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Abstract. We consider the spectrum of a class of positive, second-order el-

liptic systems of partial differential equations defined in the plane R2. The

coefficients of the equation are assumed to have a special form, namely, they
are doubly periodic and of high contrast. More precisely, the plane R2 is de-

composed into an infinite union of the translates of the rectangular periodicity

cell Ω0, and this in turn is divided into two components, on each of which the
coefficients have different, constant values. Moreover, the second component

of Ω0 consist of a neighborhood of the boundary of the cell of the width h and

thus has an area comparable to h, where h > 0 is a small parameter.
Using the methods of asymptotic analysis we study the position of the

spectral bands as h → 0 and in particular show that the spectrum has at least

a given, arbitrarily large number of gaps, provided h is small enough.

1. Introduction.

1.1. Statement of the problem. Let Ω0 = (−l1, l1) × (−l2, l2) be a rectangle
containing another, deformed rectangle Ωh with curved sides, Fig. 1, a,

Ωh = {x ∈ Ω0 : −lj + hH−j (x3−j) < xj < lj − hH+
j (x3−j), j = 1, 2} (1)

where h > 0 is a small parameter and H±j are positive profile functions, which are

smooth in the variable x3−j ∈ [−lj , lj ]. We will treat the plane R2 as paved by the
shifts

Ω0(θ) = {x = (x1, x2) : (x1 − l1θ1, x2 − l2θ2) ∈ Ω0},

θ = (θ1, θ2) ∈ Z2, Z = {0,±1,±2, . . . }
(2)
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of the periodicity cell Ω0. In the plane, we consider the spectral problem for an
elliptic system of second-order differential equations

Lh(x,∇)uh(x) = λhBh(x)uh(x), x ∈ R2, (3)

and its variational form

ah(uh, vh;R2) = λhbh(uh, vh;R2) ∀vh ∈ H1(R2)J . (4)

Let us explain the notation. The number λh is a spectral parameter and uh =
(uh1 , . . . , u

h
J)> is a column of functions so that > stands for the transposition. In

(3), Lh(x,∇) is a J × J-matrix of differential operators,

Lh(x,∇) = D(∇)∗Ah(x)D(∇), (5)

where D(∇) is a N×J-matrix of first-order homogeneous differential operators with

constant (complex) coefficients and D(∇)∗ = D(−∇)
>

is the adjoint of D(∇), while
Ah and Bh are Hermitian matrix functions of sizes N ×N and J × J , respectively.
These matrices are assumed piecewise constant and of high contrast, depending on
the small parameter h and the subdomain Ωh,

Ah(x) = A•, Bh(x) = B• for x ∈ Ωh,

Ah(x) = hαAA◦, Bh(x) = hαBB◦ for x ∈ Γh = Ω0 \ Ωh.

(6)

where A•, A◦ and B•, B◦ are positive definite, constant matrices. Moreover, Ah

and Bh are extended periodically to the plane R2:

Ah(x1 − l1θ1, x2 − l2θ2) = Ah(x), Bh(x1 − l1θ1, x2 − l2θ2) = Bh(x)

for all x ∈ Ω0 and θ ∈ Z2.
Furthermore, in (4) ah and bh are Hermitian sesquilinear forms,

ah(uh, vh; Ξ) = (AhD(∇)uh, D(∇)vh)Ξ,

bh(uh, vh; Ξ) = (Bhuh, vh)Ξ,
(7)

where ( , )Ξ is the natural scalar product in the Lebesgue space L2(Ξ)m, which is
either scalar (m = 1), or vectorial (m > 1). In (4), H1(Ξh) stands for the standard
Sobolev space, while the superscript J indicates the number of the components of
the test vector functions vh; this superscript is omitted in the notation of norms
and scalar products.

As a consequence of our assumptions, the operator (5) is formally self-adjoint
and the forms (7) are positive.

The main goal of our paper is to describe the asymptotic behavior of the spectrum
of the problem (4) when h→ +0. For the formal asymptotic procedure, we assume
that the exponents in (6) satisfy

αB + 2 > αA > 1. (8)

In the framework of elastic materials, see Example 1.2, this means that the material
in Ωh is much harder and much heavier than in Γh, provided αB ∈ (−1, 0). This
kind of structure appears in many natural and man-made elastic composites, e.g.
quartzite and brick masonry.

We restrict ourselves to treating only the main asymptotic term in the expansion
of eigenvalues. Thus, the formal asymptotic structures, which are derived in Section
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Figure 1. The original (a) and limit (b) periodicity cell.

2, are sufficient for the justification of the asymptotics only under the additional
assumptions

αA < 2, αB + 1 > αA. (9)

These will be accepted in Section 3 in order to avoid the construction of higher order
asymptotic terms and to simplify the proofs (see Section 2.4 for a generalization of
the presented results).

1.2. Spectrum. We assume that the matrix D(ξ) is algebraically complete [24]:
there exists a positive integer ρD ∈ N = {1, 2, 3, . . . } such that, for any row p(ξ) =
(p1(ξ), . . . , pJ(ξ)) of homogeneous polynomials of degree ρ > ρD, one can find a row
q(ξ) = (q1(ξ), . . . , qN (ξ)) of polynomials satisfying

p(ξ) = q(ξ)D(ξ) ∀ξ ∈ R2. (10)

Furthermore, the form ah in (7) possesses the polynomial property [17], namely,
there exists a finite dimensional space P of polynomials in x such that for any
domain Ξ ⊂ R2 there holds the equivalence

u ∈ H1(Ξ)J , D(∇)u(x) = 0, x ∈ Ξ ⇔ u ∈ P
∣∣
Ξ
. (11)

In other words, the quadratic energy form ah degenerates only for some polynomials.
From (10) it follows that all polynomials in P are of degree at most ρD − 1.

As proved in [24, Thm 3.7.7], the property (10) assures the Korn inequality

‖uh;H1(Ω0)‖2 6 cD
(
‖D(∇)uh;L2(Ω0)‖2 + ‖uh;L2(Ω0)‖2

)
,

where the constant cD is independent of u ∈ H1(Ω0), so that the sum

〈uh, vh〉h = ah(uh, vh;R2) + bh(uh, vh;R2) (12)

is a scalar product in the Hilbert space H = H1(R2)J . We introduce the posi-
tive definite, symmetric and continuous, therefore, self-adjoint, operator T h by the
identity

〈T huh, vh〉h = bh(uh, vh;R2) ∀uh, vh ∈ H, (13)

which reduces the problem (4) to the abstract equation

T huh = τhuh in H (14)

with the new spectral parameter

τh = (1 + λh)−1. (15)
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The spectrum Sh of the operator T h is contained to the segment [0, 1] where th = 1
is the norm of T h, see [20, Remark 1]. The set

σh = {λh : (1 + λh)−1 ∈ Sh} (16)

is regarded as the spectrum of the problem (4).
The structure of the spectrum (16) is described by the Floquet–Bloch–Gelfand-

(FBG-) theory, see, e.g. [11, 25, 12], which yields for it the band-gap structure

σh =
⋃
n∈N

βhm. (17)

Here, the bands

βhm = [βhm−, β
h
m+] = {Λhm(η) | η = (η1, η2) ∈ Y} (18)

are formed by the eigenvalue sequence

0 6 Λh1 (η) 6 Λh2 (η) 6 · · · 6 Λhm(η) 6 . . . → +∞ (19)

of the model problem in the periodicity cell

ah(Uh(·; η), V h(·; η); Ω0) = Λh(η)bh(Uh(·; η), V h(·; η); Ω0)

∀ V h(·; η) ∈ H(η) = H1
η (Ω0)J

(20)

depending on the Floquet parameter η = (η1, η2), which is the Gelfand dual variable
belonging to the rectangle

Y = [0, 1/l1)× [0, 1/l2).

In (20), H1
η (Ω0) is the subspace of functions Uh ∈ H1(Ω0) subject to the quasi-

periodicity conditions

Uh(l1, x2; η) = e2πiη1l1Uh(−l1, x2; η), |x2| < l2,

Uh(x1, l2; η) = e2πiη2l2Uh(x1,−l2; η), |x1| < l1.
(21)

Using an argument similar to (13)–(15) and recalling the compactness of the em-
bedding H1(Ω0) ⊂ L2(Ω0), we conclude that the spectrum of the model problem
(20) is discrete and consists of the positive monotone unbounded sequence (19), cf.
[3, Thm 10.1.5, 10.2.2], while the corresponding eigenvectors Uh(m)(·; η) ∈ H(η) can

be subject to the normalization and orthogonality conditions

bh(Uh(m), U
h
(n)) = δm,n, (22)

where δm,n is the Kroneker symbol. Moreover, the functions Y 3 η 7→ Λhm(η) are
continuous and periodic with the periods 1/lj in ηj so that the bands (18) indeed
are compact intervals.

The variational problem (20) is obtained from (4) by the FBG-transform [5]. All
objects related to the model problem are denoted by capital letters; in particular,
{Λh(η), Uh(x; η)} is a new notation for eigenpairs.

The spectral bands (18) may overlap, but between them there can also exist gaps,
i.e., nonempty open intervals γhm =]βhm, β

h
m+1[ which are free of the spectrum. In the

paper [20] it was proved that the spectrum of the problem (4) has at least one open
gap of width O(1). In what follows, we will describe the asymptotic structure of
the low-frequency range {λh ∈ σh : λh 6 const} of the spectrum (17). The results
imply the existence of a large number of open gaps, the geometric characteristics of
which will also be described asymptotically.



PERIODIC MEDIUM OF MASONRY TYPE 559

1.3. Special cases. Let us list some concrete problems in mathematical physics
which have the properties assumed above. Other important examples will be dis-
cussed in Sections 4.4 and 4.5.

Example 1.1. Let J = 1 and N = 2. Then D(∇) = ∇ and (5) is a scalar
elliptic second-order differential operator in the divergence form. Clearly, P = R in
(11). The problem (3) describes e.g. a heterogeneous acoustic medium with thin
high-conductive streaks. �

Example 1.2. Let J = 2, N = 3 and

D(∇)> =

(
∂1 0 2−1/2∂2

0 ∂2 2−1/2∂1

)
. (23)

It is known that in this case ρD = 2 in the property (10), cf. [24, § 3.7], [17,
Example 1.12]. In the Voigt–Mandel notation of elasticity, u = (u1, u2)> is the
displacement vector, D(∇)u and AD(∇)u are the strain and stress columns and A
is a real, symmetric and positive definite 3×3-matrix of elastic moduli. Furthermore,
B = diag{b, b} and b > 0 is the mass density of the elastic material. The space of
polynomials (11)

P = {u : u1(x) = c1 − c0x2, u2(x) = c2 + c0x1, cp ∈ R} (24)

consists of rigid motions.
The problem (3) describes elastic composites, some of which were already men-

tioned in Section 1.1. �

1.4. State of the art and the architecture of the paper. The band-gap struc-
ture of the spectrum of an elliptic equation

−∇>Aε(x)∇uε(x) = λεuε(x), x ∈ Rd, d > 2,

with highly contrasting coefficients

Aε(x) =

{
ε−1A•, x ∈ ω
A◦, x ∈ Ω \ ω (25)

which are 1-periodic in all coordinates xj , was first investigated in the paper [6],
where the existence of a non-empty spectral gap was proved; see also [7]. Notice
that the coefficients of d× d-matrix (25) become large in an interior subdomain ω
of the unit open cube Ω, ω ⊂ Ω (ε > 0 is a small parameter). A similar problem
was considered in [28], and there it was in addition shown that the number of open
gaps grows unboundedly when ε→ +0.

The subdomain ω is fixed in the definition (25), but the papers [20, 1] deal with
the situation described in Section 1.1: the subdomain (1) of the high contrast covers
the whole periodicity cell Ωh in the limit h→ +0.

In the present paper we employ an asymptotic method which differs quite signif-
icantly from the analysis used in [6, 7, 28, 22, 2] and [20, 1].

2. Formal asymptotic analysis.

2.1. The limit problem. First of all, we rewrite the problem (20) in differential
form. In view of (5) and (6), it consists of two systems

D(−∇)
>
A•D(∇)U•h(x; η) = Λh(η)B•U•h(x; η), x ∈ Ωh, (26)

hαAD(−∇)
>
A◦D(∇)U◦h(x; η) = Λh(η)hαBB◦U◦h(x; η), x ∈ Γh, (27)
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coupled by the transmission conditions

U•h(x; η) = U◦h(x; η), x ∈ Σh = ∂Ωh, (28)

D(νh(x))
>
A•D(∇)U•h(x; η) = hαAD(νh(x))

>
A◦D(∇)U◦h(x; η), x ∈ Σh,

(29)
where U•h and U◦h are the restrictions of Uh onto Ωh and Γh, respectively, and
νh(x) is the exterior normal unit vector on the boundary Σh of Ωh, i.e. the interface.
The sides of the rectangle Ω0 are supplied, in the terminology of [14], with the stable
quasi-periodicity conditions (21) as well as the intrinsic conditions

∂1U
h(l1, x2; η) = e2πiη1l1∂1U

h(−l1, x2; η), |x2| < l2,

∂2U
h(x1, l2; η) = e2πiη2l2∂2U

h(x1,−l2; η), |x1| < l1,
(30)

where ∂j = ∂/∂xj , j = 1, 2.
Since the right-hand-side of (29) includes the small coefficient hαA , the passing

to the limit h→ 0 turns Σh into Σ0 = ∂Ω0 (see (1)) and leads to the limit problem

D(−∇)
>
A•D(∇)U0(x) = Λ0B•U0(x), x ∈ Ω0, (31)

D(ν0(x))
>
A•D(∇)U0(x) = 0, x ∈ Σ0 = ∂Ω0. (32)

Notice that the Floquet parameter η does not appear in this problem because the
quasi-periodicity conditions (21), (30) are isolated from the interior part Ωh by
a thin “shim” Γh. The variational formulation of this problem is written as the
integral identity [14]

a•(U0, V 0; Ω0) = Λ0b•(U0, V 0; Ω0) ∀ V 0 ∈ H1
η (Ω0)J . (33)

The spectrum of the problem (31), (32) or (33) is discrete, as it consists of the
eigenvalues

0 6 Λ0
1 6 Λ0

2 6 · · · 6 Λ0
m 6 . . . → +∞, (34)

while the corresponding vector eigenfunctions U0
(m) ∈ H

1(Ω0)J can be subject to

the orthogonality and normalization conditions

(B•U0
(m), U

0
(p))Ω0 = δm,p, m, p ∈ N. (35)

We emphasize that the multiplicity of the null eigenvalue in (34) equals dimP, by
(11).

2.2. Formal asymptotics of eigenvalues. Let {Λ0, U0} be an eigenpair of the
limit problem (31), (32). Due to the boundary condition (32), the eigenfunction
U0 leaves only a small discrepancy in the intrinsic transmission conditions (29),
but the discrepancy in the stable transmission condition (28) is of order 1 = h0.
To compensate the latter, we need to construct a boundary layer W in the thin
bordering Γh. We consider two vertical curved strips

Γh1± = {x : x2 ∈ (−l2, l2), l1 > ±x1 > l1 − hH±1 (x2)}

and denote by W 1 the restriction of W onto Γh1 = Γh1− ∪ Γh1+. Notice that due to

the periodicity, the set Γh1 can be identified with

{x : |x2| < l2, l1 − hH+(x2) < x1 < l1 − hH−(x2)}. (36)
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As always in the asymptotic theory of elliptic problems in thin domains, we intro-
duce the rapid variable

ζ = h−1(x1 − l1) in Γh1+,

ζ = h−1(x1 + l1) in Γh1−,
(37)

so that, according to (1) and (36),

ζ ∈ Υ1(y) = (−H+
1 (y), H−1 (y))

while y = x2 is still a slow variable. The boundary layer term W 1 depends on the
coordinate couple (ζ, y). Inside the set Γh2 = Γh2−∪Γh2+ we define the corresponding
coordinates and the boundary layer term W 2 analogously.

We have

D(∇) = h−1D(e(1)∂ζ) +D(e(2)∂y), e(j) = (δ1,j , δ2,j)
>.

Thus, the left-hand side of (27) takes the form

hαA−2D(−e(1)∂ζ)
>
A◦D(e(1)∂ζ)W

1(ζ, y) + . . . , (38)

where dots stand for higher-order terms that are inessential in our asymptotic anal-
ysis, and the right-hand side is

Λ0hαBB◦W 1(ζ, y) + · · · = . . . (39)

In other words, by (8), the expression (39) is much smaller than (38). Thus, the
boundary layer term W 1 satisfies the problem

D(−e(1)∂ζ)
>
A◦D(e(1)∂ζ)W

1(ζ, y) = 0, ζ ∈ Υ(y) \ {0}, (40)

W 1(H−1 (y), y) = U0(−l1, y), W 1(−H+
1 (y), y) = U0(l1, y), (41)

together with the following transmission conditions at the point ζ = 0

W 1(−0, y) = e2πiη1l1W 1(+0, y), ∂ζW
1(−0, y) = e2πiη1l1∂ζW

1(+0, y) (42)

coming from (30) and (37).
It follows from (40)–(42) that

W 1(ζ, y) =

{
C0(y) + C1(y)ζ for ζ > 0,

e2πiη1l1(C0(y) + C1(y)ζ) for ζ < 0,
(43)

where the coefficient columns C0(y) and C1(y) can be found from the linear system

C0(y) + C1(y)H−1 (y) = U0(−l1, y),

C0(y)− C1(y)H+
1 (y) = e−2πiη1l1U0(−l1, y).

Thus,
C1(y) = H1(y)−1

[
U0
]
1

(y; η1), (44)

where
Hj(x3−j) = H+

j (x3−j) +H−j (x3−j)[
U0
]
j

(x3−j ; ηj) = U0(x)
∣∣∣
xj=−lj

− e−2πiηj ljU0(x)
∣∣∣
xj=lj

.
(45)

We will not need an explicit expression for the coefficient C0(y).
Let us return to the transmission conditions. By (1), the normal vector on Σh1±

equals

νh(x) =
(
1 + h2|∂2H

±
1 (x2)|2

)−1/2
(±1, h∂2H

±
1 (x2)) = ±e(1) +O(h), (46)
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hence, the main asymptotic term of the right-hand side of (29), calculated for the
boundary layer term W 1(ζ, x2), reads as

hαA−1D(±e(1))
>
A◦D(e(1))∂ζW

1(ζ, x2)
∣∣∣
ζ=∓H±

1 (x2)
=

= hαA−1A◦(1)

1

H1(x2)

{
e2πiη1l1

[
U0
]
1

(x2; η1) at Σh1+,

−
[
U0
]
1

(x2; η1) at Σh1−,

(47)

where Σhj± = Σh∩∂Γhj± and A◦(1) is a Hermitian and positive definite J×J- matrix;

we denote

A◦(j) = D(e(j))
>
A◦D(e(j)), j = 1, 2. (48)

The coefficient hαA−1 is small, since its exponent is positive in view of our as-
sumption (8). We thus readily accept the asymptotic ansätze

U•h(x; η) = U0(x) + hαA−1U ′(x; η) + . . . , (49)

Λh(η) = Λ0 + hαA−1Λ′(η) + . . . (50)

The correction term satisfies the problem

D(−∇)
>
A•D(∇)U ′(x; η)− Λ0B•U ′(x; η) = Λ′(η)B•U0(x), x ∈ Ω0, (51)

D(±e(j))
>
A•D(∇)U ′(x; η) = F j±(x; η), xj = ±lj , |x3−j | < l3−j , (52)

where the data of the boundary conditions is taken from (47) and a similar formula
for j = 2 so that

F j+(x3−j ; η) = −A◦(j)
1

Hj(x3−j)
e2πiηj lj

[
U0
]
j

(x3−j ; ηj)

F j−(x3−j ; η) = A◦(j)
1

Hj(x3−j)

[
U0
]
j

(x3−j ; ηj), j = 1, 2.

(53)

The variational formulation of the problem (49), (52) reads as

a•(U ′, V ; Ω0)− Λ0b•(U ′, V ; Ω0) = Λ′(η)(B•U ′, V )Ω0 +
∑
j=1,2

∑
±

(F j±, V )Σ0
j±

∀ V 0 ∈ H(η) = H1
η (Ω0)J ,

where Σ0
j± denote the sides of the rectangle Ω0.

First, we assume that Λ0 = Λ0
m is a simple eigenvalue of the problem (31) and

hence, by the Fredholm alternative, the problem (51), (52) gets one compatibility
condition, namely

Λ′m(η) = Λ′m(η)(B•U0
(m), U

0
(m))Ω0 = (L•(∇)U ′ − Λ0

mB
•U ′, U0

(m))Ω0 =

=
∑
j=1,2

∑
±

l3−j∫
−l3−j

U0
(m)(x)

>
D(±e(j))

>
A•D(∇)U ′(x; η)

∣∣∣
xj=±lj

dx3−j =

= −
∑
j=1,2

l3−j∫
−l3−j

Hj(x3−j)
−1

(
e2πiηj ljU0

(m)(x)
∣∣∣
xj=lj

− U0
(m)(x)

∣∣∣
xj=−lj

)>
×

×A◦(j)
[
U0

(m)

]
j

(x3−j ; ηj)dx3−j =
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=
∑
j=1,2

l3−j∫
−l3−j

Hj(y)−1 [U0
(m)]j(y; ηj)

>
A◦(j)

[
U0

(m)

]
j

(y; ηj)dy,

and, therefore,

Λ′m(η) = J (U0
(m), U

0
(m); η) (54)

where the Hermitian sesquilinear form J is defined by

J (U0, V 0; η) =
∑
j=1,2

l3−j∫
−l3−j

Hj(y)−1 [V 0]j(y; ηj)
>
A◦(j)

[
U0
]
j

(y; ηj)dy, (55)

see the notation in (45).
Second, if Λ0 = Λ0

m is an eigenvalue of multiplicity κm and U0
(m), . . . , U

0
(m+κm−1)

are the related, orthonormalized eigenfunctions, similar calculations show that the
correction terms in the ansatz (50) for the eigenvalues Λ0

m(η), . . . ,Λ0
m+κm−1(η) are

nothing but eigenvalues of the Hermitian κm × κm-matrix Mm with entries

Mm
pq(η) = J (U0

(p), U
0
(q); η), p, q,= m, . . . ,m+ κm − 1. (56)

Moreover, the eigenvectors U0
(m), . . . , U

0
(m+κm−1) can be fixed such that the matrix

M(η) with the entries (56) becomes diagonal with eigenvalues

Λ′m(η) 6 Λ′m+1(η) 6 · · · 6 Λ′m+κm−1(η). (57)

2.3. Theorem on asymptotics and its consequences. In Section 3, we will
prove the following error estimates for the asymptotics constructed above. However,
one additional albeit reasonable assumption, (68), on the eigenfunction U0

(m) ∈
H2(Ω0) has to be made; see Section 3.1 for details.

Theorem 2.1. Let the assumptions (8), (9) and (68) hold true. Then, for any
eigenvalue Λ0

m of multiplicity κm of the limit problem (33),

Λ0
m−1 < Λ0

m = · · · = Λ0
m+κm−1 < Λ0

m+κm
, (58)

there exist positive hm and cm such that, for h ∈ (0, hm], the sequence (19) contains
the eigenvalues Λhn(η), . . . ,Λhn+κm−1(η) of the problem (20) satisfying the estimates

|Λhn+l(η)− Λ0
m+l − hαA−1Λ′m+l(η)| 6 cmhαA−1+δAB , l = 0, . . . ,κm − 1, (59)

where

δAB = min{1− αA/2, αB + 2− 3αA/2, (αA − 1)/2, (αB + 1)/2, 2− αA} > 0
(60)

and Λ′m+l(η) are the corrections terms constructed in Section 2.4, see (54) and (57).
Moreover, n = m, i.e. formula (59) includes the asymptotic relationship between
the corresponding entries of the eigenvalue sequencies (19) and (34).

The number (60) is positive because of the restrictions (8) and (9) so that Theo-
rem 2.1 indeed confirms the asymptotic form (50) of the eigenvalues, including the
formulas (54)–(57) for the correction term.

Since the J × J-matrix (48) is positive definite, the matrix Mm is positive. The
latter means that the numbers (54) and (57) are non-negative. Thus, formulas (50)
and (59) imply that, for a small h > 0, the inequalities

Λhm(η) > Λ0
m(η), m ∈ N, η ∈ Y,
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are valid. In other words, the appearence of the flexible thin frame Γh shifts the
dispersion surfaces upwards.

The following description of the spectral bands is an important consequence of
Theorem 2.1, and it will have further applications in Section 4.

Theorem 2.2. If the hypotheses of Theorem 2.1 are true, then the endpoints of the
spectral band (18) have the asymptotic form

|βhm+l± − Λ0
m − hαA−1β′m+l±| 6 cmhδAB , l = 0, . . . ,κm − 1, (61)

where h ∈ (0, hm],

β′m+l− = min
η∈Y

Λ′m+l(η), β′m+l+ = max
η∈Y

Λ′m+l(η)

and the correction terms in (61) come from the formulas (54), (55) and (57).

Relation (61) shows in particular that in the situation (58) there appears an open
spectral gap of width

Λ0
m − Λ0

m−1 + hαA−1(β′m− − β′m−l+) +O(hδAB ).

between the bands βhm−1 and βhm. To make conclusions on gaps between the bands

βhm, . . . , β
h
m+κ−1 we need to put the formulas (56)–(57) into a more conrete form,

see Section 3.3.

3. Justification of the asymptotics.

3.1. Additional assumptions on singularities at the corners. The Kondratiev
theory of elliptic problems in domains with corners and conical points of the bound-
ary (see the key works [8, 15, 16, 17] and, e.g., the monographs [21, 10]) shows that
the solution of the problem (31), (32) is of the form

U0(x) =

4∑
j=1

χj(x)

P j(x− xj) +

Kj∑
k=1

CkjΨ
kj(rj , ϕj)

+ Ũ0(x), (62)

where P jk are some vector polynomials, (rj , ϕj) are polar coordinates centered at
the corner points xj (see Fig. 1.b), ϕj ∈ (0, π/2) in Ω0,

x1 = (l1,−l2), x2 = (l1, l2), x3 = (−l1, l2), x4 = (−l1,−l2), (63)

and χj is a smooth cut-off function supported and equal to 1 in a small neighbor-
hood of xj . Moreover, Ckj is a constant coefficient and Ψkj is a power-logarithmic
solution,

Ψkj(rj , ϕj) = r
µkj

j ψkj(ϕj ; ln rj) (64)

where ψkj is a polynomial of degree deg ψkj in ln rj with coefficients, which are
smooth functions in the angular variable ϕj ∈ [0, π/2]. The number Kj in (62)

can be fixed such that Ũ0 ∈ H2(Ω0)J and in this way the exponents of power-law
solutions (64) satisfy the inequalities

0 < µkj < 1 + δ0 for some δ0 > 0. (65)

In view of (65), the polynomials P j can be reduced to linear vector functions,
i.e. (64) with µkj = 1 and degψkj = 0

Lemma 3.1. In (62) we have

D(∇)P j = 0 ⇔ P j ∈ P. (66)
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Proof. By the above conclusion, we can write

P j(x) = P j(1)x1 + P j(2)x2 + P j(0), (67)

and here the constant term P j(0) satisfies (66). The boundary conditions (32) on the

sides of the rectangle Ω0 imply

0 = D(e(k))
>
A•
(
D(e(1))P

j
(1) +D(e(2))P

j
(2)

)
, k = 1, 2,

and, hence,

0 = (D(∇)P j(x))
>
A•D(∇)P j(x).

We obtain the formula (66), since A• is Hermitian and positive definite.

To simplify the justification scheme, which would otherwise become too cumber-
some, we assume that for some δ0 > 0 we have in (62)

Kj = 0. (68)

In other words, non-constant and non-linear power-logarithmic terms (64) are as-
sumed not to exist in the representation (62). Consequently, we have U0 ∈ H2(Ω0)J .
Moreover, Hölder estimates in domains with corner and conical points on the bound-
ary (see the original paper [16] and also the monographs [21, 10]) yield the bounds

|U0(x)| 6 c0, |∇U0(x)| 6 c1, |∇nU0(x)| 6 cnrδ0−n+1, n = 2, 3, . . . , (69)

where r = min{rj | j = 1, . . . , 4} is the distance of the rectangle Ω0 to the vertices
and δ0 > 0 is the number in (65).

In Section 4.2, we will consider examples of scalar equations and elasticity systems
which meet all the assumptions made above.

Let us then turn to the equations for the correction term U ′. The right-hand side
of the system (51) is sufficiently smooth but the data (53) of the Neumann conditions
(52) does not vanish at the corner points (63) of Ω0. Again, the Kondratiev theory
provides for the solution U ′ the decomposition

U ′(x) =

4∑
j=1

χj(x)
(
P j′(x− xj) + C ′jΨ

j(rj , ϕj)
)

+ Ũ ′(x), (70)

where Ũ ′ ∈ H2(Ω2)J , the term P j′ is a linear vector function in x, and Ψj is of
the form (64), where µj = 1 and ψj is a linear function of ln rj . Therefore, χjΨ

j 6∈
H2(Ω2)J , if a logarithmic term exists. Furthermore, Ψj(rj , ϕj) is a polynomial in x
if and only if, in the Neumann conditions (52), the data (53) frozen at sides of the
rectangle Ω0 in the corner point xj can be compensated by a linear vector function
(67). This remark allows us to verify the following property.

Lemma 3.2. The terms Ψj(rj , ϕj) are always of the form (67) with some P j(k) ∈ Cj,
k = 0, 1, 2. Moreover, P j(0) = 0 if and only if P = CJ .

Proof. Considering the vertex x1 and searching for the linear vector (67), we need
to solve the system of 2J algebraic equations

D(e1)
>
A•D(e1)P 1

(1) +D(e1)
>
A•D(e2)P 1

(2) = F 1+(−l2; η),

D(e2)
>
A•D(e1)P 1

(1) +D(e2)
>
A•D(e2)P 1

(2) = F 2−(l1; η).
(71)
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The (2J × 2J)-matrix of this system is Hermitian and, therefore, the system is
uniquely solvable provided the homogeneous system (71) has only the trivial solu-
tion. According to Lemma 3.1, the latter is true provided the polynomial subspace
P in (11) does not contain a non-trivial linear vector function. This completes the
proof, since P is invariant with respect to the coordinate translation x 7→ x+x0.

Using the notation of (69), we derive the following estimates for the decomposion
(70) :

|U ′(x)| 6 c0, |∇U ′(x)| 6 c1(1 + | ln r|), |∇2U ′(x)| 6 c2r−1. (72)

In spite of the singularities these will be sufficient to justify our asymptotic formulas
for the eigenvalues (19).

3.2. The operator formulation of the model problem in the periodicity
cell. Similarly to (12), we introduce the scalar product

〈Uh, V h〉h,η = ah(Uh, V h; Ωh) + bh(Uh, V h; Ωh) (73)

in the space
H(η) = {Uh(·; η) ∈ H1(Ω0)J : (21) is satisfied}

and define the self-adjoint and positive operator T h(η) in H(η) by the identity

〈T h(η)Uh(·; η), V h(·; η)〉h,η = ah(Uh(·; η), V h(·; η); Ωh) + bh(Uh(·; η), V h(·; η); Ωh)

∀Uh(·; η), V h(·; η) ∈ H(η).

In this way, the variational formulation

ah(Uh(·; η), V h(·; η); Ωh) = Λh(η)bh(Uh(·; η), V h(·; η); Ωh) ∀Uh(·; η) ∈ H(η)

of the problem (26)–(30), (21) turns into the abstract equation in H(η),

T h(η)Uh(·; η) = τh(η)Uh(·; η)

where

τh(η) = (1 + Λh(η))−1. (74)

The operator T h(η) is compact because of the compact embedding H1(Ω0) ⊂
L2(Ω0) in the bounded domain Ω0, and its spectrum forms the monotone positive
sequence (see, e.g., [3, Theorem 10.1.5, 10.2.2])

τh1 (η) > τh2 (η) > · · · > τhn (η) > · · · → +0,

which turns into the sequence (19) by the formula Λh(η) = τh(η)−1 − 1, cf. (74).
The following assertion is known as lemma on “near eigenvalues and eigenvec-

tors”, cf. [27], and it follows immediately from the spectral decomposition of resol-
vent, see [3, Ch. 6].

Lemma 3.3. Let Uh(η) ∈ H(η) and th(η) ∈ (0,+∞) be such that∥∥Uh(η);H(η)
∥∥ = 1,

∥∥T h(η)Uh(η)− th(η)Uh(η);H(η)
∥∥ =: ε ∈ (0, th(η)). (75)

Then at least one eigenvalue τhn (η) of the operator T h(η) satisfies the inequality

|th(η)− τhn (η)| 6 ε.
Moreover, for every ε∗ ∈ (ε, th(η)) one can find coefficients ahM (η), . . . , ahM+X−1(η)
such that∥∥∥∥Uh(η)−

M+X−1∑
q=M

ahq (η)Uh(q)(η);H(η)

∥∥∥∥ 6 2
ε

ε∗
,

M+X−1∑
q=M

|ahq (η)|2 = 1 (76)
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where τhM (η), . . . , τhM+X−1(η) are all the eigenvalues of T h(η) contained in the in-

terval [th(η) − ε∗, th(η) + ε∗] (the numbers M and X may dependent on h), and
Uh(M)(η), . . . , Uh(M+X−1)(η) ∈ H(η) are the corresponding eigenvectors subject to the

orthogonality and normalization conditions

〈Uh(p)(η), Uh(q)(η)〉h,η = δp,q. (77)

Naturally, our next task is the construction of a proper approximate eigenpair
{th(η),Uh(η)}. This will be based on the formal asymptotic analysis in Section 2.

3.3. The global approximation of an eigenpair. Let Λ0
m be an eigenvalue of

the limit problem (31), (32) with multiplicity κ = κm and let the corresponding
eigenvectors U0

(m), . . . , U
0
(m+κ−1) be subject to the normalization and orthogonality

conditions (35). We take

thm(η) =
(
1 + Λ0

m + hαA−1Λ′`(η)
)−1

(78)

as an approximate eigenvalue of the operator T h(η) in (74). Here, ` = m, . . . ,m+
κ − 1 and Λ′`(η) is the correction term constructed in Section 2.1.

The approximate eigenvectors are defined in Ωh as

uh•(`) = U0
(`)(x) + hαA−1U ′(`)(x). (79)

However, the definition becomes much more complicated inside the thin frame Γh

and it involves several smooth cut-off functions. First of all, we select a cut-off
function whose support covers almost the whole cell:

Xh = 1 in Ωh, Xh = 0 in a neighborhood of ∂Ω0; (80)

0 6 Xh 6 1, |∇Xh| 6 cXh−1. (81)

Then, the function χhj± ∈ C∞(Ω0) is defined such that the support is contained in

Γhj± and

χhj±(x) = 1 for |xj | < lj − 2%h, χhj±(x) = 0 for |xj | > lj − %h,

where % > 0 is chosen such that suppχhj± ∩ (Γh3−j− ∪ Γh3−j+) = ∅. Finally, X h1 is

supported in a small neighborhood V1 of the corner point x1 of the rectangle Ω0,
vanishes in the vicinity of Σ0 and equals 1−χh2−−χh2+ near the curve Σh∩V1. The
relations (81) hold true for all these cut-off-functions.

Completing the definition (78) of uh(`), we set in Γh1+

uh◦(`)(x) = wh◦(`)(x) + hαA−1uh′(`)(x),

wh◦(`)(x) = (X h1 (x) + X h2 (x))U0
(`)(x) + χhj+(x)W 1(h−1(x1 − l1), x2),

uh′(`)(x) = Xh(x)U ′(`)(x).

(82)

where U ′(`) is the correction term in the ansatz (49), i.e. the solution of the problem

(51), (52) with data (53). The definitions (82) can clearly be extended to Γh1−, Γh2±
and thus to the whole frame Γh.

Owing to the boundary conditions (41), relations (42) and the definitions of the
cut-off functions, we conclude that (82) satisfies the quasi-periodicity conditions
(21) and has the same trace on Σh = ∂Ωh as the approximate solution (79).
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We proceed to evaluate the scalar product 〈uh(`), u
h
(n)〉h,η, see (73). The inequality

|a•(uh•(`), u
h•
(n); Ωh) + b•(uh•(`), u

h•
(n); Ωh)− δ`,n(1 + Λ0

m)| 6 ch (83)

follows from the formulas (79) for uh•(`), (35), (33) and (69) for the eigenfunction U0
(`)

and (72) for the correction term U ′(`) as well as the fact that area of Γh is of order

h.
Now, to derive the formulas

|〈uh•(`), u
h•
(n)〉h,η − δ`,n(1 + Λ0

m)| 6 chmin{1,αA−1},

‖uh•(`);H(η)‖ > cm > 0,
(84)

we recall (6) and write the estimate

|hαAa◦(uh◦(`), u
h◦
(n); Γh) + hαBb•(uh◦(`), u

h◦
(n); Γh)| 6

6 c(hαA(1 + (1 + hαA−1| lnh|)h−1)2h1 + hαBh1) 6 chαA−1.

Here, in the central expression, the factor h−1 comes from the differentiation of the
cut-off functions and the boundary layer term (cf. (81) and (37)). The factor h1 is
the order of the area of Γh and hαA−1| lnh| results from the gradient estimate (72)
of hαA−1U ′(`). Notice that the exponent of h in the bound (84) equals αA−1, owing

to (9).
Let us estimate the value ε = ε` in (75) for the number (78) and the vector

Uh(`) = ‖uh(`);H(η)‖−1uh(`) ∈ H(η). (85)

We have

ε` = ‖T hUh(`) − t
h
(`)U

h
(`);H(η)‖ = sup |〈T hUh(`) − t

h
(`)U

h
(`), v

h〉h,η| =

= ‖uh(`);H(η)‖−1th(`) sup |ah(uh(`), v
h; Ωh)− (Λ0

m + hαA−1Λ′`)b
h(uh(`), v

h; Ωh)|
(86)

where the supremum is calculated over the unit ball in H(η). Since the first two
factors on the right-hand side of (86) are uniformly bounded in h, see (68) and (84),
it suffices to consider the expression

ah(uh(`), v
h; Ωh)− (Λ0

m + hαA−1Λ′`(η))bh(uh(`), v
h; Ωh)

= Ih• + IhA + IhB + Ih′A + Ih′B + IhΣ
(87)

where

Ih• = ((L• − (Λ0
m + hαA−1Λ′`(η)))(U0

m + hαA−1U ′(`)), v
h•)Ωh

IhA = hαA(L◦wh◦(`), v
h◦)Γh , IhB = −hαB (Λ0

m + hαA−1Λ′`(η)(B◦wh◦(`), v
h◦)Γh

Ih′A = h2αA−1a◦(uh′(`), v
h◦; Γh), Ih′B = hαB+αA−1(Λ0

m + hαA−1Λ′`(η))b◦(uh′(`), v
h◦; Γh)

IhΣ = (D(νh)>(A•D(∇)uh•(`) − h
αAA◦D(∇)wh◦(`)), v

h)Σh .

(88)
For the first term Ih• we have, according to (31) and (52),

|Ih• | = h2(αA−1)|Λ′`(η)(U ′(`)), v
h•)Ωh | 6 ch2(αA−1). (89)
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Figure 2. Additional geometric objects.

We will need some additional inequalities for the processing of the other terms in
(88). To this end, we introduce eight geometric figures depicted in Fig. 3, namely
four squares �hk attached to the vertices xk (k = 1, . . . , 4) having side lengths %h,
and four rectangles Πh

j± with short and long sides of lengths ρh and l3−j − 2%h,
respectively. Here, the coefficient % > 0 of the parameter h is chosen such that the
union of the eight sets contains Γh and a ch-neighborhood of Σh = ∂Ωh for some
c > 0 which we fix now. In the following we will use the symmetry to replace some
estimates over the set Γh by corresponding estimates only over the rectangle Πh

1+

and the squares �h1 and �h2 . We denote �h1,2 = Πh
1+ ∪�h1 ∪�h2 .

Lemma 3.4. If vh ∈ H(η), then there holds the inequalities

‖vh;L2(�hk)‖ 6 ch h−αA/2‖vh;H(η)‖, (90)

‖vh;L2(Πh
j±)‖ 6 ch1/2 h−αA/2‖vh;H(η)‖, (91)

where c is independent of vh and h ∈ (0, h◦].

Proof. Let ^h1 = {x : r ∈ (0, d1), φ ∈ (0, φ1)} ⊂ Ωh be the sector which is shown
in Fig. 2.a and which contains the small triangle Nh1 (marked with black in Fig. 3.a)
inside the square �h1 . The estimate

‖r−1| ln r|−1vh;L2(^h1 )‖ 6 c‖vh;H1(^h1 )‖ (92)

is a consequence of the classical one-dimensional Hardy inequality

d∫
0

r−2|V h(r)|2dr 6 c
d∫

0

(∣∣∣dV h
dr

(r)
∣∣∣+ |V h(r)|2

)
rdr

integrated in the angular variable φ. Taking into account the weight factor on the
left-hand side of (92), we can write

h−2‖vh;L2(Nh1 )‖2 6 c| lnh|2‖vh;H1(Ωh)‖2

Then, we apply the Poincaré ineqality

h−2‖vh;L2(�h1 )‖2 6 c(‖∇vh;L2(�h1 )‖2 + h−2‖vh;L2(Nh1 )‖2)

which can be easily derived by a coordinate dilation, and obtain the desired in-
equality (90) as follows:

h−2‖vh;L2(�h1 )‖2 6 c(a◦(vh, vh; Γh) + | lnh|2(a•(vh, vh; Ωh) + b•(vh, vh; Ωh)) 6

6 cmax{h−αA , | lnh|2} ‖vh;H(η)‖2 = ch−αA‖vh;H(η)‖2.
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To derive (91), we employ the Newton–Leibnitz formula and write

vh(l1 − %h+ t), x2) = vh(0, x2) +

l1−%h+t∫
0

∂vh

∂x1
(x1, x2) dx1.

We estimate
l1∫

l1−%h

|vh(t, x2)|2dt 6 2

l1∫
l1−%h

|vh(0, x2)|2dx+ 2l1

l1∫
l1−%h

l1∫
0

∣∣∣∣∂vh∂x1
(x1, x2)

∣∣∣∣2 dx1dt 6

6 2%h|vh(0, x2)|2 + 2l1%h

l1∫
0

∣∣∣∣∂vh∂x1
(x− 1, x2)

∣∣∣∣2 dx1.

It suffices to integrate x2 over the interval (−l2 + %h, l2 − %h) and to apply the
standard trace inequality.

Since ‖vh;H(η)‖ = 1 in (86), we can use in the following calculations the fact
that the left-hand sides of (90) and (91) are uniformly bounded in h. Moreover,
we denote by IhA(�) and IhB(�) the quantities where the inner products of the
expressions IhA and IhB , respectively, are taken over the set �h1,2 ∩ Γh instead of Γh.

For IhA(�) we obtain the bound

|IhA(�)| 6 chαA((‖∇2U0
(m);L

2(�h1,2)‖+ h−1‖∇U0
(m);L

2(�h1,2)‖+
+h−2‖U0

(m);L
2(�h1,2)‖) ‖vh;L2(�h1,2)‖+ ‖L0(χ1+W

1);L2(Πh
1+)‖ ‖vh;L2(γh1+)‖) 6

6 chαA((hδ−1 + h−1 + h−2)h1hh−αA/2 + (h1/2h−1h1/2 + h1h−2h1h)h−αA/2)
6 chαA/2.

(93)
Here, the norms h2−p‖∇pU0

(m);L
2(�h1,2)‖, p = 0, 1, 2, came from the differentiation

of the product X hk U0
(`) and (81); they were estimated by using (69) and taking into

account the area O(h2) of �hk . In a similar way we used (40) and (43), (44), (69)
to get

L0(χ1+W
1) = χ1+L

0W 1 + [L0, χ1+]W 1,

|χ1+L
0W 1| 6 ch−1, supp(χ1+L

0W 1) ⊂ γh1+ ∪�h1,2,

|[L0, χ1+]W 1| 6 ch−2, supp([L0, χ1+]W 1) ⊂ �h1,2.
Finally, inequalities (90) and (91) for vh together with bounds for the areas of the
above-mentioned supports were used to complete the estimate (93). A much simpler
consideration yields the estimate

|IhB(�)| 6 chαB (‖U0
(m);L

2(�h1,2)‖ ‖vh;L2(�h1,2)‖+ ‖W 1;L2(γh1+‖ ‖vh;L2(γh1+)‖) 6

6 chαB (h1h+ h1/2h1/2)h−αA/2 6 ch1+αB−αA/2.
(94)

Notice that the exponents of the bounds in (93) and (94) are included in the formula
(60).

In view of symmetry, the same estimates hold when �h1,2 is replaced by the unions

of the other rectangles �hk and Πh
j± (see the explanation above Lemma 3.4). Since

the frame Γh is covered by these sets, we obtain

|IhA| 6 chαA/2 , |IhB | 6 ch1+αB−αA/2. (95)
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To treat the fourth and fifth terms Ih′A and Ih′B on the right-hand side of (87), we
apply formulas (72) and the basic estimates following directly from definitions (73)
and (6),

‖∇vh;L2(Γh)‖ 6 ch−αA/2, ‖vh;L2(Γh)‖ 6 ch−αB/2.

Accordingly, we obtain

|I ′A| 6 ch2αA−1(h−1‖U ′(`);L
2(Γh)‖+ ‖∇U ′(`);L

2(Γh)‖) ‖∇vh;L2(Γh)‖ 6

6 ch2αA−1((h−1h1/2 + | lnh|h1/2)h−αA/2 6 ch3(αA−1)/2,

|I ′B | 6 chαB+αA−1h1/2h−αB/2 6 chαA−1+(αB+1)/2,

(96)

Exponents in both bounds are included in (60).
Let us consider the last term IhΣ in (88). Here, our assumption on the smoothness

properties in Section 3.1 plays an important role. Since the vector function U0
(`) ∈

C2(Ω0) satisfies the homogeneous Neumann conditions (32), we have

|D(∇)U0
(`)(x)| 6 ch, x ∈ Σh,

|(D(νh)>A•D(∇)U0
(`), v

h)Σh | 6 ch‖vh;L2(Σh)‖ 6 ch‖vh;H1(Ωh)‖
6 ch‖vh;H(η)‖ 6 ch.

(97)

Furthermore, the boundary condition (52), (53), formula (46) for the normal vector
νh and the relations (72) for U ′(`) imply that, for x ∈ Σh,

|D(νh)>A•D(∇)U ′(`)(x)−D(νh)>A◦D(∇)W 1(H+(x2), x2)| 6 chr−1 (98)

where the last singular factor r−1 is caused by the second derivatives of U ′(`). Now

we use the known weighted trace inequality

‖r−1/2| ln r|−1vh;L2(Σh)‖ 6 c(‖∇vh;L2(Ωh)‖+ ‖r−1| ln r|−1vh;L2(Ωh)‖),

cf. (92) and (97), (98), to obtain

|IhΣ| 6 c
(
h+ hαA−1h

∫
Σh

r−1|vh(x)| ds
)
6 ch(1 + hαA−1‖(r + h)−1vh;L2(Σh)‖) 6

6 ch(1 + hαA−1| lnh|) 6 ch3(αA−1)/2,
(99)

where we also applied the inequalities r > r + ch, c > 0 on Σh, see Fig. 2.a, and
h| lnh| 6 ch(αA−1)/2, due to (9).

Combining the estimates (89), (95), (96), (99) and recalling the definition (60)
yield for the number (86) the estimates

ε` 6 cmh
αA−1+δAB , ` = m, . . . ,m+ κm − 1, (100)

which according to Lemma 3.3 means that the operator T h(η) has an eigenvalue
τhn(`)(η) related to the “almost eigenvalues” (78) by

|τhn(`)(η)− th` (η)| 6 c`hαA−1+δAB .

If all eigenvalues (57) of the matrix Mn(η) are simple, in particular, Λ0
m is

a simple eigenvalue in the sequence (34), then the distance of any two points
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thm(η), . . . , thm+κm−1(η) is at least ChαA−1+δAB , and thus there exist κm different

eigenvalues τhn(m)(η), . . . , τhn(m+κm−1)(η). However, in the case

Λ′m−1(η) < Λ′m(η) = · · · = Λ′m+x−1(η) < Λ′m+x(η)

with x > 1, Lemma 3.3 would not prevent that some of the eigenvalues τhn(m)(η), . . . ,

τhn(m+x−1)(η) might coincide. We show that they can be chosen to be different from

each other.
Taking into account the second assertion in Lemma 3.3, we set ε = max{εm, . . . ,

εm+x−1} and

ε∗ = Tε, (101)

where T is fixed to be large enough, and denote by τhM , . . . , τ
h
M+X−1 all eigenvalues

of the operator T h in the interval

υhm = [thm(η)− ε∗, thm(η) + ε∗]. (102)

For each ` = m, . . . ,m + x − 1, Lemma 3.3 gives a column of coefficients ah(`) =

(ahM`, . . . , a
h
M+X−1`) such that the relations (76) are valid for the vector function

(85). We denote by Sh` the linear combination

Sh` = ahM`U
h
M + · · ·+ ahM+X−1`U

h
M+X−1

and write

〈Uh` ,Uhp 〉 − δ`,p = 〈Uh` − Sh` ,Uhp 〉+ 〈Sh` ,Uhp − Shp 〉+ 〈Sh` ,Shp 〉 − δ`,p.

Inequalities (84), (76), (100) and conditions (77) yield

|ah(p) · a
h
(`) − δ`,p| = |〈S

h
` ,Shp 〉 − δ`,p| 6 c(ε+ ε+ εε−1

∗ )

6 c(hαA−1 max{cm, . . . , cm+x−1}+ T−1).

In other words, the columns ahm, . . . , a
h
m+x−1 ∈ CX are almost orthonormalized for

small h and big T . The latter situation can only happen in the case X > x, when
the interval (102) contains at least x eigenvalues of the operator T h(η) which meet
the estimate

|τhn+q(η)− thm(η)| 6 TcmhαA−1+δAB , q = 1, . . . ,x, (103)

see (101), (102), (100). Definition (78) and relation (74) between the spectral
parameters, turn formula (103) into the desired inequality (59).

Finally, the assertion on the equality of n and m in Theorem 2.1 follows from a
standard convergence theorem which we formulate as the next lemma and prove in
the next section.

Lemma 3.5. The entries of the eigenvalue sequencies (19) and (34) are related by
Λhm → Λ0

m, as h→ +0.

3.4. Completion of the proof of Theorem 2.1: The convergence result.
To prove Lemma 3.5, let {Λhm(η), Uhm(·; η)} be an eigenpair of the problem (20)
for some η ∈ Y. We fix this Floquet parameter and suppress it in the notation
from now on. In Section 3.3 it was proved that in the vicinity of each eigenvalue
Λ0
p, p = 1, . . . ,m, of the limit problem (33) there exists an eigenvalue Λhn(p) of the

problem (20) and n(p1) 6= n(p2) for p1 6= p2, and we have

Λhm 6 Λhn(m) 6 Λ0
m + cmh

αA−1 6 Cm.
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We normalize the eigenvector Uh(m) by

bh(Uh(m), U
h
(m); Ω0) = 1.

The integral identity (20) and formulas (6), (7) yield the implication

ah(Uh(m), U
h
(m); Ω0) 6 cm ⇒ ‖Uh(m);H

1(Ω(%))‖ 6 c•m, (104)

where the number % > 0 is chosen such that the rectangular domain

Ω(%) = {x ∈ Ω0 : |xj | < lj(1− %h))}

is contained in the domain Ωh.
According to (104), the vector function

Ω0 3 x 7→ Uh(x) = Uh(m)((1− %h)−1x) (105)

has a uniformly bounded H1(Ω0)-norm and, hence, there exists a positive sequence
{hn}n∈N tending to 0 such that

Λhn
m → Λ0,

Uhn → U0 weakly in H1(Ω0) and stronly in L2(Ω0) as n→ +∞.
(106)

We take an arbitrary test function V ∈ C∞(Ω0), extend it smoothly outside the
square Ω0 and insert into the integral identity (20) the function

V h = XhVh, (107)

where Vh(x) = V((1 − %h)−1x). Notice that the function (107) vanishes in the
vicinity of ∂Ω0, cf. (80), and therefore it belongs to H(η).

We have

0 = ah(Uh(m), V
h; Ω0)− Λhmb

h(Uh(m), V
h; Ω0) =

= a•(Uh(m), V
h; Ω(%))− Λhmb

•(Uh(m), V
h; Ω(%))+

+a•(Uh(m), V
h; Ω0 \ Ω(%))− Λhmb

•(Uh(m), V
h; Ω0 \ Ω(%)).

(108)

Using (105) and (107), (80) we observe that

a•(Uh(m), V
h; Ω(%)) =

∫
Ω(%)

D(∇x)Uh((1− %h)−1x)
>
A•D(∇x)Vh((1− %h)−1x) dx =

= a•(Uh,V; Ω0) → a•(U0,V; Ω0),

Λhb•(Uh, V h; Ω(%)) = Λh(1− %h)−2b•(Uh,Vh; Ω0) → Λ0b•(U0,V; Ω0).

To process the remaining terms in (108) we write

|ah(Uh, V h; Ω0 \ Ω(%))| 6 c(‖∇xUh;L2(Ωh \ Ω(%))‖ ‖∇xVh;L2(Ωh \ Ω(%))‖+

+hαA‖∇xUh;L2(Γh)‖ ‖∇xVh;L2(Γh)‖) 6 c(‖∇xUh;L2(Ωh \ Ω(%))‖h1/2+

+hαA/2‖∇xUh;L2(Γh)‖hαA/2h1/2(1 + h−1)) 6 c(h1/2 + h−1+(1+αA)/2) → 0,

Λh|bh(Uh, V h; Ω0 \ Ω(kh))| 6 c(‖Uh;L2(Ωh \ Ω(kh))‖ ‖Vh;L2(Ωh \ Ω(kh))‖+
+hαB‖Uh;L2(Γh)‖ ‖Vh;L2(Γh)‖) 6 c(h1/2 + h(αB+1)/2) → 0.

Thus, passing to the limit hn → +0 yields the integral identity for the limit problem,

a•(U0,V; Ω0)− Λ0b•(U0,V; Ω0) = 0 ∀ V ∈ C∞(Ω0).
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By a completion argument, the test function space can be changed here to be
H1(Ω)J .

Hence, to conclude that {Λ0,U0} is an eigenpair of the problem (31), (32), it is
sufficient to verify that U0 is non-zero. To this end we write

1 = bh(Uh(m), U
h
(m); Ω0) =

= b•(Uh•(m), U
h•
(m); Ω(%)) + b•(Uh•(m), U

h•
(m); Ωh \ Ω(%)) + hαBb◦(Uh•(m), U

h•
(m); Γh).

(109)
Lemma 3.4 gives estimates for the last two terms:

b•(Uh•(m), U
h•
(m); Ωh \ Ω(%)) 6 c•h‖Uh•(m);H

1(Ωh)‖2 6 C•h‖Uh(m);H‖
2 = C•h,

hαBb◦(Uh•(m), U
h•
(m); Γh) 6 hαB+1−αA‖Uh(m);H‖

2

These the upper bounds tend to 0 as h→ +0, see (9). Recalling (105) yields

b•(Uh•(m), U
h•
(m); Ω(%)) = (1− %h)−2b•(Uh,Uh; Ω0),

and we thus obtain b•(U0,U0; Ω0) = 1 by passing to the limit h→ +0 in (109).
Now Lemma 3.5 can be proved in a standard way. Namely, if Uh and Uh∗ are

two different eigenvectors of the problem (20) and they are orthogonal in the sense
that bh(Uh, Uh∗ ) = 0, see (22), then the orthogonality b•(U0,U0

∗) = 0 follows from
the above calculations. In this way, supposing n > m would contradict our way to
compose the eigenvalue sequences (19) and (34). But we recall that the inequality
n > m was already verified in Section 3.3. Thus, the identity n = m holds, and this
completes the proofs of Lemma 3.5 as well as Theorem 2.1.

4. Some examples and generalizations.

4.1. Concrete formulas. Let us derive exactly the correction terms in the eigen-
value asymptotics (59) for the problems mentioned in Examples 1.1 and 1.2.

Example 4.1. Let L• = −∆ and L◦ = −∆, cf. Example 1.1, and let 1/2 = l1 > l2.
Then

Λ0
1 = 0, U0

(1) = (2l2)−1/2,

Λ0
2 = π2, U0

(2) = l
−1/2
2 sin(πx1).

The asymptotic formulas (59), (54) and the definitions (55), (45) show that

Λh1 (η) = 0 + hαA−1
∑
j=1,2

1

lj
(1− cos(2πηj lj))

l3−j∫
−l3−j

dy

Hj(y)
+O(hαA−1+δAB ),

Λh2 (η) = π2 + hαA−1 2

l2

(
(1 + cos(2πη1l1))

l2∫
−l2

dx2

H1(x2)
+

+(1− cos(2πη2l2))

l1∫
−l1

sin2(πx1)
dx1

H2(x1)

)
+O(hαA−1+δAB ).
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Example 4.2. Assuming that the frame Γh is made of a homogeneous isotropic
material, we have the following 3× 3-matrix

A◦ =

 λ◦ + 2µ◦ λ◦ 0
λ◦ λ◦ + 2µ◦ 0
0 0 2µ◦

 ,

where λ◦ > 0 and µ◦ > 0 are the Lamé constants, cf. Example 1.2. We choose the
orthonormalized basis

U0
(j)(x) =

1

2
(l1l2)−1/2 ej , j = 1, 2,

U0
3 (x) =

(3

4

)1/2

(l1l2)−1/2 (l21 + l22)−1/2(x2e1 − x1e2)

in the polynomial space P of rigid motions.
We have

Λh1 (θ) = 0 +
hαA−1

2l1l2

(
(λ+ 2µ) (1− cos(2πl1η1)

l2∫
−l2

dx2

H1(x2)
+

+µ (1− cos(2πl2η2)

l1∫
−l1

dx1

H2(x1)

)
+O(hαA−1+δAB ),

Λh2 (θ) = 0 +
hαA−1

2l1l2

(
µ (1− cos(2πl1η1)

l2∫
−l2

dx2

H1(x2)
+

+(λ+ 2µ) (1− cos(2πl2η2)

l1∫
−l1

dx1

H2(x1)

)
+O(hαA−1+δAB ),

Λh3 (θ) = 0 +
4hαA−1

3l1l2(l21 + l22)

( l2∫
−l2

(
(λ+ 2µ) (1− cos(2πl1η1)x2

2+

+µ (1 + cos(2πl1η1)l21

) dx2

H1(x2)
+

+

l1∫
−l1

(
(λ+ 2µ)(1− cos(2πl2η2)x2

1 + µ(1 + cos(2πl2η2)l22

) dx1

H2(x1)

)
+O(hαA−1+δAB ).

4.2. Singularities at corner points. The next two examples show that the re-
strictions introduced in Section 3.1 are relevant in certain problems of mathematical
physics.

Example 4.3. An appropriate affine transform converts the problem (31), (32)
into the spectral Neumann problem for the Laplace operator in a parallelogram ♦
with angles φ ∈ (0, π/2] and π − φ ∈ [π/2, π). As known for example by [21, Ch.
2], the worst singularity of an eigenfunction of this problem in ♦ is

rπ/(π−φ) cos
πϕ

π − φ
,

πϕ

π − φ
= 1 + δ0, δ0 =

φ

π − φ
> 0.
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Figure 3. Pavements of different shapes.

Example 4.4. According to [13], an affine transform can be used to reduce the
stationary elasticity problem (31), (32) with Λ0 = 0, in Ω0, to the particular case of
an orthotropic elastic parallelogram with the elastic symmetry axis of rank 4. This
means that the rigidity matrix A is of the form

A =

 a11 a12 0
a21 a22 0
0 0 a33

 , a11 = a22.

Singularities at corner points for such orthotropic materials have been computed
in, e.g., [26]. However, the inequality µ > 1 for the positive singularity exponents
in (69) at the tops of the convex angles of the parallelogram has been proved in [9]
so that the elasticity problem in Example 1.2 also satisfies our assumption (68).

4.3. Possible geometric generalizations. Until now we have restricted ourselves
to two-dimensional problems, in order to simplify formulas and the justification
scheme in Section 3. However, our formal asymptotic analysis would apply also
in the multi-dimensional cases without notable changes. Namely, the periodicity
cell Ω0 = {x ∈ Rd : |xj | < lj , j = 1, . . . , d}, d > 3, can composed of the curved
parallelepiped

Ωh = {x ∈ Ω0 : −lj + hH−j (x′(j)) < xj < lj − hH+
j (x′(j)), j = 1, . . . , d} (110)

and the surrounding box-shaped frame Γh = Ω0 \Ωh. Here, the notation is similar
to that in (1) except that x′(j) = (x1, . . . , xj−1, xj+1, . . . , xd). On the other hand,

stating smoothness properties of the eigenvectors, which we used in Section 3, would
become much more complicated in higher dimensions, due to the many edges and
corners of the boundary of the curved parallelepiped (110). Thus, the justification
of the asymptotics might require some additional assumptions.

Other shapes of the periodicity cells like the honeycomb structure in Fig. 3.a, can
be used to cover the plane, and they can be treated with the same asymptotic tools.
Another example of a non-rectangular tiling with the periodicity cell in Fig. 3.b
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requires a modification of our asymptotic procedure, because of the inward obtuse
angle. However, the main difficulty is caused in formulas (43)–(45) by the strong

corner singularities on the short sides of the curved rectangle Γh+
1 . The resulting

strengthening of the singularities of the solutions may seriously reduce the accuracy
of our asymptotic formulas (cf. Section 3.1 and the error estimates in Theorems 2.1
and 2.2).

The influence of these corner singularities may be compensated by constructing
two-dimensional boundary layers (cf. [4, 18] for the Poisson equation and [19] for
general elliptic problems and the elasticity system). It should be mentioned that
using the same scheme as in Section 2.2 one can up to some extend find higher order
asymptotic terms in Ωh and in Γhj± outside small neighborhoods of the vertices of

Ω0, but it is not possible to specify them completely without the two-dimensional
boundary layers. This was the very reason for introducing the assumption (9) which
helps to avoid the problem.

It looks that near concave corner points the required, acceptable approximation
can be achieved by constructing two dimensional boundary layers (cf. [19]).

There is no obstacle to treat strongly curved thin frames in the geometric situa-
tion of Fig. 3.c.

4.4. Periodic piezoelectric composites.

Example 4.5. Let J = 3, N = 5 and

D(∇)> =

 ∂1 0 2−1/2∂2 0 0
0 ∂2 2−1/2∂1 0 0
0 0 0 ∂1 ∂2

 =

(
DM(∇)> O2×2

O1×3 ∇>
)
, (111)

where DM(∇)> is the matrix (23) and Om×n is the null matrix of size m × n.
Furthermore, let

A• =

(
AMM AME

AEM −AEE

)
, B• =

 b• 0 0
0 b• 0
0 0 0

 , b• > 0. (112)

Here, AMM and AEE are symmetric and positive definite matrices of elastic and
di-electric moduli, respectively, while there is no restriction on the piezoelectric

matrix AME =
(
AEM

)>
of size 3 × 2. Finally, u = (uM, uE), uM = (u1, u2) is the

displacement vector and uE is the electric potential.
Due to the minus sign of AEE, the symmetric matrix A• is not positive definite

and therefore the Hermitian sesquilinear form Ah in (7) does not satisfy condition
(11). However, thanks to the right lower null entry of the matrix B•, (112), and
the Dirichlet condition

uEh(x) = 0, x ∈ Σh, (113)

on the insulator surface, all necessary conditions are actually satisfied and we con-
clude in particular that the space of polynomials P can be chosen to be

P =
{
p = (pM, pE) : pM ∈ PM, pE = 0

}
, (114)

where PM is the space (24) of mechanical rigid motions.
We consider the composite plane Ωh∞ ∪ Γh∞, where Ωh∞ is the union over θ ∈ Z2

of the identical piezoelectric inclusions Ωh(θ) (cf. (2)), which are connected by thin
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paddings of pure elastic solid insulator Γh∞. The boundary value problem consists
of the system of differential equations

D(−∇)>A•D(∇)u•h(x) = λhB•u•h(x) , x ∈ Ωh∞, (115)

DM(−∇)>A◦DM(∇)u◦h(x) = λhB◦u◦h(x) , x ∈ Γh∞, (116)

the transmission conditions

DM(νh(x))>A•D(∇)u•h(x) = DM(νh(x))>A◦D(∇)u◦h(x), x ∈ Σh∞ (117)

and the Dirichlet condition (113) on the union Σh∞ of the contours Σh(θ) = ∂Ωh(θ),
θ ∈ Z2. The notation in (116) and on the right-hand side of (117) is the same
as in Example 1.2. We emphasize that condition (117) means that the traction
is continuous on the contact surface. Moreover, (113) describes the fact that the
electric potential is constant on the surface of the insulator, and this constant can

be set to zero because the set Γh∞ = ∪θ∈Z2Γh(θ) is connected.
The limit problem in the rectangle Ω◦ = (−`1, `1) × (−`2, `2) consists of the

system (31) including the matrices (111) and (112), the quasiperiodicity condition
(21), (30) and the boundary conditions, cf. (32) and (117), (113), and

DM(−∇)>A•D(∇)U◦(x) = 0, UE◦(x) = 0, x ∈ Σ◦. (118)

Although the matrix A• in (112) is not positive definite, the spectrum of the problem
is discrete and consists of the monotone non-negative unbounded sequence (34). For
example in the paper [23] one can find a procedure for reducing the weak formulation
of this piezoelectricity problem to a problem with a positive self-adjoint operator in
H1(Ω◦) 3 UM◦; the reduction uses the specific structure of the matrix B• in (112).
The corresponding eigenfunctions U◦(1), U

◦
(2), . . . ∈ H

1(Ω)◦)3 can be subject to the

normalization and orthogonality conditions (35), which read as(
b•UM◦

(m), U
M◦
(p)

)
Ω◦ = δm,p, m, p ∈ N,

with the positive constant b• of (112).
Since the material in Γh is purely elastic, the forms of the second limit problem

(40)–(42) and its solution (43) are kept unchanged. Thus, our calculation of the
correction term in the eigenvalue ansatz (45) does not need modifications, and also
the final formulas (56), (57) remain unchanged, if the formulas (48) and (55) are
understood as

A◦(j) = DM(e(j))
>
A◦DM(e(j)),

J (U◦, V ◦; η) =
∑
j=1,2

∫ `3−j

−`3−j

Hj(y)−1
[
V M◦

]
j
(y; ηj)

>
A◦(j)

[
V M◦]

j
(y; ηj)dy

with the notation (45) preserved as such.
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