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1 Introduction

NP-hard optimization problems arise in many real-world applications [16, 66, 81]. Hence
there is a need for developing practically efficient generic algorithmic approaches that can
be employed for finding optimal solutions to such problems.

One successful approach for solving computationally hard real-world optimization prob-
lems is the so-called declarative approach. In the declarative approach, the problem in-
stance at hand is encoded in a mathematical constraint language. An encoding allows for
expressing any instance of the original problem in the mathematical constraint language
in a way that the optimal solutions to the original problem instance correspond to the
optimal solutions to the encoded instance. An algorithm for the constraint language is
employed to obtain an optimal solution for the encoded instance. An optimal solution
to the original problem instance can then be reconstructed from the optimal solution to
the encoded instance. An implementation of an algorithm developed for a specific declar-
ative language is called a solver. Given an instance expressed in the language a solver
supports and enough resources, the solver is guaranteed to obtain an optimal solution to
the instance.

An advantage of the declarative approach is that, when faced with a new problem, there is
no need to develop a new practically efficient solver. Instead, it is sufficient to develop an
encoding for the problem instances in a constraint language for which practically efficient
solvers are already available. Another advantage is that when a same constraint language
is used for encoding various real-world domains, improvements in solvers for the language
have an immediate impact on the efficiency of solving instances from the various problem
domains.

Arguably the most classical declarative solving paradigm for optimization problems is
integer programming (IP) [31, 81]. Other declarative paradigms include constraint opti-
mization problem (COP) [74], pseudo-Boolean optimization (PBO) [29], maximum sat-
isfiability (MaxSAT) [16, 51], optimization on SAT modulo theories (MaxSMT) [70] and
answer-set programming (ASP) [41]. This thesis focuses in particular on MaxSAT as one
of the most viable paradigms of recent years.

The constraint language of MaxSAT is that of propositional logic [16, 51]. A MaxSAT
instance consists of a CNF formula (a propositional formula in conjunctive normal form)
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and a linear objective function over Boolean variables to be minimized [16, 51].1 MaxSAT
is an optimization variant of the classical Boolean satisfiability problem (SAT) [32, 50],
where the task is to decide if there exists an assignment that satisfies a given propositional
formula. Over the last two decades, MaxSAT has been successfully applied in many real-
world applications, including planning, scheduling, configuration, artificial intelligence,
data analysis, combinatorial problems, verification and security, software analysis and
bioinformatics among others. A recent survey of applications and relevant references can
be found in [16].

Many different practical algorithms have been proposed for MaxSAT [16]. Empirical
evaluations have shown that the empirically most efficient approach depends on the in-
stance at hand [17]. Practical algorithms for MaxSAT can be divided to complete and
incomplete algorithms. Incomplete (or "anytime") algorithms seek to find a good (not
necessarily an optimal) solution in a limited time whereas complete (or "exact") algo-
rithms are guaranteed to find an optimal solution when given enough resources. Most of
the modern complete algorithms for MaxSAT are so-called Boolean satisfiability (SAT)
based approaches where the optimization problem is solved by reducing it to a sequence
of decision problems [16]. The success of this approach builds heavily on the success of
the development of practically efficient SAT solvers [16]. The most central SAT-based
approaches for MaxSAT are the so-called model-improving [16, 1], core-guided [16, 39]
and implicit hitting set (IHS) approaches [16, 34].

This work focuses on the core-guided approach. The core-guided approach does a lower-
bounding search for obtaining an optimal solution. It uses a SAT solver iteratively to find
inconsistencies (so-called cores) in the CNF formula that incur cost. The cores are then
relaxed by doing transformations on the formula. One drawback in the efficiency of the
core-guided approach is that the core transformations increase the size of the CNF formula
and the blow-up in the size can make the formula increasingly hard for a SAT solver to
solve [34, 16, 19].

The main contribution of this work is a novel structure-sharing technique that reduces the
inherent blow-up in the size of the formula on weighted MaxSAT instances. Structure-
sharing employs the fact that the transformations of modern core-guided algorithms add

1Even though the name MaxSAT refers to a maximization problem (maximize the number of satisfied
clauses/the sum of their weights), it has developed standard to see MaxSAT as the equivalent minimization
problem (minimize the number of unsatisfied clauses/the sum of their weights) [51, 16]. Without loss of
generality, we view the optimization of MaxSAT as minimizing a linear function over the variables of the
instance as will be explained in Chapter 2.
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to the formula so-called soft cardinality constraints over the cores [65, 69, 16]. When the
cores overlap, cardinality constraint encodings introduce redundant clauses and variables
to the constraints. In such a case, it is possible to reduce the size of the encoding by sharing
some parts between different cardinality constraint encodings rather than encoding every
cardinality constraint separately from scratch.

In this thesis, we describe how to incorporate structure-sharing into two modern core-
guided algorithms, OLL [65, 3] and PMRES [69], to reduce the size of the cardinality
constraint encodings they use. Our approach relies heavily on the recently-proposed
weight-aware core extraction technique (WCE) [23] that enables relaxing a number of
cores on each iteration. In particular, WCE allows making informed decisions about
which substructures of cardinality constraints to share. Interestingly, our proposed tech-
nique not only reduces the size of the formula but also improves the ability of a SAT
solver to do reasoning about the relationships between cores. We provide open-source
implementations of solvers employing the structure-sharing technique and show by em-
pirical evaluation that our implementations outperform a state-of-the-art MaxSAT solver.
Even though this thesis concentrates on the two mentioned core-guided algorithms, the
idea of structure-sharing could also be incorporated into other core-guided algorithms and
even into other approaches (e.g., into implicit hitting set approach [16, 34] with so-called
abstract cores [21]) or into incomplete solving [22].

The main contribution of this thesis—the structure-sharing technique—has been published
at the 27th International Conference on Principles and Practice of Constraint Program-
ming (CP 2021) [46]. In this thesis, we extend the results of [46] by providing a more
thorough discussion of the new techniques and by providing a novel C++ implementation
of our algorithm which we show to be more efficient in practice than the implementation
empirically evaluated in [46].

The structure of the thesis is as follows. In Chapter 2 we introduce definitions of the
important concepts necessary to understand the main contribution of this thesis. The
two core-guided algorithms into which we incorporate the structure-sharing are detailed
in Chapter 3. In Chapter 4 we introduce our main contribution, the structure-sharing
technique. Finally, we discuss our implementation and empirical results in Chapter 5.



2 Preliminaries

In this chapter, we overview the Boolean satisfiability problem (SAT) and maximum sat-
isfiability (MaxSAT). We provide definitions for the central concepts necessary for un-
derstanding our contributions and introduce the notation we use throughout the thesis.
We also put our work in a larger context by providing an overview of different modern
algorithms for MaxSAT.

2.1 Satisfiability

A literal l is either a Boolean variable x or its negation ¬x. Logical negation extends
naturally to literals: ¬l = ¬x if l = x and ¬l = x if l = ¬x. A clause is a disjunction
C = l1 ∨ · · · ∨ ln) of literals li. A CNF formula (a propositional formula in conjunctive
normal form) is a conjunction C1 ∧ · · · ∧ Cm of clauses.

A truth assignment τ assigns Boolean values—either 1 (true) or 0 (false)—to a subset of
the variables of a CNF formula F . A truth assignment extends naturally to literals by
τ(¬x) = 1 − τ(x). When convenient, we treat τ as the set of literals it assigns to 1. A
truth assignment τ is complete with respect to a CNF formula F if τ assigns all variables
that occur in F ; otherwise, τ is partial. A truth assignment τ falsifies a clause C if τ
assigns all literals in C to 0, and satisfies C if τ assigns at least one literal in C to 1. A
truth assignment τ falsifies F if τ falsifies one clause in F , and satisfies F if τ satisfies
all clauses in F . A satisfying assignment of F is a solution to F . If there is a satisfying
assignment for F then F is satisfiable, otherwise F is unsatisfiable.

Example 2.1

Consider the CNF formula F = (x ∨ ¬y) ∧ (¬x ∨ ¬y) ∧ (y ∨ ¬z). The assignment
τ1 = {¬x, y,¬z} is a falsifying complete assignment of F . It falsifies the first clause
(x ∨ ¬y), thus falsifying F . The assignment τ2 = {¬y,¬z} is a satisfying partial
assignment. The partial assignment τ3 = {¬y} is neither a satisfying nor falsifying
assignment. While it satisfies the first two clauses, the clause (y ∨ ¬z) is neither
satisfied nor falsified.
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Example 2.2

The CNF formula F = (x ∨ y) ∧ (¬x ∨ y) ∧ (¬y) is unsatisfiable. To see this, note
that any satisfying assignment should include ¬y in order to satisfy (¬y). However,
the assignment τ1 = {x,¬y} falsifies the clause (¬x ∨ y) and the assignment
τ2 = {¬x,¬y} falsifies the clause (x ∨ y). Therefore there is no assignment that
would satisfy all three clauses in F .

The CNF formula F = (x ∨ y) ∧ (¬x ∨ ¬y) ∧ (x) is satisfiable: the assign-
ment τ = {x,¬y} satisfies F .

The classical NP-complete Boolean satisfiability problem (SAT) [32, 50, 40, 11] asks to
decide if a given propositional formula is satisfiable or unsatisfiable. As typical, we assume
that propositional formulas are in CNF. It is well-known that any propositional formula
can be transformed into a CNF formula of linear size with respect to the original formula
with the standard Tseitin encoding [79, 73].

A SAT solver is an implementation of a decision procedure for SAT, i.e., an algorithm
that, given a CNF formula F (and enough resources), decides if F is satisfiable or unsat-
isfiable. Modern solvers also provide a satisfying assignment if F is satisfiable. The most
important algorithmic approach employed in SAT solvers today is the so-called conflict-
driven clause learning (CDCL) SAT solving paradigm [57]. CDCL SAT solvers maintain a
partial assignment over the variables of F that is extended towards a complete assignment
by iteratively assigning values to the variables in a backtracking style search. The aim is
to form a satisfying complete assignment to F (proving F is satisfiable) or to determine
that F is unsatisfiable. More concretely, the following steps are performed iteratively.

• Make a decision. Assign some unassigned variable (selected by heuristics) to either
1 or 0.

• Perform unit propagation until fixpoint. Unit propagation finds clauses in which all
literals except one have been assigned to 0 by the current partial assignment, and
the one remaining literal is unassigned. In order to satisfy the clause, the currently
unassigned literal is deterministically assigned to 1.

• If a conflict is detected (some clause is falsified by the current partial assignment) the
algorithm learns a so-called conflict clause over a subset of the currently assigned
variables, adds the clause to F and backtracks non-chronologically [57, 61] (i.e.,
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unassigns variables until one literal in the conflict clause is unassigned). A conflict
clause is logically entailed by F (i.e., must be satisfied by every satisfying assignment)
and thus it can be added to F without affecting the set of satisfying assignments.
The details on how clauses are learnt are not central to this work. An interested
reader may find them in [57].

The search terminates when either a satisfying assignment is found or the instance is
determined to be unsatisfiable. Unsatisfiability is determined when a conflict can be
derived by unit propagation without making any decisions, i.e., when the empty clause
is learned. As the formula F is then deemed to imply the trivially unsatisfiable empty
clause, it follows that F is unsatisfiable.

2.2 Maximum satisfiability

Maximum satisfiability (MaxSAT) [16, 51] is the optimization version of the Boolean
satisfiability problem. It has proven successful as a declarative paradigm for solving opti-
mization problem instances from various domains [16]. A MaxSAT instance FMS = 〈F , w〉
consists of a CNF formula F and an objective function w over a subset of the variables of
F assigning each variable a natural number as a weight (or cost). We notate the objec-
tive functions as sets of variable–weight pairs, i.e., w = {〈v1, wv1〉, 〈v2, wv2〉, . . . 〈vn, wvn〉}
stands for w(v1) = wv1 , w(v2) = wv2 , . . . , w(vn) = wvn . The variables for which w is
defined, are called objective variables. We will use B(FMS) to denote the set of objective
variables of a MaxSAT instance FMS. In MaxSAT, given a CNF formula F and an objective
function w, the task is to find a solution τ for F that minimizes cost defined as

cost(τ,FMS) =
∑

v∈B(FMS)
w(v)τ(v).

In words, the task is to find a solution that minimizes the sum of the weights of the
objective variables assigned to 1.

We note that this definition differs from a more traditional view of MaxSAT where the
clauses of the formula are divided into soft and hard clauses and the objective function
is defined over the soft clauses. In the more traditional definition of MaxSAT, the task
is to find a solution satisfying all hard clauses that minimizes the sum of the weights of
the unsatisfied soft clauses. However, any instance corresponding to our definition can be
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transformed into an instance corresponding to the traditional view of MaxSAT, by intro-
ducing a unit soft clause for each negation of an objective variable. A problem instance
corresponding to the traditional definition of MaxSAT can be transformed into an instance
corresponding to our definition by the so-called blocking variable transformation [16], de-
fined as follows. For every soft clause C, introduce to the instance a new (hard) clause
C ∨ vC where vC is a fresh objective variable. The weight of vC is set to w(vC) = w(C).
The main reason for using our definition instead of the more traditional one is that the
algorithms this work focuses on (and actually most modern algorithms for MaxSAT) are
simpler to describe using the concept of objective variables.

Sometimes in the literature, a distinction is made between weighted and unweighted or
partial and non-partial MaxSAT [16, 51]. In weighted MaxSAT, the objective function
gives different values to different objective variables, whereas in unweighted MaxSAT all
objective variables have equal weight. A partial MaxSAT instance—in the context of the
traditional definition—contains soft and hard clauses whereas a non-partial MaxSAT in-
stance contains only soft clauses. To map the concepts of partial and non-partial MaxSAT
to our definition of MaxSAT, non-partial MaxSAT instances are instances where each
clause is guaranteed to have at least one objective variable in it whereas partial MaxSAT
instances are instances without such guarantee. In this work, when we refer to MaxSAT,
we refer to the most general definition, i.e., that of weighted partial MaxSAT.

Example 2.3

Consider the MaxSAT instance with F = (x∨y)∧(¬x∨¬y) and w = {〈x, 1〉, 〈y, 2〉}.
F has two solutions: τ1 = {¬x, y} and τ2 = {x,¬y}. The solution τ1 = {¬x, y} has
cost 2 since w(y) = 2. The solution τ2 = {x,¬y} has cost 1 since w(x) = 1. This is
an optimal solution.

The following example shows how an optimization problem can be encoded as MaxSAT.
Example 2.4

Consider the following optimization problem. There are n possible locations for
cellular radio towers and m houses which the network should cover. Each radio
tower is associated with a cost. The task is to select a subset of towers that provides
the network to every house while minimizing the sum of their costs. The problem can
be represented as a graph where towers and houses are nodes and an edge between a
tower ti and a house hj tells that the tower ti would provide a network for the house
hj.
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Figure 2.1: An example instance of cellular radio tower optimization problem from Example 2.4.

An example instance of the problem is illustrated in Figure 2.1. There are 4 houses,
h1, h2, h3 and h4 (coloured red) and 4 potential towers to build, t1, t2, t3 and t4

(coloured blue). Each of the towers is associated with a cost given as tcost=ci
i in

Figure 2.1 implying that building tower ti costs ci. Tower t1 is connected with house
h1 implying it would provide a network to h1. Tower t2 is connected with houses h1,
h2 and h3, tower t3 with houses h2, h3 and h4 and tower t4 with houses h3 and h4.
The problem can be encoded to MaxSAT by associating each tower ti with a Boolean
variable ti and setting the weight of each variable to the cost associated with that
tower. The need to cover each house is encoded as clauses. In our example the clauses
are Ch1 = (t1 ∨ t2), Ch2 = (t2 ∨ t3), Ch3 = (t2 ∨ t3 ∨ t4) and Ch4 = (t3 ∨ t4). Each
of these clauses enforces selecting at least one feasible tower for the corresponding
house.
For our example instance shown in the figure 2.1, the encoding gives the MaxSAT
instance with F = (t1 ∨ t2) ∧ (t2 ∨ t3) ∧ (t2 ∨ t3 ∨ t4) ∧ (t3 ∨ t4), and w =
{〈t1, 1〉, 〈t2, 2〉, 〈t3, 3〉, 〈t4, 2〉}.
The optimal cost for the MaxSAT instance is 4, achieved by two solutions:
τ1 = {t1,¬t2, t3,¬t4} that corresponds to building towers t1 and t3, and τ2 =
{¬t1, t2,¬t3, t4} that corresponds to building towers t2 and t4.

The concept of (unsatisfiable) cores is central for many modern algorithms for MaxSAT,
especially so for the so-called core-guided algorithms we focus on in this thesis.

Definition 2.2.1. Given a MaxSAT instance FMS = 〈F , w〉, a core of FMS is a subset of
objective variables κ ⊆ B(FMS) for which F ∧ ∧v∈κ ¬v is unsatisfiable.

For some intuition on why the concept of core is useful, notice that each core is a subset
of objective variables that can not be all assigned to 0 in any satisfying assignment. This
means that at least one objective variable in a core must be assigned to 1, thus incurring
cost. In this sense, cores provide lower-bound information on the optimal cost of MaxSAT
instances.
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2.3 Incremental SAT solving

We now overview incremental SAT solving via assumptions and how SAT solvers can be
employed to extract cores. As will be explained in Section 2.4, most modern MaxSAT
algorithms make extensive use of an incremental SAT solver, in particular, for extracting
cores.

In incremental SAT solving [36, 37], a sequence of related instances is solved on one
solver that retains its learnt clauses (and possibly other information related, e.g., to the
selection of decision variables) on consecutive iterations. This often speeds up search
significantly [37].

The central features in modern incremental SAT solvers [37, 57] are the ability to add
new clauses to the instance between iterations and the ability to solve under so-called
assumptions. The set of assumptions is a set of literals defining a partial assignment over
the variables of the CNF formula. Given a CNF formula F and a set of assumptions A, an
incremental SAT solver returns a satisfying assignment τ ⊇ A if such a τ exists. If such a
τ does not exist, the SAT solver returns the set of literals in a conflict clause entailed by
F over the variables in A.

Notice how a conflict clause entailed by F over A maps to a concept of core from the
MaxSAT point of view (recall Definition 2.2.1). In particular, when a subset of negations
of the objective variables is used as a set of assumptions, the conflict clause consists of
literals that form a core in terms of MaxSAT.

Example 2.5

Consider the MaxSAT instance with F = (¬x ∨ y) ∧ (x ∨ ¬y) ∧ (x ∨ z) and w =
{〈x, 1〉, 〈y, 1〉, 〈z, 1〉}. Given A1 = {¬x,¬y,¬z} as the set of assumptions, a SAT
solver returns UNSAT ("unsatisfiable") on F under A1. The SAT solver could return
κ1 = {x, z} ⊆ {¬l | l ∈ A1} as a core, since F entails this core directly by the clause
(x ∨ z). The core expresses that {¬x,¬z} = {¬l | l ∈ κ1} ⊆ A1 is an inconsistent
subset of the assumptions, i.e., τ(x) = 1 or τ(y) = 1 in any solution τ to F . Thus
either x or z must incur cost in any solution to F .
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2.4 Overview of MaxSAT solving algorithms

We end this chapter with an overview of modern approaches to MaxSAT solving. On a
high level, practical algorithms for MaxSAT can be divided to complete and incomplete
algorithms. Incomplete algorithms [42, 4, 30, 49, 22, 47, 35] try to find a good solution
(not necessarily an optimal one) in a limited time. In this thesis, we focus on complete
algorithms which are guaranteed to find an optimal solution given enough resources. De-
spite our focus on complete algorithms, the applicability of our contribution is not limited
to complete solving since incomplete algorithms in cases employ techniques of complete
algorithms [22].

There are four main approaches in modern complete MaxSAT solving: the so-called
branch-and-bound [51, 80, 28], model-improving [16], core-guided [16, 39] and implicit
hitting set (IHS) approaches [16, 34]. Empirical evaluations have shown that no one ap-
proach clearly dominates the others and that the fastest algorithm depends on the instance
at hand [17]. We now overview these four main approaches.

Branch-and-bound MaxSAT algorithms [51, 80, 28, 72, 43, 52, 53, 54] explore the space
of possible solutions (often presented as a search tree) by assigning values to variables
one by one in a backtracking style search. During each step, the algorithms check if the
current partial assignment could possibly be extended to a new optimal solution; if not,
the search backtracks. The check is done by computing a lower bound for the cost of any
extension of the current assignment and comparing it to the lowest cost found so far. In
different algorithms, the search is optimized by different techniques, e.g., simplifications
of the formula, variable selection heuristics, efficient lower bound computation and clause
learning [51, 53, 54]. The existing empirical evaluation has shown that even though branch-
and-bound often performs well in certain types of instances, e.g., finding largest cuts in
random graphs, for large industrial problems the approach generally does not scale well [16,
51]. However, recent results achieved by combining branch-and-bound with clause learning
techniques show how branch-and-bound algorithms can still at times be competitive with
other modern approaches [53, 54].

Model-improving search for MaxSAT [16, 1, 38, 24] employs a SAT solver incrementally
to find better solutions until an optimal solution is found. When solving an instance
FMS = 〈F , w〉, model-improving search begins by finding any satisfying assignment for the
CNF formula F . Then the search proceeds iteratively towards the optimal cost. If the
cost of the current solution is UB, the SAT solver is queried to find a solution which has a
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cost less than UB, i.e., an assignment that satisfies F ∧asCNF(∑l∈B(F) w(l)τ(l) ≤ UB−1),
where asCNF denotes a CNF encoding of the inequality. If the instance is satisfiable, a
satisfying assignment is extracted, UB is updated to the cost of that assignment and the
process is reiterated. When the instance is unsatisfiable, the current UB is the optimal
cost, and the last extracted satisfying assignment is one of the optimal solutions to the
MaxSAT instance.

Whereas model-improving algorithms proceed from satisfiable SAT instances to an unsat-
isfiable one, the core-guided approach [16, 39, 66, 59, 58, 55, 8, 7, 10, 64, 65, 69, 26, 2,
45, 71] proceeds in the opposite direction: from unsatisfiable instances to a satisfiable one.
The idea is to do a lower-bounding search by iteratively extracting cores of the instance,
each core increasing the known lower bound for the optimal cost. More concretely, the
search begins by calling a SAT solver while assuming all objective variables to 0, i.e.,
trying to find a solution with a cost of 0. If the result is unsatisfiable, an unsatisfiable
core is extracted and relaxed. Relaxing a core transforms the formula in such a way that
on the next iteration one of the variables in the core is allowed to incur cost (i.e., be set
to 1). When the SAT solver determines the current working instance is satisfiable, the
search ends. The satisfying assignment obtained in the last call is then one of the optimal
solutions. The approach can be seen as resolving the inconsistencies in the set of objective
variables with respect to the formula one by one, each inconsistency increasing the known
lower bound for the optimal cost. A more detailed description of the core-guided approach
will be given in Chapter 3.

The implicit hitting set (IHS) approach [16, 34, 33, 75] is similar to the core-guided
approach in that both extract iteratively cores from SAT solver and proceed from unsat-
isfiable instances to a final satisfiable instance. The difference is that the IHS approach
does not do any transformations on the CNF formula F (i.e., does not add any clauses).
Instead, each SAT solver call is made on original F under different sets of assumptions
over B(F). To select a set of assumptions for the next SAT solver call, a minimum-cost
hitting set is computed over the found cores. A minimum-cost hitting set represents an
optimal way of resolving the cores found so far. The objective variables in a minimum-
cost hitting set will be allowed to incur cost on the next SAT solver call. The algorithm
terminates when the SAT solver determines that the instance is satisfiable at which point
the found solution is guaranteed to be an optimal one.



3 Core-guided MaxSAT solving with
soft cardinality constraints

In this chapter, we give a more detailed description of modern core-guided MaxSAT algo-
rithms. We focus, in particular, on OLL [65, 3] and PMRES [69] as the two algorithms in
the context of which we will also detail our structure-sharing technique later in Chapter 4.

3.1 Overview

Algorithm 1 provides a generic abstraction of the core-guided approach in pseudocode.
When invoked on a MaxSAT instance FMS, the search begins by initializing a working
instance F1

MS to FMS (Line 1) and the known lower-bound for cost LB to 0 (Line 2). In each
iteration of the main search loop (Lines 3-7), a core of the current working instance F iMS is
extracted (Line 4). The use of an incremental SAT solver is abstracted into the function
Extract-Core that takes as input the current CNF formula F i and the objective vari-
ables B(F iMS) of the current working instance to use their negations as assumptions. The
function returns a triple (res, κ, τ). If res = SAT, then τ is an assignment satisfying F i

that sets τ(v) = 0 for each v ∈ B(F iMS). Such a τ has cost(F iMS, τ) = 0 and will be optimal
for both F iMS and FMS. In this case, Algorithm 1 terminates and returns τ (Line 5).

Algorithm 1: CG a generic view on core-guided MaxSAT solving.
Input: A MaxSAT instance FMS = 〈F , w〉
Output: An optimal solution τ to FMS

1 F1
MS ← FMS

2 LB← 0
3 for i = 1, . . . do
4 (res, κ, τ)← Extract-Core(F i,B(F iMS))
5 if res=SAT then return τ

6 LB← LB + minw(κ)
7 F i+1

MS ← Relax(F iMS, κ)
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If res = UNSAT instead, then κ is a core of F iMS expressed over the variables in B(F iMS). Recall
that—by definition—a core must have at least one objective variable in it set to 1 in any
solution to FMS, thus incurring cost. A core will incur at least minw(κ) = min({w(v) | v ∈
κ}) cost. The current lower-bound LB is increased by minw(κ) (Line 6). The core κ is
then relaxed by function Relax (Line 7). Relaxing a core allows, in a controlled way, one
of its variables to be set to 1 in subsequent iterations.

The main idea of core relaxation is perhaps easiest to understand when considering the
case where each variable in the core κ has the same weight. In such a case, core relaxation
results in the following two things.

1. Relaxing a core enables assigning variables of κ to 1 by setting their weights to 0.
This efficiently removes the negations of the variables of κ from the set of assumptions
in the subsequent SAT solver calls.

2. Relaxing a core restricts the number of variables of κ assigned to 1 by introducing
a cardinality constraint over the variables. A cardinality constraint over a core κ
enforces a restriction to the sum ∑

v∈κ τ(v) to some bound k in any solution τ .
Initially, ∑v∈κ τ(v) ≤ 1 is enforced.

Notice that even though at first the cardinality constraint limits the sum ∑
v∈κ τ(v) to

at most 1, it might be that in all optimal solutions more than one variable of a core
κ is set to 1. This is the reason why cardinality constraints are introduced in a way
that enables later relaxing them further. Core-guided MaxSAT algorithms differ mainly
in how the cardinality constraints are constructed. Roughly speaking, the earliest core-
guided algorithms added hard constraints to the formula when relaxing a core [39, 59, 58,
55, 8, 7], whereas modern ones tend to add so-called soft cardinality constraints, enabling
efficient use of incremental SAT solvers [10, 69, 65, 2, 62].

Relaxing a core κ in the more general weighted case is detailed in pseudocode in Algo-
rithm 2. The difference to the unweighted case is that the weights of the variables in the
core are reduced by minw(κ) = min({w(v) | v ∈ κ}) (Lines 1-4) rather than setting them
to 0. This corresponds to the so-called clause cloning technique [8, 9, 26, 65, 69]. The
main idea of clause cloning is to "split" each variable v in κ with w(v) > minw(κ) into two
variables: v1 with weight w(v1) = minw(κ) and v2 with weight w(v2) = w(v)− minw(κ)1.
Variable v in κ is replaced with variable v1. When this is done for every v ∈ κ, κ
is relaxed with all variables having weight equal to minw(κ) as in the unweighted case.

1For details, see for example [16]
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Algorithm 2: Relax in core-guided algorithm with soft cardinality constraints.
Input: A MaxSAT instance FMS = 〈F , w〉 and a core κ
Output: A transformed instance F ′MS = 〈F ′, w′〉 where the core is relaxed

1 wκ ← minw(κ)
2 w′ ← w

3 for v ∈ κ do
4 w′(v)← w(v)− wκ

5 Fcc, wcc ← Build-Card-Constraint(κ,wκ)
6 return 〈F ∧ Fcc, w

′ ∪ wcc〉

However, the method of reducing weights has the same effect as clause cloning without
introducing duplicate clauses (or variables) to the instance [2, 23]. After the weights are
reduced, a cardinality constraint is constructed over the variables in the core in function
Build-Card-Constraint (Line 5). Build-Card-Constraint returns the cardinal-
ity constraint encoded in CNF (Fcc) and the weights of the fresh objective variables
introduced by the constraint (wcc). Fcc and wcc are introduced to the working instance
(Line 6). We will detail concrete ways of encoding cardinality constraints in Sections 3.2.1,
3.3 and 4.2.1.

The algorithms focused on in this thesis make use of the soft cardinality constraints, the
underlying idea of which is that constraints are associated with variables whose values
are enforced to correspond to whether an assignment of values satisfies the constraint or
not. This enables the use of the assumption interface of a SAT solver to enforce or not
enforce the constraints. In practice, the encodings determine a set of output variables for
a given set of input variables. Conceptually, the input variables (variables in the core)
determine the values of the output variables. Enforcing values to the output variables
via the assumption interface will restrict the assignments of the input variables, i.e., the
assignments of the variables of the core. This will become more concrete when we represent
the actual algorithms and the cardinality constraint encodings they use.

3.2 OLL

The first of the two algorithms we will extend with structure-sharing is OLL [65, 3]. OLL
was originally proposed in the context of answer set programming [3] and later adapted
to MaxSAT [65].
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Core relaxation in OLL works as follows. After reducing the weights of core κ, OLL
introduces a set of cardinality constraints to the instance. Each cardinality constraint has
a corresponding output variable that is enforced to 1 if the constraint holds on a given
assignment and to 0 if it does not. To be more precise, when relaxing a core κ, OLL adds
to the working instance

oκi ↔
∑
v∈κ

v ≥ i for i = 2, 3, ..., |κ|

as constraints. The variables oκi are the output variables of these constraints.

A helpful way of thinking about the output variables of OLL is that defining variables
{oκ1 , oκ2 , . . . oκ|κ|} for κ with the semantics oκi ↔ (∑v∈κ v ≥ i) corresponds to sorting the
values in κ. If a solution sets k of the variables in κ to 1 and |κ| − k to 0, it also sets
oκ1 = 1, oκ2 = 1, . . . , oκk = 1 and oκk+1 = 0, oκk+2 = 0, . . . , oκ|κ| = 0. Notice that the output
variable oκ1 ↔

∑
v∈κ v ≥ 1 is not needed in the context of OLL, since it would limit the

number of variables assigned 1 in a core to 0. By the definition of core, any satisfying
assignment must set at least one variable in the core to 1, implying oκ1 = 1 in any solution
to the formula.

The output variables oκi (i ≥ 2) with weight minw(κ) will become new objective variables
in the working instance. In the next iteration(s) the output variables will be assumed to
0, enforcing the constraints that limit the number of the variables assigned 1 in the core.
Later in the search, the output variables may also participate in cores in which case they
will be handled like any other objective variables: their weights are decreased and new
cardinality constraints are constructed over them as for any other objective variable.

The following example gives an example execution of the OLL algorithm.
Example 3.1

Consider the following MaxSAT instance:
F1 = (x ∨ y ∨ z) ∧ (x ∨ y) ∧ (x ∨ z) ∧ (y ∨ z),
w1 = {〈x, 4〉, 〈y, 5〉, 〈z, 2〉}.

Assume that the SAT solver, invoked on F1 under the set of assumptions A1 =
{¬x,¬y,¬z}, returns as the first core κ1 = {x, y, z}. The weights of x, y and z are
decreased by minw(κ1) = 2. The new weights are w(x) = 2, w(y) = 3 and w(z) = 0.
z will be removed from the assumptions in the next iterations since its weight is 0.
New output variables and their cardinality constraints are oκ1

2 ↔ (x+y+z ≥ 2) and
oκ1

3 ↔ (x + y + z ≥ 3). Both oκ1
2 and oκ1

3 are initialized with weight minw(κ1) = 2.
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The lower bound increases to LB2 = minw(κ1) = 2.
In the next iteration, the state of the algorithm is

F2 = (x ∨ y ∨ z) ∧ (x ∨ y) ∧ (x ∨ z) ∧ (y ∨ z)
∧asCNF(oκ1

2 ↔ (x+ y + z ≥ 2))
∧asCNF(oκ1

3 ↔ (x+ y + z ≥ 3)),
w2 = {〈x, 2〉, 〈y, 3〉, 〈oκ1

2 , 2〉, 〈oκ1
3 , 2〉},

A2 = {¬x,¬y,¬oκ1
2 ,¬oκ1

3 },

LB2 = 2.

Assume that the next core returned by the SAT solver on F2 under A2 is κ2 = {oκ1
2 }.

The weight of variable oκ1
2 is set to 0 and thus ¬oκ1

2 is removed from the assumptions.
Notice that cardinality constraints are not needed for κ2 since |κ2| = 1, i.e., the
number of variables assigned to 1 is already trivially limited to 1. The lower bound
increases by minw(κ2) = 2 to LB3 = 4. The state of the algorithm is in the next
iteration

F3 = (x ∨ y ∨ z) ∧ (x ∨ y) ∧ (x ∨ z) ∧ (y ∨ z)
∧asCNF(oκ1

2 ↔ (x+ y + z ≥ 2))
∧asCNF(oκ1

3 ↔ (x+ y + z ≥ 3)),
w3 = {〈x, 2〉, 〈y, 3〉, 〈oκ1

3 , 2〉},
A3 = {¬x,¬y,¬oκ1

3 },

LB3 = 4.

Assume that the next core returned by the SAT solver on F3 under A3 is κ3 = {x, y}.
After relaxing this core, the state of the algorithm is

F4 = (x ∨ y ∨ z) ∧ (x ∨ y) ∧ (x ∨ z) ∧ (y ∨ z)
∧asCNF(oκ1

2 ↔ (x+ y + z ≥ 2))
∧asCNF(oκ1

3 ↔ (x+ y + z ≥ 3))
∧asCNF(oκ3

2 ↔ (x+ y ≥ 2)),
w4 = {〈y, 1〉, 〈oκ1

3 , 2〉, 〈oκ3
2 , 2〉},

A4 = {¬y,¬oκ1
3 ,¬oκ3

2 },

LB4 = 6.

The instance F4 is satisfiable under A4, by τ = {x,¬y, z}. The optimal cost is 6
since it is the final lower bound LB4.
Notice that the values of the input variables of cardinality constraints define the
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values of all the other variables1. Because of this, when presenting solutions we give
values for the variables of the original formula only.

Next, we sketch a proof of the correctness of OLL. This follows from the cardinality
constraints of OLL having the following so-called counting property.

Definition 3.2.1. A cardinality constraint encoding has a counting property for κ input
variables if the encoding defines a set of output variables in such a way, that any satisfying
assignment τ assigning exactly k input variables to 1 assigns exactly k−1 output variables
to 1.

As the cardinality constraints of OLL have the counting property, the correctness of OLL
is based on the following proposition.

Proposition 3.2.1. Assume that a core-guided algorithm as defined in Algorithms 1 and 2
has found and relaxed i − 1 cores and has found the ith core κi. Let F iMS be the instance
before relaxing κi and F i+1

MS the instance after relaxation. Assume that the used cardi-
nality constraint encoding has the counting property (Definition 3.2.1) and the new out-
put variables are each initialized with weight minw(κi). Then for any solution τ to F iMS,
cost(τ ′,F i+1

MS ) = cost(τ,F iMS)−minw(κi) where τ ′ is assignment τ completed to satisfy the
new cardinality constraints in F i+1

MS .

Proof. Let k be the number of variables the assignment τ assigns to 1 in the core κi.
Because the weights of the variables in the core are reduced by minw(κi) in core relaxation,
the sum of their weights will be k · minw(κi) less in F i+1

MS than in F iMS. The new output
variables in F i+1

MS each have weight minw(κi), and exactly k−1 of these will be assigned to 1
by any satisfying assignment setting k of the variables in κi to 1. This adds (k−1)minw(κi)
to cost(τ ′,F i+1

MS ). All other objective variables of F iMS and F i+1
MS have equal weights. Thus

cost(τ ′,F i+1
MS ) = cost(τ,F iMS)−k·minw(κi)+(k−1)minw(κi) = cost(τ,F iMS)−minw(κi).

There are various alternative ways to encode the cardinality constraints of OLL into CNF.
In this thesis, we make use of the totalizer encoding [20]. Although our structure-sharing
technique is not specific for totalizers, the applicability of structure-sharing to each of the
different cardinality constraint encodings would need to be studied separately in each case
and is beyond the scope of this thesis.

1Strictly speaking, the input variables define the values of all other variables when equivalence semantics
is used in the encoding (see Section 4.2.1). However, this detail does not affect the correctness of our
approach.
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{v1,v2}
1 , d{v1,v2}

2 d
{v3,v4}
1 , d{v3,v4}
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(o{v1,v2,v3,v4}
1 ), o{v1,v2,v3,v4}

2 , o{v1,v2,v3,v4}
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4

1 0 1 0

1, 0 1, 0

(1), 1, 0, 0

Figure 3.1: An example of a totalizer, its variables (top) and a feasible assignment of values (bottom).

3.2.1 The totalizer encoding of cardinality constraints

A totalizer [20] is a CNF encoding of cardinality constraints that can be employed to
encode the cardinality constraints of OLL. Given a set κ of input variables, the totalizer
encoding produces a CNF formula that defines |κ| output variables oκi with semantics

oκi ↔
∑
v∈κ

v ≥ i.

The structure of the encoding can be viewed as a binary tree. An example of a totalizer
constructed over {v1, v2, v3, v4} is illustrated in Figure 3.1. The input variables occur as
leaves (variables vi coloured blue in Figure 3.1). Every internal node N is associated with
as many variables as there are leaves in the subtree rooted at N . In Figure 3.1, these
variables of N are labelled as dSi , where S is the set of input variables in the subtree
rooted at N , and i the index of the variable in the N . The values of these variables are
enforced to correspond to the values of the variables in set S, but in sorted order, 1s before
0s. In other words, the semantics of the variables is defined as

dSi ↔
∑
v∈S

v ≥ i.

The values of the variables in the root correspond to the values of all input variables in
sorted order; they are the output variables. In Figure 3.1 the variables in the root are
denoted with the letter o (as output variables). In the context of OLL, the variables
2, 3, . . . , |κ| in the root of a totalizer are the output variables that are of interest. In
Figure 3.1 these relevant output variables are coloured red. The redundant first output
variable is in parenthesis.
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Figure 3.1 also illustrates an example of a feasible assignment of values to the variables
in the totalizer, i.e., an assignment that follows the semantics of the variables. From the
point of view that the totalizer is a CNF formula, such an assignment satisfies the formula.
Notice how the values of the variables of each node are in sorted order, and the values
correspond to the values of the variables in the leaves of the subtree.

For n = |κ| input variables, a totalizer structured as a balanced binary tree introduces
Θ(n log n) variables and Θ(n2) clauses. The number of variables follows from the fact that
each inner node of the totalizer introduces |L|+ |R| variables, where |L| is the number of
input variables in the left subtree of the node and |R| correspondingly in the right subtree.
On each Θ(log n) levels of the tree, there are Θ(n) variables, hence the limit Θ(n log n).
The number of clauses follows from the fact that the CNF encoding introduces Θ(|L||R|)
clauses for each node (the clauses will be discussed in Section 4.2.1). The total number of
clauses will be Θ((n2 )2 + 2(n4 )2 + 4(n8 )2 + · · · + n) = Θ(n2). However, if the totalizer tree
is not balanced, the number of variables is bounded by Θ(n2). The number of clauses in
the encoding is still bounded by Θ(n2) since each pair of input variables is sorted by Θ(1)
clauses.

The bound Θ(n2) can be considered relatively large. However, in practice, the encodings
tend not to become large since totalizers can be constructed incrementally [64, 63, 62].
The incremental encoding makes use of the fact that to enforce bound ∑v∈κ τ(v) ≤ k it is
sufficient to construct the totalizer only partially. A (balanced) incremental totalizer that
enforces bound k introduces Θ(n log k) variables and Θ(nk) clauses.1 Enabling a totalizer
to enforce larger bounds can be done by introducing the clauses and variables of the
totalizer needed for the larger bound that are not present in the current partial totalizer.
Notice, that enforcing a small bound k enforces implicitly also all bounds k′ > k. At first,
bound k = 2 is enforced, and larger bounds are only enforced on demand.

1With n input variables and bound k, an incremental totalizer has Θ(logn− log k) levels that introduce
total Θ(k+ 2k+ 4k+ · · ·+ n) = Θ(n) variables. The other Θ(log k) levels introduce Θ(n) variables each,
totalling Θ(n log k) variables. The number of variables is thus bounded by Θ(n log k).

The Θ(logn− log k) levels introduce total Θ(k2 + 2k2 + 4k2 + · · ·+ 2log n−log kk2) = Θ(2log n−log kk2) =
Θ( n

k k
2) = Θ(nk) clauses. The other Θ(log k) levels introduce total Θ( n

k k
2 +2 n

k ( k
2 )2 +4 n

k ( k
4 )2 + · · ·+n) =

Θ(nk) clauses. The total number of clauses is thus bounded by Θ(nk).
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3.3 PMRES

The second algorithm we extend with structure-sharing is PMRES [69]. Like OLL, PMRES
employs soft cardinality constraints. However, the output variables PMRES introduces are
semantically different from the ones introduced by OLL. Given a core κ = {v1, v2, . . . , v|κ|},
PMRES adds one at-most-one-constraint (i.e., ∑v∈κ v ≤ 1), enforced by |κ| − 1 output
variables oi. Each output variable gets weight minw(κ). In the original algorithm [69], the
semantics of the output variables were

oi ↔
(∨
j≤i

vj ∧ vi+1

)
for 1 ≤ i ≤ |κ| − 1.

However, in this thesis, we will consider a generalization of PMRES, which we call gener-
alized PMRES. The difference to the original version is that generalized PMRES enables
more ways of constructing the cardinality constraint for a given set of input variables κ.
The main reason for focusing on the generalization is that in some cases it allows for more
structure-sharing as will be explained in Section 4.1.1.

We denote the generalized PMRES cardinality constraint encoding we use by gpmres-enc.
For a set of input variables κ, gpmres-enc(κ) defines |κ| − 1 output variables with se-
mantics

oS1,S2 ↔
( ∨
vi∈S1

vi ∧
∨

vj∈S2

vj

)
, where S1 ⊆ κ and S2 ⊆ κ. (3.1)

The sets S1 and S2 are selected for each output variable in such a way that the cardi-
nality constraint encoding has the counting property (recall Definition 3.2.1). Then the
correctness can be established using Proposition 3.2.1. In practice, the selection of S1 and
S2 is based on viewing the structure as a binary tree. Figure 3.2 illustrates an example
of the structure over κ = {v1, v2, v3, v4}. The input variables occur as leaves (variables vi
coloured blue in Figure 3.2). Each inner node N of the binary tree structure is associated
with two variables, dL∪R and oL,R, where L is the set of input variables of the left subtree
of N and R is the set of the input variables of the right subtree of N . The variables
dL∪R are auxiliary variables and the variables oL,R are output variables (coloured red in
Figure 3.2). Variable dL∪R will be assigned to 1 by a satisfying assignment τ if and only
if at least one input variable in the corresponding subtree is assigned to 1. Efficiently
dL∪R ↔ ∨

vi∈L∪R vi. The variable oL,R will be assigned to 1 if and only if both subtrees
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v1 v2 v3 v4

d{v1,v2}, o{v1},{v2} d{v3,v4}, o{v3},{v4}

dκ, o{v1,v2},{v3,v4}

1 0 0 1

1, 0 1, 0

1, 1

Figure 3.2: Variables of a generalized PMRES cardinality constraint over κ = v1, v2, v3, v4 structured as
a balanced tree (top), and an example of a feasible assignment of values (bottom). Two input variables
(blue) being assigned to 1 enforces assigning one of the output variables (red) to 1.

have at least one input variable assigned to 1. Efficiently, the semantics of the output
variables are

oL,R ↔
( ∨
vi∈L

vi ∧
∨
vj∈R

vj

)
.

The sets S1 and S2 of each output variable oS1,S2 thus consist of the input variables of the
leaves of the left and right subtree of the node into which that output variable belongs.
Figure 3.2 also illustrates an example of a feasible assignment of values on gpmres-enc.
Two input variables assigned to 1 result in one output variable being assigned to 1.

To see that gpmres-enc has the counting property, notice that in the binary tree of
gpmres-enc, assigning a set of inputs to 1 enforces the output variables on their pairwise
lowest common ancestors to 1. In any binary tree, a subset of input variables of cardinality
k has a set of pairwise lowest common ancestors of cardinality k − 1. Thus enforcing k
input variables to 1, enforces k − 1 output variables to 1. Based on this observation,
the correctness of the algorithm can be proved using Proposition 3.2.1 we presented in
the context of OLL as the proof of Proposition 3.2.1 essentially relies on the counting
property. In Appendix A, we formally establish that any way of selecting the sets S1 and
S2 for each output variable as defined in Equation 3.1 in a way that satisfies the counting
property can be viewed as a binary tree.

Notice that the cardinality constraints of the original PMRES algorithm can be seen as
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v1 v2

d{v1,v2}, o{v1},{v2} v3

d{v1,v2,v3}, o{v1,v2},{v3}v4

dκ, o{v1,v2,v3},{v4}
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1, 0 1
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Figure 3.3: A chain-like PMRES cardinality constraint over κ = {v1, v2, v3, v4} corresponding to the
original PMRES algorithm (left) and an example of a feasible assignment of values to the variables (right).
Three of the input variables (blue) being assigned to 1 enforces assigning two of the output variables (red)
to 1.

chain-like binary trees and as such as a special case of gpmres-enc. An example of a
binary tree corresponding to a cardinality constraint of the original PMRES is illustrated
in Figure 3.3. Figure 3.3 also illustrates an example of a feasible assignment of values in
the structure.

For n = |κ| input variables, the gpmres-enc(κ) will contain Θ(n) variables and Θ(n)
clauses. Compared to totalizers, the size is smaller. (Recall that a totalizer has Θ(n log n)
variables and Θ(n2) clauses.) However, in practice, the differences in the sizes of the
encodings are not this large, since totalizers can be constructed incrementally (recall Sec-
tion 3.2.1). In PMRES, the structure of the selected tree does not affect the size of the
cardinality constraint encoding. Both the balanced tree of Figure 3.2 and the chain-like
of in Figure 3.3 introduce as many clauses and variables.

3.4 Weight-aware core extraction

We end this chapter by describing the weight-aware core extraction technique (WCE) [23]
which is essential for the efficient realization of our structure-sharing technique (as will be
explained later in Chapter 4).

WCE is a technique for extracting multiple cores during each iteration, and it can be
incorporated into any core-guided algorithms we are aware of, and even into IHS algo-
rithms [23, 78, 76]. Here our description focuses on WCE in the context of core-guided
algorithms.

A core-guided algorithm with soft cardinality constraints extended with WCE is repre-
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Algorithm 3: CG+WCE a core-guided MaxSAT algorithm with soft cardinality
constraints extended with WCE.
Input: A MaxSAT instance FMS = 〈F , w〉
Output: An optimal solution τ to FMS

1 F1
MS ← FMS

2 K ← ∅
3 for i = 1, . . . do
4 (res, κ, τ)← Extract-Core(F i,B(F iMS))
5 if res=SAT and |K| = 0 then return τ

6 else if res=SAT and |K| > 0 then
7 F i+1

MS ← Build-Card-Constraints(F iMS,K)
8 K ← ∅

9 else
10 wκ ← minw(κ)
11 for v ∈ κ do
12 w(v)← w(v)− wκ

13 K.add(〈κ,wκ〉)

sented in pseudocode as Algorithm 3. The algorithm first initializes the working instance
(Line 1) and a set K as an empty set (Line 2). The set K contains the cores that are found
during the current iteration. When a core κ is found, instead of continuing immediately
with core relaxation, only the weights of the variables of κ are decreased, and κ and its
weight minw(κ) are added to the set K (Lines 9–13). Then the algorithm continues finding
more cores with the updated set of assumptions. Only when no more cores are found,
the cardinality constraints for the found cores are constructed and the set K is emptied
(Lines 6–8). The core-guided algorithm extended with WCE terminates when res = SAT

and the set K is already empty, i.e., cardinality constraints are constructed for all found
cores (Line 5).

An important observation for the structure-sharing we will detail in Chapter 4 is that
instead of constructing cardinality constraints for one core at a time, with WCE a set of
cardinality constraints is constructed for a set of cores at a time.



4 Structure-sharing

In this chapter, we detail the main technical contribution of this work, namely, the
structure-sharing technique for core-guided algorithms using soft cardinality constraints.
We first introduce the structure-sharing technique and discuss how it can be employed
in the context of OLL and PMRES. The main aim is to decrease the number of vari-
ables and clauses in the cardinality constraint structures. Then we continue to show how
structure-sharing can enable additional propagation which may speed up search.

4.1 Structure-sharing

To motivate structure-sharing, consider the following example of a situation where a core-
guided algorithm with WCE ends up constructing cardinality constraints for two overlap-
ping cores.

Example 4.1

Consider the following MaxSAT instance:
F1 = (v1 ∨ v2 ∨ v3 ∨ v4) ∧ (v3 ∨ v4 ∨ v5 ∨ v6),
w1 = {〈v1, 1〉, 〈v2, 1〉, 〈v3, 2〉, 〈v4, 2〉, 〈v5, 1〉, 〈v6, 1〉}.

Assume that a core-guided algorithm extended with WCE extracts as the first core
κ1 = {v1, v2, v3, v4}. The weights are decreased, the LB is increased and then the
search continues within the WCE loop. The state of the algorithm on the next SAT
solver call is

F2 = (v1 ∨ v2 ∨ v3 ∨ v4) ∧ (v3 ∨ v4 ∨ v5 ∨ v6),
w2 = {〈v3, 1〉, 〈v4, 1〉, 〈v5, 1〉, 〈v6, 1〉},
A2 = {¬v3,¬v4,¬v5,¬v6},

LB2 = 1.

Assume that the algorithm extracts as the next core κ2 = {v3, v4, v5, v6}. After the
weights are updated, every weight is zero, and with an empty set of assumptions, the
instance is satisfiable. The next step would be to construct cardinality constraints
over the extracted cores κ1 = {v1, v2, v3, v4} and κ2 = {v3, v4, v5, v6}.
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Figure 4.1: Totalizers for cores κ1 = {v1, v2, v3, v4} (left) and κ2 = {v3, v4, v5, v6} (right).

Now, consider what happens when the two overlapping cores of Example 4.1 are relaxed
in OLL with totalizers. Figure 4.1 illustrates one example of how totalizers could be
constructed for the cores κ1 = {v1, v2, v3, v4} and κ2 = {v3, v4, v5, v6}. Notice that both
totalizers in Figure 4.1 have a subtree with leaves v3 and v4 (coloured red in Figure 4.1).
These subtrees can be seen as equivalent in the sense that they contain variables with
equivalent semantics: τ(d{v3,v4}

0 ) = τ(e{v3,v4}
0 ) and τ(d{v3,v4}

1 ) = τ(e{v3,v4}
1 ) holds for every

satisfying assignment τ . This being the case, constructing these two totalizers separately
would introduce duplicate clauses and variables having exactly the same semantics. The
structure-sharing technique aims to avoid introducing this type of redundancy in cardi-
nality constraints constructed over overlapping cores. In particular, since the cardinality
constraint encodings we consider can be viewed as binary trees, structure-sharing aims at
sharing subtrees between the tree structures introduced by cardinality constraints arising
from extracted cores. Given any two trees that have a subtree with common input vari-
ables, the subtree can be shared between the trees. The correctness of structure-sharing
follows straightforwardly from the fact that it does not alter the semantics of the output
variables.

Remark. A form of structure-sharing has been proposed in a different context in [27]. In
particular, the authors of [27] propose a form of structure-sharing in the context of answer
set programming (ASP) aiming at compacting the CNF representation of the cost function.
Whereas in [27] structure-sharing is employed to statically before search to encode a single
pseudo-Boolean constraint, we apply structure-sharing to a set of cardinality constraints
constructed over a set of cores iteratively extracted during core-guided search.

4.1.1 Structure-sharing in OLL and PMRES

We now detail how to apply structure-sharing to totalizers of OLL and cardinality con-
straints of PMRES.
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Figure 4.2: The structure of totalizers when relaxing the cores κ1 = {v1, v2, v3, v4} and κ2 =
{v3, v4, v5, v6} with structure-sharing.
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Figure 4.3: The structure of PMRES cardinality constraint when relaxing cores {v1, v2, v3, v4} and
{v3, v4, v5, v6} with structure-sharing.

Including structure-sharing in an implementation of OLL using totalizers is relatively
straightforward whereas the inclusion in PMRES requires more care. An example of
how the totalizers of OLL can share a subtree is illustrated in Figure 4.2. In particular,
Figure 4.2 illustrates how totalizers for cores κ1 = {v1, v2, v3, v4} and κ2 = {v3, v4, v5, v6}
of the Example 4.1 share a subtree for their common variables v3 and v4. In the resulting
structure, there are two root nodes, one for each core. Both root nodes have two child
nodes. The root for κ1 has a child node for input variables v1 and v2, and another child
node for input variables v3 and v4. The child node for input variables v3 and v4 is also
linked as a child of the root node for κ2. The other child of the root node for κ2 has as its
input variables v5 and v6.

Figure 4.3 illustrates an example of PMRES cardinality constraints with structure-sharing
for the cores κ1 = {v1, v2, v3, v4} and κ2 = {v3, v4, v5, v6} of Example 4.1. The main idea
is the same as for totalizers in OLL. A shared subset of variables can be inserted into
a subtree that is encoded only once and then linked to both structures. However, when
incorporating structure-sharing into PMRES, a few additional issues need to be dealt with.

First, since in the encoding used by PMRES, each inner node has an output variable, there
will be output variables in the shared subtree. Because these output variables are outputs
for more than one core, the initialization of their weights must be adjusted accordingly.
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Specifically, the weight of an output variable is initialized to the sum of the minimum
weights of the cores for which the output variable is an output.

Second, efficient structure-sharing between multiple overlapping cores requires generalized
PMRES (recall Section 3.3). The reason for this is that in the original chain-like structure
the sets of input variables of subtrees rooted on the inner nodes are never disjoint. Instead,
for any two subtrees (excluding leaves), the set of input variables of one is always a subset
of the set of the input variables of the other. To understand why this is a problem, consider
the following example.

Example 4.2

Assume that an execution of PMRES extended with structure-sharing is at a stage
where it is about to construct cardinality constraints for the cores κ1 = {v1, v2, v3, v4},
κ2 = {v1, v2, v5, v6}, κ3 = {v3, v4, v7, v8} obtained by WCE. Potentially, κ1 could
share a subtree for {v1, v2} with κ2 and a subtree for {v3, v4} with κ3. However, the
chain-like structure does not allow constructing separate subtrees for both {v1, v2}
and {v3, v4} in a cardinality constraint for κ1. Generalized PMRES resolves this
problem: when the structure of the cardinality constraint can be any binary tree,
separate subtrees can be constructed for any disjoint sets of input variables.

Even though structure-sharing is a conceptually simple idea, realizing the technique is
not as straightforward. In the following, we first discuss why WCE is a key for enabling
structure-sharing and then address the problem of how to select which subsets of variables
in cores to share.

4.1.2 The role of WCE

Without WCE, the structure of a cardinality constraint is selected without any knowledge
about which variables will be common with future cores. The selected structure might
not enable structure-sharing.

Example 4.3

Consider the cores κ1 = {v1, v2, v3, v4} and κ2 = {v3, v4, v5, v6} from Example 4.1.
Without WCE, a core-guided algorithm could first find a core κ1 and then construct
a cardinality constraint over κ1 without any knowledge of which variables will be
in the κ2. In Figure 4.4 we have illustrated another possible totalizer for κ1 from
Example 4.1. The structure of the totalizer in Figure 4.4 does not enable structure-
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Figure 4.4: A possible totalizer for a core κ1 = {v1, v2, v3, v4} that does not enable structure-sharing
with κ2 = {v3, v4, v5, v6}.

sharing with κ2 = {v3, v4, v5, v6}, since the common variables v3 and v4 are not in
the same subtree.

It is relatively easy to see that it is actually highly unlikely that a randomly selected
structure for a cardinality constraint would enable efficient structure-sharing: when con-
structing a cardinality constraint for a core κ, only a small number of the |κ|! possible
permutations of how to order the input variables allows for setting the desired input
variables to the same subtree. Furthermore, even when the order of the input variables
would allow this, only in a small number of the possible trees realizing that order of input
variables the input variables will be in the same subtree.

WCE alleviates this problem: the structure of the cardinality constraints can be selected
with a knowledge of which variables are common between different cores in the set that is
being relaxed.

4.1.3 Selecting what to share

Even withWCE, an efficient realization of structure-sharing—in particular, selecting which
subsets of variables to share with which constraints—is not straightforward. The following
example illustrates this selection problem.

Example 4.4

Consider the case with three cores κ1 = S1 ∪ {x, y, z}, κ2 = S2 ∪ {x, y}, κ3 =
S3 ∪ {y, z}, where the Si are any sets of distinct variables. Core κ1 has variables
{x, y} common with κ2 and variables {y, z} common with κ3. In this case, we could
potentially construct a subtree for {x, y}, to be shared between κ1 and κ2. However,
then we can not construct a subtree for {y, z} in the totalizer for κ1 to be shared
with κ3.
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Example 4.4 illustrates that it is not always possible to realize shared structures for all
variables shared by different cores. More generally, when constructing cardinality con-
straints with structure-sharing, one needs to make choices on which shared subtrees to
realize from all potential ones. Ideally, this would be done in a way that enables as much
sharing as possible. However, selecting an optimal structure is not straightforward. In
fact, it is not even clear what should be optimized: the number of shared variables or the
number of shared clauses. A crucial issue is that the number of possible ways of selecting
which subsets to share appears to be—at the worst case—exponential to the number of
cores as illustrated by the following example.

Example 4.5

Consider the case where there are n cores, κ1 = {v1, v2, . . . , vn+1}, κ2 =
{v2, v3, . . . , vn+2}, κ3 = {v3, v4, . . . , vn+3}, . . . , κn = {vn, vn+1, . . . vn+n}. A subtree
for {vn, vn+1} could be shared with all totalizers. Then, one could construct a sub-
tree either for {vn, vn+1, vn+2} or {vn−1, vn, vn+1} and share it with n− 1 totalizers.
From both cases, one could again extend the shared subtree by one variable (with 2
choices of which variable to include) and share it with n − 2 totalizers. This leads
to 2n ways of selecting which subsets to share, and this does not even include all
possible ways of selecting the subsets.

Also notice that—in the case of totalizers—neither the number of shared variables nor the
number of shared clauses is linear to the number of shared inputs, which means that to
minimize the combined size of the totalizers it is not sufficient to maximize the number
of shared input variables between the totalizers. And finally, we point out that the way
in which the shared subsets of variables are selected also has an impact on the structures
of totalizers. If one wishes to minimize the total number of variables in the structure, one
should not only consider how many variables can be shared but also how balanced the
totalizers are. (Recall that the number of variables in a totalizer depends on how balanced
the totalizer is.)

All in all, we conjecture that selecting optimally what to share is NP-hard. Instead of
aiming for optimal sharing, we propose a greedy algorithm described next.

4.1.4 A greedy algorithm for selecting shared subtrees

Algorithm 4 provides a description of our greedy approach for selecting which subtrees to
share between which cardinality constraints in pseudocode. The approach is applicable
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Algorithm 4:Build-Card-Constraints-Greedy an algorithm for selecting which
subsets of variables to share between which cores.
Input: A set of cores K
Output: A set of totalizers for K

1 Nodes← Init-Nodes(K)
2 while 1 do
3 (N1, N2)← arg maxNi,Nj∈Nodes |Ni.vars ∩Nj.vars|
4 C ← N1.vars ∩N2.vars
5 if (|C| < THRE) then break
6 N ← Init-Node(C)
7 N1.vars← N1.vars \ C
8 N2.vars← N2.vars \ C
9 N1.addDescendant(N)

10 N2.addDescendant(N)
11 Nodes.add(N)

12 return Build-Constraints(Nodes)

both in OLL and PMRES. The main idea of the greedy algorithm is to iteratively select
one of the largest possible shared subtrees to be realized. An intuition behind the idea
is that sharing as large substructures as possible maximizes relatively well the total size
of shared structures (recall that in totalizers, the size of a subtree is non-linear to the
number of input variables). Given a set K = {κ1, . . . , κn} of cores for which to construct
the constraints, the algorithm decides which subsets of variables in these cores to share
between which cardinality constraints. The algorithm produces a skeleton for the structure
of the cardinality constraints by producing a set of nodes Nodes to be realized in the
cardinality constraints. Each node N of Nodes is associated with a set of variables that
will be in the leaves of the subtree rooted on N in the final structure. Each node N is
also associated with a set of nodes that will be descendants of N in the final structure.

The algorithm begins by initializing Nodes on Line 1. The initial nodes in Nodes corre-
spond to the roots of the totalizers in the final structure and each of them is associated with
the set of variables in the corresponding core. In the main loop (Lines 2–11) the following
process is iterated. A pair of Nodes that has a maximum number of common variables
is selected (Line 3). A new node for the common variables is introduced (Line 6). The
new node corresponds to a root of a subtree that is to be shared. The common variables
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are removed from the pair (Lines 7 and 8), and the new node is linked as a descendant to
both of them with addDescendant function (Lines 9 and 10). Finally, the new node is
also added to the set of nodes (Line 11).

The main loop terminates when the maximum number of common variables between any
two nodes is below THRE, a user-defined constant (Line 5). The reason for using a
threshold value to terminate the search is to avoid using too much time in selecting which
subsets to share. The following example provides an example execution of Algorithm 4.

Example 4.6

Consider the case where the algorithm Build-Card-Constraints-Greedy using
THRE = 2 is executed for three cores κ1 = {v1, v2, v3, v4}, κ2 = {v2, v3, v4, v5, v6},
κ3 = {v3, v4, v5, v6, v7}. The first step is to initialize the set Nodes. Denoting
each node as a pair—the set of associated variables and the set of nodes linked as
descendants—Nodes is initialized as

Nodes = {N1 = 〈{v1, v2, v3, v4}, {}〉, N2 = 〈{v2, v3, v4, v5, v6}, {}〉,

N3 = 〈{v3, v4, v5, v6, v7}, {}〉}.

The execution of the main loop begins with finding a pair of nodes that have a
maximum number of common associated variables. The nodes N2 and N3 have
four common associated variables, v3, v4, v5 and v6. This is the maximum number
among any pair of nodes. After introducing a new node N4 and updating the sets of
associated variables and linked descendants, the new set of nodes is

Nodes = {N1 = 〈{v1, v2, v3, v4}, {}〉, N2 = 〈{v2}, {N4}〉,

N3 = 〈{v7}, {N4}〉, N4 = 〈{v3, v4, v5, v6}, {}〉}.

Now the nodes N1 and N4 have a maximum number of common associated variables
(v3 and v4) among any pair. After introducing a new node N5 and updating the sets
of associated variables and linked descendants, the set of nodes is

Nodes = {N1 = 〈{v1, v2}, {N5}〉, N2 = 〈{v2}, {N4}〉,

N3 = 〈{v7}, {N4}〉, N4 = 〈{v5, v6}, {N5}〉,

N5 = 〈{v3, v4}, {}〉}.

Since now there are no more pairs of nodes that have more than one variable in com-
mon, the search terminates. The final step of Build-Card-Constraints-Greedy
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Figure 4.5: An example of more complicated structure-sharing from Example 4.6 for cores κ1 =
{v1, v2, v3, v4}, κ2 = {v2, v3, v4, v5, v6}, κ3 = {v3, v4, v5, v6, v7}.

is to use the setNodes to construct the cardinality constraints. An example of the fi-
nal structure of cardinality constraints corresponding to the selected shared subtrees
of this example is illustrated in Figure 4.5.

4.2 Selective introduction equivalence-defining
clauses

We will now detail how structure-sharing can enable additional unit propagations in non-
trivial ways. We begin by overviewing how cardinality constraints are encoded into CNF
and how partial assignments unit propagate values on the constraints. Then we will pro-
pose our own approach of using a heuristic algorithm to encode the cardinality constraints
in a way that balances between the additional propagation properties and the size of the
encoding. In the following, we focus on OLL and totalizers. Similar observations could
also be made for the cardinality constraints of PMRES.

4.2.1 Equivalences and implications on totalizer encodings

The encoding of the semantics of the variables of a totalizer is defined in a recursive
manner [20]. We label the nodes of a totalizer by the set of inputs in the subtree. Let
L ∪R be an internal node with inputs L ∪R: L being a set of the inputs of the left child
and R being the set of the inputs of the right child. Recall that the intended semantics
of each variable in a totalizer is dSi ↔ (∑v∈S v ≥ i). The following clauses between the
variables are included in the totalizer encoding for each 1 ≤ i ≤ |L| and 1 ≤ j ≤ |R|.

1. (¬dLi ∨ dL∪Ri ), encoding dLi → dL∪Ri
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2. (¬dRj ∨ dL∪Rj ), encoding dRj → dL∪Rj

3. (¬dLi ∨ ¬dRj ∨ dL∪Ri+j ), encoding (dLi ∧ dRj )→ dL∪Ri+j

4. (dLi ∨ ¬dL∪Ri+|R|), encoding ¬dLi → ¬dL∪Ri+|R|

5. (dRj ∨ ¬dL∪Rj+|L|), encoding ¬dRj → ¬dL∪Rj+|L|

6. (dLi ∨ dRj ∨ ¬dL∪Ri+j ), encoding (¬dLi ∧ ¬dRj )→ ¬dL∪Ri+j

For understanding unit propagation in the totalizers, consider the following observations.

First, the clauses included in the CNF encoding of totalizers are either binary clauses or
ternary clauses. Each binary clause connects a node to one of its children. The ternary
clauses connect a node to both of its children. We will describe how binary and ternary
clauses unit propagate values in totalizers in Section 4.2.2.

Second, let us divide the clauses in the CNF encoding of totalizers into two groups based
on the direction of the implication. The first group consists of clauses 1–3 (implications
from positive variables of children to positive variables of the parent) and the second group
consists of clauses 4–6 (implications from negated variables of children to negated variables
of the parent).

When we described the semantics of the output variables of the cardinality constraints of
OLL (recall Section 3.2), we defined the output variables as being equivalent to defined
constraints over the input variables, i.e., oκi ↔ (∑v∈κ v ≥ i). We refer to this as the
equivalence semantics. However, for the correctness of the algorithm it is sufficient to
enforce implication relationship, i.e., (∑v∈κ v ≥ i)→ oκi . This we refer to as the implication
semantics. An intuition for why implication semantics is sufficient for correctness follows
from the way the cardinality constraints are used: They are only used to enforce upper
bounds for the number of variables assigned to 1 in the core.

Encoding a totalizer with implication semantics introduces clauses of type 1–3 for each
node. We call these clauses the implication-defining clauses. To encode a totalizer with the
equivalence semantics, one also needs to introduce clauses 4–6, which is why we call these
additional clauses equivalence-defining clauses. When encoding a totalizer in the context
of OLL, implication-defining clauses are added to every node, whereas equivalence-defining
clauses may be included optionally at will.

Encoding the cardinality constraints with implication semantics rather than with equiva-
lence semantics reduces the number of needed clauses by half. Most implementations of
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OLL that we are aware of (including [45, 71, 14]) add only implication-defining clauses as
this keeps the size of the encoding smaller. However, as we will see next, the equivalence-
defining clauses enable the internal SAT solver to do more reasoning which, as we will
argue, may be useful in some cases especially when structure-sharing is used.

4.2.2 Unit propagation in totalizers

We now turn to the question of how values are unit propagated within a SAT solver
in the totalizers, i.e., how, given a partial assignment of values to the variables in the
totalizers, values are unit propagated to other yet unassigned variables in the structure.
The implication-defining clauses propagate 1s from nodes to their parents and 0s from
parents to their children. The equivalence-defining clauses propagate 0s from nodes to
their parents and 1s from parents to their children. In addition to this distinction, the
propagation in totalizers can be classified according to whether it is caused by binary or
ternary clauses. Binary clauses cause propagation where one value propagates a value to
another variable. Ternary clauses cause propagation where two given values propagate a
value to the third variable of the clause.

The different cases of child-to-parent propagation are illustrated in Figure 4.6. The single
arrows represent propagation by binary clauses, and two lines combining into one arrow
represent propagation by ternary clauses. For example, the left-most blue arrow in Fig-
ure 4.6 implies that when the left-most child is assigned to 1, the variable on its parent
is also propagated to 1. The blue two-tailed arrow in the figure implies that when the
variables at the tails are assigned to 1s, the variable at the head of the arrow in the root is
also propagated to 1. The question marks in the illustrations represent variables that are
not yet assigned values. Simple cases of parent-to-child propagation, where binary clauses
propagate values are illustrated in Figure 4.7. Cases of parent-to-child propagation where
also ternary clauses propagate values are illustrated in Figure 4.8.

4.2.3 Equivalences and structure-sharing

We will now detail how equivalences combined with structure sharing enables interesting
unit propagations in totalizers.

In the context of OLL, propagation in totalizers can be considered of interest if a value is
propagated to either an output or an input variable. The reason for this is that only the
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Figure 4.6: Child-to-parent propagation on totalizers via implication-defining clauses (left) and
equivalence-defining clauses (right). The values that are fixed by the partial assignment are black, the
values propagated by implication-defining clauses are blue, and the values propagated by the equivalence-
defining clauses are red.
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Figure 4.7: Parent-to-child propagation by binary implication-defining clauses (left) and binary
equivalence-defining clauses (right).
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Figure 4.8: Parent-to-child propagation by both, binary and ternary clauses. Propagation by
implication-defining clauses (left) and equivalence-defining clauses (right).

values of input and output variables are meaningful for the actual MaxSAT instance being
solved. The inner variables are only auxiliary variables to encode the relationship between
the input and output variables: their values do not have any meaningful implications
outside the totalizer, and unlike input and output variables, they are never mentioned in
any clause outside the totalizer.

Structure-sharing somewhat changes the situation. When a number of totalizers share
internal variables, propagating values on these shared internal variables may cause unit
propagation to the outputs of other totalizers sharing the same subtree. An example of
this is shown in Figure 4.9. The values on the left-hand-size totalizer propagate a value
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Figure 4.9: Reasoning between cardinality constraints with equivalence-defining clauses and structure-
sharing.

on the shared subtree of the totalizers, and this value then contributes to propagating a
value on an output variable of the right-hand-side totalizer to propagate. Notice that this
unit propagation requires structure-sharing and both implication and equivalence-defining
clauses.

An intuition of why implication and equivalence-defining clauses are both needed follows
from the following observation. To propagate a value via a shared subtree that could not
be propagated without structure-sharing, the propagated value must originally come from
a parent of the shared node (otherwise the value would be "known" in all totalizers sharing
the node even without structure-sharing). The value must then be propagated from the
shared node to (one of the) other parents. A value being propagated first in parent-to-child
direction and then child-to-parent direction requires both implication and equivalence-
defining clauses. The reason for this is that implication-defining clauses propagate 0s
in the parent-to-child direction only, and 1s in the child-to-parent direction only, while
equivalence-defining clauses propagate similarly but in the opposite direction.

4.2.4 A heuristic for introducing equivalence-defining clauses

Based on the observations that equivalence-defining clauses increase the size of the cardi-
nality constraint encoding but on the other hand may induce additional propagations, we
propose a heuristic algorithm for adding equivalence-defining clauses sparingly to specific
parts of the cardinality constraints. The aim is to balance between the number of clauses
introduced and the propagations enabled. Our algorithm estimates how likely adding
equivalence-defining clauses to some parts is useful and how much it increases the size
of the encoding. We consider an equivalence-defining clause useful when it contributes
propagating value 1 to either an input variable or to a variable on a shared subtree. For
each node in which equivalence-defining clauses could induce this type of propagation we
estimate two parameters:
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1. Cost: How many equivalence-defining clauses should be added in total to enable the
propagation.

2. Likelihood of being useful: How many input variables must be assigned to 1 before
the useful propagation can take place.

The algorithm introduces equivalence-defining clauses when both values (1) and (2) are
below a user-defined parameter.



5 Empirical evaluation

In this chapter, we present an overview of the result from an empirical evaluation of the
proposed structure-sharing technique. We evaluated the impact of structure-sharing on
two different implementations of OLL and PMRES. The results suggest that incorporating
structure-sharing improves solver runtimes and reduces the number of clauses and variables
in the cardinality constraint encodings in practice. We also provide empirical data on the
impact of the equivalence clauses on solver runtimes.

5.1 Implementation

We incorporated the structure-sharing technique into two implementations of OLL and
two implementations of PMRES.2 First, we incorporated structure-sharing into a modified
version of a state-of-the-art implementation of OLL using totalizers, RC2 [45], which is
built on PySAT [44]. We call this solver CGSS. We also extended the RC2-based im-
plementation with PMRES. Furthermore, we reimplemented OLL and PMRES in C++
from scratch and incorporated structure-sharing into the new implementation. We call
this solver CGSS2. The source codes of all implementations are available online. RC2 [45]
was cloned from https://github.com/pysathq/pysat.3 RC2-based CGSS [46] (our mod-
ification of RC2 geared towards enabling structure sharing and WCE) is available from
https://bitbucket.org/coreo-group/cgss.4 The novel C++ implementation, CGSS2,
is available from https://bitbucket.org/coreo-group/cgss2.5

Our implementations use standard techniques in core-guided MaxSAT solving: the so-
called stratification technique [5, 6, 56] hardening [6, 67], so-called core trimming [68,
45], core minimization [45, 60] and core exhaustion techniques [45, 6]. Totalizers are
constructed incrementally [64, 63, 62]. As the underlying SAT solver, we used Glucose
3.0 [13] in the empirical evaluation. The PySAT-based implementations support various
SAT solvers and CGSS2 supports CaDiCal [25] in addition to Glucose 3.0. However, based
on preliminary tests, Glucose 3.0 seemed to result in better runtime performance overall.

2An empirical evaluation of the RC2-based CGSS was published in [46].
3The version of commit b7ac61b0830ab989159a3cd37269fe97916eb325 was used.
4The version of commit 0ca4dcc57b88f834477a349cfd1ffd3c5ca2457c was used.
5The version of commit 28ca2eac99de1e03056a5b771c50d3cfdb2f4d96 was used.

https://github.com/pysathq/pysat
https://bitbucket.org/coreo-group/cgss
https://bitbucket.org/coreo-group/cgss2
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We ran preliminary tests to select a threshold value for terminating the loop of our im-
plementation of the algorithm Build-Card-Constraints-Greedy. We decided to use
THRE = 16 since it resulted in slightly better runtime performance than other values
tested. However, it is possible that further tuning THRE could result in further improve-
ments. For adding equivalence constraints we used 50 as a threshold value for both of the
estimated values, Cost and Likelihood of being useful (recall Section 4.2.4). In preliminary
tests, the impact of different values appeared not very noticeable.

All experiments reported in the following sections were run single-threaded using 2.6-
GHz Intel Xeon E5-2670 processors. A per-instance time limit of 3600 seconds and a
memory limit of 32 GB were enforced. As benchmarks, we used the 989 instances com-
bined from the complete weighted track of 2019 and 2020 MaxSAT Evaluations [18, 15]
with duplicate instances removed. The benchmarks were obtained online from https:

//maxsat-evaluations.github.io/.

5.2 Results

In this section, we present an overview of the results of our empirical evaluation.

Table 5.1 details the solver variants used in the tests. For reproducibility, we list the
exact command line options needed to run each of the variants used in the experiments
in Appendix Table B.1.

5.2.1 Impact of structure-sharing

To analyze the impact of structure-sharing on the runtime performance, we ran experi-
ments without WCE or structure-sharing, with WCE only, and with WCE and structure-
sharing (SS) both enabled. Figure 5.1 illustrates the impact of the techniques on our
two implementations of OLL. It shows the number of solved instances (out of 989) as
a function of a per-instance time limit. First, we point out that our modifications to
RC2 improve its performance. OLL/CGSS solves 701 instances while OLL/RC2 solves
696. Enabling WCE improves the performance further. OLL+WCE/CGSS solves 704
instances while OLL/CGSS solves 701. Finally, the variant with structure-sharing per-
forms better than the variant without. OLL+WCE+SS/CGSS solves 711 instances
while OLL+WCE/CGSS solves 704.

Our C++ implementation outperforms the PySAT-based implementations regardless of

https://maxsat-evaluations.github.io/
https://maxsat-evaluations.github.io/


40

Table 5.1: Solver variants tested in the experimental evaluation

Variant name Explanation

OLL+WCE+SS/CGSS2
C++ implementation of OLL with WCE and SS,
heuristic addition of equivalence-defining clauses

OLL+WCE+SS/CGSS2, all eqs
C++ implementation of OLL with WCE and SS, add
equivalence-defining clauses to all nodes

OLL+WCE+SS/CGSS2, no eqs
C++ implementation of OLL with WCE and SS, add
implication-defining clauses only

OLL+WCE/CGSS2 C++ implementation of OLL with WCE
OLL/CGSS2 C++ implementation of OLL

OLL+WCE+SS/CGSS
PySAT-based implementation of OLL with WCE and SS,
heuristic addition of equivalence-defining clauses

OLL+WCE+SS/CGSS, all eqs
PySAT-based implementation of OLL with WCE and SS,
all equivalence-defining clauses to all nodes

OLL+WCE+SS/CGSS, no eqs
PySAT-based implementation of OLL with WCE and SS,
add implication-defining clauses only

OLL+WCE/CGSS PySAT-based implementation of OLL with WCE

OLL/CGSS
PySAT-based implementation of OLL (modified
version of RC2)

OLL/RC2
Original RC2, PySAT-based implementation
of OLL

PMRES+WCE+SS/CGSS2 C++ implementation of PMRES with WCE and SS
PMRES+WCE/CGSS2 C++ implementation of PMRES with WCE
PMRES/CGSS2 C++ implementation of PMRES

PMRES+WCE+SS/CGSS
PySAT-based implementation of PMRES with
WCE and SS

PMRES+WCE/CGSS
PySAT-based implementation of PMRES with
WCE

PMRES/CGSS PySAT-based implementation of PMRES

which settings are fixed: the variant OLL/CGSS2 outperforms the variant OLL/CGSS
(707 compared to 701 solved instances), the variant OLL+WCE/CGSS2 outperforms
the variant OLL+WCE/CGSS (716 compared to 704 solved instances) and the vari-
ant OLL+WCE+SS/CGSS2 outperforms the variant OLL+WCE+SS/CGSS (720
compared to 711 solved instances). Comparing the C++ variants of OLL with each other
shows a similar trend to the comparison of PySAT-based variants of OLL. The vari-
ant with WCE performs better than the variant without and the variant with structure-
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Figure 5.1: The impact of WCE and structure-sharing on our two implementations of OLL.

sharing performs better than the variants without. OLL/CGSS2 solves 707 instances,
OLL+WCE/CGSS2 solves 716 instances and OLL+WCE+SS/CGSS2 solves 720
instances. The impact of structure-sharing appears to be less pronounced in the C++
variant than in the PySAT-based variant.

We also ran similar experiments on our implementations of PMRES. The results are
illustrated in Figure 5.2. A similar trend as in the results for OLL is visible here, both in
PySAT-based and C++ implementations of PMRES.

The PySAT-based PMRES+WCE/CGSS solves more instances than its variant with-
out WCE, PMRES/CGSS (629 instances compared to 622). Enabling structure-sharing
results in still more solved instances: PMRES+WCE+SS/CGSS solves 644 instances
while PMRES+WCE/CGSS solves 629. As in OLL, C++ variants perform better than
PySAT-based variants regardless of which settings are fixed. PMRES/CGSS2 solves 635
instances, PMRES+WCE/CGSS2 649 and PMRES+WCE+SS/CGSS2 653. The
impact of structure-sharing appears to be more pronounced in PMRES than in OLL,
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Figure 5.2: The impact of WCE and structure-sharing (SS) on our two implementations of PMRES.

especially in the PySAT-based variant.

The results demonstrate that our structure-sharing technique can improve the performance
of core-guided solvers with soft cardinality constraints in practice.

We also analyze the impact of the structure-sharing technique on the size of the cardinality
constraint encodings introduced during search. Figure 5.3 shows the impact of structure-
sharing on the total number of variables and clauses in the totalizers of the final SAT
instance. It provides a comparison of the final number of variables and clauses between
variants OLL+WCE+SS/CGSS2, no eqs and OLL+WCE/CGSS2 on the 716 in-
stances solved within the time limit by both variants. The height of the bar at x-axis
value p gives the number of instances for which the number of clauses (top) or variables
(bottom) introduced by OLL+WCE+SS/CGSS2 was p% of the number of clauses or
variables introduced by OLL+WCE/CGSS2.

On a large number of instances, structure-sharing does not cause significant changes to the
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Figure 5.3: The impact of structure-sharing on the number of variables on totalizers (top) and the num-
ber of implication clauses (bottom), comparing OLL+WCE+SS/CGSS2 and OLL+WCE/CGSS2
on the 716 instances solved by both

number of clauses or variables. On 617 instances out of 716, the final number of clauses
in totalizers of OLL+WCE+SS/CGSS2 is 95%–105% of the final number of clauses
in totalizers of OLL+WCE/CGSS2. When structure-sharing makes more difference,
in most cases the result is fewer clauses and variables in totalizers. On 79 out of 716
instances, the variant with structure-sharing resulted in less than 95% clauses compared
to the variant without, whereas on 20 instances resulted in more than 105% clauses. The
most likely reason why sometimes the variant with structure-sharing technique ends up
with larger formula is that the differences in the transformations to the formula have an
impact on which cores the SAT solver returns. SAT solver may sometimes return larger
cores which leads to larger cardinality constraint encodings. The number of variables
follows a similar trend to the number of clauses.

Figure 5.4 shows similar data for the cardinality constraints of PMRES on the 648 instances
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Figure 5.4: The impact of structure-sharing on the number of variables (top) and the number of clauses
(bottom) of the cardinality constraints of PMRES, comparing PMRES+WCE+SS/CGSS2 and PM-
RES+WCE/CGSS2 on the 648 instances solved by both.

solved by both PMRES+WCE+SS/CGSS2 and PMRES+WCE/CGSS2. On 539
out of 648 instances the final number of clauses was 95%–105%. On 81 out of 648 instances
the final number of clauses was less than 95% and on 28 out of 648 instances more than
105%. The number of variables follows a similar trend.

The results suggest that the structure-sharing technique has a notable impact on a rela-
tively small number of instances. On a large number of instances, the impact of structure-
sharing on the size of the cardinality constraints appears to be relatively small. When
there is a larger impact, using structure-sharing more often results in a smaller encoding
of cardinality constraints.
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Figure 5.5: The impact of selective addition of equivalence constraints to the number of clauses compared
to adding implication-defining clauses only.
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Figure 5.6: The impact of selective addition of equivalence-defining clauses to the number of clauses
compared adding all equivalence-defining clauses.

5.2.2 Impact of the equivalence constraints

We also ran experiments to evaluate the impact of different strategies for adding equivalence-
defining clauses on our implementations of OLL. We tested variants that added equivalence-
defining clauses to every node, variants that added implication-defining clauses only and
variants adding equivalence-defining clauses heuristically.

Figure 5.5 illustrates the impact of our heuristic for adding equivalence-defining clauses to
the number of clauses in totalizers compared to a strategy of adding implication-defining
clauses only. The height of the bar at x-axis value p gives the number of instances for which
the number of clauses in cardinality constraints introduced by OLL+WCE+SS/CGSS2



46

was p% of the number of clauses introduced by OLL+WCE+SS/CGSS2, no eqs. On a
relatively large number of instances (170 out of 716) the number of clauses in the totalizers
of OLL+WCE+SS/CGSS2 is 95%–105% of the number inOLL+WCE+SS/CGSS2,
no eqs. On other instances, the number of clauses in OLL+WCE+SS/CGSS2 is
mainly larger.

Figure 5.6 shows how the selective addition of equivalence-defining clauses impacts the
final number of clauses compared to adding all equivalence-defining clauses. Again, the
height of the bar at x-axis at value p gives the number of instances for which the number of
clauses introduced by OLL+WCE+SS/CGSS2 was p% of the number of implication-
defining clauses introduced by OLL+WCE+SS/CGSS2, all eqs. On 348 out of 716
instances, the number of clauses introduced by OLL+WCE+SS/CGSS2 is 95%–105%
of the number clauses introduced by OLL+WCE+SS/CGSS2, no eqs. This suggests
that in many cases the heuristic algorithm adds equivalence-defining clauses to every node.
This could happen at least in cases where all the cores are small enough.

Another peak visible in Figure 5.6 is around 50%. The peak suggests that there is also a
relatively large number of instances where the heuristic strategy adds a minimal number
of equivalence-defining clauses. Recall that adding no equivalence-defining clauses at all
results in an encoding that has half the clauses compared to adding all equivalence-defining
clauses. Overall Figure 5.5 suggests that our strategy of adding equivalence-defining
clauses does indeed find many situations where adding equivalence-defining clauses is con-
sidered useful. Figure 5.6 in turn, suggests that in many situations our strategy considers
not adding equivalence-defining clauses a better option.

Figure 5.7 shows the performance of solver variants with implication-defining clauses only,
all equivalence-defining clauses and the selective addition of equivalence-defining clauses.
On PySAT-based variants, the selective addition technique appears to improve the perfor-
mance. The variant that adds no equivalence-defining clauses (OLL+WCE+SS/CGSS,
no eqs) solves 705 instances, the variant that adds equivalence-defining clauses to ev-
ery node (OLL+WCE+SS/CGSS, all eqs) solves 709 instances and the variant that
adds equivalence-defining clauses heuristically (OLL+WCE+SS/CGSS) solves 711 in-
stances.

The results of PySAT-based variants suggest that our heuristic algorithm is successful.
However, the results of C++ implementation somewhat challenge this. The variant
with heuristic addition of equivalence-defining clauses (OLL+WCE+SS/CGSS2) solves
only one instance more compared to a variant adding implication-defining clauses only
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Figure 5.7: The impact of equivalence constraints on our two implementations of OLL.

(OLL+WCE+SS/CGSS2, no eqs) and to a variant adding all equivalence-defining
clauses (OLL+WCE+SS/CGSS2, all eqs).

More study should be done on the impact of the equivalence constraints before certain
conclusions can be reached about their usefulness. The question of whether the differences
in the results of our novel implementation here compared to results of the PySAT-based
variants have to do with differences in implementation or in language or due to some other
reason is outside the scope of this thesis. It is also possible that more suitable value choices
could provide further improvements for the C++ implementation.



6 Conclusions

This thesis focused on practical algorithms for solving NP-hard real-world optimization
problems. In particular, we proposed improvements to so-called core-guided algorithms for
the declarative optimization paradigm of MaxSAT. The main contribution is a structure-
sharing technique aiming at improving the performance of core-guided algorithms for
MaxSAT in two ways: by decreasing the size of the cardinality constraints added to
the working instance, and by improving the propagation properties of the cardinality con-
straints thus allowing more effective reasoning over different cores.

We discussed the potential challenges concerning the efficient realization of structure-
sharing and proposed heuristics to overcome the difficulties. We proposed a general-
ized version of the cardinality constraints employed by PMRES to enable more efficient
structure-sharing. To select efficiently what to share, we proposed a greedy algorithm. We
also proposed a heuristic algorithm for selectively adding equivalence-defining clauses to
some parts of the cardinality constraints.

We evaluated empirically the impact of the proposed technique on the performance of
different core-guided solvers. The result demonstrated that structure-sharing can decrease
the number of variables and the number of clauses in the added constraints and improve
runtimes, even though the improvements seem to concentrate on a relatively small number
of instances. The results concerning the impact of the equivalence constraints highlighted
the need for additional research on the subject.

Concerning possible future work related to the work presented in this thesis, the following
three directions would be worth considering.

(1) Incorporating structure-sharing into other cardinality constraint encodings and other
core-guided MaxSAT algorithms. In the original publication of OLL for MaxSAT [65],
three different cardinality constraint encodings were considered: sorting networks [38],
sequential counters [77] and totalizers [20]. In a later work by different authors [71] 4-
way merge selection networks [48] and direct networks [12] were selected for an efficient
implementation of OLL. Concerning other core-guided algorithms than OLL and PMRES,
to the best of our understanding, structure-sharing could be incorporated at least to
WPM3 [10] and K [2]
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(2) Sharing structures with extra variables. When we discussed the structure-sharing, we
considered sharing subtrees in a way that all input variables in a shared subtree are in the
cores for which the shared subtree is constructed. However, allowing extra variables may
in some cases enable a smaller total structure without affecting the correctness. Especially,
this is worth considering when looking for reusable structures from previously constructed
cardinality constraints.

(3) More in-depth understanding of the propagation properties of implication-defining and
equivalence-defining clauses. The results of the empirical evaluation we run did not give
clear results about how useful the equivalence-defining clauses are and how they should
be added in order to achieve the best performance (or does it matter at all). More study
is needed on this to reach conclusions. The question of the impact equivalence constraints
in PMRES might also be worth considering.

(4) Using structure-sharing in other approaches to MaxSAT solving. Structure-sharing
could be applied in the context of the IHS approach for MaxSAT extended with abstract
cores [21]. A form of structure-sharing could also be incorporated into the model-improving
approach, but in that context, the use of structure-sharing would be somewhat different,
possibly more like the approach proposed for pseudo-Boolean constraints in the context
of ASP [27].



A Proofs for generalized PMRES

In this appendix, we study counting-gpmres cardinality constraint, defined as follows.

Definition A.1.1. counting-gpmres defines a set of output variables for a set of input
variables κ with semantics oS1,S2

κ ↔
(∨

vi∈S1 vi ∧
∨
vj∈S2 vj

)
where S1 ⊆ κ and S2 ⊆ κ,

|S1| > 0, |S2| > 0 in a way that satisfies the counting property, i.e., assigning exactly k
input variables to 1 enforces exactly k − 1 output variables to 1. (recall Definition 3.2.1).

We will show that any way of selecting the subsets S1 and S2 of counting-gpmres
forms a structure that can be viewed as a binary tree. In particular, this implies that
the gpmres-enc encoding introduced in Chapter 3 is expressive enough to capture all
ways of selecting the sets S1 and S2 to each output variable that satisfy the definition of
counting-gpmres.

In the following, we view oS1,S2 ≡ oS2,S1 .

Consider now an arbitrary instantiation of counting-gpmres. The fact that it can be
viewed as a binary tree follows from the following results.

Lemma A.1.1. The number of the output variables of counting-gpmres for |κ| input
variables must be |κ| − 1.

Proof. Assigning all |κ| input variables to 1 forces every output variable to 1 (follows
from the semantics of the output variables). In such a situation, the number of output
variables assigned to 1 should be |κ| − 1 (counting property). Thus the total number of
output variables must be |κ| − 1.

Lemma A.1.2. Let oS1,S2
κ be an output variable of counting-gpmres. There is no

variable v ∈ κ for which v ∈ S1 and v ∈ S2, i.e., S1 and S2 are disjoint.

Proof. Otherwise assigning only v of κ to 1 would force the output variable oS1,S2
κ to 1,

breaking the counting property.

Lemma A.1.3. For any two input variables x ∈ κ and y ∈ κ, counting-gpmres has
exactly one output variable oS1,S2

κ , for which x ∈ S1 and y ∈ S2
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Proof. Otherwise assigning exactly x and y of κ to 1 will not force exactly one output
variable to 1 (which would break the counting property).

We call the uniquely defined output variable defined in Lemma A.1.3 for a pair (x, y) of
input variables the capturing output variable. Informally, the capturing output variable
will be exactly the one enforced to 1 when x and y are assigned to 1. In the following,
we use function co(x, y) to denote the capturing output variable for a pair of variables:
co(x, y) = oSx,Sy where x ∈ Sx and y ∈ Sy.

Lemma A.1.4. For any three input variables x, y, z ∈ κ, the pairs (x, y), (x, z), (y, z)
must have exactly two capturing output variables. Two of the pairs must have the same
capturing output variable.

Proof. Otherwise assigning exactly x, y and z of κ to 1 will not enforce exactly two output
variables to 1.

Lemma A.1.5. Let oS1,S2
κ and oS3,S4

κ be two output variables of counting-gpmres. If
there exists x ∈ S1 and y ∈ S2 for which x, y ∈ S3, then S1 ∪ S2 ⊆ S3.

Proof. If S1∪S2 = {x, y} the case is trivial. Assume z ∈ S1∪S2. Without loss of generality,
assume z ∈ S1. We show that z ∈ S3. Assume w ∈ S4. Since co(z, y) 6= co(y, w), either
co(z, w) = co(z, y) or co(z, w) = co(y, w) (Lemma A.1.4). Since co(x,w) = oS3,S4

κ and
x ∈ S1, by Lemma A.1.3 w /∈ S2 (consider output oS1,S2

κ ), implying co(z, w) 6= co(z, y) =
oS1,S2
κ . Thus co(z, w) = co(y, w) and z ∈ S3.

Proposition A.1.6. Let oS1,S2
κ and oS3,S4

κ be two output variables of counting-gpmres.
If (S1 ∪ S2) ∩ (S3 ∪ S4) is not empty then either S1 ∪ S2 ⊆ S3, S1 ∪ S2 ⊆ S4, S3 ∪ S4 ⊆ S1

or S3 ∪ S4 ⊆ S2.

Proof. Let x ∈ (S1∪S2)∩ (S3∪S4). Without loss of generality, assume x ∈ S1 and x ∈ S3.
Let y be some variable in S2 and z some variable in S4. Since co(x, y) 6= co(x, z), either
co(y, z) = co(x, y) meaning z ∈ S1 or co(y, z) = co(x, z) meaning y ∈ S3.

Assume there exists a variable y ∈ S2 for which y ∈ S3. In that case S1 ∪ S2 ⊆ S3

(Lemma A.1.5). Similarly, if there exists z ∈ S4 for which z ∈ S1, then S3 ∪ S4 ⊆ S1.

From Proposition A.1.6 it follows that the output variables of counting-gpmres can be
viewed as forming a binary tree like structure as follows. If for two output variables, oS1,S2

and oS3,S4 , (S1 ∪ S2) ⊆ S3 or (S1 ∪ S2) ⊆ S4, oS1,S2 is viewed as a descendant of oS3,S4 .
Since there are two sets for each output variable that define the descendants, the forming
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tree is a binary tree. Notice that for each pair of output variables, oS1,S2 and oS3,S4 , either
one is a descendant of the other or S1∪S2 and S3∪S4 are distinct. Since there are |κ|− 1
output variables (Lemma A.1.1) and |κ| input variables (leaves), the tree is complete and
connected. Thus gpmres-enc encoding can express any counting-gpmres.



B Command line options for solver
variants

For reproducability, Table B.1 details the exact command line options needed to run each
of the solver variants in our empirical evaluation.

Table B.1: Solver variants and their parameters

Variant name Command and parameters
OLL+WCE+SS/CGSS2 ./cgss2 -p instance.wcnf[.gz]

OLL+WCE+SS/CGSS2, all eqs ./cgss2 -p --all-eqs instance.wcnf[.gz]

OLL+WCE+SS/CGSS2, no eqs ./cgss2 -p --no-eqs instance.wcnf[.gz]

OLL+WCE/CGSS2 ./cgss2 -p --no-ss --no-eqs instance.wcnf[.gz]

OLL/CGSS2 ./cgss2 -p --no-ss --no-wce instance.wcnf[.gz]

OLL+WCE+SS/CGSS python rc2.py -plxamW -T 1,16 -E 50,50 instance.wcnf[.gz]

OLL+WCE+SS/CGSS, all eqs python rc2.py -plxamWQ -T 1,16 instance.wcnf[.gz]

OLL+WCE+SS/CGSS, no eqs python rc2.py -plxamW -T 1,16 instance.wcnf[.gz]

OLL+WCE/CGSS python rc2.py -plxamWn instance.wcnf[.gz]

OLL/CGSS python rc2.py -plxamWnN instance.wcnf[.gz]

OLL/RC2 python rc2.py -c b instance.wcnf[.gz]

PMRES+WCE+SS/CGSS2 ./cgss2 -p --pmres instance.wcnf[.gz]

PMRES+WCE/CGSS2 ./cgss2 -p --pmres --no-ss instance.wcnf[.gz]

PMRES/CGSS2 ./cgss2 -p --pmres --no-ss --no-wce instance.wcnf[.gz]

PMRES+WCE+SS/CGSS python rc2.py -plamWP -T 1,16 instance.wcnf[.gz]

PMRES+WCE/CGSS python rc2.py -plamWnP instance.wcnf[.gz]

PMRES/CGSS python rc2.py -plamWnNP instance.wcnf[.gz]
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