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Evolution andmodulation of antigen-specific
T cell responses in melanoma patients

Jani Huuhtanen 1,2,3,4, Liang Chen5,6, Emmi Jokinen4, Henna Kasanen1,2,3,
Tapio Lönnberg 7,8, Anna Kreutzman1,2,3, Katriina Peltola3,9, Micaela Hernberg9,
Chunlin Wang5,6, Cassian Yee 10,11, Harri Lähdesmäki4,
Mark M. Davis 5,6,12,14 & Satu Mustjoki 1,2,3,13,14

Analyzing antigen-specific T cell responses at scale has been challenging. Here,
we analyze three types of T cell receptor (TCR) repertoire data (antigen-
specific TCRs, TCR-repertoire, and single-cell RNA + TCRαβ-sequencing data)
from 515 patients with primary or metastatic melanoma and compare it to 783
healthy controls. Althoughmelanoma-associated antigen (MAA) -specificTCRs
are restricted to individuals, they share sequence similarities that allow us to
build classifiers for predicting anti-MAA T cells. The frequency of anti-MAA
T cells distinguishes melanoma patients from healthy and predicts metastatic
recurrence from primary melanoma. Anti-MAA T cells have stem-like proper-
ties and frequent interactions with regulatory T cells and tumor cells via
Galectin9-TIM3 and PVR-TIGIT -axes, respectively. In the responding patients,
the number of expanded anti-MAA clones are higher after the anti-PD1(+anti-
CTLA4) therapy and the exhaustion phenotype is rescued. Our systems
immunology approach paves the way for understanding antigen-specific
responses in human disorders.

Antigen-specific T cell responses are a hallmark of tumor immunology
and fundamental for understanding, detecting, and monitoring the
complex tumor-immune cell interactions. Only a small fraction of
tumor-infiltrating T cells are specific to cancer antigens while bystan-
ders, i.e., T cells that do not recognize cancer but e.g., viral antigens, are
abundant1–3. Previous studies have leveraged T cell receptor (TCR)
sequencing to understand the diversity and dynamics of the TCR
repertoire following immune checkpoint inhibitor therapies in solid
cancers4–7 and have linked crude metrics of TCR repertoire to clinical
outcomes. However, these studies have lacked the tools to dissect the

diversity and dynamics of antigen-specific T cells, which could bemore
important in understanding the role of anti-tumor T cells and bystander
T cells in the tumor microenvironment (TME) and could aid in dis-
coveringbiomarkers for clinically relevant responses. For example, high
TCR repertoire clonality has been linked to a favorable outcome to
immune checkpoint inhibitor therapy in melanoma4,6, but in these
studies it has not been shown that the clonally expanded T cells
are tumor-reactive. Profiling of antigen-specific T cells with panels of
peptide and major histocompatibility complex (pMHC) tetramers
remains both sample and time consuming8 and cannot be applied
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retrospectively to previously published next-generation sequencing
data. To overcome this, several transcriptional markers have been
suggested to be associated with tumor reactivity, like CD39+(CD103+)
T cells2,9,10, but gene expression can serve only as a surrogatemarker for
tumor-reactivity.

Neoantigens, which have been associated with response to
immune checkpoint inhibitor therapies are still imperfect response
predictors11,12. Additionally, neoantigens are challenging to study asnot
all somatic mutations cause neoantigens, not all neoantigens are
immunogenic, and most importantly, the immunogenic neoantigens
are highly restricted to individuals13. In contrast, tumor-associated
antigens (TAAs) are usually immunogenic, widely expressed by dif-
ferent tumor cells, and shared across individuals14, which provides a
useful way to detect and monitor anti-tumor T cell responses in larger
patient cohorts. In long-termmelanoma survivors, TAA specific T cells
have been shown to form an anti-tumor repertoire that persists after
tumor eradication15 and has an exhausted phenotype, that could per-
haps be rescued with immune checkpoint inhibitor therapies16.

Here, we profile and analyze three types of T cell repertoire data
to understand anti-tumor immunity via TAA-specific T cells (Fig. 1a,
Supplementary Fig. 1a, and Supplementary Data 1). First, we examine
pMHC-tetramer sorted epitope-specific TCRβ-sequencing (TCRβ-seq)
data across different melanoma-associated antigens (MAAs) and
compare these to similar viral antigen data and use this information to
create tools to detect anti-MAA specific T cells. Second, to understand
the phenotype of antigen-specific T cells, we analyze previously pub-
lished scRNA+TCR-seq, paired bulk-RNA, and TCRβ-seq from the
melanoma biopsies. Finally, we analyze scRNA+TCR-seq and TCRβ-seq
data without known specificity from 515 primary and metastatic mel-
anoma patients to understand the antigen-specific immune responses
in a broader cohort ofmelanomapatients (Fig. 1a). In total, our analysis
includes over 1000 samples from 15 different data sets with over 10
million TCRs from patients with melanoma and healthy. With this data
set, we show (1) the importance of anti-MAA T cells in separating
patients with melanoma from healthy based on a peripheral blood
samples, (2) show how anti-MAA T cells are associated with overall
survival, (3) how anti-MAA T cells are inhibited by the tumor and other
immune populations via druggable axes, (4) that in responders, there
are more expanded anti-MAA T cell clones after the immune check-
point inhibitor therapies and (5) that the exhaustion is reversed in anti-
MAA T cells only in responding patients, potentially serving as a
therapy response biomarker. In summary, our results provide insights
into antigen-specific T cell responses and show how they are modu-
lated by different immunotherapies.

Results
Anti-MAA TCRs are patient-restricted, but antigen-specific
sequence characteristics are shared
To understand how T cells recognize MAAs, we analyzed TCR reper-
toires from stage IV melanoma patients (n = 9) registered to receive
ex vivo expanded MART1/MLANAAAGIGILTV-specific T cells in an adop-
tive cells transfer (ACT) trial17. We noted a high degree of variation in
the diversity of the MART1AAGIGILTV-specific repertoire, and some
patients had highly oligoclonal responses and others more polyclonal
responses (Fig. 1b). Only a few TCR sequences were shared between
patients (6.62%, 96/1450 clonotypes, Fig. 1c), which we confirmed in
the reanalysis of similar ACT infusion products of MART1ELAGIGILTV
(Supplementary Fig. 1a, b) and MELOE1TLNDECWPA-specific T cells18

(Supplementary Fig. 1c, d). The comparison of two TCR repertoires
against two similar epitopes, MART1ELAGIGILTV and MART1AAGIGILTV,
revealed only a negligible number of shared sequences (0.67%, 18/
2680, Supplementary Fig. 1e). But, as noted in twin studies and other
work in the literature19–21, exact TCR sequence matches capture only a
small fraction of shared specificities between individuals, since many
different sequences can encode TCRs with the same peptide-MHC

specificity, warranting a need for more sophisticated soft-matching
methods.

Recent work by us and others have elucidated that antigen-
specific signals, like short antigen-interacting amino acid motifs, can
be extracted from epitope-specific TCRs with modern machine learn-
ing tools22–25. Thus, we analyzed the similarity of antigen-specific
repertoires by comparing themtonaïve repertoires tofind the antigen-
specific signal with GLIPH 2.025. We built a database by pooling our
data together with previously profiled MAA-specific and viral antigen-
specific data covering 59,898 TCRβ sequences from 77 epitopes18,26.
Different levels of convergence to these motifs were observed for
distinct antigens, suggesting that not all antigens elicit homogeneous
T cell responses across patients (Fig. 1d and Supplementary Fig. 2a–d).
Importantly, unlike antigen-specific clonotypes, antigen-specific
motifs were shared between patients, showing the convergent nat-
ure of antigen recognition (Fig. 1e).

Interestingly, antigen-specific T cells sorted with two MART1-
antigen epitopes, MART1AAGIGILTV and MART1ELAGIGILTV, showed strik-
ing similarity on their TCR repertoires, as their TCRs shared most of
their antigen-specific motifs (P = 5.2e−7, R2 = 0.87, Spearman’s rank
correlation, Fig. 1f), implicating that a single TCR could recognize both
epitopes. This finding was further validated with crystallography data,
as a previously described TCR27 bound both epitopes with similar
conformation and high affinity (Fig. 1g). Furthermore, another TCR27

containing the second most abundant epitope-specific motif GQP
identified by GLIPH 2.0 bound both epitopes with a similar confirma-
tion (Supplementary Fig. 3a).

To systematically analyze the cross-reactivity across epitopes,
we calculated the overlap of TCR repertoires of each epitope pair in
our data set and validated that especially epitopes that share amino
acid level similarities, share TCR motifs (Supplementary Data 2).
For example, we found the same motifs as in MART1AAGIGILTV and
MART1ELAAGIGILTV TCRs in an analogous epitope arising from a com-
pletely different antigen, BST2LLLGIGILV, providing evidence that
similar epitopes can elicit akin T cell responses even across antigens
(BST2LLLGIGILV vs MART1ELAAGIGILTV, Padj = 1.994e−82, R2 = 0.255, cor-
relation BST2LLLGIGILV vs MART1AAGIGILTV Padj = 0.003, R2 = 0.064,
Spearman’s rank-correlation, Supplementary Fig. 3b–d, Supplemen-
tary Data 2). Further, epitopes with amino acid sequence-level simi-
larities that arose from different viral species (DENV1GTSGSPIVNR,
DENV2GTSGSPIIDK, and DENV3/4GTSGSPIINR) shared significant numbers
of TCR motifs (Supplementary Fig. 4a, b and Supplementary Data 2).

Anti-MAA TCRs can be predicted with interpretable machine-
learning classifiers
After discovering the antigen-specific signal of T cells in detail, we
sought to utilize this information to define a machine-learning classi-
fier that could be used as an in silicomultimer-sorting strategy for TCR
repertoire data where pMHC-tetramer sorting is not feasible. For this
purpose, we leveraged TCRGP, our recently described Gaussian pro-
cess method that estimates the probability that a TCR recognizes a
given epitope23. We used the same pMHC-sorted TCRβ sequencing
data as above and built classifiers for the 5 different MAA epitopes
from 4 antigens (2 for MART1 and MELOE1 and two published models
for SEC24A and TKT23) and compared those to previously published
models from endemic viral epitopes from CMV, EBV, Influenza A, and
HSV-223 (training of TCRGP classifiers in “Methods”). For the two
MART1-epitopes, whose repertoires showed strong homogeneity, we
achieved good prediction accuracies (MART1AAAGIGILTV area under the
receiver operating characteristic [AUROC] =0.879, MART1ELAGIGILTV
AUROC=0.739, Fig. 1h, Supplementary Fig. 5a), unlike for
MELOE1TLNDECWPA whose repertoire was heterogeneous and did not
show convergent motifs (AUROC=0.617, Supplementary Fig. 5a).
Similar observations were found in leave-one-subject-out analyses
(Supplementary Fig. 5b). We observed that the prediction accuracy is
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associated with the presence of convergence toward motifs with
GLIPH 2.0, providing a biologically meaningful way to interpret our
classifiers (Supplementary Fig. 5c).

Further, to better understand false-negatives and false-positives
in our classifiers, we calculated precision-recall AUROCs which were
comparable or even slightly better than AUROC values, providing
confirmation that our TCRGP classifiers performwell when accounting
for false-negatives and false-positives (Supplementary Fig. 6a, detailed

analysis in “Methods”). Additionally, the number of clonotypes with a
predicted target did not correlatewith the amount of inputted number
of clonotypes (P = 0.71, R2 = −0.02, Spearman’s rank correlation, Sup-
plementary Fig. 6b).

Although our epitope-specific TCRβ-seq data used in the training
was HLA-restricted, the HLA type is generally not inferable for most
publicly available data sets. Therefore, we sought to analyze whether
non-HLA-A*02:01 alleles could potentially bind the epitopes where we
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had training datawith a pMHC interactionprediction tool NetMHCpan-
4.028. To allow for comparison across HLA molecules, we used the
percentile rank scores where lower rank corresponds to a higher
probability that a given peptide-MHC interaction naturally appears.
We analyzed the predictions for ***GIGILTV, which is the stretch of
amino acids shared between the MART1AAAGIGILTV and MART1ELAGIGILTV
epitopes, tobepresentedbydifferentHLA supertypes and found that 6
HLA-supertypes were predicted to bind the 8-10mer epitope with
***GIGILTVwithin a threshold of <10% rank, implying that epitopeswith
GIGILTV-motifs could be presented even by non-HLA-A*02:01 carriers
(Supplementary Fig. 7a).

Anti-MAATCRs can be used to separate patients withmelanoma
from healthy using blood samples
As the TCRGP classifiers were (1) robust in cross-validation of the
epitope-specific data, (2) contain controllable amounts of false-
negatives and false-positives, and (3) could possibly be used inde-
pendently of HLA types, we predicted the abundance of MAA-specific
and viral-specific clonotypes from TCR-repertoire level data. For mel-
anoma, we used our unpublished and a published cohort5 of stage IV
melanoma patients with unknownHLA types sampled from peripheral
blood before any treatment (n = 46), and compared it to the largest
known cohort of TCRβ-seq data of 783 healthy donors29. Although
TCRGP predicted that healthy donors would have anti-MART1 clono-
types, melanoma patients were predicted to have a higher frequency
of anti-MART1 clonotypes (P < 2.2e−16, two-sided Mann–Whitney test,
Fig. 1i). By using the frequency of the predicted anti-MART1 clonotypes
as an input, we obtained an AUROC of 0.981 for detecting stage IV
melanoma patients from healthy in a 10-fold cross-validation with a
basic logistic regression model (Fig. 1j. This AUROC was higher than
AUROCvalues calculated using baseline characteristics like patient age
or clonality (Supplementary Fig. 8a, b). Importantly, anti-MAA TCRs
from these patients were not used as input data to the TCRGP classi-
fiers. Even though there was a difference between the patients with
melanoma and healthy groups in age, the amount of anti-MART1 clo-
notypes or their clonality was not associated with age (Supplementary
Fig. 8c). Reassuringly, when we performed subsampling to our cohort
to gain an age-matched cohort (stage IV melanoma n = 25, healthy
n = 50), the frequency of anti-MART1 clonotypes was significantly
higher in melanoma than in healthy (P = 1.7e−10, two-sided
Mann–Whitney) and with a high AUROC for detecting stage IV mela-
noma from healthy (AUROC=0.950, Supplementary Fig. 8d, e).

To prove that our analysis was not separating only HLA biases, we
tested other non-melanoma antigens from CMV, EBV, and Influenza A.
For CMV and Influenza A, we did not find any difference between
patients with melanoma and healthy, but interestingly patients with
melanoma had more TCRs predicted to be reactive against two out of
three EBV antigens, BMLF1 (P = 5.2e−5, two-sided Mann–Whitney test)
and BRLF1 (P = 2.3e−13, Supplementary Fig. 8f), which is of interest as

an expansion of a cross-reactive TCR-specificity group against EBV and
non-small cell lung carcinoma has been reported previously21. Hence,
we argue that TCRGP can enrich anti-MAA clonotypes and can help to
uncover meaningful insights into tumor responses.

Anti-MAA clonotypes include both stem-like and exhausted
T cells, which interact frequently in the tumor
microenvironment
Next, we wanted to study the phenotypes of antigen-specific clono-
types and predicted the antigen-specificities of tumor-infiltrating
lymphocytes (TILs) from melanoma biopsies profiled with scRNA
+TCRβ-seq30 (n = 25, Fig. 2a). TCRGPpredicted a higher number of TILs
to be reactive against any of the 5MAA epitopes in comparison to viral
epitopes with a false positive rate (FPR) of 5% (P =0.029, one-sided
Fisher’s exact test). This also included themost expanded clonotype in
the data set (80 cells), which was found both in the primary tumor and
in a metastatic site from the same patient (Supplementary Fig. 9a).

Importantly, the anti-MAA clonotypes were enriched in the TCF7+

T cell cluster with stem-like properties (P = 2.2e−16, one-sided Fisher’s
exact test), whose abundance has been associated with a response to
immune checkpoint inhibitor therapies31, and in a cycling, exhausted
CD8+ T cell phenotype (P =0.0001), associatedwith tumor reactivity in
the original publication30 (Fig. 2b, c). In a cluster agnostic analysis, we
calculated the differentially expressed (DE) genes between all anti-
melanoma and anti-viral T cells to overcome the possible biases and
type I errors made in the clustering. The most differentially upregu-
lated genes in anti-melanoma clonotypes included genes associated
with activated, cytotoxic functions in CD8+ T cells (e.g., NKG7, GZMA,
GZMK), different cytokines (CCL4, CCL5), T cell activation (CD74, HLA-
DRA), and inhibitory markers such as HAVCR2 (TIM3), arguing further
for their role as tumor-reactive cells (Fig. 2d and Supplementary
Data 3). In contrast, the most upregulated genes in cells predicted to
be anti-viral included genes related to naïve T cell properties, such as
IL7R and SELL (L-selectin). In comparison to anti-viral clonotypes, anti-
MAA clonotypes upregulated IFN-γ and IFN-α response pathways
(Padj = 0.023 and Padj = 0.010, GSEA test, Supplementary Fig. 9b),which
have been previously reported as biomarkers for an effective response
to immune checkpoint inhibitor therapy32.

Next, we studied the interactions between antigen-specific clo-
notypes, tumor cells, and other immune subsets by calculating the
significant ligand-receptor interaction pairs with a permutation test
implemented in CellPhoneDB33. In comparison to the anti-viral T cells,
the anti-MAA T cells had over two-fold more interactions with B-cells
and regulatory T cells (Tregs) and interacted more frequently with the
two tumor clusters than the anti-viral T cells (Fig. 2e and Supplemen-
tary Data 4). To address the nature of these interactions, we classified
the ligand-receptor pairs and noted several inhibitory interactions.
These inhibitory interactions included PVR (CD155) expressed by the
tumor cells, but not by the other immune cells, and its receptors TIGIT

Fig. 1 | MAA-specific TCRs are restricted to individuals, but TCR motifs are
shared and provide a signal to learn for soft-matching methods. a Schematic
overview of the study, made with BioRender. b Structures of 9 MART1AAGIGILTV-
specific TCRβ repertoires, where rectangles indicate TCR clonotypes and their
frequencies. (Data from this study). c The number of shared public clonotypes
between the MART1AAGIGILTV-repertoires. (Data from this study). d Left: The GLIPH
2.0 results of pooled TCRβs from a healthy subject. Each node is a TCRβ clonotype
and an edge between nodes denotes a similarity between twoTCRβs. Right: Similar
GLIPH 2.0 results from pooled MART1AAGIGILTV-specific TCRβs from 9 subjects.
(Data from this study). e The number of shared public TCRβ resolved by GLIPH 2.0
between the MART1AAGIGILTV-repertoires. (Data from this study). f Rank
correlationofGLIPH 2.0motifs found in twoTCR repertoires from similar epitopes,
MART1ELAGIGILTV, and MART1AAGIGILTV, where the ranks are determined by the
number of TCRs that share the motif (i.e., motif with the highest rank has the most
TCRs). The solid line denotes the linear regression, and the dashed line denotes the
diagonal. The correlation coefficient and P-value were calculated with two-sided

Spearman’s rank correlation. (Data from this study and ref. 18). g Crystallography
schematics ofDMF5TCR showing the positions that can bind bothMART1ELAGIGILTV
(3qdg) andMART1AAGIGILTV (3qdj) epitopes (p) with identical binding. A similar TCR
that was able to bind both epitopes, DMF4, has the QGP motif identified by
GLIPH 2.0 (Supplementary Fig. 3a). (Data from ref. 27). h ROC curve plot for
MART1AAGIGILTV specific TCRβs from leave-one-fold-out analysis when trained with
TCRGP. Each line corresponds to one cross-validation from 20-fold cross-valida-
tion. (Data from this study). i Box plot showing the abundances of predicted
MART1-specific clonotypes from healthy donors (n = 783) and stage IV melanoma
patients (n = 46) sampled from peripheral blood. P-value was calculated with two-
sided Mann–Whitney test. The definition of box plot visualization is stated in the
“Methods” section ‘Data visualization’. (Data from this study and refs. 5,29). j ROC
curve plot showing the ROC curve for separating stage IV melanoma patients
(n = 46) from healthy (n = 783) based on information in panel i. (Data from this
study and refs. 5,29). Source data are provided as a Source Data file.
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and CD96 expressed by the anti-MAA T cells and not by the bystander
cells, rendering anti-TIGIT therapy as an interesting target to invigo-
rate anti-MAA T cells and not bystanders (Fig. 2f). Conversely, LGALS9
(encoding Galectin 9) was expressed by other immune cells including
Tregs and myeloid cells and its receptor HAVCR2 (encoding TIM3) was
expressed by the anti-MAA T cells, making anti-TIM3 therapy an
attractive target in resolving inhibitory interactionswithother immune
cells (Fig. 2f).

To validate and compare our findings in cutaneous melanoma we
reanalyzed a scRNA+TCRαβ-seq dataset including immune and tumor
cells from patients with uveal melanoma (n = 9)34, which has a lower
mutation burden and immune checkpoint inhibitor therapy response
rate than cutaneous melanoma35 but expresses also same MAAs like
MART136 andhas currently anapproved anti-MAATCRbased therapy37.
As in cutaneous melanoma, the anti-MAA clonotypes were enriched
in uveal melanoma in the exhausted CD8+ T cell cluster (P < 2.2e−16,
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one-sided Fisher’s exact test, Fig. 2g, h), a cluster that upregulated
PDCD1, HAVCR2 (TIM3), and LAG3. Also, in a cluster-agnostic analysis,
the anti-MAA clonotypes overexpressed cytotoxicity and exhaustion-
related genes e.g., NKG7, CCL5, PRF1, and LAG3 (Fig. 2i and Supple-
mentary Data 3), showing convergence across tumor types. As in
cutaneous melanoma, the anti-MAA clonotypes formed frequent
inhibitory interactions with tumor cells via PVR – TIGIT/CD96 and with
immune cells via Galectin 9 – TIM3 (Fig. 2j and Supplementary Data 4).

Anti-MAA clonotypes are associated with survival in primary
melanoma
After revealing the exhausted phenotype of MAA-specific T cells, we
examined how these clonotypes are associated with the tumor stage.
We analyzed a recently published dataset including TCRβ-seq reper-
toires from199primarymelanomas thatwere completely resected and
had not produced metastases at the time of diagnosis38. Surprisingly,
in a multivariable analysis the absence of a dominating anti-MART1
clonotype (explaining at least >1% of the total repertoire) was asso-
ciated with later metastatic recurrence and better overall survival in
these patients (P =0.021, hazard-ratio [HR] = 0.54), unlike the absence
of a dominating clone with any other epitope specificity (P =0.431,
HR =0.84, Fig. 3a, “Methods”). The P-value for absence of a dominating
anti-MART1 clonotype was smaller than with age (P =0.039, HR = 1.01)
or mitotic range (P =0.047, HR = 1.02) and comparable to that with
Breslow class (P = 0.018, HR = 1.13).

Anti-MAA clonotypes expand following immune checkpoint
inhibitor therapies especially in the responders
To detect whether the pre-existing anti-MAA clonotypes in the tumor
expand following immune checkpoint inhibitor therapy or new ones
are recruited from the circulation, we gathered TCRβ-seq data from
213 longitudinal samples from 3 cohorts of melanoma patients, con-
taining 100 melanoma patients treated with anti-PD1 with or without
anti-CTLA44,6,7. The proportion of MAA-specific T cells was between 5
and 10% of the total repertoire in the tumor, which was higher than in
blood samples (P = 0.00015, two-sided Mann–Whitney test, Supple-
mentary Fig. 10a).

We calculated the expanded clonotypes between pre and post
therapy samples with a Fisher’s two-sided exact test (“Methods”), and
noticed that patients with a response (complete response [CR] or
partial response [PR] as defined by the RECIST criteria39) had sig-
nificantlymore expanded clonotypes (Padj < 0.05, Benjamini–Hochberg
corrected two-sided Fisher’s exact test) than patients without a
response (stable disease [SD] or progressive disease [PD]) (P =0.031,
two-sided Mann–Whitney test, Fig. 3b and Supplementary Data 6).
When analyzing the specificities of the expanded clones, we noticed
that the most of the clonotypes did not have predicted target as

expected (Fig. 3c). However, out of the clones with a predicted target,
anti-MAA clonotypes were more common than anti-viral clonotypes
(Fig. 3c). Furthermore, anti-MAA clonotypes expandedmore frequently
in patients with a response than without (P =0.041), but this was not
noted with anti-viral clones (Fig. 3c).

Clonal replacement is not associated with response to immune
checkpoint inhibitor therapy in melanoma
Clonal replacement of TIL TCRs following immune checkpoint inhi-
bitor therapy has recently been analyzed in non-melanoma skin can-
cers, non-small cell lung cancer, endometrial cancer, colorectal
carcinoma, and renal cell carcinoma40–43. However, clonal replacement
has notbeen studied inmelanoma, and its associationwith response to
immune checkpoint inhibitor therapies is under debate. In our
extensive cohort, the frequency of replacing clones (i.e., clones that
were not found in pre-treatment samples) was higher in patients who
received immune checkpoint inhibitor therapy as a first-line treatment
(IO naïve) than in patients previously treated unsuccessfully with
immunotherapy (P =0.031, two-sided Mann–Whitney test, Fig. 3d).
Unlike in a previous report on non-melanoma skin cancer40, high fre-
quency of clonal replacement after immune checkpoint inhibitor
therapy was associated with a worse response in IO naïve patients
(P = 0.071), whereas the frequency of replacing clones was the same in
previously immunotherapy treated patients (P =0.97, Fig. 3e). Neither
the number nor clonality of the replacing clones was associated with a
response (Supplementary Fig. 11a–c). When the epitope specificities of
the replacing clones were predicted with TCRGP, we found that the
most cloneswere specific toMAAs, and the rate of replacement of anti-
MAA clones was higher in the non-responding patients than in the
responding patients (P =0.053, Fig. 3f).

Immune checkpoint inhibitor therapies reverse the exhaustion
of anti-MAA clonotypes in responders
As anti-MAA clonotypes did not significantly expand following
immune checkpoint blockade, we wanted to understand whether
immune checkpoint inhibitor therapies induce phenotypic alterations
in anti-MAA T cells. We predicted the antigen-specificities of published
scRNA+TCRαβ-seq dataset including TILs from both prior and post-
anti-PD-1 alone or with anti-CTLA-4 treated patients31 (n = 32, Fig. 4a).
First, we were able to validate our finding that anti-melanoma clono-
types are enriched to an exhausted CD8+ cluster (P =0.008, one-sided
Fisher’s exact test, Fig. 4a, b). Second, we noted that anti-MAA T cells
lost their exhaustion in patients with complete or partial responses
(n = 18, P =0.0068, two-sided Mann–Whitney test), but not in non-
responders (n = 14, P =0.92, Fig. 4c). Notably, the exhaustion pheno-
type of anti-viral T cells was not affected by the immune checkpoint
inhibitor treatment in either response group. The T cells without

Fig. 2 | Anti-MAAT cells are exhaustedbut retain stem-likeproperties and form
themost inhibitory interactionswithTregand tumor cells. aUMAPprojectionof
expression profiles of tumor-infiltrating lymphocytes (TIL) from25 treatment naïve
or immunotherapy resistant metastatic melanoma patients, colored by cluster.
(Data from ref. 30). b The same UMAP projection as in panel A where the TCRGP-
predicted anti-MAA and anti-viral T cells are highlighted. Melanoma-specific clo-
notypes include T cells that were predicted by their TCRs to be reactive against
epitopes from melanoma-associated antigens MART1AAGIGILTV, MART1ELAGIGILTV,
MELOE1TLNDECWPA, TKTAMFWSVPTV, and SEC24AFLYNLLTRV. Encircled lines denote
enrichment (Padj < 0.05, Benjamini–Hochberg corrected one-sided Fisher’s exact
test) to the clusters shown in panel A. (Data from ref. 30). c Bar plot showing the
enrichment of anti-MAA and anti-viral clonotypes to different T cell phenotypes as
P-values from Fisher’s one-sided exact test. (Data from ref. 30). d The differentially
expressed genes (Padj < 0.05, Bonferroni corrected two-sided t-test) between anti-
MAA and anti-viral clonotypes in patients withmelanoma. (Data from ref. 30). e Bar
plot showing the log2 fold-change of the number of statistically significant
(P <0.05, two-sided permutation test from CellPhoneDB) ligand–receptor inter-
actions between anti-MAA or anti-viral clonotypes and the cell types found in the

tumor microenvironment as predicted by CellPhoneDB permutation test. (Data
from ref. 30). f The statistically significant (P <0.05, two-sided permutation test
from CellPhoneDB) inhibitory ligand-receptor pairs between anti-MAA clonotypes
and cells in the tumormicroenvironment ofmelanoma. (Data from ref. 30).gUMAP
projection of expression profiles of TILs from patients with primary or metastatic
uvealmelanoma (n = 9), colored by cluster. (Data from ref. 34).h FocusedUMAPof
T cells with recovered TCRs from panel (g). On the top row, the clustering is
colored by T cell phenotypes and the TCRGP-predicted anti-MAA and anti-viral
clonotypes are shown. The dashed circles denote enrichment (Padj < 0.05,
Benjamini–Hochberg corrected one-sided Fisher’s exact test) to clusters shown in
panel h. A selection of the expression of canonical markers used to define the
clusters are highlighted. (Data from ref. 34). i The differentially expressed genes
(Padj < 0.05, Bonferroni corrected two-sided t-test) between anti-MAA and anti-viral
clonotypes in patients with uveal melanoma. (Data from ref. 34). j The statistically
significant (P <0.05, two-sided permutation test from CellPhoneDB) inhibitory
ligand-receptor pairs between anti-MAA clonotypes and cells in the tumor micro-
environment of uveal melanoma (Data from ref. 34). Source data are provided as a
Source Data file.
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predicted epitope-specificity, possibly containing a mix of other
tumor-reactive and bystander T cells, also lost exhaustion in the
responding patients but not in non-responding patients (P = 0.0016,
Supplementary Fig. 12a).

Discussion
As multiple different TCR repertoire studies have been reported in
patients with melanoma, we were able to perform a pooled analysis of

the antigen-specific T cell responses. Although numerous different TCR
repertoire algorithms that group TCRs based on epitope specificities or
predict epitope binding, have been proposed44–46, only a few studies
have utilized these to analyze large TCR-seq or scRNA+TCR-seq
cohort(s)21. These studies have usually relied on unsupervisedmethods,
used data from one institution or batch, and, most importantly, used
data profiled onlywith oneomics-method.With our in-depth analysis of
three different types of T cell repertoire data in primary andmetastatic
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cutaneous melanoma, we were able to discover similarities in the T cell
recognition of melanoma epitopes and build models to predict mela-
noma antigen-specific T cells providing in-depth understanding of their
frequency, phenotype, and association with prognosis and therapy
response in a large cohort of melanoma patients (Fig. 4d).

With our machine learning models, we were able to separate
patients with melanoma from healthy only based on the proportion of
anti-MART1 clones in a blood sample. Importantly, this method could
provide an avenue for early detection of cancer if this finding can
be replicated in patients with low grade melanoma. Moreover,
we discovered that the presence of a dominating anti-MART1 clone
(>1% repertoire) in the tumor is associated with a worse survival in
primary melanoma. We speculate that the large MART1-clones could
be more prone to exhaustion and thus cannot mount an adequate
long-standing anti-tumor immune response. Further clinical studies
are needed to understand, whether immune checkpoint inhibitor
therapies could reverse this worse survival.

Further, we were able to link the predicted target of the T cells to
their phenotype and show the differential phenotypes of anti-MAA and
anti-viral T cells. Anti-MAA-clonotypes showed expression of genes
that have been previously associated with tumor-specificity and cyto-
toxicity (e.g., NKG7, CCL5, TIM3), as in a previous analysis of anti-MAA
and neoantigen-specific clones in a scRNA-seq data set16. The retained
proliferation capacity of the anti-MAA clonotypes at the transcriptome
level implies that not only neoantigen-specific T cells can be attributed
to benefit from the immune checkpoint blockade, as MAA-specific
T cells could also play a role. Additionally, we provide a systems
immunology overview of immune subset interactions between T cells
of different specificities and suggest that the exhaustion of anti-MAA
T cells could be caused by interactions with Tregs, especially via
Galectin9 and TIM3, and with tumor cells via PVR and TIGIT, poising a
potentially interesting strategy to invigorate anti-MAA and tumor cell
interactions with anti-TIGIT and anti-MAA and immune cell interac-
tions with anti-TIM3 antibodies, which are both currently tested in
phase III trials in various solid and hematological cancers47,48.

The patients responding to immune checkpoint inhibitor therapy
had higher number of expanded clonotypes after the treatment than
patients without a response, and many of these clonotypes were pre-
dicted to be specific to MAAs. The expansion of anti-MAA clonotypes
was congruent with the scRNA-seq data, in which also exhaustion of
MAA-specific T cells was successfully reversed with anti-PD1(+anti-
CTLA4) therapies. Our work validates and extends the experimental
data coming from a limited number of samples, suggesting that MAA-
specific T cells selectively lose their exhaustion during immune
checkpoint inhibitor therapies16,49.

The question of clonal replacement, i.e., whether the immune
checkpoint inhibitor therapies recruit new clones or expand the

pre-existing ones, is under debate6,30,40,41,43. In our analysis ofmultiple
cohorts of melanoma patients, we were not able to associate clonal
replacement of the total repertoire or anti-MAA repertoire to clinical
responses. However, clonal replacement was more abundant in
immune checkpoint therapy naïve patients than in patients who have
failed previous line(s) of immunotherapy. Similarly, it was more
prevalent in anti-MAAT-cells than in bystander T cells. Altogether, we
believe that pre-existing anti-tumor immunity, anti-MAA, and/or anti-
neoantigen immunity, in the tumormay be themost important thing
to successful immune checkpoint therapy.

Our studyhas limitations suchas the lackofHLA information from
the samples, the limited set of anti-MAA epitopes available to train the
TCRGP classifiers, and the lack of training data against neoantigen
epitopes. As the amount of epitope specific TCR data increases and
shared neoantigens and their cognate TCRs are recognized, these
prediction tools become even more accurate which could allow their
use in the clinical diagnostics.

In summary, our analysis of a large data set of antigen-specific
T cells in patients with melanoma gives us insights into the T cell
responses, including reversal of exhaustion, expansion of anti-MAA
clonotypes, downregulation of target antigens, and molecular mimi-
cry. These findings also provide insights into how different immune
checkpoint therapies modulate the response. We envision similar
approaches will provide more detailed information of antigen-specific
responses at a larger scale in tumor-, auto-, and alloimmunity when
suitable training data for TCRs specific for self- or viral antigens
emerge.

Methods
The study was conducted in accordance with the Declaration of Hel-
sinki complying with all relevant ethical regulations. Written informed
consent was received from all patients. No compensation was pro-
vided for the study participants.

Metastatic melanoma patients
MART1AAGIGLTV-specific adoptive cell therapy infusion products
(Huuhtanen et al. data). This study included the adoptive cell therapy
(ACT) infusion products of 9 patients with metastatic melanoma
enrolled to receive such therapy. The study was approved by the Fred
Hutchinson Cancer Research Center Institutional Review Board and all
patients provided written informed consents. Briefly, the therapy
included infusion of autologous MART1AAGIGLTV-specific cytotoxic
lymphocytes generated by priming with peptide-pulsed dendritic cells
in the presence of interleukin-21 and enriched by peptide-major his-
tocompatibility complex multimer-guided cell sorting CTLs followed
by a standard course of anti-CTLA4. The patient details are outlined in
the original publication17. The patient data, including the response

Fig. 3 | The number of expanded anti-MAA clonotypes increases following
immune checkpoint inhibitor therapy. a Kaplan–Meier curves of overall survival
(OS) for primary melanoma patients (n = 199) by the presence of a dominant clo-
notype (explaining >1% of the total repertoire) that was predicted to recognize
MART1 or by any clone explaining >1% of the total repertoire. P-values were cal-
culated with two-sided log-rank test. (Data from ref. 38). b Box plot showing the
number of expanded clonotypes in the tumor microenvironment following anti-
PD1 with or without anti-CTLA4 therapy, where each dot is one individual patient
(n = 60). Patients were divided by the response (responders n = 22, including
complete response [CR] and partial response [PR], non-responders n = 38, includ-
ing stable disease [SD], and progressive disease [PD], defined by RECIST criteria).
P-value was calculated with two-sided Mann–Whitney test. (Data from refs. 4,6,7).
c Similar box plot as in panel B but where the clonotypes are separated by their
specificity. Melanoma-specific clonotypes include T cells that were predicted by
their TCRβ CDR3 parts to be reactive against epitopes from melanoma-associated
antigens MART1AAGIGILTV, MART1ELAGIGILTV, MELOE1TLNDECWPA, TKTAMFWSVPTV, and
SEC24AFLYNLLTRV. Similarly, the viral-specific antigens include CMV pp65IPSINVHHY,

CMV pp65NLVPMVATV, CMV pp65TPRVTGGGAM, EBV BMLF1GLCTLVAML, EBV
BRLF1YVLDHLIVV EBV BZLF1RAKFKQLL and IAV M1GILGFVFTL. P-values were calculated
with two-sided Mann–Whitney test. (Data from refs. 4,6,7). d The abundance of
replacing clones after immune checkpoint therapy, i.e., clones that are found in the
tumor microenvironment only following anti-PD1 with or without anti-CTLA4
therapy. The patients (n = 60) are divided by the previous line of immune check-
point therapy (IO naïve n = 46, prior IO n = 15). P-values were calculated with two-
sided Mann–Whitney test. (Data from refs. 4,6,7). e The abundance of replacing
clones after checkpoint therapy divided by prior line of immunotherapy (IO naïve
CR/PR n = 18, SD/PD n = 28; prior IO CR/PR n = 4, SD/PD n = 10). P-values were cal-
culatedwith two-sidedMann–Whitney test. (Data fromrefs. 4,6,7). fThe abundance
of clonal replacement clones after checkpoint therapy divided by predicted spe-
cificity as in panel (e). P-values were calculated with two-sidedMann–Whitney test.
(Data from refs. 4,6,7). The definition of box plot visualization is stated in the
“Methods” section ‘Data visualization’. Source data are provided as a Source
Data file.
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status based on the RECIST criteria39, were gathered from the respec-
tive articles.

Metastatic melanoma peripheral blood samples (Huuhtanen et al.
data). This study included 33 metastatic melanoma patients who
were treated at the Helsinki University Hospital Comprehensive
Cancer Center, Finland (Helsinki cohort). Out of the total 33 patients,
9 were immune-oncology (IO) naïve and 24 patients had been pre-
viously treated with either anti-PD1 monotherapy or in combination

with anti-CTLA4. The study was approved by Helsinki University
Central Hospital (HUCH) ethical committee (Dnro 115/13/03/02/15).
Written informed consent was received from all patients and the
study was conducted in accordance with the Declaration of Helsinki.
Peripheral blood (PB) samples were obtained from the patients
before the initiation of IO treatment (IO naïve cohort) or before the
start of new treatment modality (prior IO treated cohort). Peripheral
blood mononuclear cells (PB MNCs) were separated using the Ficoll-
Paque density gradient centrifugation (GE Healthcare, Buckingham,

Fig. 4 | The exhausted phenotype of anti-MAA T cells is reinvigorated with
immune checkpoint-therapies in responding patients, unlike in anti-viral
T cells. a UMAP projection of expression profiles of CD8+ tumor-infiltrating lym-
phocytes with identified TCR from 48 metastatic melanoma samples from 32
patients before and after anti-PD1 with or without anti-CTLA4, therapy, colored by
cluster. (Data from ref. 31).bBar plot showing the enrichment of anti-MAAand anti-
viral clonotypes to exhausted T cell phenotype as P-values from one-sided Fisher’s
exact test. (Data from ref. 31). c Boxplot showing the frequency of exhausted cells
before and after immune checkpoint therapy. Patients were divided by the
response (responders n = 18, including complete response [CR] and partial
response [PR], non-responders n = 14, including stable disease [SD], and pro-
gressive disease [PD], defined by RECIST criteria). P-values were calculated with

paired Mann–Whitney test. T cells were divided by TCRGP predicted specificities,
where melanoma-specific clonotypes include T cells that were predicted by
their TCRβ to be reactive against epitopes from melanoma-associated antigens
MART1AAGIGILTV, MART1ELAGIGILTV, MELOE1TLNDECWPA, TKTAMFWSVPTV, and
SEC24AFLYNLLTRV. Similarly, the viral-specific antigens include CMV pp65IPSINVHHY,
CMV pp65NLVPMVATV, CMV pp65TPRVTGGGAM, EBV BMLF1GLCTLVAML, EBV
BRLF1YVLDHLIVV, EBV BZLF1RAKFKQLL, and InfA M1GILGFVFTL. The definition of box plot
visualization is stated in the “Methods” section ‘Data visualization’. (Data from
ref. 31). d The figure summarizes the used datasets, research questions addressed,
and the main findings of the study. The figure was made with BioRender. Source
data are provided as a Source Data file.

Article https://doi.org/10.1038/s41467-022-33720-z

Nature Communications |         (2022) 13:5988 9



UK) and were live frozen at −150 °C in 10% DMSO-FBS solution for
further assays. The patient details are outlined in Supplemen-
tary Data 1.

TCRβ-sequencing data profiling and acquisition
MART1AAGIGLTV-specific adoptive cell therapy infusion products
(Huuhtanen et al. data). TCRβ-sequencing was conducted as pre-
viously described50,51 with ImmunoSEQ assay by Adaptive Biotechnol-
ogies Corp. Genomic DNA was used in all cases.

MART1ELAGIGILTV and MELOE1TLNDECWPA-specific adoptive cell
therapy infusion products (Simon et al. data). TCRα and TCRβ-seq
data specific for MART1ELAGIGILTV and MELOE1TLNDECWPA epitopes were
gathered from Simon et al.13, where PBMCs from HLA-A*02+ patients
were stimulated with IL-2 and given peptide in a microculture, and the
RNA was sequenced with a UMI based technique.

Metastatic melanoma peripheral blood samples (Huuhtanen et al.
data). 33 patients withmetastatic melanoma provided 33 samples that
were profiled with TCRβ-seq from MNC from peripheral blood (Hel-
sinki cohort). TCRβ-sequencing was conducted as previously
described50,51 with ImmunoSEQ assay by Adaptive Biotechnologies
Corp. Genomic DNA was used in all cases.

Other epitope-specific data. Additionally, we gathered data set from
VDJdb26 which is the largest database that contains TCR sequences
with known antigen specificity. Entries in VDJdb have been given a
confidence score between0 and 3. Tobuildmore reliable classification
models with TCRGP23, we constructed data set so that we selected all
epitopes that have at least 50 TCRβ sequences with a confidence score
of at least 1 and found data for 12 such epitopes, including MAA
TKTAMFWSVPTV, MAA SEC24AFLYNLLTRV, MAAMART1ELAGIGILTV, Influenza
A M1GILGFVFTL, EBV BMLF1GLCTLVAML, CMV pp65IPSINVHHY, CMV
pp65NLVPMVATV, EBV BZLF1RAKFKQLL, HSV2 B7RPRGEVRFL, CMV
pp65TPRVTGGGAM, EBV BRLF1YVLDHLIVV. For the training and testing of
the models, we also required some background TCRs that we do not
expect to recognize the epitopes in our data sets, which were gathered
from background TCRs constructed in the previous publication23.

Metastatic melanoma biopsies before and after anti-PD1 therapy
(Tumeh et al. data). From the Tumeh et al. data4, 25 patients with
metastaticmelanoma receiving anti-PD1 therapyprovided 36prior and
post-therapy samples that were profiled with TCRβ-seq from MNC
sorted from tumor biopsies, and the data was acquired from immu-
neAccess: https://clients.adaptivebiotech.com/pub/weber-2018-cir.

Metastaticmelanomasamplesbefore andafter anti-CTLA4 therapy
(Robert et al. data). From the Robert et al. data5, 21 patients with
metastatic melanoma receiving anti-CTLA4 therapy provided 41 prior
and post-therapy samples that were profiled with TCRβ-seq from
MNC sorted from peripheral blood, and the data was acquired
from immuneAccess: https://clients.adaptivebiotech.com/pub/robert-
2014-CCR.

Metastatic melanoma biopsies and peripheral blood samples
before and after anti-PD1 + anti-CTLA4 therapy (Riaz et al. data,
Yusko et al. data). From the Yusko et al. data7, 91 patients with
metastatic melanoma receiving either anti-PD1+anti-CTLA4 therapy or
anti-CTLA4+anti-PD1 therapy as a frontline therapy provided 200prior
and post-therapy samples thatwere profiledwith TCRβ-seqwith either
MNC sorted from tumor biopsies or CD8+ sorted from peripheral
blood, and the data was acquired from immuneAccess: https://clients.
adaptivebiotech.com/pub/weber-2018-cir.

From the Riaz et al. data6, 30 patients with metastatic melanoma
receiving anti-PD1 either as a front-line or after a previous line of

immunotherapy provided 60 prior and post-therapy samples that
were profiledwith TCRb-seq fromMNC sorted tumorbiopsies, and the
data was acquired from GitHub: https://github.com/riazn/bms038_
analysis.

Primary melanoma patients (Pruessmann et al. data). From the
Pruessmann et al. data38, 199 patients with primary melanoma pro-
vided 199 primary melanoma samples that were profiled with
TCRβ-seq from MNC sorted tumor biopsies, and the data was
acquired from immuneAccess: https://clients.adaptivebiotech.com/
pub/pruessmann-2019-nc.

scRNA+TCR-seq and bulk-RNA-seq data profiling and
acquisition
Metastatic melanoma biopsies from treatment naive or immu-
notherapy resistant patients (Li et al. data, Jerby-Arnon et al. data).
From the Li et al. data30, 25 patients with metastatic melanoma who
were treatment naïve or immunotherapy resistant provided 27 sam-
ples that were profiled with scRNA+TCRβ-seq from CD45+ enriched
tumor biopsies, and the data was acquired from Gene Expression
Omnibus (GEO) with accession number GEO: GSE123139.

From the Jerby-Arnon et al. data52, 31 patients with metastatic
melanoma who were treatment naïve or immunotherapy resistant
provided 39 samples that were profiled with scRNA-seq with from
CD45+ enriched and depleted tumor biopsies, and the data was
acquired from GEO with accession number GEO: GSE115973.

Uveal metastatic melanoma biopsies from untreated patients
(Durante et al. data). From the Durante et al. data34, 9 patients with
uveal melanoma who were treatment naïve provided 9 samples that
were profiled with scRNA+TCRαβ-seq with from unsorted tumor
biopsies, and the data was acquired from GEO with accession number
GEO: GSE115973.

Metastatic melanoma biopsies before and after immune check-
point blockade (anti-PD1, anti-PD1 + anti-CTLA4) (Sade-Feldman
et al. data, Riaz et al. data). From the Sade-Feldman et al. data31, 32
patients with metastatic melanoma who were treatment naïve pro-
vided 48 samples thatwere profiled with scRNA+TCRαβ-seq with from
CD45+ enriched tumor biopsies, and the data was acquired from GEO
with accession number GEO: GSE120575.

From the Riaz et al. data6, 65 patients with metastatic melanoma
who were treated with anti-PD1 provided 109 prior and post-therapy
samples that were profiled with bulk-RNA-seq with from tumor
biopsies, and the data was acquired from https://github.com/riazn/
bms038_analysis.

TCRβ-seq data analysis
Analyses started with the TCRβ matrices provided by the Adaptive
Biotechnologies preprocessing pipeline. Matrices were quality con-
trolled with VDJtools53 (ver 1.2.1), where non-functional clonotypes
were removed and diversity indices calculatedwith CalcDiversityStats-
function. Multiple different diversity metrics, including Shannon-
Wiener, Simpson, and clonality indexes were calculated with
CalcDiversityStats-function on both unsampled and subsampled
repertoire data. The same TCRs across samples were pooled together
with JoinSamples-command.

The expanded clonotypes were defined with Fisher’s two-sided
exact test, where the unnormalized read-depths from pre and post
therapy samples were used an input, and the P-values were corrected
with Benjamini-Hochberg adjustment. An expanded clonotype was
defined as Padj < 0.05.

The clonally replaced clones were determined as clones that were
found only in the post-therapy samples, and thus the frequency of
clonally replaced clones was calculated as: 1 − frequency of persisting
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clones present both in the pre and post samples, and their clonality as
in the rest of the repertoire level samples.

Unsupervised determination of epitope-specificities of TCRs
with GLIPH 2.0
TCRs were grouped based on amino acid level -similarities decided by
GLIPH225 (ver 1.0.0) with default parameters and CD8 as reference sets
for CD8+-sorted samples and CD4CD8 for MNC-sorted samples.

Supervised determination of epitope-specificities of TCRs
with TCRGP
Epitope-specificity predictionswereperformedwith TCRGP (ver 1.0.0).
To build TCRGP models specific for MAA epitopes (MART1AAGIGILTV,
MART1ELAGIGILTV, and MELOE1TLNDECWPA), we pooled all available anti-
MAA TCRα or TCRβ sequences together, respectively, specific to that
epitope from individual donors with a randomly selected set of back-
ground TCRs, so that there was always an equal number of epitope-
specific and background TCRs. To assess the models, we used either
leave-one-out cross-validation with epitopes with <100 epitope-
specific TCRs and 20-fold cross-validation for epitopes with more
TCRs (Supplementary Data 1). The anti-MAA classifiers were also
assessed in leave-one-subject-out cross-validation scheme (Supple-
mentary Fig. 5b) and as precision-recall AUROCswith 1:1 of positive and
negative samples, fromwhichwehave also included theArea under the
Precision-Recall Curves (AP-values54) as summary values (Supplemen-
tary Fig. 6a). All othermodels were gathered from the TCRGPpackages
GitHub page for each TCRβ identified in the dataset. The tested epi-
topeswere “GILGFVFTL_cdr3b” (from InfluenzaAM1 GILGFVFTL epitope),
“GLCTLVAML_cdr3b” (EBV BMLF1GLCTLVAML epitope), “IPSINVH-
HY_cdr3b” (CMV pp65IPSINVHHY epitope), “NLVPMVATV_cdr3b” (CMV
pp65NLVPMVATV epitope), “RAKFKQLL_cdr3b” (EBV BZLF1RAKFKQLL
epitope), “RPRGEVRFL_cdr3b” (HSV2 B7RPRGEVRFL epitope),
“TPRVTGGGAM_cdr3b” (CMV pp65TPRVTGGGAM antigen), and “YVLDH-
LIVV_cdr3b” (EBV BRLF1YVLDHLIVV epitope).

For thepredictionsused in all analyses, a threshold corresponding
to a false positive rate (FPR) of 5% was determined for each epitope
separately from the ROC curves obtained from the cross-validation
experiments. To determine anti-MAA T cells, we have predicted each
of the 5 classes individually, and if any of these classes are positive, the
T cell is labeled as anti-MAA. The FPRwas tuned to be 5% for individual
epitopes, and thus the FPR for anti-MAA T cells is larger than 5%. The
overall FPR to determine anti-MAA T cells was calculated by predicting
the 59 898 human non-anti-MAA TCRs found in the VDJdb26 in January
2021 and the TCR was considered as a false-positive if the TCR was
predicted to recognize any of the 5 MAA epitopes, and the value was
0.234, suggesting that our 5 TCRGP classifiers have a limited correla-
tion for detecting the same TCRs as negative.

scRNA + TCR(α)β-seq data analysis
Metastatic melanoma biopsies from untreated patients (Li et al.
data). The data contains tumor-infiltrating immune cells and residual
tumor cells from melanoma biopsies from treatment naïve or immu-
notherapy resistant patients. The quality control was used from
the original publication. The analysis started with a count matrix,
which was log-normalized with a scaling factor of 10,000, and the
top 2000 genes with the highest variability were determined with
FindVariableFeatures-command implemented in Seurat55 with method
“vst”. From the highly variable genes, genes that were related to V(D)J-
recombination and mitochondrial transcripts were excluded, and the
remaining genes were fed into principal component analysis (PCA),
where the components with standard deviation above 2 were retained
and used for non-linear uniform manifold approximation and projec-
tion (UMAP) dimensionality reduction56 with RunUMAP-function
implemented in Seurat with default parameters and to graph-based
clustering implemented in Seurat with default parameters. Based on

visual analysis, the resolution of clustering was chosen as 0.3 to avoid
over- and under-clustering of the dataset. The clusters were named in
descending order (cluster 0 contains the most cells) annotated based
on analysis of cluster adjacency, DE-genes, canonical markers,
expression of TCR, reference-based cell-type annotationwith SingleR57

(ver 1.2.4) with Blueprint as a reference, and with the original cell
phenotype annotation used in the original publication.

Metastatic melanoma biopsies from untreated or treated patients
(Jerby-Arnon et al. data). The data contains tumor-infiltrating
immune cells and tumor cells from melanoma biopsies prior and
post-treatment. TILs and tumor cells were analyzed separately. The
quality control was received from the original publication and the data
was processed similarly as with Li et al. data, albeit no additional
clustering was performed.

Uveal metastatic melanoma biopsies from untreated patients
(Durante et al. data). The data contains tumor-infiltrating immune
cells and tumor cells from uveal melanoma biopsies from one time
point. Cells with >15% mitochondrial transcripts, <100 or >8500
expressed genes, or <400 UMI counts were removed from the ana-
lysis. Toovercomebatch-effect, weused scVI58 (ver 0.5.0)with default
parameters (n_hidden=128, n_latent=30, n_layers=2, dispersion = ‘

gene’) where each sample was treated as a batch. The obtained latent
embeddings were then used for graph-based clustering and UMAP
visualization aswith the Li et al. data, and the resolutionwas chosen as
0.5. Data was scaled and normalized as with the Li et al. data, and
clusters were annotated with the same approach.

Metastatic melanoma biopsies before and after immune check-
point blockade (anti-PD1 or anti-PD1 + anti-CTLA4) (Sade-Feldman
et al. data). The data contains tumor-infiltrating immune cells and
frompatients withmelanoma frommelanoma biopsies prior and post-
treatment. The quality control was received from the original pub-
lication and the data was processed as with Li et al. data, albeit no
additional clustering was performed.

General. Differential expression analyses were performed based on the
t-test, as suggestedbySonesonet al.59. Pathway analysesweredonewith
either hypergeometric test onGO- andHALLMARK-categories gathered
fromMSigDBwithGeneSet EnrichmentAnalysis (GSEA)with R-package
clusterProfiler60 (ver 3.16.0). Receptor–ligand interactions were calcu-
lated with CellPhoneDB33 (ver 2.0.0) with at least 50 cells and 1000
iterations for the permutation testing, where the cell numbers were
normalized across phenotypes. The costimulatory and coinhibitory
receptor-ligand pairs were gathered from Dufva and Pölönen et al.61.

Survival analysis
Survival analysis was conducted with the Kaplan–Meier method, and
continuous datawere split at themedian. The log-rank testwas used to
determine statistical significance. The multivariable analysis was per-
formed with Cox proportional hazards model with R-package finalfit
(v 1.0.5), where the overall survival was used as the dependent variable
and the presence of MART1-specific dominating clone (dichotomous),
presence of any dominating clone (dichotomous), sex (dichotomous),
melanoma type (factor), TNM class (factor) Breslow thickness (con-
tinuous), age (continuous), mitotic rate (continuous), and clonality
(continuous) were used as explanatory variables. All the explanatory
variables were also analyzed in a univariate setting.

Statistical testing
P-values were calculated with nonparametric tests, including
Mann–Whitney test (two groups), Kruskal–Wallis test (more than two
groups), and Fisher’s exact test where the alternative hypotheses are
reported. P-values were corrected with Bonferroni (differentially
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expressed genes) or with Benjamini–Hochberg (all other tests)
adjustment. All calculations were done with R (4.0.2) or Python (3.7.4).

Data visualization
In the box plots, the center line corresponds to the median, box cor-
responds to the interquartile range (IQR), andwhiskers 1.5 × IQR, while
outlier points are plotted individually where present.

Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The TCRβ-sequencing data and Seurat-objects are available at Zenodo
under DOI: 10.5281/zenodo.6882576 with restricted access due to
General Data Protection Regulation (GDPR) regulations and data can
be accessed by placing a request via Zenodo to the leading and cor-
responding authors and will be reviewed without undue delay. Addi-
tionally, the TCRB-sequencing data are available at immuneAccess
under [https://doi.org/10.21417/JH2022NC]. The publicly available
scRNA+TCRαβ-sequencing and TCRβ-sequencing data used in this
study are listed in Supplementary Data 1. Source data are provided
with this paper. The remaining data are available within the Article,
Supplementary Information or Source Data file. Source data are pro-
vided with this paper.

Code availability
The code to reproduce the key findings is available in [https://github.
com/janihuuh/melanomap_manu]; v1: https://doi.org/10.5281/zenodo.
6875637
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