
Master’s thesis

Master’s Programme in Computer Science

In-depth comparison of BDD testing
frameworks for Java

Jone Lång

November 11, 2022

Faculty of Science
University of Helsinki

Contact information

P. O. Box 68 (Pietari Kalmin katu 5)
00014 University of Helsinki,Finland

Email address: info@cs.helsinki.fi
URL: http://www.cs.helsinki.fi/

Faculty of Science Master’s Programme in Computer Science

Jone Lång

In-depth comparison of BDD testing frameworks for Java

Dr. Antti-Pekka Tuovinen

Master’s thesis November 11, 2022 52 pages, 14 appendix pages

Software testing, Test automation, BDD, Java

Helsinki University Library

Software study track

Test automation has a crucial role in modern software development. Automated tests are im-
mensely helpful in quality assurance, catching bugs and giving information on the state of the
software. There are many existing frameworks that are designed to assist in creating auto-
mated tests. The frameworks can have massively varying purposes and targeted applications
and technologies. In this paper, we aim to study a selected group of Behavior Driven Devel-
opment (BDD) testing frameworks, compare them, identify their strengths and shortcomings,
and implement our own testing framework to answer the discovered challenges. Finally, we will
evaluate the resulting framework and see if it can meet its requirements. As a result we’ll have
a better understanding in what kind of tools there are for automating behavior driven tests,
what type of different approaches have been and can be taken to implement such frameworks,
and what are the benefits and suitable uses of each tool.

ACM Computing Classification System (CCS)
Software and its engineering → Software creation and management → Software verification and
validation → Software defect analysis → Software testing and debugging

Software and its engineering → Software notations and tools

HELSINGIN YLIOPISTO – HELSINGFORS UNIVERSITET – UNIVERSITY OF HELSINKI
Tiedekunta — Fakultet — Faculty Koulutusohjelma — Utbildningsprogram — Study programme

Tekijä — Författare — Author

Työn nimi — Arbetets titel — Title

Ohjaajat — Handledare — Supervisors

Työn laji — Arbetets art — Level Aika — Datum — Month and year Sivumäärä — Sidoantal — Number of pages

Tiivistelmä — Referat — Abstract

Avainsanat — Nyckelord — Keywords

Säilytyspaikka — Förvaringsställe — Where deposited

Muita tietoja — övriga uppgifter — Additional information

Contents

1 Introduction 1

2 Software testing and Behavior Driven Development 3
2.1 Introduction to software testing . 3
2.2 Using tests to drive software development 4
2.3 What is BDD? . 5

3 Investigating BDD testing frameworks 11
3.1 JBehave . 11

3.1.1 Implementation . 11
3.1.2 Features . 14
3.1.3 Analysis . 15

3.2 Cucumber . 15
3.2.1 Implementation . 15
3.2.2 Features . 17
3.2.3 Analysis . 18

3.3 Concordion . 18
3.3.1 Implementation . 18
3.3.2 Features . 21
3.3.3 Analysis . 22

3.4 Gauge . 22
3.4.1 Implementation . 22
3.4.2 Features . 24
3.4.3 Analysis . 25

4 Comparison of BDD frameworks 26
4.1 Comparison . 26
4.2 Discoveries . 29

5 Building a new BDD framework 33
5.1 Introducing the bumbleB framework . 33
5.2 Implementation . 33
5.3 Features . 38

6 Evaluating the new framework 41
6.1 Are the requirements met? . 41

6.1.1 Specific but extensible BDD syntax for consistency and flexibility . 41
6.1.2 Java-based test cases for easiness 41
6.1.3 Annotation processor for collaboration and maintainability 44
6.1.4 Unit testing support for robustness 45
6.1.5 JUnit for existing features and integrations 47

6.2 General discussion . 48

7 Conclusions 49

Bibliography 50

A bumbleB and Cucumber experiment: instructions for the coding as-
signment i

B bumbleB and Cucumber experiment: full survey questions, choices
and answers (n=4)

1 Introduction

BDD is a software development strategy based on writing automated acceptance tests
before implementing the actual feature. The tests are specifically made to be understand-
able for people in different roles and written in a way that emphasizes the behavior of the
system. There are various test automation tools and frameworks that support BDD. The
tools have varying purposes, and each has its limitations. The goal of this study was to
inspect and compare some of these tools, learn about different approaches to implementing
a BDD framework and find out the strengths and weaknesses of each solution.

This study was conducted in the form of design science. Design science research (DSR)
is a problem-solving paradigm that seeks to enhance human knowledge by creating new
innovative artifacts and generating design knowledge. In DSR, environment refers to the
problem space in which the phenomena under study reside (Brocke et al., 2020). In the
case of this study, the environment consists of software developers and companies that are
leveraging Behavior Driven Development (BDD) in their development process, as well as
the existing BDD automation frameworks. Based on the identified weaknesses we saw a
need for new BDD testing tool. From tools that support the Java language, probably the
most popular ones are Cucumber (Cucumber) and JBehave (JBehave). Other frequently
used and mentioned tools that are similar in design include Concordion (Concordion) and
a newer tool called Gauge (Gauge). In addition, the tools Spock (Spock) and easyb (easyb)
were considered, but ultimately left out as they require test specification to be written in
Groovy.

We chose to set the scope on pure Java implementations and focused on the four first-
mentioned tools going forward. The four frameworks were first studied individually and
then compared. From the comparison we identified some differences between the tools.
Each tool was found to have its shortcomings. It was also noted that all of the four tools
shared some common weaknesses. Based on these findings, we built a new framework to
answer the challenges. Finally, the new framework was evaluated. The new framework
was found to meet most of the requirements that were set for it and can be used as an
alternative way of implementing BDD. The new tool is comparatively simple, and also
lacking in terms of supported features and quality, as it was implemented in a rather short
period of time. It might be more sensible to view the tool more as a proof-of-concept than

2 CHAPTER 1. INTRODUCTION

an actual mature framework.

Chapter 2 introduces software testing and BDD to give a better understanding on BDD
and BDD frameworks. In chapter 3 we inspect each tool individually, examining their
implementation and features. In chapter 4 we do a comparison between the tools to
identify potential shortcomings and limitations. In chapter 5 we use these findings as
requirements to construct a new BDD testing framework that attempts to answer the
potential challenges of the existing frameworks under study. Chapter 6 is used to verify
that the requirements for the new framework are met, and to compare the new tool with
the old ones. Finally, chapter 7 summarizes the findings and results of this study.

2 Software testing and Behavior Driven
Development

This chapter starts by discussing software testing and test automation in general. It later
introduces Test Driven Development (TDD) and Acceptance Test Driven Development
(ATDD), which are both predecessors of BDD and a crucial part of its emergence. The
later half of the chapter is focused on introducing BDD, its central concepts, and common
requirements it sets for BDD frameworks.

2.1 Introduction to software testing

Software testing has an important role in developing software. Testing is one of the most
expensive and laborious tasks in software projects. However, in the long run it can save
in costs by preventing bugs and errors from entering production (Kasurinen et al., 2010).
The role of testing can be said to only increase as the requirements and standards for
software grow. There are lots of different ways to categorize testing, perhaps the most
basic of which is to split it into manual and automated testing. As the size and complexity
of software becomes ever larger, manual testing alone is usually not enough to achieve
sufficient quality control. Manual testing refers to a more traditional form of testing,
where the person executing the tests has to manually use the program and perform the
needed steps to ensure that the program works as intended. Manual testing is slow and
therefore expensive. It also doesn’t allow inspecting the internal structures of the program
during its execution. It is however an excellent way to find bugs and errors, or to verify
that some specific feature works (Kasurinen et al., 2010). Humans’ creativity and grasp
of context helps manual testers perform good, sensible tests and identify issues. Thus,
manual testing is still an important part of the testing process, which does not seem to
be changing any time soon.

The second approach to software testing is test automation. With automation, tests can
be performed quickly and efficiently, always exactly the same way, and relatively reliably.
Once the test has been created, it can be executed regularly, even daily, and it will provide
valuable information about the state of the software. Once the test has been implemented,

4CHAPTER 2. SOFTWARE TESTING AND BEHAVIOR DRIVEN DEVELOPMENT

it doesn’t usually need to be touched too much afterwards, but occasionally it might need
to be updated as the requirements or behavior of the software changes. The development
and decline in price of cloud services and computing resources make it possible to run
large test suites efficiently and regularly, making test automation an even more tempting
option. Furthermore, test automation enables so called white-box testing, where the
functionality of the inner constructs of a program is tested by leveraging knowledge of its
code and implementation details (Nidhra and Dondeti, 2012). Test automation is rarely
suitable for tasks that are seldom performed, as the creation of automated tests is slow and
troublesome so the up-front cost is high (Kasurinen et al., 2010). The value of automation
lies in repetition, generating value in the long run.

As mentioned earlier, there are more ways to categorize testing. For example, testing can
be further divided into unit testing, integration testing, system testing and acceptance
testing (Leung and Wong, 1997). Unit tests test a single class or component (Leung
and Wong, 1997), while integration tests test the interactions between modules and their
interfaces (Leung and White, 1990). These are both white-box testing methods, although
Nidhra et al. state that black-box testing techniques can be applied to integration tests
too (Nidhra and Dondeti, 2012). System tests can be seen as larger integration tests that
also include the user interface, and use it to test the software similarly to how an end
user would. They test end to end functionality of the software as a whole, based on its
specifications (Briand and Labiche, 2002). Acceptance tests are used to verify that the
application meets the business requirements of a specification (Miller and Collins, 2001).
They also attempt to ensure that the system works correctly from the customer’s point
of view (Viktor and Alex, 2018a). Both system testing and acceptance testing are in turn
black-box testing methods, where the test code has no visibility of or knowledge about
the implementation details of the system being tested (Nidhra and Dondeti, 2012).

2.2 Using tests to drive software development

There are also many ways to utilize test automation in software projects. Test Driven
Development (TDD) is a software development strategy that is based on writing automated
unit tests prior to implementing the actual functional code. It relies on very short iterations
of writing tests before writing code, refactoring and continuous integration. New code
should only be written if an automated test fails. TDD aims to improve code quality and
reduce code duplication (Janzen and Saiedian, 2005).

2.3. WHAT IS BDD? 5

Acceptance Test Driven Development (ATDD) is a type of TDD where acceptance tests
drive the development process. These tests can be automated and are used to represent
stakeholders’ requirements. ATDD can help developers transform requirements into test
cases and verify the system’s functionality. A requirement is satisfied once all acceptance
criteria or its associated tests are satisfied (Solis and Wang, 2011). TDD and ATDD are
widely used as they have been shown to improve software quality and productivity (Janzen
and Saiedian, 2008; Gupta and Jalote, 2007). However, both TDD and ATDD still have
their share of issues. Many developers get confused about where to start, what to test,
what not to test, how much to test, how to understand why a test fails and what to call
their tests (Terhorst-North, 2006). What is more, both TDD and ATDD are focused on
verifying the state of the system rather than its desired behavior. Another issue is that the
test code is tightly coupled with the systems’ implementation (Solis and Wang, 2011). In
addition, these approaches use unbounded and unstructured natural language to describe
test cases, making them difficult to understand (Terhorst-North, 2006).

2.3 What is BDD?

Behavior Driven Development (BDD), which emerged from TDD, can be regarded as the
evolution of TDD and ATDD (Solis and Wang, 2011). BDD can also be described as a
flavor of TDD (Viktor and Alex, 2018b). It’s an “outside-in” methodology that starts
by identifying business outcomes, and then drills down into the features that will achieve
those outcomes. BDD is built on the idea that an idea for a requirement can be turned
into implemented, tested and production-ready code effectively, as long as the require-
ment is specific enough that everyone knows what to do and from which they can all agree
a common definition of done (Terhorst-North, 2007). BDD is based on the same basic
principle of writing tests before the implementation code (Viktor and Alex, 2018b). A
major difference between TDD and BDD is the life cycle duration. In TDD, the failing
unit tests are fixed in a very quick manner, while in BDD it often takes hours or days
to get from a failing test to a passing one (Viktor and Alex, 2018b). Another thing that
separates TDD and BDD is the target audience. While TDD and its unit tests are aimed
at developers, BDD intends to involve a wider group of people in different roles (Vik-
tor and Alex, 2018b). BDD emphasizes behavior over technical implementation, focusing
on defining fine-grained specifications of the behavior of the System Under Test (SUT)
(Solis and Wang, 2011). Its main goal is to derive executable specifications of a system

6CHAPTER 2. SOFTWARE TESTING AND BEHAVIOR DRIVEN DEVELOPMENT

(Terhorst-North, 2006; Solis and Wang, 2011). Although BDD relies on ATDD, it has
some advantages over the latter. In BDD, tests are clearly written and easy to under-
stand, since BDD provides a specific ubiquitous language for specifying tests (Solis and
Wang, 2011). BDD can help close the gap between business people and technical people
by encouraging collaboration across roles, increasing feedback and producing documenta-
tion that is automatically checked against the behavior of the system (Behaviour-Driven
Development). It drives the development and makes it easier to understand what should
be done (Viktor and Alex, 2018b).

BDD can be applied to different levels of testing. Its principles can be used even on unit
testing level, but its benefits are better on higher levels of testing where the tests can
be written and understood by everyone. While TDD can be described as an inside-out
approach that starts building up from units towards functionalities, BDD can be seen as
outside-in, as it starts with features and builds towards units (Viktor and Alex, 2018b).

BDD uses a story as the basic unit of functionality and delivery. Stories are the result of
conversations between project stakeholders, business analysts, developers and testers. A
story encompasses a feature and defines its scope and acceptance criteria (Terhorst-North,
2007). It’s a description of a requirement and its business benefit, as well as a set of criteria
by which everyone can agree that it’s done. BDD provides a structure for formatting a
story. The template can be seen in figure 2.1. A story consists of a title, a narrative and
acceptance criteria, which are realised as scenarios. The title should describe an activity,
and the narrative should include a role, a feature and a benefit. The scenarios consists
of three types of steps: context steps, event steps, and outcome steps, represented by the
keywords given, when and then. The scenario titles should say how the scenarios differ
from one another (Terhorst-North, 2007). Figure 2.2 shows a concrete example of a story
with two scenarios. The story is about an account holder withdrawing cash from an ATM.
From the two scenario titles we can see that the differences between them is whether the
account has sufficient funds, leading to different outcomes. In reality, there would likely
be more scenarios to consider, but the example is kept short for the sake of simplicity.

2.3. WHAT IS BDD? 7

Title (one line describing the story)

Narrative:

As a [role]

I want [feature]

So that [benefit]

Acceptance Criteria: (presented as Scenarios)

Scenario 1: Title

Given [context]

And [some more context]...

When [event]

Then [outcome]

And [another outcome]...

Scenario 2: ...

Figure 2.1: An example story template by Daniel Terhorst-North (Terhorst-North, 2007)

8CHAPTER 2. SOFTWARE TESTING AND BEHAVIOR DRIVEN DEVELOPMENT

Story: Account Holder withdraws cash

As an Account Holder

I want to withdraw cash from an ATM

So that I can get money when the bank is closed

Scenario 1: Account has sufficient funds

Given the account balance is $100

And the card is valid

And the machine contains enough money

When the Account Holder requests $20

Then the ATM should dispense $20

And the account balance should be $80

And the card should be returned

Scenario 2: Account has insufficient funds

Given the account balance is $10

And the card is valid

And the machine contains enough money

When the Account Holder requests $20

Then the ATM should not dispense any money

And the ATM should say there are insufficient funds

And the account balance should be $10

And the card should be returned

Figure 2.2: An example of a concrete story by Daniel Terhorst-North (Terhorst-North, 2007)

To support the use of BDD in projects, multiple BDD testing frameworks have been cre-
ated. These frameworks support the BDD syntax and produce a human-readable output.
Most such tools also use ubiquitous language as their inputs, meaning that the tests them-
selves are defined in plain text, often with a restricted syntax. The tools can have varying
purposes; some tools are designed for unit testing while others are mainly intended for
system testing. BDD frameworks aim to make it easier to adopt BDD in the development
process and create tests as defined by BDD.

BDD tools have some key pieces they require to function. If the tool uses plain text

2.3. WHAT IS BDD? 9

for creating tests, as is the case for many BDD tools, there needs to be some kind of
mapping rules to map the textual steps to executable methods. This is usually done by
annotating the step implementation methods with a step-annotation that has a string
value. The annotation value can then be used to find the correct method to execute for
each step. In order to use parameters in steps, the textual values need to be converted
to the appropriate type of objects. This is done via parameter converters, that create the
objects that will be used when calling the actual step methods. To be able to run the tests,
these tools need a test runner. A test runner offers the functionality needed to execute the
tests and control the execution. Normally test runners will also output some information
about what is being executed and the test results. Another common requirement is a test
reporter, that will generate a summary of what was executed and what are the results of
each test execution.

In addition, BDD frameworks are often configurable and in some cases a lot of the config-
uration is required from the user for the tool to function. Examples could be configuring
the path to the step implementations so that the tool knows where to look for them,
specifying reporting tools, or adding customised parameter converters to support custom
types. For BDD frameworks to be maintainable and easier to use, they often rely on IDE
plugins to help navigating between stories and step implementations within them.

Automated tests are normally executed regularly in an automated fashion as part of the
CI/CD pipeline. What is more, the tests are usually run in large groups referred to as
test suites, where a large amount of tests is executed, partly in parallel. To support this,
BDD frameworks utilise build tools or separate test runners so that the tests can be run
via simple command-line commands. The frameworks support the creation of test suites
and are normally implemented so that parallel execution is possible.

Figure 2.3: Example of a CI/CD pipeline.

Figure 2.3 illustrates a somewhat typical CI/CD pipeline. In the context of this example,
the difference between continuous integration and continuous delivery is the transition
from the test environment to the production environment. In continuous integration this
is done manually, while in continuous delivery the process is automated and often more

10CHAPTER 2. SOFTWARE TESTING AND BEHAVIOR DRIVEN DEVELOPMENT

frequent. As seen in the figure, unit tests, and sometimes integration tests as well, are
run when building the project with the new code changes. It is possible that these lower
level tests are written as BDD tests. The new changes are then reviewed. Later on
in the Automated tests phase the slower, higher level tests are run. These typically
contain the tests where BDD is most utilised, as its abstraction and universal language is
perhaps most convenient to apply on higher levels of testing. It is also reasonable to place
integration tests in this phase if the test suite is large. After the automated tests, manual
testing processes are executed before the changes are deployed to production. Some type
of monitoring is typically performed in production environments to further enhance the
feedback loop.

With test suites and simple run commands, including BDD to tests to the pipeline is
straightforward. Parallel execution helps speed up the pipeline and hence shortens the
feedback loop, so that any issues can be resolved faster.

3 Investigating BDD testing frameworks

In this chapter each of the four studied BDD frameworks is inspected individually. The
goal is to learn about their implementation and features to be able to do an in-depth
comparison in the next chapter.

3.1 JBehave

JBehave is a popular open source BDD framework for Java (JBehave). It is used for creat-
ing automated acceptance tests with textual user stories written in a BDD syntax. JBehave
was originally written to be a replacement for JUnit that would remove any reference to
testing and replace it with a vocabulary built around verifying behavior (Terhorst-North,
2006).

3.1.1 Implementation

JBehave is a pure Java implementation that uses special textual story files ending in .story
to represent user stories. The stories consist of meta data, a title, a narrative, one or more
scenarios and human-readable statements that JBehave refers to as elements (JBehave).
There are two major components that are required for JBehave to run the stories - runners
and steps (Viktor and Alex, 2018b). A runner or run configuration is a class that is used
to parse a story, run all the scenarios, and generate a test report. It acts as the entry
point to a test and is the actual executable file required to run the test. Steps are Java
methods that match the written steps in scenarios (Viktor and Alex, 2018b). JBehave
uses annotations to bind the textual steps in Story-files to Java methods in Steps-files
(JBehave).

Stories can be written in either the Gherkin syntax or a custom JBehave syntax. Gherkin
is a business readable domain specific language used by multiple BDD frameworks, that is
developed by Cucumber. It enables the writing of specifications in plain English (Härlin,
2016). The JBehave syntax is very similar, and supports a lot of the same features. It also
has some additional features related to defining the scope of an element, namely being able
to set the scope on story and step levels in addition to scenario level, as well as supporting

12 CHAPTER 3. INVESTIGATING BDD TESTING FRAMEWORKS

After-elements, making it possible to execute code mapped to an element after the given
scope in addition to the default way of executing it beforehand (JBehave). JBehave stories
can also contain arbitrary meta data.

Figure 3.1 shows an example of a JBehave story file. The story starts off with a tex-
tual narrative, that is only used to enhance readability. It then defines a single scenario
for calculating the sum of two numbers. The following three lines, starting with “Given”,
“When” and “Then”, are steps that are mapped to Java methods annotated with a match-
ing String.

Narrative:

As a user

I want to use a calculator for calculations

So that I don’t have to do them by hand

Scenario: The calculator can calculate the sum of two numbers correctly

Given the user inputs the numbers 1 and 2

When the user chooses the sum function

Then the result is 3

Figure 3.1: An example of calculator_story.story with a single scenario

Figure 3.2 shows a Java file that implements the steps used in the example scenario. The
class contains three methods, each marked with an annotation that matches the textual
steps in the story files. The annotations can also contain parameters, marked with a dollar-
sign ($). The method inputNumbers takes two integers as parameters, and calls the input
function of a Calculator object with the same parameters. The chooseFunction method
maps the functionName parameter to the appropriate method in the Calculator class, and
calls that method on the calculator object. The method checkResult does an assertion to
verify that the actual results calculated and stored in the chooseFuntion method is equal
to the expected value received as a parameter.

3.1. JBEHAVE 13

public class CalculatorSteps {

private Calculator calculator = new Calculator();

private int actualResult;

@Given("a user input the numbers $num1 and $num2")

public void inputNumbers(int num1, int num2) {

calculator.input(num1, num2);

}

@When("the user chooses the $functionName function")

public void chooseFunction(String functionName) {

if (functionName.equals("sum")) {

actualResult = calculator.sum();

} else {

// TODO: Implement other functions

}

}

@Then("the result is: $expectedResult")

public void checkResult(int expectedResult) {

Assert.assertEquals(expectedResult, actualResult);

}

}

Figure 3.2: Step implementations for the steps used in the story file

Figure 3.3 shows the run configuration file that functions as the entry point for the test.
The class extends another class named JUnitStory that inherits a JUnit-runnable method
named run, which is called to execute the test. CalculatorStory overrides the configuration
and stepsFactory methods from a class named ConfigurableEmbedder. The Configuration
class provides a variety of ways to customise how stories and steps are located, parsed
and run. The stepsFactory method is used for creating instances of steps classes that
provide the implementations for the steps used in the story. JBehave will find all methods
and their annotations within these steps classes and use them to create “step candidates”.
When running the tests, JBehave will look for matching step definitions only within these
candidates.

14 CHAPTER 3. INVESTIGATING BDD TESTING FRAMEWORKS

public class CalculatorStory extends JUnitStory {

@Override

public Configuration configuration() {

return new MostUsefulConfiguration();

}

@Override

public InjectableStepsFactory stepsFactory() {

return new InstanceStepsFactory(

configuration(),

new CalculatorSteps()

);

}

}

Figure 3.3: Run configuration file for the calculator story

3.1.2 Features

JBehave stories can be either classpath resources or external URL-based resources. Stories
may be written in any language, as long as you provide custom localized keywords to
replace the default English expressions in your configuration. In case a story contains a
missing step, JBehave can auto-generate pending steps so that the build is not broken,
but this functionality is optional. In JBehave, the matching of a step candidate to the
textual steps is a crucial part of its design. Normally the first matching candidate is used
to create an executable step, but sometimes a textual step may be mapped to more than
one candidates, which can cause problems. To handle such situations, JBehave allows
for a customisable prioritising strategy to help decide which step should be executed.
JBehave supports auto-conversion of string arguments to any parameter type via custom
parameter converters. By default it provides parameter converters for booleans, numbers,
strings, lists of strings, dates, enums, JBehave-specific objects called “ExamplesTable”,
JSON-data and a list of Java 8 date and time types (JBehave).

JBehave stories can be run as JUnit (JUnit) tests or other annotation-based unit testing
frameworks, which enables easy IDE integration (JBehave). JBehave provides integration
with Ant (Apache Ant) and Maven (Apache Maven) build tools. It also supports con-

3.2. CUCUMBER 15

currency, allowing stories to be executed on multiple threads simultaneously (JBehave).
JBehave provides extensible test reports in HTML, TXT and XML formats, as well as
a text-based console output (Okolnychyi and Fögen, 2016; JBehave). In addition it sup-
ports story report cross-referencing in JSON and XML formats. JBehave also supports
annotation-based Steps class specifications and configuration (JBehave). JBehave also
allows dependency injection to compose configuration and Steps instances via containers
like Guice (Guice), Needle (Needle) or Weld (Weld). There is also support for writing
configuration and Steps instances with Groovy (JBehave).

3.1.3 Analysis

From the extensive list of features we can observe that a big advantage of JBehave is
its customisability and configurability. JBehave also has comprehensive documentation to
explain the usage of these features. All of the possible configurations are also a weakness in
the sense that because of them JBehave is not the easiest framework to use or understand.
The fact that each test case requires both a textual story file and a configuration file can
be seen as another weakness, since creating step instances and configurations separately
for each test splits the test across multiple files, causing unnecessary complexity.

3.2 Cucumber

Cucumber is another popular open source BDD framework originally written in Ruby that
also has implementations for Java and JavaScript (Cucumber). It can also be used with
other languages, such as Python and C# (Lenka et al., 2018). In the context of this paper,
we will be focusing on the Java implementation known as Cucumber JVM. Cucumber is
designed for BDD and is used to create automated acceptance tests which are represented
as textual files written in BDD syntax.

3.2.1 Implementation

Similarly to JBehave, Cucumber uses textual files to represent test cases. In Cucumber’s
case these are these are called feature files, possessing a .feature file extension (Lenka
et al., 2018; Cucumber). The feature files are written in the Gherkin syntax (Cucumber).
Cucumber feature files contain a feature description and one or more scenario descriptions,

16 CHAPTER 3. INVESTIGATING BDD TESTING FRAMEWORKS

which consist of textual steps that are mapped to corresponding annotated methods. The
features act as executable test scripts in themselves. Cucumber utilizes command-line
arguments to find out the location of steps methods. This means that if the project is
setup correctly, no separate run configurations are needed. Cucumber will load all step
definitions from each file in the given package before the test execution starts. If a match
is found, the method is executed with appropriate arguments and the step is marked green
to indicate success. If not, the step is marked yellow, indicating undefined, and all sub-
sequent steps are then skipped. Other possible states for steps are pending (if marked as
pending with an annotation), failed (when an error is raised), or ambiguous (when there
are two or more step matching step definitions) (Cucumber).

Figure 3.4 shows an example of a Cucumber feature file. The file defines the name of the
feature and a narrative in BDD standard. It then defines a single scenario for calculating
the sum of two numbers. The following three lines, starting with “Given”, “When” and
“Then”, are steps that are mapped to Java methods annotated with a matching String.

Feature: Calculator

As a user

I want to use a calculator for calculations

So that I don’t have to do them by hand

Scenario: The calculator can calculate the sum of two numbers correctly

Given the user inputs the numbers 1 and 2

When the user chooses the sum function

Then the result is 3

Figure 3.4: A Cucumber-equivalent example of calculator_feature.feature with a single scenario

Figure 3.5 shows a Java file that implements the steps used in the example scenario. The
implementation is almost identical to the JBehave example presented in figure 3.2, the
only difference being the way parameters are marked in annotations. JBehave uses the
dollar-sign ($) for this purpose, while Cucumber uses curly brackets ({}).

3.2. CUCUMBER 17

public class CalculatorSteps {

private Calculator calculator = new Calculator();

private int actualResult;

@Given("a user input the numbers {int} and {int}")

public void inputNumbers(int num1, int num2) {

calculator.input(num1, num2);

}

@When("the user chooses the {string} function")

public void chooseFunction(String functionName) {

if (functionName.equals("sum")) {

actualResult = calculator.sum();

} else {

// TODO: Implement other functions

}

}

@Then("the result is: {int}")

public void checkResult(int expectedResult) {

Assert.assertEquals(expectedResult, actualResult);

}

}

Figure 3.5: Step implementations for the steps used in the feature file

3.2.2 Features

The Cucumber framework itself doesn’t have support for localisation, but the Gherkin
language has been translated to multiple (77 at the time of writing this) languages to allow
tests to be written in a number of languages. Cucumber provides a an online reporting
service called Cucumber Reports, as well as built-in reporting plugins for generating local
reports that support formats such as HTML and JSON. It’s also possible to define your
own custom reporter plugin or use a third-party tool. Cucumber also supports custom
parameter types, allowing the conversion of textual tables and strings to any type of
object (Cucumber). By default Cucumber supports conversion of strings, lists and maps

18 CHAPTER 3. INVESTIGATING BDD TESTING FRAMEWORKS

of strings, and a Cucumber-specific object called “DataTable” (Cucumber GitHub).

Cucumber uses JUnit to run its tests. Like JBehave, it allows dependency injection to
compose hooks and steps instances via containers. Hooks are blocks of code that can run
at various points in the execution cycle of Cucumber. Cucumber too supports executing
tests in parallel (Cucumber). Cucumber provides integration with Gradle (Gradle) and
Maven (Apache Maven) build tools. It also offers integration with the popular project
management tool Jira (Jira), and their own tool called CucumberStudio. There are also
separate Cucumber plugins for IntelliJ IDEA and Eclipse IDEs. In addition, most popular
editors support syntax highlighting for Gherkin (Cucumber).

3.2.3 Analysis

Cucumber is a robust framework with extensive documentation and an active community.
A big advantage of Cucumber is its simplicity. Creation of tests has been made easy and
efficient. The framework is relatively easy to learn, use and understand. At the same
time it’s still quite flexible, allowing the use of custom reports and parameter types. The
Gherkin syntax is simple and makes the tests consistent, but it’s also limiting.

3.3 Concordion

Concordion is another open-source testing framework for Java that supports BDD. Simi-
larly to both JBehave and Cucumber, it turns requirements written in plain English into
executable tests (Österholm, 2021). Concordion is not strictly restricted to the traditional
form of BDD and allows users to write specifications in an arbitrary syntax. The framework
takes a different approach by utilising markup languages for writing its specifications.

3.3.1 Implementation

While JBehave and Cucumber use their own custom files extensions and specification lan-
guages for writing the requirements, Concordion specifications are written in HTML or
Markdown (Concordion). The specifications do not need to be written in any specific
format but the user can choose what kind of syntax to use (Österholm, 2021). Concordion
documentation points out that Gherkin is a good way to start, but once the user becomes
familiar with structuring specifications, they may find another way to describe their test

3.3. CONCORDION 19

cases that suits them better. Each specification may contain one or more examples, each
of which is run and reported as a separate test. Examples are the Concordion-equivalent
of scenarios. If no examples are defined, all the commands in the specification are run
as a single test. The examples contain commands that are mapped to Java methods in
corresponding fixtures by method names. The commands are slightly different from steps
in JBehave and Cucumber, as they are not just textual representations for a method, but
have their own meaning that Concordion interprets and uses to execute the appropriate
code. It is also possible to have commands outside of examples, to be run before each ex-
ample. Fixtures are Java classes that implement the methods in specification commands.
Methods in Concordion fixtures support strings, booleans and numeric parameter types.
The possible return types are void, primitives and objects (Concordion). The return val-
ues are used by some Concordion commands, such as set and assert-equals.

Figure 3.6 shows an example of a Concordion specification file written in HTML. The
<html> element contains a Concordion namespace that allows the use of Concordion’s
commands. The specification also contains a <link> element in the header that is used for
locating the CSS stylesheet to be used in test reports. The <body> element contains a title
and a narrative for the specification. The <div> element is wrapped with Concordion’s
example command, which turns the element and the commands within it into a named
example. The example is run and reported as a separate test. It contains another title
and three <p> elements that contain Concordion commands. The first two commands on
the first line are Concorions set commands used to set the variables num1 and num2 to
1 and 2, respectively. The command on the second line sets a function variable to sum.
On the third line Concordion’s assertEquals command is used to assert that calling the
calculate function with num1, num2 and function as its parameters is equal to 3.

20 CHAPTER 3. INVESTIGATING BDD TESTING FRAMEWORKS

<html xmlns:concordion="http://www.concordion.org/2007/concordion">

<head>

<link href = "../concordion.css" rel = "stylesheet" type="text/css" />

</head>

<body>

<h1>Calculator Specification</h1>

<p>As a user</p>

<p>I want to use a calculator for calculations</p>

<p>So that I don’t have to do them by hand</p>

<div class = "example">

<h3>Example: The calculator can calculate the sum of two numbers

correctly</h3>

<p>Given the user inputs the numbers <span concordion:set =

"#num1">1 and 2</p>

<p>When the user chooses the <span concordion:set =

"#function">sum function</p>

<p>Then the result is <span concordion:assertEquals =

"calculate(#num1, #num2, #function)">3</p>

</div>

</body>

</html>

Figure 3.6: HTML version of a Concordion specification calculator_specification.html with a single
scenario

Figure 3.7 shows a Concordion fixture class for the calculator. The class is marked with
an annotation that is used by Concordion to find fixtures. It implements the calculate
method used by the example specification. The method takes two integers and a String as
its parameters. The numbers are input to the calculator, and the String is used to select
which function to call on the calculator, which in the case of our example is sum.

3.3. CONCORDION 21

@RunWith(ConcordionRunner.class)

public class CalculatorFixture {

Calculator calculator = new Calculator();

public int calculate(int num1, int num2, String function){

calculator.input(num1, num2);

if (function.equals("sum")) {

return calculator.sum();

} else {

// Implement other functions

}

}

}

Figure 3.7: A Concordion fixture that implements the methods used in the specification

3.3.2 Features

Concordion tests can be run from command line, or by using Gradle or Maven. Concordion
supports parallel execution of tests. It allows users to link specifications to one another,
forming aggregated results. To better navigate the results, Concordion also supports
breadcrumbs. There are Concordion plugins for IntelliJ IDEA and Eclipse. There is also
a HTML publisher plugin for Jenkins, that can publish test results, maintain a per-build
history and let the user download the output in zip format. Concordion’s Extensions API
enables users to create their own extensions to add functionality to Concordion, such as
new commands, event listeners or modifying the output. In addition to the default way of
writing specifications in HTML or Markdown, there is an Excel extension for Concordion,
and it’s also possible to write a custom extension to handle other formats. To enhance
documentation, Concordion provides the ability to embed storyboards, screenshots, log-
ging information, execution time per example, CSS styling and customised status info
into test reports. Concordion also allows modification of exception messages, formatting
timestamps and run totals of child tests. It supports before and after hooks on example,
specification and suite levels (Concordion).

22 CHAPTER 3. INVESTIGATING BDD TESTING FRAMEWORKS

3.3.3 Analysis

Concordion is flexible as it doesn’t force the use of any particular syntax. This however
comes with the risk of the tests being written in an inconsistent way. The Extensions API
makes the framework highly robust. Its test reports are highly customisable by design. A
unique advantage of Concordion is the ability to include media files in the specifications.
Thanks to these features Concordion excels in creating living documentation. One disad-
vantage of Concordion is the lack of support for custom parameter types. Concordion is
not the easiest framework to learn or use, and requires knowing or learning either HTML
or Markdown. Its specifications are somewhat technical, and therefore not as easy to read
as the plain text alternatives in other frameworks.

3.4 Gauge

Gauge is a cross-platform test automation tool with an implementation for Java that
supports authoring test cases in business language (Gauge). It’s the most recent of the
inspected tools. It is not designed strictly for BDD, but can be used as a BDD tool
(“Minding the Gap between BDD and Executable Specifications” 2018). Like Concordion,
Gauge allows tests to be written in an arbitrary syntax.

3.4.1 Implementation

In Gauge, the test cases, called specifications, can be written in Markdown or plain text
and support a .spec or .md file format (“Minding the Gap between BDD and Executable
Specifications” 2018; Gauge). Like Concordion, Gauge does not require the specifications
to be written in any specific syntax. Each specification can have one or more scenarios,
each of which consists of one or more steps (Garousi et al., 2020; Gauge). Alternatively,
the scenarios may contain concepts, which combine one or more steps into a logical group
to represent a business intent (Gauge). Each test step has a corresponding step implemen-
tation that is run when the steps inside a specification are executed (Garousi et al., 2020;
Gauge). The implementation for a step is located based on a @Step-annotation, similarly
to JBehave and Cucumber. A step can also be a context or context step that is defined
in a specification prior to a scenario (Gauge). Another type of step is a tear down step,
which is defined in a specification after the last scenario (Gauge). The context and tear
down steps are executed for each scenario.

3.4. GAUGE 23

In Gauge, a step in a specification can have four types of parameters. Simple parameters
are values within double quotes that are used in steps as is. Dynamic parameters are used
as placeholders for actual values either in concepts or when the step uses a data table.
Data tables are used to execute scenarios with multiple different values. Table parameters
are tables of values used when a single step is executed for multiple values. These pa-
rameters can be both simple or dynamic. Finally, there are special parameters that allow
the users to pass large and complex data, like tables and files, into the steps. The two
special parameter types are called File and CSV. The supported parameter types in the
step implementations are strings, enums, tables, booleans and numeric types by default
(Gauge).

Figure 3.8 shows an example of a Gauge specification with a single scenario. The title
is written in the highest level header in Markdown, represented by the #-symbol. The
plain text narrative is written according to the BDD template. In Gauge, lines without
formatting are not processed in any way, which is suitable for the narrative. Scenarios
are written in the second highest level headers, marked by ##. The actual steps are list
items, marked with the *-sign.

Calculator specification

As a user

I want to use a calculator for calculations

So that I don’t have to do them by hand

The calculator can calculate the sum of two numbers correctly

* Given the user inputs the numbers "1" and "2"

* When the user chooses the "sum" function

* Then the result is "3"

Figure 3.8: Gauge specification calculator_specification.spec with a single scenario

Figure 3.9 shows an example implementation of the steps used in the example specification.
Similarly to JBehave and Cucumber, the methods are annotated with string values that
are used to map the textual steps to the appropriate methods.

24 CHAPTER 3. INVESTIGATING BDD TESTING FRAMEWORKS

public class CalculatorSteps {

private Calculator calculator = new Calculator();

private int actualResult;

@Step("Given a user input the numbers <num1> and <num2>")

public void inputNumbers(int num1, int num2) {

calculator.input(num1, num2);

}

@Step("When the user chooses the <functionName> function")

public void chooseFunction(String functionName) {

if (functionName.equals("sum")) {

actualResult = calculator.sum();

} else {

// TODO: Implement other functions

}

}

@Step("Then the result is: <expectedResult>")

public void checkResult(int expectedResult) {

Assert.assertEquals(expectedResult, actualResult);

}

}

Figure 3.9: Step implementations for the steps used in the spec file

3.4.2 Features

Gauge provides support for creating your own custom parameter parsers to support arbi-
trary parameter types. It also supports using tags to associate labels with specifications
or scenarios, making it easier to search for or filter them. Gauge provides before and after
hooks to run test code at step-, scenario-, specification- or suite levels. These hooks can
also be tag-based, so that they are only applied to tests with a specific tag. In addition,
Gauge has scenario-, specification-, and suite level data stores hold values in memory for
a specific lifecycle. Gauge also supports taking screenshots, and customising how they
should be captured. The screenshots can also be added in reports, and they can be taken

3.4. GAUGE 25

at any point in time when a specification is run. Gauge has its own test runner for running
specifications. It supports parallel execution of specifications. Running tests in parallel
creates threads based on the number of available CPU cores by default, but the number
of threads can also be specified with a flag. It also offers a command to rerun scenarios
that failed in the previous run (Gauge).

Gauge can be integrated with any continuous integration tool as it supports first class
command line. It is customisable via different types of plugins, and the user is able to
create their own plugins. The supported plugin types are language plugins, reporting
plugins, IDE plugins and other plugins (Gauge). Language plugins enable users to imple-
ment specifications in a language of their choice. Reporting plugins create test reports in
different formats. Gauge provides reporting plugins out-of-the-box for HTML, XML and
Flash formats. IDE plugins make it easier to use Gauge with the IDE in question. Gauge
recommends using VSCode with their VSCode plugin. Other plugins can be any arbi-
trary extension, Gauge provides an example of a plugin called Spectacle that can generate
HTML documents from specifications (Gauge).

3.4.3 Analysis

Gauge is a new tool that is designed to be flexible. It is highly customisable with its support
for custom parameter types and arbitrary plugins to extend its functionality. It also has
an extensive list of useful features that are not obvious. Some examples are the support
for before and after hooks on every level and data stores that help dealing with variables
within a specific scope. Tags are another useful feature that not all similar frameworks
have. The free syntax and ability to add plain text at any point in a specification make
Gauge robust and powerful. The framework seems relatively easy to use. However, its
documentation could be more comprehensive. Because Gauge uses its own test runner, it
can not be integrated with some popular tools like JUnit and TestNG.

4 Comparison of BDD frameworks

In this chapter we compare the frameworks to find out their differences, including their
strengths and weaknesses. The frameworks are evaluated strictly from the point of view
of BDD, so some of their features or capabilities were ignored. Based on the observations,
we derive requirements to use for building a new BDD framework.

4.1 Comparison

All of the studied frameworks share many similarities in their implementation and design.
They all use plain text files to define tests, and use them to produce human readable
outputs in the form of test reports. Each tool does so by mapping some kind of textual
step to a Java method that is executed when the test is run. However, each of the four
frameworks also has some aspect to it that sets it apart from the others. JBehave tests
are based on run configurations that are easily configurable. JBehave’s way of locating
step implementations is unique in the sense that it is possible to have multiple steps with
the same definition, and the user can define prioritising strategies to handle such cases.
Cucumber is perhaps the easiest tool to learn and use. It is designed strictly for BDD,
and fills its purpose nicely. It is also the only tool to support conditional before and after
hooks based on tags. Both JBehave and Cucumber have extensive documentation and are
time-tested industry standard tools. Concordion provides the unique ability of styling and
formatting test reports and specifications. It also makes it possible to include media files
in specifications. Gauge provides data stores to help handling variables within a specific
scope. It has the most extensive list of features of all the compared frameworks. Both
Concordion and Gauge allow tests to be written in any syntax, giving more freedom to
the person writing the tests.

The terminology used in the frameworks varies, which can be seen from table 4.1. A central
piece of any BDD tool is the test case, generally referred to as a user story. JBehave calls
this a story, in Cucumber it’s a feature, and in both Concordion and Gauge, specification
is the corresponding term for it. The test case often contains one or more scenarios, which
Concordion refers to as an example, while the other tools use the word scenario. The
scenarios consist of one or more steps, which is a term that Concordion doesn’t really

4.1. COMPARISON 27

recognize, but a command is the closest substitute for it. The other tools use the term
step.

BDD-related term JBehave Cucumber Concordion Gauge
User story Story Feature Specification Specification
Scenario Scenario Scenario Example Scenario

Step Step Step Command Step

Table 4.1: Terminology used for BDD concepts in the studied frameworks

Table 4.2 lists different features or aspects found in the studied frameworks. The focus
is mainly on features that are not implemented by every framework, but rather ones that
can be used to find ways to separate them from one another. From the table it can be
observed that JBehave and Cucumber, which are specifically designed for BDD, have a
forced “Given-when-then” syntax, while Concordion and Gauge allow tests to be written
in an arbitrary way. Each approach has its upsides and downsides. A predefined syntax
makes the tests consistent and enforces the use of BDD principles. On the other hand,
it’s very limiting and sometimes it might make more sense to use a different syntax.
Consequently. as pure BDD tools, JBehave and Cucumber provide built-in support for
BDD, whereas Concordion and Gauge do not, but leave it up to the user to establish
a syntax. The table also shows that Concordion is the only tool that does not provide
support for custom parameter types. There are ways to work around this, for example
one can create an arbitrary object based on a string parameter in the method itself. In
the long run this does add a lot of unnecessary boiler plate code however, so having the
ability to easily define custom parameter parsers or converters is a useful feature to have.
Test report styling and formatting with the combination Markdown, HTML and CSS is
unique to Concordion, and a very powerful asset for creating living documentation. The
downside to this approach is that the specification files are harder to read and require some
technical skills to write. Grouping steps together to form one larger step is a handy feature
provided by JBehave and Gauge. JBehave refers to these groups as composite steps, while
Gauge use the term concept. This feature can improve code reusability and help make
user stories less technical and more concise by increasing the level of abstraction.

Further inspecting the table 4.2, we can observe that each tool supports writing comments
in the test cases, although Concordion does not implement any specific way of doing
so. Similarly, all tools support using tags in stories, but Concordion does not have a
specific implementation for this. JBehave, Concordion and Gauge also support adding

28 CHAPTER 4. COMPARISON OF BDD FRAMEWORKS

other meta data to tests, and JBehave is the only tool that specifically implements this
feature. It can also be observed that JBehave is the only tool that requires a separate
run configuration file in order to execute a test. This provides control and adds some
flexibility by being able to use different run configurations easily. However, it makes it
more troublesome to create new test cases, splits the test case across two separate files, and
creates a lot of repeated boiler plate code over time. JBehave and Gauge provide built-in
support for step aliases, where the same Java method can have more than one textual
representation, implemented as values within an annotation. Concordion also supports
this feature naturally, as its specifications refer to method names directly, meaning that
it is possible to write anything at all in the specification and still call the same method.
This feature can improve the readability of test cases, as there are often multiple ways to
express an action, and sometimes the best fit depends on the test case. JBehave is the
only tool to support keyword synonyms, which makes it possible to extend its syntax to
some extent. For example, you could create a custom synonym “since” for the keyword
“given”. Gauge implements data stores for managing data in different scopes. Finally,
all of the tools support parallel execution which is crucial for cutting down on execution
times.

Each framework also scales well. The same steps can be used in multiple different tests to
promote re-usability and maintainability. Tests and steps can be organized into arbitrary
sub-folder structures to make it easier to locate specific tests, especially for bigger projects.
JBehave, Concordion and Gauge provide further flexibility for large projects via step
aliases, which allow steps to be re-used with a different definition, instead of having to
create a duplicate one. In comparison, Cucumber can be limiting at times. The advantage
of Cucumber’s approach is that there is less room for errors where a step is mapped to
an incorrect method. The fact that each framework supports parallel execution is another
important factor to support larger amounts of tests.

Any one of the four tools can be used sufficiently for BDD. For traditional BDD, Cucumber
seems like the easiest and most straight-forward option. If more complex configuration is
needed while still sticking to strict BDD principles, JBehave may prove more useful. If the
focus is on creating living documentation and the team has sufficient technical capabilities,
Concordion is a good option. In cases where a team wants more freedom and flexibility,
Gauge is a very robust tool with lots of features and therefore another great choice.

4.2. DISCOVERIES 29

Support of features JBehave Cucumber Concordion Gauge
Free syntax No No Yes Yes

Built-in BDD support Yes Yes No No
Custom parameter types Yes Yes No Yes

Test report styling and formatting No No Yes No
Grouping steps together Yes No No Yes

Comments in stories Yes Yes Yes Yes
Tags in stories Yes Yes Yes Yes

Meta data in stories Yes No Yes Yes
Story file is executable No Yes Yes Yes

Step aliases Yes No Yes* Yes
Keyword synonyms Yes No No No

Data stores No No No Yes
Parallel execution Yes Yes Yes Yes

Table 4.2: Feature comparison of the studied frameworks

* Concordion does not implement step aliases per se, but is based on executing Concordion commands
and therefore does not care what is written around them. In essence the same methods can be called with
arbitrary step definitions, which in practice is a more powerful version of a step alias.

4.2 Discoveries

As seen from table 4.2, some tools allow a free syntax, while others set strict rules on
how the tests must be written. Considering the ups and downs of each approach, a good
solution might be to implement rules for a basic BDD syntax that can then be easily
extended. This should essentially combine the benefits of each approach - the rules will
support consistency, and being able to extend them improves flexibility. Custom parameter
types, test report styling, the grouping of steps, step aliases, and support for comments,
tags and meta data in story files can all be seen as useful features with no apparent
downside to them. Executable story files help simplify test creation but can be restricting
in comparison to JBehave’s approach of using separate run configurations for each test. A
potential solution is to make the story files executable, but provide an option to specify a
configuration file to use, so that it is easy to use different configurations when needed.

All of the tools use human readable, textual files as both their inputs and outputs. The
plain text inputs can be seen to increase co-operation between roles by making the tests

30 CHAPTER 4. COMPARISON OF BDD FRAMEWORKS

understandable for everyone. It can be argued however, that not everyone needs to under-
stand them, as long as the test report is in a human-readable form. While this approach
also technically allows test cases to be written without any coding skills, it is not always
so. The test writer may need to create new steps and additional test code to support
them. Also, debugging any potential issues still requires knowledge about the code. An-
other issue of this kind of approach is that the test creator has to navigate between files
to try and find the step definitions used or to use in their specifications. Parametrised
steps make the matter even worse, as simply copying the text and using it in a search
query will not suffice. In addition, a tool like JBehave, which allows multiple methods
to be annotated with the same text, could cause the wrong step to be found. The issue
of navigating between stories and step definitions can be solved to some extent with the
help of IDE plugins. Textual story files are also not the best at representing complex data
like tables. One consideration is whether the pros of a human readable input outweigh its
problems.

All of the inspected tools also share some weaknesses. They are all somewhat complex
in their own way. JBehave, Cucumber and Gauge have to implement parsing, parameter
transformations, mapping rules etc. to support their textual story files. Concordion on the
other hand needs to implement custom logic for interpreting HTML and Markdown. In
addition, simply having to use these markup languages adds a level of complexity to using
the framework. A related weakness is that each tool, especially the first three, require a lot
of configuration to function. Furhermore, none of the inspected tools tools offer support
for unit testing. While BDD is generally not as heavily utilized for unit testing, there are
BDD frameworks like JDave (JDave) that are specifically designed for this purpose. To
support a wider set of uses, it might be sensible for BDD tools to implement some unit
testing capabilities.

There are other BDD tools, like aforementioned Spock and easyb, that define the test cases
in code, while still producing a human readable output. The advantage of this approach
is that there is no need for parsers, parameter converters or mapping rules, which reduces
complexity. Consequently, there is also less need for configurations. It also simplifies the
process of writing tests in the sense that the programmer can refer to the appropriate
methods directly and don’t need to lookup the textual step definitions. The downside is
that the specifications are more difficult to understand for non-technical people. This can
however be answered with the help of Java’s annotation processors. Annotation processors
can be used to inject code for annotated elements into the Abstract Syntax Tree during

4.2. DISCOVERIES 31

the compilation of a program (Kahlout, 2011). The Java Compiler later combines the
original source code with the code injected into the AST and generates the Java bytecode
required to execute the program (Kahlout, 2011). By leveraging this feature, it is possible
to generate plain text representations of the test when building a project. These can then
be referred to and understood by everyone when needed, to help clarify the purpose of a
particular test case. The plain text representations should also help in maintaining and
documenting the tests.

JBehave, Cucumber and Concordion utilize JUnit for running the tests, while Gauge
implements its own test runner. Both approaches have their advantages. A separate runner
allows Gauge to have more specific logging information and control when running tests.
The main advantage of building on JUnit are the existing features and IDE integrations
that come along with it.

Overall, the inspected tools are designed in a way where they try to do a lot of things on the
user’s behalf to support the writing of tests in plain text. While this approach certainly
has its advantages, it also has its drawbacks as discussed above. A different approach
that would answer some of these drawbacks would therefore be a more developer-oriented
design, where the tests are written in code. The main downside of this approach is that
it’s less friendly for non-developers with poor coding skills.

This approach raises a question; why not stick to more traditional tests instead of BDD if
the ability of writing human readable test cases, and therefore some of the collaboration
and visibility potential, is lost. While this is also a valid option, it can be argued that
writing tests in BDD is also beneficial for the developers. The stories act as documentation
for the system’s features and can make it easier to understand the code if the developer
is unfamiliar with the system or parts of it. Even the individual step descriptions can
help describe what a given method is used for. Another potential benefit of BDD is that
it may lead to producing better APIs as it promotes writing testable code (Binamungu
et al., 2018). Furthermore, BDD can help developers focus on the end user’s needs and
implementing only what is necessary to achieve them, reducing potential waste.

Based on the identified weaknesses and alternative approaches, we saw a need for build-
ing a new, more developer-oriented BDD tool. While it is clear that this approach has
its limitations, the aim is to answer the challenges of the existing tools and provide an
alternative for them.

Table 4.3 presents the key points derived from inspecting and comparing the tools that
will be used as requirements for building a new BDD tool. The new framework should

32 CHAPTER 4. COMPARISON OF BDD FRAMEWORKS

Requirement Description
Specific but extensible BDD syntax The tool should implement specific rules

for writing the tests. This improves con-
sistency and enforces the use of BDD. The
rules should still be customisable and ex-
tendable to provide flexibility.

Java-based test cases The test cases are written in Java to sim-
plify the creation of tests and to make the
framework easier to learn and use. Han-
dling complex data becomes easier too.

Annotation processor for generating tex-
tual representations of test cases

The tool should implement an annotation
processor that can be used to generate
textual representations of test cases when
building the project. This way it is easier
for everyone to understand the purpose of
a test case.

Support unit testing The tool should have some support for unit
testing as well?

Use JUnit for running the tests The tool should use JUnit to leverage ex-
isting IDE integrations

Table 4.3: Requirements for the new framework

offer a specific but extensible BDD syntax to achieve consistency while providing flexibility
at the same time. Tests will be written in Java, which is assumed to make the creation of
tests and use of the framework easier for developers and test automation engineers. The
framework should leverage annotation processing to offer a plain text representation of
each test, in addition to the Java code. This way is to support the collaboration aspect
of BDD. The new framework should also have at least some unit testing capabilities, as
it can be a useful feature. Finally, it was decided to build the framework on top of JUnit
in order to both save time in implementation and benefit from the existing features and
IDE integrations.

5 Building a new BDD framework

This chapter presents the new bumbleB framework that was built to answer the challenges
identified in the previous chapter. The new framework is quite different in design from
the previously inspected tools, but it’s still specifically designed for BDD. In this chap-
ter, we introduce bumbleB (bumbleB), its intended use and purpose, and go through its
implementation and features.

5.1 Introducing the bumbleB framework

In comparison to the other studied frameworks, bumbleB is a more developer-oriented
framework. It aims to make it easy for developers and test engineers to create new tests.
The framework is designed to be simple to use and learn. It is also made to support
different testing levels from unit testing to system level testing. The amount of required
configuration was attempted to be kept as low as possible. bumbleB also utilizes some
technologies that are not commonly seen in testing frameworks. The purpose of this tool
is to offer an alternative approach for implementing BDD.

5.2 Implementation

bumbleB takes some different design choices than most BDD frameworks. Its test cases
are implemented as Java code instead of textual story files like the other studied tools.
bumbleB is built on top of JUnit. Its @Example-annotation is an extension of JUnit’s
@Test-annotation, meaning that each example (scenario) is run as its own test. bum-
bleB depends on JUnit framework to run the tests and capture information about their
execution. This information is used for generating HTML test reports.

It makes use of Java’s annotation processing in order to generate human readable text
files to represent test cases. In addition, bumbleB leverages Aspect Oriented Program-
ming (AOP) via AspectJ (AspectJ) to provide access to important information at run
time. AOP is a programming paradigm that attempts to increase program modularity by
separating cross-cutting concerns. AOP allows inserting new code to specific points during

34 CHAPTER 5. BUILDING A NEW BDD FRAMEWORK

the execution of a program. New code is defined as advice within aspects, and is combined
with the original code using an aspect weaver. Three kinds of weaving is possible; compile-
time, post-compile and load-time weaving. bumbleB uses load-time weaving. The use of
AOP is motivated by the framework’s unconventional approach of using method references
within its steps. In bumbleB AOP is used to access information about parameters that
are passed to step methods following the method reference.

Figure 5.1 describes the implementation details of the new framework. bumbleB consists
of three main modules; the framework, the annotations and the annotation processor. The
annotations are used by both the framework and the processor. The processor generates
plain text descriptions of tests based on the @Example and @Step annotations when the
project is built. The main logic of the framework is contained in the Framework-class.
It provides the methods required for creating examples and the steps inside them. The
Utils and StateHolder classes offer utilities for the framework. The two aspects are used
to update the framework’s state with information about the arguments and result of a
step, as well as the class name and package name of an example. The ExampleListener
listens to the test execution and informs the HtmlReportBuilder about the result of each
test case. When the execution is finished, the HtmlReportBuilder will generate a HTML
test report for each directory that contains tests.

5.2. IMPLEMENTATION 35

Figure 5.1: A chart that describes the implementation of the bumbleB framework.

Figure 5.2 shows an example of how a BDD story might look like in bumbleB. Each
scenario is annotated with the @Example-annotation. An example refers to a single test
case or a scenario. The implementation of a story uses an example builder provided by
the framework. The builder can accept a name, a narrative and any number of steps to
execute. The steps are defined using bumbleB’s given-, when- and then-consumers, that
take a method reference and zero or more parameters to be passed on to the referenced
methods as its arguments. The build-method constructs the example that can then be
executed via the run-method, which executes all the steps in the given order.

Figure 5.3 shows an example implementation for the steps used in figure 5.2. It contains
methods annotated with the @Step-annotation. The annotation values are used for gen-

36 CHAPTER 5. BUILDING A NEW BDD FRAMEWORK

erating plain text descriptions with the annotation processor, printing information to the
console at run-time, and for generating HTML test reports. Figure 5.4 shows an exam-
ple of what the annotation processor would output for the example in figure 5.2. The
description contains the scenario title, and the steps as defined in the @Step-annotations.

public class CalculatorTests {

private CalculatorSteps calculatorSteps = new CalculatorSteps();

@Example

public void calculatorSumTest() {

builder

.name("The calculator can calculate the sum of two numbers

correctly")

.narrative("As a user, I want to be able to calculate the sum of

two numbers, so that I don’t have to do the calculations in

my head")

.steps(

given(calculatorSteps::inputNumbers, 1, 2),

when(calculatorSteps::chooseFunction, "sum"),

then(calculatorSteps::checkResult, 3)

)

.build()

.run();

}

}

Figure 5.2: An example of a bumbleB test case.

5.3. FEATURES 37

public class CalculatorSteps {

private Calculator calculator = new Calculator();

private int actualResult;

@Step("a user input the numbers {num1} and {num2}")

public void inputNumbers(int num1, int num2) {

calculator.input(num1, num2);

}

@Step("the user chooses the {functionName} function")

public void chooseFunction(String functionName) {

if (functionName.equals("sum")) {

actualResult = calculator.sum();

} else {

// TODO: Implement other functions

}

}

@Step("the result is: {expectedResult}")

public void checkResult(int expectedResult) {

Assert.assertEquals(expectedResult, actualResult);

}

}

Figure 5.3: Step implementations for the steps used in the bumbleB example.

Example: The calculator can calculate the sum of two numbers correctly

Given a user input the numbers {num1} and {num2}

When the user chooses the {functionName} function

Then the result is: {expectedResult}

Figure 5.4: bumbleB text file generated by the annotation processor

38 CHAPTER 5. BUILDING A NEW BDD FRAMEWORK

5.3 Features

Some of the supported features are listed in table 5.1. bumbleB offers a predetermined
but easily extendable syntax for writing tests, It has built-in support for BDD. Since tests
are written in Java, any type of parameters can be used. Steps can be grouped together
by creating a normal step that calls the appropriate steps with appropriate parameters.
As the tests are written in Java, all Java comments are supported in stories. It is also
possible to create tags as annotations, but there is currently no built-in support for this.
Meta data can be added to stories in the form of comments, external files, or String
variables. In bumbleB, the story (test case) itself is an executable JUnit test. Step aliases
are currently not supported. Keyword synonyms are possible due to the extensible syntax.
bumbleB does not support data stores, but it also has no need for such a feature as the
data creating, storage and usage can be easily handled in the story with the help of before-
and after-hooks provided by JUnit. bumbleB can generate basic test reports that shows
general information about the tests executed. Figure 5.5 shows an example of a bumbleB
test report. Each row in the table presents a single example. The individual steps can be
seen by clicking on the first column. In case of a failure, the failing step is marked as red.

5.3. FEATURES 39

Support of features JBehave Cucumber Concordion Gauge bumbleB
Free syntax No No Yes Yes Yes**

Built-in BDD support Yes Yes No No Yes
Custom parameter types Yes Yes No Yes Yes

Test report styling and formatting No No Yes No No
Grouping steps together Yes No No Yes Yes

Comments in stories Yes Yes Yes Yes Yes
Tags in stories Yes Yes Yes Yes No

Meta data in stories Yes No Yes Yes Yes
Story file is executable No Yes Yes Yes Yes

Step aliases Yes No Yes* Yes No
Keyword synonyms Yes No No No Yes

Data stores No No No Yes No
Parallel execution Yes Yes Yes Yes Yes

Java-based test cases No No No No Yes
Explicit unit test support No No No No Yes

Table 5.1: Feature comparison of bumbleB and the studied frameworks.

* Concordion does not implement step aliases per se, but is based on executing Concordion commands
and therefore does not care what is written around them. In essence the same methods can be called
with arbitrary step definitions, which in practice is a more powerful version of a step alias.
** bumbleB syntax is based on specific rules, but can easily be extended to essentially create a ubiquitous
syntax.

Figure 5.5: An example of a bumbleB test report.

In addition, bumbleB comes with a built-in annotation processor to provide textual (.txt)

40 CHAPTER 5. BUILDING A NEW BDD FRAMEWORK

representations of test cases that are automatically generated when the project is built.
bumbleB leverages JUnit for easy IDE integrations for running tests. As bumbleB tests are
created with Java via method references, any modern IDE will suggest the possible step-
methods to call when typing in the class/object reference and “::”, which makes writing
tests convenient. The Java-based tests can be written in a natural and easy-to-understand
format that resembles the purely textual files used by many other BDD tools.

6 Evaluating the new framework

In this chapter the new bumbleB framework is evaluated to see how viable it is. Each of
its requirements is examined to see how well they are met. In addition, there are some
general considerations to discuss other aspects of the tool.

6.1 Are the requirements met?

This section focuses on evaluating the requirements that were set for the new tool. Each
requirement is inspected separately in their own sub-section below.

6.1.1 Specific but extensible BDD syntax for consistency and
flexibility

bumbleB is built on the classic given-when-then syntax. This ensures that tests are cre-
ated in a proper BDD syntax. It is possible to extend the default implementation and
add new keywords or phrases to bumbleB. This allows for some flexibility, as the user
is able to create their own language that can sometimes better describe the test cases.
bumbleB’s support for creating these custom keywords is very limited however, and doing
so is relatively laborious. In the future it would be beneficial to implement better support
for this feature so that customising the syntax becomes easier.

6.1.2 Java-based test cases for easiness

To evaluate how easy it is to implement tests in bumbleB, a small experiment was con-
ducted. The experiment consisted of a small coding task where the participants imple-
mented a BDD test scenario using two BDD frameworks; bumbleB and Cucumber, as well
as a survey where the participants evaluated their experiences. Cucumber was included
in the study as a comparison for bumbleB, as Cucumber is one of the most used and well-
established BDD tools and uses the traditional design where tests are written in story files.
It was therefore decided that it would be a good contestant to compare bumbleB with its
different approach to. The hypothesis was that using the framework and handling data

42 CHAPTER 6. EVALUATING THE NEW FRAMEWORK

would be easier in bumbleB. The participants were all people who work or have previously
worked professionally with test automation using some BDD framework. Unfortunately
finding participants and getting their time proved difficult. In the end the task was sent
to six potential participants, four of whom did the task and answered the survey.

Figure 6.1 presents the test case that given to the participants in the experiment. The
test is deliberately written in an unusual way as to not give a clear advantage to either
framework by making the example better suited for one tool. In addition to the test case
the participants were provided sample projects that were setup for the task. The projects
contained a very simple implementation of a library, another class for books, as well as the
required configuration files and folder structure to write the tests. The full instructions
can be seen in appendix A. In addition, the participants were given model answers that
they could check either after finishing the tasks, or for help if they were unable to complete
the task on their own.

Story: Books can be searched from the library
Narrative: The customers want to see what books are available

Scenario: The search finds the correct books for a specific author

Given I have added the following books in the library:
-The Devil in the White City, Erik Larson, Crown Publishers, Historical non-fiction, 2003
-Harry Potter and the Philosopher’s Stone, J. K. Rowling, Bloomsbury (UK), Fantasy, 1997
-Harry Potter and the Philosopher’s Stone, J. K. Rowling, Bloomsbury (UK), Fantasy, 1997
-Harry Potter and the Chamber of Secrets, J. K. Rowling, Bloomsbury (UK), Fantasy, 1998
When I search for books by author "J. K. Rowling"
Then the search results are:
-Book: Harry Potter and the Philosopher’s Stone, J. K. Rowling, Bloomsbury (UK), Fantasy, 1997;
Amount: 2

-Book: Harry Potter and the Chamber of Secrets, J. K. Rowling, Bloomsbury (UK), Fantasy, 1998;
Amount: 1

Figure 6.1: The test case used in the experiment.

Some notable observations were made when inspecting the answers to the survey, the
results of which can be seen in appendix B. Firstly, when asked which BDD frameworks
they’ve used before and how much, all the participants reported JBehave as the tool they
have used the most. This is notable as JBehave is similar to Cucumber in its design, so
the participants were already familiar with the same basic principles. In addition, three
out of the four participants had experience in Cucumber too. This could mean that the

6.1. ARE THE REQUIREMENTS MET? 43

experiment favored Cucumber. Another thing to note is that out of the four participants,
only one had worked as a software developer. Given how bumbleB is a developer-oriented
framework, the participants could have perhaps been chosen differently, to include more
people with a developer background to better reflect the target audience.

Looking further at the results in table 6.1, it was noted that the answers to questions
about Cucumber were well in line with each other. In the first three questions all four
participants evaluated Cucumber exactly the same. The last question about handling data
divided the answers so that on a scale of one to five, one being very difficult and five being
very easy, handling data with Cucumber was given the scores of 3, 4, 5 and 5.

The answers to questions regarding bumbleB were more divided, as can be seen from the
table 6.1. A potentially notable observation was that the person with the least experience
with test automation and BDD (1-2 years) was the one who struggled the most with
bumbleB. This participant also spent by far the most time on the task. This could mean
that their coding skills were sub-optimal for bumbleB, and that the familiarity they had
with Cucumber was especially helpful for them in comparison to other participants. It
could also mean that bumbleB in general requires more programming skills to use. Overall,
bumbleB had comparable scores to Cucumber in most questions, but received a slightly
lower total score, as opposed to the hypothesis. As mentioned before, the study likely
favored Cucumber and most of the participants were not fully representing the target
audience of bumbleB, which potentially played a factor in the outcome. Based on some
of the answers, some participants did not fully understand bumbleB and its benefits,
which could also be partly due to poor documentation. Another explanation is that the
framework was simply not as easy to use as expected and therefore failed in one of its
main objectives.

44 CHAPTER 6. EVALUATING THE NEW FRAMEWORK

Question bumbleB answers Cucumber answers
How easy did it feel to
learn and use the frame-
work?

4, 4, 2, 5 4, 4, 4, 4

How efficient did it feel
to create tests using the
framework?

5, 4, 3, 4 4, 4, 4, 4

How easy did it feel
to understand the tests
written using the frame-
work?

4, 5, 3, 5 5, 5, 5, 5

How easy did it feel to
handle different types of
data using the frame-
work?

4, 5, 3, 3 5, 3, 4, 5

Table 6.1: Partial results from the survey, showing the equivalent questions for bumbleB and Cucumber.
The answer was given as a score between one and five, one being “very difficult” and five “very easy”, or
“efficient” in case of the second question.

6.1.3 Annotation processor for collaboration and maintainabil-
ity

bumbleB comes with a built-in annotation processor that can generate plain text (.txt) files
to describe its Java-written tests. The annotation processor is run whenever the project is
built, so the descriptions are always available and up-to-date. The plain text files help in
collaboration as people can understand them even if they don’t have coding skills. This
feature also helps with maintaining the tests, as they make it easier to grasp what is being
tested and how. The processor works in most basic cases, but is also somewhat limited in
its current form. There are cases where parts of the descriptions will be missing due to its
limitations. More time and effort would be needed to make it support these edge cases.

6.1. ARE THE REQUIREMENTS MET? 45

6.1.4 Unit testing support for robustness

bumbleB differs from the inspected tools by offering direct support for unit testing. In
bumbleB, steps are created as method references passed within bumbleB’s built-in step-
consumers, which use the method reference to create an instance of bumbleB’s Step-class.
For higher levels of tests, the method references would normally refer to methods annotated
with some textual description. To support unit testing, bumbleB does not require this.
Any method references can be passed on instead. To make the tests appear as BDD, the
user is able to add a textual description for each step in the test definition. With this
feature, any method can be treated as a step and it becomes possible to leverage BDD for
unit tests without modifying the original source code.

Figure 6.2 presents an example of bumbleB’s unit testing capabilities. Instead of referring
to a steps object, the test creates an instance of the class to be tested. Its methods are
then called directly within the given-, when-, and then-methods. The describeAs-method
is used to add textual descriptions for each step, where the parameter names in brackets
are replaced with the actual parameters. Furthermore, the third step leverages bumbleB’s
satisfies-method to make an assertion that compares the return value of the calculator’s
getResult-method with the expected value 3.

Figure 6.3 shows the implementation for the methods used in the example from figure 6.2.
This simple calculator takes two integers as its inputs, and a string value to choose which
function to perform on the numbers. The getResult-method will perform the appropriate
calculation and return the result.

46 CHAPTER 6. EVALUATING THE NEW FRAMEWORK

public class CalculatorTests {

private Calculator calculator = new Calculator();

@Example

public void calculatorSumTest() {

builder

.name("The calculator can calculate the sum of two numbers

correctly")

.steps(

given(calculator::inputNumbers, 1, 2)

.describeAs("the user inputs numbers {num1} and

{num2}"),

when(calculator::chooseFunction, "sum")

.describeAs("the user chooses function {fun}"),

then(calculator::getResult)

.satisfies(Assert::assertEquals, 3)

.describeAs("the result is equal to [result]"),

)

.build()

.run();

}

}

Figure 6.2: An example of a bumbleB unit test.

6.2. GENERAL DISCUSSION 47

public class Calculator {

private int arg1;

private int arg2;

private String function;

public Calculator() {

this.arg1 = 0;

this.arg2 = 0;

this.function = "";

}

public void inputNumbers(int arg1, int arg2) {

this.arg1 = arg1;

this.arg2 = arg2;

}

public void chooseFunction(String function) {

this.function = function;

}

public int getResult() {

if (this.function.equals("sum") {

return arg1 + arg2;

}

// TODO: implement other functions

return -1;

}

}

Figure 6.3: The methods used in the unit test example in figure 6.2

6.1.5 JUnit for existing features and integrations

bumbleB uses JUnit framework for running its tests. Leveraging JUnit drastically reduces
the amount of code and functionality required for bumbleB. In addition, bumbleB becomes
much more user-friendly with all the existing plugins and integrations that exist for JUnit.

48 CHAPTER 6. EVALUATING THE NEW FRAMEWORK

6.2 General discussion

Overall the new bumbleB framework is still very much a work in progress, and lacking in
terms of customisability, features and even just quality. The tool manages to answer its
requirements relatively well, but more work is needed to bring it to a level where it can
be considered a reliable automation framework. In the time span of this thesis, it was not
possible to reach that level, but it may eventually be reached in the future. bumbleB does
however act as a proof-of-concept and manages to show that a different, more developer-
centric approach can be taken to implement a BDD framework. Regarding the ease of
use, more data is needed to properly assess bumbleB’s success in that aspect.

7 Conclusions

In this thesis, we studied BDD is and how it can be supported by test automation tools.
Four selected frameworks were then inspected in depth, and they were compared to each
other. It was observed that any of the inspected tools can be sufficiently for implementing
BDD, and that they are relatively similar in their design and implementation. Never-
theless, each tool was found to have its purpose and unique advantages. Furthermore,
being similar in their implementation, the tools were also found to share some limita-
tions, and some alternative approaches were identified. These alternative ideas were used
as requirements for building a new BDD automation tool called bumbleB. bumbleB was
found to answer most of its requirements successfully, but have its own separate limita-
tions and weaknesses. The results of the small survey B that was conducted point to
bumbleB potentially requiring more programming knowledge than tools like Cucumber.
It was concluded that bumbleB has the potential be a reasonable alternative in the right
scenario where its requirements are met. A suitable context for using this tool might be
a workplace where the test engineers have sufficient coding skills. It was noted however,
that the new bumbleB tool is still at an early stage and not reliable enough to be taken in
to use at this time. It was also noted that more data would be needed to properly evaluate
bumbleB as a framework.

To sum up, it was shown that different approaches can be taken to implement a BDD
testing tool. As always, each approach and decision has its upsides and downsides. There-
fore, when choosing a BDD framework, one should carefully consider the context and the
requirements set by their project and organisation. There are many different BDD tools
to choose from, so finding a suitable tool should be possible in most cases. In very spe-
cific contexts, it may be reasonable to implement a new tool. For such situations, the
observations and contributions of this study should prove helpful.

Bibliography

Apache Ant. [Online; accessed 28-February-2022]. url: https://ant.apache.org/.
Apache Maven. [Online; accessed 28-February-2022]. url: https://maven.apache.org/.
AspectJ. [Online; accessed 03-May-2022]. url: https://www.eclipse.org/aspectj/.
Behaviour-Driven Development. [Online; accessed 24-February-2022]. url: https : / /

cucumber.io/docs/bdd/.
Binamungu, L. P., Embury, S. M., and Konstantinou, N. (2018). “Maintaining behaviour

driven development specifications: Challenges and opportunities”. In: 2018 IEEE 25th
International Conference on Software Analysis, Evolution and Reengineering (SANER).
IEEE, pp. 175–184.

Briand, L. and Labiche, Y. (2002). “A UML-based approach to system testing”. In: Soft-
ware and systems modeling 1.1, pp. 10–42.

Brocke, J. v., Hevner, A., and Maedche, A. (Sept. 2020). “Introduction to Design Science
Research”. In: pp. 1–13. isbn: 978-3-030-46780-7. doi: 10.1007/978-3-030-46781-

4_1.
Concordion. [Online; accessed 7-March-2022]. url: https://concordion.org/.
Cucumber. [Online; accessed 24-February-2022]. url: https://cucumber.io.
Cucumber GitHub. [Online; accessed 24-February-2022]. url: https : / / github . com /

cucumber/cucumber-jvm.
easyb. [Online; accessed 24-February-2022]. url: https://easyb.io/v1/index.html.
Garousi, V., Keleş, A. B., Balaman, Y., and Güler, Z. Ö. (2020). “Test Automation with

the Gauge Framework: Experience and Best Practices”. In: Computational Science and
Its Applications – ICCSA 2020. Ed. by O. Gervasi, B. Murgante, S. Misra, C. Garau,
I. Blečić, D. Taniar, B. O. Apduhan, A. M. A. Rocha, E. Tarantino, C. M. Torre, and Y.
Karaca. Cham: Springer International Publishing, pp. 458–470. isbn: 978-3-030-58802-1.

Gauge. [Online; accessed 8-March-2022]. url: https://gauge.org/.
Gradle. [Online; accessed 03-March-2022]. url: https://gradle.org/.
Guice. [Online; accessed 28-February-2022]. url: https://github.com/google/guice.
Gupta, A. and Jalote, P. (2007). “An experimental evaluation of the effectiveness and effi-

ciency of the test driven development”. In: First International Symposium on Empirical
Software Engineering and Measurement (ESEM 2007). IEEE, pp. 285–294.

Härlin, M. (2016). Testing and Gherkin in agile projects.

https://ant.apache.org/
https://maven.apache.org/
https://www.eclipse.org/aspectj/
https://cucumber.io/docs/bdd/
https://cucumber.io/docs/bdd/
https://doi.org/10.1007/978-3-030-46781-4_1
https://doi.org/10.1007/978-3-030-46781-4_1
https://concordion.org/
https://cucumber.io
https://github.com/cucumber/cucumber-jvm
https://github.com/cucumber/cucumber-jvm
https://easyb.io/v1/index.html
https://gauge.org/
https://gradle.org/
https://github.com/google/guice

51

Janzen, D. and Saiedian, H. (2005). “Test-driven development concepts, taxonomy, and
future direction”. In: Computer 38.9, pp. 43–50.

– (2008). “Does test-driven development really improve software design quality?” In: Ieee
Software 25.2, pp. 77–84.

JBehave. [Online; accessed 24-February-2022]. url: https://jbehave.org/.
JDave. [Online; accessed 24-February-2022]. url: https://github.com/jdave/JDave.
Jira. [Online; accessed 03-March-2022]. url: https://www.atlassian.com/software/

jira.
JUnit. [Online; accessed 28-February-2022]. url: https://junit.org/junit5/.
Kahlout, G. (2011). “Implementing patterns with annotations”. In: Proceedings of the 2nd

Asian Conference on Pattern Languages of Programs, pp. 1–6.
Kasurinen, J., Taipale, O., and Smolander, K. (2010). “Software test automation in prac-

tice: empirical observations”. In: Advances in Software Engineering 2010.
Lång, J. bumbleB. [Online; accessed 2-June-2022]. url: https://github.com/jiial/

bumbleB.
Lenka, R. K., Kumar, S., and Mamgain, S. (2018). “Behavior Driven Development: Tools

and Challenges”. In: 2018 International Conference on Advances in Computing, Com-
munication Control and Networking (ICACCCN), pp. 1032–1037. doi: 10.1109/ICACCCN.

2018.8748595.
Leung, H. and White, L. (1990). “A study of integration testing and software regression

at the integration level”. In: Proceedings. Conference on Software Maintenance 1990,
pp. 290–301. doi: 10.1109/ICSM.1990.131377.

Leung, H. K. and Wong, P. W. (1997). “A study of user acceptance tests”. In: Software
quality journal 6.2, pp. 137–149.

Miller, R. and Collins, C. T. (2001). “Acceptance testing”. In: Proc. XPUniverse 238.
“Minding the Gap between BDD and Executable Specifications” (2018). In: [Online; ac-

cessed 8-March-2022]. url: https://gauge.org/2018/11/12/bdd-vs-executable-

specifications/.
Needle. [Online; accessed 28-February-2022]. url: https://github.com/uber/needle.
Nidhra, S. and Dondeti, J. (2012). “Black box and white box testing techniques-a literature

review”. In: International Journal of Embedded Systems and Applications (IJESA) 2.2,
pp. 29–50.

Okolnychyi, A. and Fögen, K. (2016). “A study of tools for behavior-driven development”.
In: Full-scale Software Engineering/Current Trends in Release Engineering, p. 7.

https://jbehave.org/
https://github.com/jdave/JDave
https://www.atlassian.com/software/jira
https://www.atlassian.com/software/jira
https://junit.org/junit5/
https://github.com/jiial/bumbleB
https://github.com/jiial/bumbleB
https://doi.org/10.1109/ICACCCN.2018.8748595
https://doi.org/10.1109/ICACCCN.2018.8748595
https://doi.org/10.1109/ICSM.1990.131377
https://gauge.org/2018/11/12/bdd-vs-executable-specifications/
https://gauge.org/2018/11/12/bdd-vs-executable-specifications/
https://github.com/uber/needle

52 CHAPTER 7. CONCLUSIONS

Österholm, V. (2021). “Overview of Behaviour-Driven Development tools for web appli-
cations”. In.

Solis, C. and Wang, X. (2011). “A study of the characteristics of behaviour driven devel-
opment”. In: 2011 37th EUROMICRO conference on software engineering and advanced
applications. IEEE, pp. 383–387.

Spock. [Online; accessed 24-February-2022]. url: https://spockframework.org/.
Terhorst-North, D. (2006). “Introducing BDD”. In: [Online; accessed 24-February-2022].

url: http://dannorth.net/introducing-bdd/.
– (2007). “What’s in a Story”. In: [Online; accessed 25-March-2022]. url: http : / /

dannorth.net/whats-in-a-story/.
Viktor, F. and Alex, G. (2018a). Test-Driven Java Development, Second Edition : Invoke

TDD Principles for End-to-end Application Development, 2nd Edition. Vol. 2nd ed.
Packt Publishing, p. 87. isbn: 9781788836111.

– (2018b). Test-Driven Java Development, Second Edition : Invoke TDD Principles for
End-to-end Application Development, 2nd Edition. Vol. 2nd ed. Packt Publishing, pp. 189–
209. isbn: 9781788836111.

Weld. [Online; accessed 28-February-2022]. url: https://weld.cdi-spec.org/.

https://spockframework.org/
http://dannorth.net/introducing-bdd/
http://dannorth.net/whats-in-a-story/
http://dannorth.net/whats-in-a-story/
https://weld.cdi-spec.org/

Appendix A bumbleB and Cucumber experiment: instructions
for the coding assignment

Task:

Implement a simple scenario using both bumbleB and Cucumber frameworks and then fill out a

survey

Requirements:

• Java 17

• IDE of your choice (tested with IntelliJ Idea Ultimate)

Download zip files for example projects (both bumbleB and Cucumber), links to the repositories below:

https://github.com/jiial/experiment_bumbleB

https://github.com/jiial/experiment_cucumber

Extract the files and then right click -> open the resulting folder as an IntelliJ project (or open in another IDE

if you’re not using IntelliJ)

The projects are identical except for the BDD framework used.

Implement the following test case in both projects:

Story: Books can be searched from the library

Narrative: The customers want to see what books are available

Scenario: The search finds the correct books for a specific author

Given I have added the following books in the library

-The Devil in the White City, Erik Larson, Crown Publishers, Historical non-fiction, 2003

-Harry Potter and the Philosopher's Stone, J. K. Rowling, Bloomsbury (UK), Fantasy, 1997

-Harry Potter and the Philosopher's Stone, J. K. Rowling, Bloomsbury (UK), Fantasy, 1997

-Harry Potter and the Chamber of Secrets, J. K. Rowling, Bloomsbury (UK), Fantasy, 1998

When I search for books by author "J. K. Rowling"

Then the search results are

-Book: Harry Potter and the Philosopher's Stone, J. K. Rowling, Bloomsbury (UK), Fantasy, 1997; Amount: 2

-Book: Harry Potter and the Chamber of Secrets, J. K. Rowling, Bloomsbury (UK), Fantasy, 1998; Amount: 1

--

You can find the documentation for each tool for more information and examples about the tools:

https://github.com/jiial/bumbleB (some examples and general info)

https://github.com/jiial/bumbleB/blob/main/Documentation.md#2-writing-tests (more detailed info about
writing tests)

https://cucumber.io/docs/cucumber/

You do not need to create any additional files. Just implement the required steps and the story/test file to
run.

You will be given model solutions that you can check after finishing the task or if you need help with

finishing it. It's important that you first try implementing the test yourself to get a feel for each

framework.

Try to keep track of approximately how long you spent on each assignment (bumbleB and Cucumber).

You can set a time limit to yourself so that if you are not finished by then, e.g. in 20 minutes (per

assignment), you can just check out the model solutions and move on. There will be questions in the survey

about how long you spent with each framework.

So, it's not necessary to finish the task, as long as you've tried so you are able to provide feedback in the

survey.

NOTE: to run your bumbleB test, you should use a maven run configuration, e.g. "clean install". It is also

possible to use JUnit run configurations but that requires changing some settings in IntelliJ and will not

generate a test report as that functionality is tied to maven.

For Cucumber, you can use JUnit or Maven run configs.

After you have implemented the tests, please answer the survey that I invite you to.

Appendix B bumbleB and Cucumber experiment: full survey
questions, choices and answers (n=4)

Question Choices Participant 1 Participant 2 Participant 3 Participant 4

How much
experience do
you have with
test
automation
using BDD
tools?*

{Less than 1
year; 1-2
years; 3-4
years; 5 or
more years}

5 or more years 5 or more years 1-2 years 5 or more years

Which BDD
tools/framewo
rks have you
worked with
before? List
the tools from
the one you
are most
experienced
with to the
one you have
used the
least.*

Open
question

Jbehave
Cucumber
Serenity

- JBehave (4 years)
 - Robot framework
with a custom BDD like
steps library (1 year)
 - Rspec (days to
weeks)
 - A self-built shell
script BDD-like test
framework (days to
weeks)
 - Mocha/Jasmine/
gazillion other spin-
offs or clones (days to
weeks)
 - Spock or Spock-like
frameworks (days to
weeks)

Jbehave, TestNG,
Cucumber

JBehave, Cucumber,
Serenity BDD

How easy did
it feel to learn
and use the
framework? -
bumbleB*

{1; 2; 3; 4; 5} -
1 being very
difficult and 5
being very
easy

4 4 2 5

How easy did
it feel to learn
and use the
framework? -
Cucumber*

{1; 2; 3; 4; 5} -
1 being very
difficult and 5
being very
easy

4 4 4 4

How efficient
did it feel to
create tests
using the
framework? -
bumbleB*

{1; 2; 3; 4; 5} -
1 being very
inefficient
and 5 being
very efficient

5 4 3 4

How efficient
did it feel to
create tests
using the
framework? -
Cucumber*

{1; 2; 3; 4; 5} -
1 being very
inefficient
and 5 being
very efficient

4 4 4 4

How easy did
it feel to
understand
the tests
written using
the
framework?
(what the test
is doing, which
classes and
methods are

{1; 2; 3; 4; 5} -
1 being very
difficult and 5
being very
easy

4 5 3 5

used/called
etc.) -
bumbleB*

How easy did
it feel to
understand
the tests
written using
the
framework?
(what the test
is doing, which
classes and
methods are
used/called
etc.) -
Cucumber*

{1; 2; 3; 4; 5} -
1 being very
difficult and 5
being very
easy

5 5 5 5

How easy did
it feel to
handle
different types
of data using
the
framework?
(and how easy
would it be to
support other
arbitrary types
of
data/objects) -
bumbleB*

{1; 2; 3; 4; 5} -
1 being very
difficult and 5
being very
easy

4 5 3 3

How easy did
it feel to
handle
different types
of data using
the
framework?
(and how easy
would it be to
support other
arbitrary types
of
data/objects) -
Cucumber*

{1; 2; 3; 4; 5} -
1 being very
difficult and 5
being very
easy

5 3 4 5

Did you find
any pros to
using bumbleB
compared to
your previous
experience?

Open
question

Can be used to
implement unit
tests

This syntax is close to
how I've wanted to
write BDD tests on
Java. Using e.g.
JBehave extensively
I've always felt that
the story file as a test
definition is a
complication instead
of a benefit. If I
understood correctly,
BumbleB would
provide test results in
the story file format.
This in turn, I feel, is a
good use of the story
file format. Namely,
using the more human
readable format for
explaining the result
and the programmer
readable format for
the definition of the
test.
Having two different
ways of writing the
tests was an
interesting feature.
This would allow using
just one framework for
more like Acceptance
Testing type and for
unit testing. In my
experience this
doesn't happen in the
Java world. I might've
been hanging out in
the wrong circles.
 The builder setup
replaced some
unclarity from the
process that
annotations often
bring. Of course it
possible and even easy
to learn how the
annotations work and
things will be just fine.
However, as a
programmer I
appreciate
programming most of
all with code, as then
everything behaves as
the code behaves, and
everything can be
understood.

- flexible cases due to
usage of generic types
by methods
- usage of relatively
smaller amount of
code when properly
defining blocks

No need to create
separate story file
(JBehave) and the
framework can
generate a human-
readable .txt file for
each test

Did you find
any cons to
using bumbleB
compared to
your previous
experience?

Open
question

 There wasn't a
bundled a bundled
assertion library with
BumbleB, OR I didn't
realise there was. I did
have trouble getting
my IntelliJ and Java
working after a long
break so I assume I
lost some niceties that
were there.

To be fair, I'm not sure
any other Java testing
library provides good
assertions either.
However, I do feel that
in some other
ecosystems this would
be the case. For both
accounts my memory
is hazy, though. I might
be wrong.

The builder setup
suffered from the
(very usual) tiny bloat
of having the ".build()"
part. Perhaps it is
needed for technical
reasons. Maybe there
are more extensive
features I didn't get to
enjoy. I'd probably
create a wrapper to
skip it. E.g.
test.name("hello
world").narrative("gon
na hello you
all").steps(shenanigans
::shenanigate).run().

Implementation of
BumbleB was a bit
more time consuming
than Cucumber
probably because it
was my first approach
to use it.

There's no out-of-the-
box solution for Data
Tables

With JBehave: it
supports multi-line
parameters out-of-
the-box and the user
only needs to declare
the parameter type as
ExamplesTable for it
to be automatically
parsed as a tabular
structure.
Examples:
 | title
| author |
publisher | genre
| publicationYear |
 | The Devil in the
White City| Erik
Larson | Crown
Publishers | Historical
non-fiction | 2003|
 | Harry Potter and
the Philosopher's
Stone | J. K. Rowling |
Bloomsbury (UK) |
Fantasy| 1997|
 | Harry Potter and
the Philosopher's
Stone | J. K. Rowling |
Bloomsbury (UK) |
Fantasy | 1997|
 | Harry Potter and
the Chamber of
Secrets | J. K.
Rowling | Bloomsbury
(UK) | Fantasy|
1998|

 | Book 100 |
Someone | Publisher
| Genre| Year|

With bumbleB:
 private final Book
book1 = new
Book("The Devil in the
White City", "Erik
Larson", "Crown
Publishers",
Genre.HISTORICAL_N
ON_FICTION, 2003);
 private final Book
book2 = new
Book("Harry Potter

and the Philosopher's
Stone", "J. K.
Rowling",
"Bloomsbury (UK)",
Genre.FANTASY,
1997);
 private final Book
book3 = new
Book("Harry Potter
and the Chamber of
Secrets", "J. K.
Rowling",
"Bloomsbury (UK)",
Genre.FANTASY,
1998);

 private final Book
book100 = new
Book("Book 100",
"someone",
"Publisher", "Genre",
Year);

And then you need to
create a List like this:
 private final
List<Book> books =
List.of(book1, book2,
book2, book3,,
book100);

Did you find
any pros to
using bumbleB
when
compared to
Cucumber?

Open
question

Not need to keep
and maintain story
files

No converter-
generator-mapping-
magic between Java
and TableData or
other Story file
variables. It is of
course nice when
someone else has
purpose built domain
specific converters and
such. It still has to be
done. I'm absolutely
not against adapter
patterns in general.
However, given my
dislike of the story file
as a test definition,
everything related to
that gets minus points
as well. With BumbleB
I was back to writing
actual Java (not that I
was actually writing
Java - instead I found
myself writing chimera
code based on
whatever was going on
in my mind at the time
- but thanks to IntelliJ
some of it was correct
in the end). Then, all
my non-programmer
colleagues would still
get the benefit of the
human readable test
results that cucumber
offers while I can stay
a programmer and use
all the amazing tools
that are available (not
you Cucumber! I'm
talking IntelliJ idea,
jdeps, static typing, ...).
In fact, even my
programmer
colleagues would
benefit from the
human readable result
when they need
information at a
glance. Everybody
wins. Except
Cucumber.

You don't need to
have this additional
abstraction layer
responsible for
translating natural
language to code.

No need to create
feature file
(Cucumber) and the
framework can
generate a human-
readable .txt file for
each test

Did you find
any cons to
using bumbleB
when
compared to
Cucumber?

Open
question

 After years of JBehave
it seemed so easy to
get going with
Cucumber,
understanding exactly
what was going on,
copy pasting the task's
test definition into the
story file and feeling
like I'm basically done.
(Though, of course, I
wasn't.)
With bumbleB I still
copy pasted the
scenarios and such
into the java file and
started rewriting it
into Java. Technically,
with Cucumber I
would quite easily be
able to create some
step skeletons and run
the test until it fails.
Then code some more
and keep going.
Without the story file
though, IntelliJ was all
red for the whole 20
minutes I spent on it.
Red means danger.
Danger means stress.
Stress means
monkeybrains and
getting nowhere fast
when coding. The fix
would be of course to
add the information
from somewhere else
piece by piece. That
somewhere could be
the task document, a
ticket, a notes app, a
throwaway text file or
block comments in the
code. Though, that
sound awful lot like a
story file. However, a
block comment is an
ok fix for a problem
that may never go
away. We'll always be
translating human
needs to code, which
is possibly why the
story files were
created as a tool begin
with.

Understanding the
code structure was
easier in Cucumber,
probably because I did
not had enough time
to get used to using
BumbleB.

Are there any
things you
want to
mention that
were
especially
good about
bumbleB?

Open
question

 BumbleB is a nice
demo showing that
BDD is not the same as
a story file. Still
providing a story file
like test report is a
great opportunity.
Even more, Behaviour
Driven Development
(well, Testing is what
we're dealing with
here) is not even the
Given-When-Then
syntax, although I
suppose these days
they are considered
one and the same
when working as a
googling engineer.
While that of course is
a whole other
conversation entirely,
the point that
bumbleB seems to be
getting at is that you
can program in a very
effective way without
sacrificing readability
of the code and the
understandability of
the results. Given-
When-Then, for
example, provides
some of that
readability by default.

Usage of blocks
instead of standard
page objects gives
somehow new fresh
perspective when
using test automation.

Do you have
any
suggestions on
what could be
improved
about
bumbleB
and/or what
it's missing?

Open
question

 If you continue deeper
into reporting, I
suggest you don't
benchmark JBehave's
reporting. Instead look
into every other
interesting ecosystem
out there and find
some creative ideas to
bring back with you
into the Java world.

Perhaps also a human
readable reporting
focused suite design
would be something to
look into. It seems to
me that suites are
these days either e.g.
Java files that define
which tests to run, or
long
it().describe().should().

I think that there
could be much more
informative materials
on the web about this
framework.

Documentations are
still lacking some
information. I
managed to write the
test because I already
understand BDD
concept and Given
When Then
annotations.
However, a newbie
who is introduced to
bumbleB framework
might be struggling
when writing the test.

yoda() spells. Both
leave me wanting.
When you have
thousands of tests, do
you really understand
what is going on? Does
anyone?

Which order
did you do the
coding
assignments
in?*

{bumbleB,
Cucumber;
Cucumber,
bumbleB; I
worked on
both
simultaneous
ly}

Cucumber, bumbleB bumbleB, Cucumber Cucumber, bumbleB bumbleB, Cucumber

Do you think
that being
already
familiar with
the test case
and the
sample project
helped you
when doing
the
assignment for
the second
time with
another
framework?*

{Did not help;
Helped a
little bit;
Helped a lot}

Helped a little bit Helped a little bit Helped a lot Helped a lot

Approximately
how long did
you spend on
the bumbleB
part of the
coding
exercise?*

Open
question

30 minutes 25 minutes including
setting up IntelliJ, got
mostly the steps
written without
running anything

2x longer than
Cucumber

1 hour

Approximately
how long did
you spend on
the Cucumber
part of the
coding
exercise?*

Open
question

40 minutes 15 minutes before I
felt I'd gone close
enough to the point of
no return (that would
be writing the
converters)

1,5 hour 30 minutes

* Mandatory questions

	Introduction
	Software testing and Behavior Driven Development
	Introduction to software testing
	Using tests to drive software development
	What is BDD?

	Investigating BDD testing frameworks
	JBehave
	Implementation
	Features
	Analysis

	Cucumber
	Implementation
	Features
	Analysis

	Concordion
	Implementation
	Features
	Analysis

	Gauge
	Implementation
	Features
	Analysis

	Comparison of BDD frameworks
	Comparison
	Discoveries

	Building a new BDD framework
	Introducing the bumbleB framework
	Implementation
	Features

	Evaluating the new framework
	Are the requirements met?
	Specific but extensible BDD syntax for consistency and flexibility
	Java-based test cases for easiness
	Annotation processor for collaboration and maintainability
	Unit testing support for robustness
	JUnit for existing features and integrations

	General discussion

	Conclusions
	Bibliography
	bumbleB and Cucumber experiment: instructions for the coding assignment
	bumbleB and Cucumber experiment: full survey questions, choices and answers (n=4)

