Fe the combination of different datasets was not possible. This means that 

the remote DOC sensors based on spectrophotometry could be calibrated with a low number of samples 

but the same approach is not working well for Fe. Comparison of the performance of the three 

multivariate methods (PCR, PLS and MSR) indicated that MSR lead to the best model for both DOC 

and Fe predictions. Same research in different regions around the world should be conducted in the 

future to prove the versatility of our proposed models.  
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