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LATEX

The primordial perturbations created by inflation in the early Universe are known to be able to
produce significant amount of primordial black holes and gravitational waves with large amplitudes
in some inflationary models. Primordial black holes are produced by primordial scalar perturbations
and gravitational waves are partly primordial tensor perturbations and partly produced by scalar
perturbations.

In this thesis we review some of the current literature on the subject and discuss a few inflationary
models that are capable of producing primordial scalar perturbations large enough to create a
significant amount of primordial black holes. The main focus is on ultra-slow roll inflation with a
concrete example potential illustrating the dynamics of the scenario followed by a briefer treatment
of some of the alternative models.

We start by explaining the necessary background theory for the understanding of the subject at
hand. Then we move on to the inflationary models covered in this thesis.

After that we explain the production of the primordial black holes and gravitational waves from
scalar perturbations. Then we consider primordial black holes as a dark matter candidate and
go through the most significant known restrictions on the existence of primordial black holes with
different masses. We discuss some of the possible future constraints for the remaining possible mass
window for which primordial black holes could explain all of dark matter. We then briefly discuss
two planned space-based gravitational wave detectors that may be able to detect gravitational waves
created by inflation.
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LATEX

Varhaisessa universumissa inflaatiosta syntyvien primordiaalisien perturbaatioiden tiedetään
pystyvän tuottamaan huomattava määrä primordiaalisia mustia aukkoja ja suuriamplitudisia grav-
itaatioaaltoja joissakin inflaatiomalleissa. Primordiaaliset mustat aukot syntyvät primordiaalisista
skalaariperturbaatioista niiden tullessa takaisin Hubble säteen sisälle inflaation jälkeen. Gravitaa-
tioaallot ovat osittain primordiaalisia tensoriperturbaatioita ja osittain syntyvät skalaariperturbaa-
tioista.

Tässä opinnäytetyössä käymme läpi tämänhetkisen kirjallisuuden tilannetta ja käsittelemme muu-
tamia inflaatiomalleja, jotka pystyvät tuottamaan tarpeeksi suuria primordiaalisia skalaaripertur-
baatioita synnyttääkseen mielenkiintoisen määrän primordiaalisia mustia aukkoja. Päämallina
käsittelemme ultra-slow roll inflaation konkreettisen esimerkki potentiaalin kautta, jota seuraa
joidenkin vaihtoehtoisten mallien lyhyempi käsittely.

Aloitamme selittämällä aiheeseen liittyvän taustateorian. Tämän jälkeen siirrymme käsittelemään
opinnäytetyöhön valittuja inflaatiomalleja.

Sitten selitämme primordiaalisten mustien aukkojen ja gravitaatioaaltojen syntymekanismin
skalaariperturbaatioista. Tämän jälkeen käsittelemme primordiaalisia mustia aukkoja mahdol-
lisena pimeän aineen ehdokkaana ja käymme läpi tärkeimmät eri massaisten mustien aukkojen
runsauteen liittyvät rajoitukset. Keskustelemme joistakin mahdollisista tulevaisuuden rajoituksista
massaikkunalle, jossa primordiaaliset mustat aukot voisivat vielä selittää kaiken pimeän aineen.
Käsittelemme sitten lyhyesti kaksi suunniteltua avaruuteen lähetettävää gravitaatioaaltoilmaisinta,
jotka mahdollisesti pystyvät havaitsemaan inflaatiosta syntyneitä gravitaatioaaltoja.
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1. Introduction

Primordial black holes (PBH) have been a source of interest for the past 50 years since
their existence was first proposed by Stephen Hawking [30] and the recent detection of
gravitational waves has raised the interest even more. PBHs are of special interest because
they are able to form at essentially any mass. Which means that currently they are the
only form of black holes that can be significantly affected by Hawking radiation. They
are also a possible dark matter candidate that could compose either a part or all of dark
matter [10].

Several mechanisms that could create these objects have been suggested. Examples
include PBH formation from domain walls [21] or from vacuum bubbles that nucleate
during inflation [20] and theories about nucleated cosmic string loops [27]. One of the
more interesting mechanisms is PBH formation from primordial perturbations created
by a period of inflation in the early Universe. The properties of this period are still very
uncertain and many different models have been suggested to explain different cosmological
observations. The abundance of PBHs can be used to constrain and develop new inflation
models.

The interest in gravitational waves increased drastically after the first detection of
gravitational waves created by the merging of a binary black hole pair by the gravitational
wave observatory LIGO [1]. The binary black hole pair could have been of primordial ori-
gin, but can also be explained by astrophysical processes. Since the first detection, around
90 mergers have been detected. Inflation also creates primordial gravitational waves that
could be detected by future gravitational wave detectors such as LISA and DECIGO.
Currently there is no direct observational data from inflation. The current observational
data is indirect and gained through the cosmic microwave background (CMB) radiation
but with the use of these new gravitational wave detectors, we can possibly get direct
experimental data about inflation.

This thesis will go over some of the models that can produce PBHs efficiently enough
to be interesting with the focus on ultra-slow roll (USR) inflation scenario. Then we will
look at the formation of PBHs and induced gravitational waves from primordial scalar
perturbations and finally we will go over the most important observational constraints for
PBH mass ranges as potential explanations for dark matter.
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3 Chapter 1. Introduction

We use the natural units where c = 1 and ℏ = 1. We use the reduced Planck mass
related to the Newton’s gravitational constant as M2

pl = 1
8πG

.



2. Background theory

In this chapter we cover the necessary background information for understanding PBH
and gravitational wave formation from inflation. We mostly follow [13, 37].

2.1 Background metric and the equations for the evo-
lution of the Universe

The background metric for a homogeneous, isotropic and expanding universe is the
Friedmann-Lemaître-Robertson-Walker (FLRW) metric. We approximate the Universe
as flat which is in line with the observational constraints that imply negligible spatial
curvature. Thus the background metric is

ds2 = ḡαβdxαdxβ = a2(τ)(−dτ 2 + δijdxidxj) , (2.1)

where the bar refers to a background quantity and τ is the conformal time defined as
dτ = dt

a(t) where t is the cosmic time and a the cosmic scale factor. There are three
important equations for describing the evolution of a homogeneous and isotropic universe.
Starting with the first Friedmann equation

H2 =
(

ȧ

a

)2
= ρ

3M2
pl

− K

a2 , (2.2)

where ρ is the energy density and K describes the spatial curvature. The dot denotes
derivative with respect to cosmic time. For the flat case (K = 0) (2.2) reduces to

H2 = ρ

3M2
pl

. (2.3)

Then there is the second Friedmann equation or the acceleration equation

ä

a
= − 1

6M2
pl

(ρ + 3P ) , (2.4)

where P is the pressure. The third equation is the continuity equation

ρ̇ + 3H(ρ + P ) = 0 . (2.5)

4



5 Chapter 2. Background theory

As two of these three equations are independent (any two of them can be used to derive
the last one), a fourth equation is necessary to solve the three unknowns: a(t), ρ(t) and
P (t). The fourth equation is the equation of state

P = ωρ , (2.6)

where ω is the equation of state parameter. Which is 0 for matter, 1/3 for radiation, for
the cosmological constant it is −1 and for curvature −1/3 (the contribution of curvature
doesn’t come from an energy density but from the second term in (2.2)). So ω < 0
corresponds to negative pressure and ω > 0 to positive pressure. Matter is pressureless.
This fourth equation can be used to solve for the unknowns from the three previous
equations. The linear form of P (ρ) is not the most general but in practice it adequately
describes the Universe during most of its evolution.

2.2 Relevant events in the early Universe

2.2.1 Baryogenesis

Baryogenesis is the process that has been hypothesized to have taken place during the
early Universe to produce baryonic asymmetry as it is still an open question as to why
there is more matter than anti-matter.

2.2.2 Big bang nucleosynthesis

Big bang nucleosynthesis (BBN) happened in the early Universe (around 10 s to 20 min
after the big bang). It refers to the creation of other nuclei (up to lithium) than the single
proton nuclei that existed in the early Universe.

2.2.3 Cosmological background radiation

The CMB is electromagnetic radiation that is a remnant of the time of recombination (the
Universe was around the age of 370 000 years [37]). When the Universe was hot and dense
enough for electrons and protons to be unbound from each other the Universe was filled
with opaque fog of hydrogen plasma so the light could not travel freely. When the Universe
expanded and cooled enough for the first atoms to emerge by the binding of electrons to
atomic nuclei it became transparent and photons decoupled from the surrounding matter.
The photons from that time form the CMB.
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2.3 Inflation

Inflation means a period of the Universe when the expansion of the Universe is acceler-
ating (i.e. ä > 0). This happened in the early Universe when the Universe underwent
exponential expansion in a very short amount of time. From the acceleration equation
we see that for the expansion of the Universe to accelerate (ie. ä > 0) we need pressure
negative enough such that ω < −1

3 .

2.3.1 Cosmological problems

Inflation is able to answer three classic cosmological problems:

• The horizon problem

• The flatness problem

• Unwanted relics

Horizon problem

The horizon problem or the homogeneity problem refers to the homogeneous and isotropic
nature of the CMB. This includes the areas of the sky that should not have yet had the
time to be in causal contact with each other i.e. regions separated by more than 1◦ and
yet have the same temperature with the accuracy of ≲ 10−4.

Inflation can be discussed in terms of physical distances or in terms of comoving
distances. During inflation the physical distance between two points is increasing with an
accelerating rate. The benefit of using comoving units is that we can keep the distance
between two points fixed in an expanding universe.

The comoving Hubble length , 1
ȧ

= H−1, gives the distance over which we have
causal interaction on cosmological timescales in comoving units. During inflation the
comoving Hubble length is shrinking. From the comoving viewpoint when H−1 shrinks
the comoving distance for which we have causal connection also shrinks and the region
causally connected to a given location in the Universe shrinks. From the physical view-
point the distance between two points is increasing faster than the distance over which
causal contact can be had. Which would explain the horizon problem i.e. the regions
were causally connected before inflation.
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Flatness problem

The flatness problem refers to the fact that the Universe seems to be on average almost
perfectly spatially flat. Given the first Friedmann equation in the form

Ω − 1 = K

a2H2 , (2.7)

where Ω is the density parameter defined as

Ω ≡ ρ

ρc

= 8πGρ

3H2 , (2.8)

where ρc is the critical density of the Universe. For individual components such as the
matter Ωm or dark matter Ωdm the definition is

Ωm ≡ ρm

ρc

= 8πGρm

3H2 , Ωdm ≡ ρdm

ρc

= 8πGρdm

3H2 . (2.9)

We see that if the Universe has a critical density Ω = 1, it stays like that since K=0.
If the initial value of the density parameter (Ωi) during the radiation dominated era

is not be extremely close to one, one of two things can happen. If Ωi is significantly greater
than 1 then the Universe recollapses in a relatively short time. And if Ωi is significantly
smaller than 1 the expansion of the Universe is dominated by the curvature and the scale
factor grows a ∝ t compared to radiation and matter domination a ∝ t1/2 and a ∝ t2/3

respectively. Neither of these describes the Universe we live in. During inflation

|1 − Ω| = |K|
a2H2 (2.10)

shrinks. So Ω is driven very close to 1.

Unwanted relics

It is possible that the extremely high temperatures at the beginning of the Universe would
allow the formation of stable high energy relics in a significant number. One of such relics
is the magnetic monopole that is predicted to be created during the phase transition that
could have happened when the electroweak force and the strong force separated. This
breakdown of the Grand Unified Force (GUT) into two separate forces is theorized to
have happened very early in the Universe around t ∼ 10−36 s. The GUT energy scale is
believed to be around 1016 GeV and it is predicted for the magnetic monopoles to have a
rest mass of similar magnitude. Due to their high rest mass if magnetic monopoles formed
in a significant number, they would come to dominate the energy density today which is
clearly not the case.

Inflation solves this by diluting the number of the relics to such densities that they
are not a problem. This sets limits on the reheating temperature. Meaning that the
reheating temperature has to be low enough that it doesn’t generate more of such relics.
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2.3.2 Scalar field

Inflation is commonly modeled by being driven by a scalar field called the inflaton. This
section goes over the properties of a scalar field, and follows [37]. In the beginning we use
the Minkowski metric η = diag(−1, 1, 1, 1) and later generalize to an expanding universe.

Let us start with a single scalar field ϕ with potential given by V (ϕ). The Lagrangian
of the scalar field is

L = −1
2∂µϕ∂µϕ − V (ϕ) . (2.11)

Now the field equation is obtained from the Lagrangian by minimizing the action [37]∫
Ld4x . (2.12)

This leads to the Euler-Lagrange equation

∂L
∂ϕ(x) − ∂µ

∂L
∂[∂µϕ(x)] = 0 . (2.13)

For the scalar field this leads to the field equation

∂µ∂µϕ − V ′(ϕ) = 0 , (2.14)

where ∂µ∂µϕ = −ϕ̈ + ∇2ϕ, ∇2 = ∂i∂
i and V ′(ϕ) = dV

dϕ
. So the field equation is

ϕ̈ − ∇2ϕ = −V ′(ϕ) . (2.15)

The Lagrangian gives the energy momentum tensor as

T µν = ∂L
∂(∂µϕ)∂νϕ + ηµνL . (2.16)

So for the scalar field the energy momentum tensor is

T µν = ∂µϕ∂νϕ − ηµν
[1
2∂ρϕ∂ρϕ + V (ϕ)

]
. (2.17)

From this we get the energy density and the pressure of the scalar field as ρ = T 00 and
p = 1

3(T 11 + T 22 + T 33). Then these quantities become

ρϕ = 1
2 ϕ̇2 + 1

2(∇ϕ)2 + V (ϕ) (2.18)

Pϕ = 1
2 ϕ̇2 − 1

6(∇ϕ)2 − V (ϕ) . (2.19)

Now moving to the FLRW case. Considering an inflaton field that during inflation is
almost homogeneous ((∇ϕ)2 ≈ 0) as is the case in FLRW. The energy density and pressure
of this scalar inflaton field become

ρϕ = 1
2 ϕ̇2 + V (ϕ) (2.20)
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Pϕ = 1
2 ϕ̇2 − V (ϕ) . (2.21)

In this case the equation of state parameter is

ω =
1
2 ϕ̇2 − V (ϕ)
1
2 ϕ̇2 + V (ϕ)

. (2.22)

Now we need to modify the field equation for an expanding universe which can be done
by inserting (2.20) and (2.21) into (2.5)

ρ̇+3H(ρ+P ) = ϕ̇ϕ̈+V ′ϕ̇+3H
(1

2 ϕ̇2 + V (ϕ) + 1
2 ϕ̇2 − V (ϕ)

)
= ϕ̈+3Hϕ̇+V ′ = 0 . (2.23)

Equation of motion of the homogeneous inflaton field in an expanding universe is then

ϕ̈ + 3Hϕ̇ + V ′ = 0 . (2.24)

The condition for inflation ä > 0 (or ρ+3P = 2ϕ̇−2V (ϕ) < 0) is satisfied when ϕ̇2 < V (ϕ).
Meaning that the kinetic energy of the field is smaller than the potential energy of the
field. And the equation of state parameter will be close to the cosmological constant
(ω ≈ −1) when 1

2 ϕ̇2 ≪ V (ϕ).
Now (2.3) becomes

H2 = 1
3M2

P l

[1
2 ϕ̇2 + V (ϕ)

]
, (2.25)

where contributions to the energy density from everything else except the inflaton field are
ignored. The reason for this is that as the inflaton field moves slowly the energy density
dominated by the potential also changes slowly. The matter and radiation components
decrease very fast (ρm ∝ a−3 and ρr ∝ a−4) which means that they become quickly
negligible during inflation.

Taking the time derivative of (2.25) and inserting the equation of motion (2.24) we
can derive the identity

Ḣ = −ϕ̇2

2M2
P l

. (2.26)

2.3.3 Slow roll approximation

The friction term (3Hϕ̇) of the field equation (2.24) slows down the evolution of ϕ. This
can lead to the fulfillment of the slow roll (SR) conditions

ϕ̇2 ≪ V (ϕ) (2.27)

|ϕ̈| ≪ |3Hϕ̇| . (2.28)
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With this SR approximation the equations (2.3) and (2.24) reduce to

3M2
P lH

2 ≈ V (ϕ) (2.29)

3Hϕ̇ ≈ −V ′ . (2.30)

Defining the Hubble SR parameters

ϵH ≡ − Ḣ

H2 = ϕ̇2

2H2M2
P l

(2.31)

ηH ≡ ϵ̇H

HϵH

≈
dϵH

d∆N

ϵH

. (2.32)

The parameter ϵH measures the ratio of the kinetic energy density to the total energy
density and ηH measures how quickly ϵH varies with time. Assuming the potential energy
dominates ϵH ≪ 1. Two other parameters defined using the potential instead are

ϵV ≡
M2

pl

2

(
V ′

V

)2

(2.33)

ηV ≡ M2
pl

V ′′

V
. (2.34)

In SR the conditions imply that

ϵH ≈ ϵV ≪ 1, |ηH | ≈ |ηV | ≪ 1 . (2.35)

The conditions for the potential SR parameters are necessary conditions for the SR ap-
proximation to be valid and for inflation to occur but not sufficient ones. They only
constrain the shape of the potential [37]. Here we will use primarily the Hubble SR
parameters as they contain the necessary information and are sufficient conditions for
inflation with the true end point being ϵH = 1 while with the potential SR parameter the
inflation ending at ϵV = 1 is only a first order result [39]. Now we will write condition for
inflation using ϵH starting with the definition of the Hubble parameter

H = ȧ

a
, Ḣ = ä

a
− ȧ2

a2 (2.36)

ä

a
= Ḣ + H2 . (2.37)

And given that a > 0 the inflation condition ä > 0 becomes

Ḣ + H2 > 0 . (2.38)
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Using (2.3) and (2.4) we see that [37]

Ḣ = ä

a
− ȧ2

a2 = − 1
6M2

P l

(ρ + 3P ) − ρ

3M2
P l

= − 1
6M2

P l

(ρ + p) . (2.39)

This would mean that for Ḣ > 0 it would be that p < −ρ meaning ω < −1 which is not
allowed by the equations (2.20) and (2.21). So it has to be that Ḣ ≤ 0. The inflation
condition can then be written as

− Ḣ

H2 = ϵH < 1 . (2.40)

So if the Hubble SR conditions apply inflation is guaranteed. The above can also be
written in the form ∣∣∣∣∣ḢH

∣∣∣∣∣ ≪ ȧ

a
(2.41)

The Hubble parameter changes much more slowly than the scale factor and for a constant
Hubble parameter the Universe expands exponentially. This expansion is measured in
e-folds meaning that how many orders in e the Universe has expanded.

Number of e-foldings from time t to end of inflation tend is given by the definition

N(t) ≡ ln a(tend)
a(t) , (2.42)

this using d ln a = da
a

= Hdt = H dϕ

ϕ̇
and the SR equations (2.29) and (2.30) can be put

in the form
N(ϕ) =

∫ tend

t
H(t)dt =

∫ ϕend

ϕ

H

ϕ̇
dϕ ≈ 1

M2
pl

∫ ϕend

ϕ

V

V ′ dϕ , (2.43)

where in the last step we have used the SR approximation. To solve the horizon and
flatness problems the amount of e-foldings is assumed to be around 50-60.

2.3.4 Reheating

During inflation most of the energy is in the inflaton potential as is seen from the SR
condition ϕ̇2 ≪ V (ϕ). When inflation ends, the potential of the inflaton field decays into
standard model (SM) particles and the energy is transferred to a thermal bath of particles
in the reheating process. Thus from the potential V (ϕ) reheating creates the matter and
radiation seen in the later Universe. It is not clear whether the Universe was ever in
thermal equilibrium before inflation so the term reheating might be inaccurate.

Reheating temperature must be high enough for BBN to occur after reheating but
sufficiently low that we do not produce any undiluted unwanted relics which depends on
the model but should be less than the GUT scale. Then the reheating temperature is at
the very least between

1MeV < Treh < 1016GeV .
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Figure 2.1: This figure shows the difference between the background spacetime and the perturbed
spacetime with the simple background spacetime on the left and the perturbed spacetime on the right.
Figure taken from [36].

2.3.5 Cosmological perturbation theory

The cosmological perturbation theory is a theory of perturbed spacetime [36]. The per-
turbed spacetime is very close to the simple background spacetime but as the name
suggests is slightly perturbed. In the case of cosmological perturbation theory the back-
ground is the FLRW background. The difference between the background spacetime and
the perturbed one is illustrated in figure 2.1. This means that there exists a coordinate
system where the metric can be written as

gαβ = ḡαβ + δgαβ , (2.44)

where gαβ is the perturbed metric, ḡαβ is the FLRW background and δgαβ is a small
perturbation. It is also required that the first partial derivatives of the perturbation δgαβ

are small and usually second partial derivatives are small as well.
Perturbation theory can be divided into different orders. In first order or linear

perturbation theory the products of the small quantities are all dropped and at the second
order one keeps the products of two small quantities etc..

The metric perturbation can be divided into three parts based on transform prop-
erties under rotations in the background space, a scalar, a vector and a tensor part [36].
In the first order perturbation theory the scalar, vector and tensor parts do not couple to
each other, meaning that they evolve independently in time. At second order this is not
the case and one of the consequences of this will be explored later.

The scalar perturbations are the most important as they couple to density and
pressure perturbations and exhibit gravitational instability as overdense regions grow
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more overdense. Vector perturbations couple to rotational velocity perturbations in the
cosmic fluid and decay in an expanding universe. Thus they are most likely not important
for inflation. Tensor perturbation are gravitational waves. If the waves are strong enough
they can have an observable effect on the anisotropy of the CMB.

2.3.6 Primordial perturbations

Most of current inflation research is not focused on it’s ability to solve the problems
mentioned before but due to it’s ability to create primordial perturbations that created
the large scale structures we see today. The perturbations can also be a source of PBHs
and gravitational waves. PBHs are caused by scalar perturbations at first order [13].
Primordial gravitational waves are primordial tensor perturbations [52] at first order and
generated by scalar perturbations at second order [7].

2.3.7 Power spectra

The power spectra of the scalar field perturbations (denoted as δϕ) and tensor (denoted
as h) perturbations are given by [13]

Pϕ,∗ =
(

H∗

2π

)2
(2.45)

PT,∗ = 8
Mpl

(
H∗

2π

)2
. (2.46)

The * means that the quantity is evaluated at the Hubble crossing (k=aH) which we will
drop after this. It is useful to consider the comoving curvature perturbation written as

R = H

ϕ̇
δϕ = δϕ

Mpl

√
2ϵH

. (2.47)

The power spectrum of this quantity measured at the Hubble crossing of a specific scale
is given by

PR = 1
2M2

plϵH

(
H

2π

)2
. (2.48)

The main source of observational data for the curvature perturbation is the CMB
observations from which we gain information about the anisotropies of temperature and
polarization of the CMB that are effected by the curvature perturbations. The other
observational source of data is the matter distribution in the Universe.

The statistical properties of the primordial power spectrum that are deduced from
the CMB maps can be parameterised in terms of the power spectrum with two free
parameters [13]

PR = As

(
k

kpivot

)ns−1

, (2.49)
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where As is the amplitude of the primordial power spectrum, ns − 1 is the spectral index
and kpivot is a chosen normalization scale. For a spectral index at the leading order in SR
we have

ns − 1 = −6ϵH + 2ηH . (2.50)

From which we can in SR tell the scale dependence of the primordial power spectrum in
terms of the derivatives of the potential with respect to the scalar field as ϵH ≈ ϵV and
ηH ≈ ηV .

The amplitude of the primordial tensor perturbations can be presented as a ratio
compared to the amplitude of the scalar perturbations i.e. tensor-to-scalar ratio

r ≡ PT

PR

= 16ϵH . (2.51)

From the Planck satellite we have the constraints on the spectral index and the tensor-
to-scalar ratio as [46]

ns − 1 = 0.965 ± 0.004

r ≤ 0.1 .

Combining the Planck data with the ground-based data from BICEP-Keck strengthens
the constraint for r to be r < 0.032 [57].

2.3.8 Perturbations at Hubble exit

The curvature perturbations in SR freeze out at the Hubble exit (k = aH). Meaning that
the perturbations stop evolving in time.

The equation of motion of the curvature perturbation written in terms of τ is

∂2Rk

∂τ 2 + 2
z

∂z

∂τ

∂Rk

∂τ
+ k2Rk = 0 , (2.52)

with z2 = 2a2M2
plϵH . Given the limit k ≪ aH one can find a partially analytic solution

by dropping the last term. The solution depends on two k dependent constants Ck and
Dk that in turn depend on the initial conditions

Rk→0 = Ck + Dk

∫ τ dτ ′

a2ϵH

= Ck + Dk

∫ t dt′

a3ϵH

, (2.53)

where the constant Ck corresponds to the mode that left the Hubble during SR and
remains constant after the Hubble exit. Dk corresponds to the decaying mode. During
SR ϵH is roughly constant and the decaying mode decays in proportion to a−3. This
means that Rk approaches a constant value due to the decay of the last term.
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2.4 Primordial black holes

Normal or stellar black holes can form when a star reaches the end of its life and is left
with sufficient mass to initiate a gravitational collapse creating a density high enough
for a black hole to form. The maximum mass for a stable white dwarf star is called
the Chandrasekhar limit (1.4 M⊙) and for a neutron star it is the Tolman-Oppenheimer-
Volkoff (TOV) limit which is more difficult to estimate but is thought to be around
2 − 3M⊙. The stars that have remnants above the TOV limit collapse into black holes.

PBHs are black holes that form at the early times of the Universe and via a different
mechanism than stellar black holes. Unlike the stellar black holes, PBHs can be born
with a mass less than the Chandrasekhar limit. The highly compressed matter/radiation
present in the early Universe allows the formation of black holes with a wide variety of
masses form stellar/super-massive scales to the the Planck mass scale [53].

The most studied formation mechanism and the one that is related to this thesis
is the formation of PBHs from the gravitational collapse of over-dense regions in the
early Universe. The over-densities are created by the scalar primordial perturbations and
collapse happens when the modes of those perturbations re-enter the Hubble radius.

For an inflationary model to be a viable candidate for the formation of PBH one has
to simultaneously realize the large amplitude fluctuations at small scales so that PBH can
form and fit the observational data i.e. amplitude on the CMB scales for the primordial
curvature perturbations [53].

2.4.1 Lifetime of black holes

It is theorized that black holes radiate energy through a process called Hawking radiation.
The radiation is blackbody radiation with a temperature that scales as

T ∝ M−1
P BH . (2.54)

Blackbody radiation is proportional to the surface area of the black hole A as T 4/A, with
A ∝ M2

P BH . Thus the total energy radiated away is proportional to T 4A ∝ M−2
P BH and

the rate of total energy loss satisfies

dMP BH

dt
∝ 1

M2
P BH

, (2.55)

which can be easily integrated to
t ∝ M3

P BH . (2.56)

PBHs with initial mass of around MP BH < M∗ ≈ 5×1014g have already evaporated during
the lifetime of the Universe. It is unclear whether black holes evaporate completely or
leave behind relics with Planck mass [35].
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2.5 Gravitational waves

Gravitational waves give a unique opportunity to probe the earliest times of the Uni-
verse due to them not being strongly affected by surrounding matter. While we can
use electromagnetic radiation to directly see only the time after recombination, gravita-
tional waves could be a window to the earliest times of the Universe and can be used
to probe the mechanics of inflation using future gravitational wave observatories LISA
[9] and DECIGO [34]. Currently the only direct observations of gravitational waves are
from binary mergers. While the upper limit for the tensor-to-scalar ratio is inferred from
the CMB observations. The tensor-to-scalar ratio only concerns the primordial tensor
perturbations.

2.5.1 Gravitational waves due linear tensor perturbations from
quantum fluctuations

At first order the gravitational waves from inflation are the quantum tensor fluctuations
of the metric and are often called primordial gravitational waves. This contributes to the
stochastic background of gravitational waves that would be detected by a detector that is
sensitive in the proper range. The stochastic background of gravitational waves consists
of the superposition of numerous incoherent sources [16]. The stochastic background
includes both cosmological sources and astrophysical sources and is considered to be
isotropic analogous to the CMB. An example of a astrophysical source would be mergers
that can’t be individually resolved by the detectors.

2.5.2 Information from primordial gravitational waves

Primordial gravitational waves can be used to constrain different aspects of the early
Universe and the possible underlying fundamental physics theory. Here we will give two
examples of the constraints.

One of the constraints comes from the relation of the tensor-to-scalar ratio to the
energy scale of SR inflation at the time the pivot scale leaves the Hubble radius. Given
that during SR inflation the equation (2.29) applies and the power spectrum has the
relations (2.48) and (2.49) then at the pivot scale

V = 24π2M4
plAsϵH . (2.57)

With (2.51) and given the scalar amplitude given by Planck Collaboration the energy
scale becomes [29]

V = (1.88 × 1016GeV)4 r

0.1 , (2.58)
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thus r provides the energy scale for inflation.
Another constraint concerns the variation of the inflaton field expectation value from

the Hubble crossing of large-scale perturbations to the end of inflation. Given the relation
(2.51) and (2.31) we can express r in the form

r = 8ϕ̇2

H2M2
P l

= 8
M2

P l

(
dϕ

dN

)2

. (2.59)

Integrating this from the Hubble crossing of the pivot scale to the end of inflaton and
making the dependence of r on N explicit we get

∆ϕ

Mpl

=
(

r(ϕc)
8

)1/2 ∫ Nϕend

Nϕc

(
r(N)
r(ϕc)

)1/2

dN , (2.60)

where ϕc is the value at the crossing of the pivot scale. The integral can be considered to
be the effective number of e-foldings (Ne) that takes into account the variation of r [29]
so we get

∆ϕ

Mpl

=
(

r(ϕc)
8

)1/2

Ne . (2.61)

The value of Ne is model dependent as it depends on the evolution of r during inflation.
For SR inflation r is constant at first-order so Ne becomes just the number of e-foldings.
Keeping the SR approximation that is in agreement with the chosen pivot scale we get a
lower bound for the deviation. Using the value of for example Ne ≃ 30 (i.e. a comoving
scale leaving the Hubble radius 30 e-folds before the end of inflation) we get [29]

∆ϕ

Mpl

≳ 1.06
(

r(ϕc)
0.01

)1/2

. (2.62)

This means that a model that produces a large number of GW involves a field deviation of
the order of Planck mass. This can be used to classify inflationary models into small field
and large field models with the distinguishing value being the Planck mass i.e. ∆ϕ

Mpl
< 1

and ∆ϕ
Mpl

> 1.



3. Inflation models

Models of inflation consist of two things: a potential V (ϕ) and a way of ending inflation.
Broadly there are two ways of ending the inflation. The first one is that the SR approxi-
mation is no longer valid when ϕ approaches the minimum of the potential V (ϕmin) ≈ 0.
Inflation ends when ϵH = 1, the value of ϕ at this time is denoted as ϕend. The second
is that some extra physics intervene with the process to end inflation. As an example
of this later is the hybrid waterfall inflation for which the potential is dependant on two
different fields. In this case the inflation may end before the SR approximation becomes
invalid [37].

The background pressure at the time of the radiation domination was large P =
ωρ = 1

3ρ. This means that only large perturbations in the matter density are able to
overcome the pressure and collapse into a black hole. Typical amplitude of density per-
turbations on the CMB scales is δ ∼

√
As ∼ 5 × 10−5 [13] which is too small for PBH

production. It is required for δ to be comparable to unity. We know that on the CMB
scales the spectral index satisfies ns − 1 ≈ 0. If the perturbations are scale invariant or
they are smaller on smaller scales then there will not form a significant amount of PBHs at
any mass scale. In order for an inflation model to produce PBHs a spike in the primordial
curvature perturbation spectrum on small scales is needed without disturbing the power
spectrum of the CMB scale.

There exists multiple different models for inflation that are capable producing this.
Some are of the single field variety in which only one field is responsible for inflation and
the formation of PBH but there are some models that use multiple fields. This review
focuses on the USR inflation case more in depth and gives a couple other examples in less
detail.

3.1 Ultra-slow roll

In USR V ′(ϕ) ≈ 0 [13]. Recalling that the equation of motion for the inflaton field is
(2.24) and that the energy density of the Universe is dominated by the potential energy
of the field then V ′(ϕ) ≈ 0 would give rise to eternal inflation in the SR approximation
(ϕ̈ ≈ 0) as the field would not be rolling at all i.e. ϕ̇ = 0. But we can no longer neglect

18
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the acceleration term (ϕ̈) due to its smallness and the equation of motion becomes

ϕ̈ + 3Hϕ̇ = 0 , (3.1)

which is the equation of motion for the USR inflation. This means that USR is a separate
inflation scenario from SR with opposite approximations. Now solving (3.1) with v = ϕ̇

and H = ȧ
a
.

v̇ = −3v
ȧ

a
. (3.2)

We see that v = ϕ̇ ∝ a−3. Remembering (2.31) with ϕ̇ ∝ a−3 then ϵH ∝ a−6 ∝ e−6Ht ∝
e−6∆N , where the fact that ∆N ≈ Ht was used. Then (2.32) gives the result that ηH ≈ −6
during USR as opposed to the SR case where |ηH | ≈ |ηV | ≪ 1.

Often an inflationary model that has USR as the method for causing a spike in the
spectrum consists of the regular SR stage and a USR phase lasting multiple e-foldings.
A general form of a typical potential is shown in figure 3.1. In the specific example
potential used in this thesis the transition to USR happens in a (near) inflection point of
the potential i.e. when V ′′ ≈ 0.

The transition between SR and USR can be understood as follows [23]. When the
slope (|V ′|) starts reducing drastically during SR, the friction term (3Hϕ̇) at first drags
along with the slope as they are connected via (2.30) decreasing the value of |ϕ̇| and
the kinetic energy density ρk = 1

2 ϕ̇2. The kinetic energy density decreases faster than
normally allowed in SR (i.e. max ρk ∝ a−6) by the decreasing of the slope. This causes
the system to break away from SR. Eventually as the slope drags down the friction term
it becomes comparable with the acceleration term (ϕ̈). When the terms are comparable
the friction term becomes locked with the acceleration term which leads to USR.

3.1.1 Effect of quantum diffusion

If the potential is extremely flat (i.e. has an inflection point) quantum fluctuations of the
field may start to dominate its variation [23]. When the potential starts becoming flat
the classic motion (ϕ̇) slows down due to the equation (2.30) and as it slows down enough
the significance of the quantum fluctuations increase. The quantum variation of the field
per Hubble time δt = H−1 is usually given by the Hawking temperature in de Sitter space
δϕ = H

2π
. This gives the kinetic energy density of the quantum fluctuations as [23]

ρdiff
k = 1

2

(
δϕ

δt

)2

= H4

8π4 , (3.3)

which can be interpreted as the minimum value the kinetic density can have. Now as-
suming |V ′| < 3

2π
H3 (i.e. |ϕ̇| = |V ′|

3H
< H2

2π
= δϕ

δt
) the quantum fluctuations overwhelm SR
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Figure 3.1: An example of the shape of a potential with a USR section and a SR section is shown in
this figure. Figure is taken from [18].

so that the number of USR e-folds is [23]

∆NUSR = 1
6 ln ρ0

k

ρdiff
k

= 1
3 ln

6π

√
2ρ0

kMpl

V

 , (3.4)

3.1.2 Amplitude of the primordial curvature perturbations in
USR

In single-field SR inflation the power spectrum can be put in a form using the SR param-
eter ϵH [13]

PR(k) = H2

8π2M2
plϵH

. (3.5)

This appears to remain at least partially true when USR inflation occurs. It is not true
for all scales and is subject to some more details [13].

In USR the perturbations do not freeze out at the Hubble exit, meaning that the
formula will have to be evaluated at the time USR ends and not at the Hubble exit. In
SR the parameters ϵV and ϵH are approximately equal to each other. In USR however as
V ′ ≈ 0 then ϵV ≈ 0 ̸= ϵH so the parameters can’t be treated as interchangeable. Meaning
that the formula of the power spectrum has to be evaluated using ϵH . Remembering that
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ϵH ∝ a−6 in USR we can see that

PR ∝ e6∆N . (3.6)

This means that the primordial curvature perturbation grows exponentially (on some
scales) during USR inflation creating the spike on the spectrum needed for PBH formation.

This also means that USR cannot last for too many e-folds as that would mean that
PR → 1. This signifies the breakdown of perturbation theory as the perturbations are no
longer small and would also cause eternal inflation due to [13]√

PR ∼ H

ϵ
∼ H

∆ϕ
∆N

∼ 1 . (3.7)

Meaning that the quantum fluctuations of the field which as we remember have an am-
plitude of δϕ = H

2π
are of the same magnitude as the distance the inflaton field will roll

down the potential during 1 e-fold of inflation at the background level (∆ϕ ∼ H∆N).
This means that it is as likely for the field to quantum leap up the potential as it is for it
to continue moving towards the minimum of the potential preventing the inflation from
ending in all locations.

3.1.3 Growth of the perturbations in USR

Scalar perturbations

Now to look at how the solution (2.53) behaves during USR. We can now see that the
decaying term (despite the name) does not decay as ϵ is no longer close to constant but
is proportional to a−6. This leads to [13]

Rk ∝ Dk

∫ t

dt′a3 ∝
∫ t

dt′e3Ht′ ∝ e3Ht ∝ a3 , (3.8)

as a ∝ eHt during inflation. Hence the curvature perturbations during USR have the same
time dependence after Hubble crossing as before [13]

PUSR
R ∼ R2

k ∝ a6 (3.9)

instead of freezing out as in SR.

Tensor perturbations

The equation of motion of the tensor perturbations (hij) in vacuum is [52]∗

h′′
ij + 2Hh′

ij + k2hij = 0 , (3.10)

where in this case the prime denotes a derivative with respect to τ . This holds both in
SR and USR and thus the tensor power spectrum is not amplified during USR and can
be written with the standard result (2.46) [50].

∗There is a typo in [52] in equation (2.8) with the hij replaced with h′
ij



22 Chapter 3. Inflation models

Figure 3.2: In this figure the example potential has been plotted as a function of ϕ. It is clear that the
potential has an inflection point.

3.1.4 Example potential

One of the examples of a potential allowing USR inflation is sometimes shown in the form
[26, 49]

V (x) = V0
x2(6 − 4ax + 3x2)

(1 + bx2)2 , (3.11)

with x = ϕ
υ

and υ being just a constant re-scaling factor. The shape of the potential
can be seen in figure 3.2. We will be using the same parameters as in [49] i.e. V0

M4
pl

=
4 × 10−10, υ

Mpl
=

√
0.108, α = 1 and β = 1.4349. Now one can find the inflection point

of the potential at V ′′(x) = 0. The inflection point using these parameters is located at
ϕ0 = 0.39Mpl. Then by taking the initial value for the field to be ϕi = 3.614Mpl we can
numerically calculate using (2.43) and get that the inflation lasts for about 63 e-folds in
this model. Which is around the 50-60 that is commonly thought to be needed.

We can calculate the exact evolution of ϵH from (2.31). We can see from the behavior
of ϵH and ηH the background dynamics driven by the potential quite well. In figures 3.3
and 3.4 these parameters have been plotted as a function of e-folds. We can see that
during the transition from SR to USR at around 40 e-folds. During the transition ϵH

rapidly decreases to even smaller values and ηH switches sign and becomes relatively
large (around -6).

From the behavior of ηH we easily see that there are two SR regimes separated by a
USR regime. During the second SR regime the value of ϵH is a few orders of magnitude
lower than during the first.
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Figure 3.3: This figure shows the evolution of ϵH as a function of e-folds.

Figure 3.4: This figure shows the evolution of ηH as a function of e-folds.
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3.1.5 Punctuated inflation

Punctuated inflation is a inflationary model where there is a brief departure from infla-
tion (SR approximation breaks down as ϵH reaches unity) [49]. In such a scenario the
interruption of the inflation is inevitably followed by an epoch of USR inflation which
then boosts the power spectrum on small scales.

One of the benefits of punctuated inflation is that it can be used to explain the lower
power observed at the small multipoles in the CMB data [31]. If the drop is chosen to
occur at around the scales corresponding to the Hubble radius today, the resulting power
spectrum can improve the fit to a certain extent. Punctuated inflation can come from a
potential of the same form as a scenario without the brief departure but with different
parameters. Given a potential of similar form to the previous one expressed in terms of
x = ϕ

υ
[49]

V (x) = V0
αx2 − βx4 + γx6

(1 + δx2)2 , (3.12)

one can show that for the following shared parameters V0
Mpl

= 1.3253 × 10−9, γ = 1, δ =
1.5092 and two sets of different parameters υ

Mpl
= (4.3411, 10), α = (8.522 × 10−2, 8.53 ×

10−2) and β = (0.469, 0.458) the scenarios will have different properties.
We can get two different evolutions of ϵH where in one case it briefly reaches unity

before the end of inflation and in the other it does not as seen in figure 3.5. Meaning that
one case represents punctuated inflation and the other USR inflation. This illustrates
that a scenario cannot be classified to be punctuated inflation or not based on the general
form of the potential alone.

3.2 Other inflation models

3.2.1 Higgs inflation

In SM, the only scalar field is the Higgs field. If the Higgs field is coupled to gravity
minimally it is not capable of producing a SR inflation model but if it is coupled to
gravity non-minimally and extrapolated to high energies this becomes possible.

The action of the SM coupled non-minimally to gravity is [50]

S =
∫

d4√−g

[
1
2(M2 + ξh2)gµνRµν − 1

2gµν∂µh∂νh − V (h) + LSM

]
, (3.13)

where gµν is the metric, M is a mass scale close to Planck mass, h is the radial Higgs field,
Rµν is the Ricci tensor, ξ is the non-minimal coupling, V(h) is the potential of the Higgs
field (V (h) = λ

4 h4) and LSM contains the terms of the Lagrangian from the rest of the
SM.
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Figure 3.5: In this figure the ϵH for both models has been plotted as a function of e-folds. The red line
represents punctuated inflation and blue one regular USR. As is seen the red reaches unity for a moment
and drops drastically after that. Figure is taken from [49]

.

By transforming to the Einstein frame we can get rid of the non-minimal coupling
[11]

gαβ → (1 + ξh2

M2
pl

)−1gαβ . (3.14)

Instead we get a non-minimal kinetic term for the Higgs field. To make it more convenient
we will define a new scalar field χ

dh

dχ
=

1 + ξh2

M2
pl√

1 + ξh2

M2
pl

+ 6 ξ2h2

M2
pl

. (3.15)

This leads to the Einstein frame potential [50]

U(χ) = V [h(χ)][
1 + ξh(χ)2

M2
pl

]2 . (3.16)

Using this potential Higgs inflation is capable of producing PBHs [50]. Although it is only
capable of creating PBHs that have evaporated today to be at most Planck sized relics. Its
predictions for the spectral index of primordial scalar perturbations and tensor-to-scalar
ratio are in agreement with observations of the CMB [50]. It is the simplest and most
minimal way to incorporate inflation into known particle physics.
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3.2.2 Hybrid waterfall

Hybrid waterfall inflation model consists of two different fields; the inflaton field ϕ and the
auxiliary field χ. In this type of a model the inflaton field is responsible for the expansion
and χ is the slowly varying field causing the shift for the potential illustrated in figure
3.6.

The inflation in this model is divided into two phases, the phase where the field is
moving along the valley and the waterfall phase. During the first phase χ is considered
to be 0 and the SR approximation to be valid. The CMB observations are created during
the first phase. When the field value of ϕ falls below a critical value ϕc inflation enters
the waterfall phase which is illustrated in figure 3.6. As can be seen from the figure the
existence of two fields allows for two dimensional motion and after passing the critical
point the potential becomes unstable and the small variation of the auxiliary field can
cause the fields to roll down the potential.

The essential features can be demostrated with an example potential [41]

V (ϕ, χ) = V0 + V (ϕ) + 1
2m2(ϕ)χ2 + 1

4λχ4 , (3.17)

where
m2(ϕ) ≡ g2ϕ2 − m2 ≡ g2(ϕ2 − ϕ2

c) . (3.18)

In order to have a perturbative quantum theory it has to be that g ≪ 1 and λ ≪ 1. The
inflation is in waterfall when ϕ < ϕc.

The equations of motion of the fields are

ϕ̈ + 3Hϕ̇ + ∂V

∂ϕ
= 0 (3.19)

χ̈ + 3Hχ̇ + ∂V

∂χ
= 0 . (3.20)

During waterfall phase both fields have to be taken into account i.e. one needs to solve
the two-field dynamics governed by [17]

H2 = 1
3M2

pl

[
ϕ̇2

2 + χ̇2

2 + V (ϕ, χ)
]

. (3.21)

Models for waterfall inflation can be categorized based on the length of the waterfall
phase in e-folds. The fast waterfall inflation model predicts the formation of very low
mass PBH but by having a smaller slope for the potential at the critical point one can
increase the number of efolds and the increase of the primordial curvature spectrum [17].
The mild waterfall inflation model for which the waterfall phase lasts for more e-folds
induces a larger and broader peak in the scalar power spectrum for modes leaving the
Hubble radius during first part of the waterfall phase and produce a significant amount
of PBHs [17].
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Figure 3.6: Dynamics of the potential of waterfall inflation are illustrated in this figure. Figure taken
from [53].

3.2.3 Curvaton

Another example of a two-field model is the curvaton model [53]. In this scenario one
of the fields is the inflaton field and is responsible for the exponential expansion of the
Universe. The other one is the curvaton field which is responsible for generating the
primordial curvature perturbations. In some extensions both fields contribute to the
curvature perturbations.

In this manner if we can create a model in which the perturbations on the CMB
scales are generated by the inflaton and the small scale ones by the curvaton, then the
model is suited for PBH formation and is consistent with the CMB observations. This is
one of the benefits compared to single field models.

In the curvaton scenario the power spectrum of the curvaton fluctuations is scale-
independent at small scales and has a cut-off at larger scales. During the radiation
dominated era after reheating by the decay of the inflaton field, the curvaton field starts
to oscillate and the curvaton fluctuations, that are initially isocurvature perturbations, are
transformed into adiabatic curvature perturbation. Meaning that the adiabatic curvature
perturbation grow in time. Isocurvature perturbation means that the fluctuations of the
same wavelength in different species are not spatially in phase while in adiabatic they
are. After the decay of the curvaton into radiation the perturbations become constant in
time. The components of the perturbations can be seen in figure 3.7 where the inflaton
perturbations and the curvaton perturbations for different scales have been plotted. As
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Figure 3.7: Primordial power spectrum in the curvaton scenario where PBH production can be efficient.
k1, k2, k3, k4 correspond to the modes which re-enter at t = t1, t2, t3, t4 with tdec > t1 > t2 > t3 > t4,
tdec refers to the time it takes for the curvaton to decay. The adiabatic fluctuation by the inflaton field
source the CMB observations while the ones sourced by the curvaton fluctuations are large enough to
create PBHs. Figure taken from [53].

can be seen the power spectrum is enhanced by the curvaton perturbations for multiple
different scales with different Hubble mass at Hubble re-entry thus the mass spectrum of
the formed PBH is broad [53].



4. Formation of PBH and induced
gravitational waves from primordial
scalar perturbations

In this chapter we cover the production of gravitational waves and PBHs from the pri-
mordial scalar perturbations.

4.1 Generation of primordial black holes from re-
entry

As mentioned previously, the PBH formation from inflation is due to the primordial per-
turbations that exit the Hubble radius during inflation and re-enter during the radiation
dominated era. Due to the perturbations there are some regions that are overdense which
leads to a gravitational collapse after the region becomes causally connected again.

4.1.1 Mass of PBH

The PBHs form with masses that are comparable to the Hubble mass MH = ρV at the
time of the re-entry [50]

MP BH = γMH = γρV = γ
4
3πρ

( 1
H

)3
, (4.1)

where V is the volume of the causally connected region, 1/H = a/k is the Hubble radius,
ρ is the total energy density at the time of Hubble re-entry of mode k and γ is an efficiency
factor with value γ = 0.2 in this thesis [50].

During the radiation dominated era the scale factor, density parameter and the
Hubble parameter scale as [50]

a(t) ∝ t
1
2 , ρ(t) ∝ a−4 ∝ t−2, H(t) = 1

2t
∝ a−2 . (4.2)
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This means that the wavenumber entering the Hubble radius (k = aH) scales as k ∝ a−1

and the PBH mass scales as
MP BH ∝ a2 ∝ k−2 . (4.3)

In order for the PBH to form early enough with masses that could constitute dark matter
the wavenumber of re-entry k has to be larger than the pivot scale kpivot denoted as k∗.
The number of e-folds of inflation between the Hubble exit of k∗ and the Hubble exit k is
[50]

∆Nk∗k ≡ N∗ − N = log a

a∗
≈ log aH

a∗H∗
= log k

k∗
> 0 . (4.4)

This leads to
MP BH ∝ e−2∆Nk∗k . (4.5)

Approximating that the scaling of the radiation domination era lasts until the matter-
radiation equality and inserting values Meq ≈ 6×1050 g for the Hubble mass and keq ≈ 0.01
Mpc−1 for the wavenumber at the matter-radiation equality in order to normalize the mass
of PBHs formed on scale k as [50]

MP BH = γ
Meq

25 e−2∆Nk∗k , (4.6)

which can easily be used in inflationary analysis.

4.1.2 Probability distribution of PBH abundance

We assume that the probability distribution for the density perturbations is a Gaussian
independent of the model of inflation

P(δ) = 1√
2πσ2

exp
(

− δ2

2σ2

)
. (4.7)

The probability distribution is Gaussian in the case for SR but not necessarily in the
case of USR. It is assumed that every region where the primordial perturbation R (or δ)
exceeds the threshold value Rc (or δc) collapses into a black hole. We can then evaluate
the fraction of the Universe collapsing into PBH of mass M

β(M) ≡ ρP BH

ρ
= 2

∫ ∞

δc

dδP(δ) ≃ erfc
(

δc√
2σ2

)
, (4.8)

where erfc is the complementary error function defined as

erfc z ≡ 1 − erf z = 2√
π

∫ ∞

z
e−t2

dt . (4.9)

In the limit σ ≪ δc one finds

β(M) = σ√
2πδc

e− δ2
c

2σ2 , (4.10)
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where the variance σ of the density perturbations is related to the power spectrum by
⟨δ2⟩ = σ2 ≈ Pδ(kr) where kr is the wavenumber re-entering inside the Hubble radius at
time tr. A more accurate treatment of the relationship between the variance and the
power spectrum is done with a suitable window function to smooth the density contrast
δ on the scale of PBH formation [13]

σ2 =
∫ ∞

0
W̃ 2(kR)Pδd ln k , (4.11)

where W̃ is the Fourier transform of a real space window function. The choice of a window
function can change the value of σ2 by an order of magnitude [8]. For the purposes of this
thesis we will use an approximation for the window function of a step function in k-space.

The relation between the density contrast δ and the primordial curvature pertur-
bation during the radiation dominated era is δ = 4

9

(
k

aH

)2
R [13]. At the Hubble entry

(k=aH) they are related by the factor 4
9 . So the equation for the fraction of PBH becomes

[22, 50]

β ≃ erfc
(

9δc

4
√

2PR

)
≃

√
2PR√
πRc

e
−R2

c
2PR . (4.12)

There are many studies trying to evaluate Rc. One of the analytical approximations for
a given equation of state parameter is given by [17]

Rc = 1
3 ln 3(χa − sin χa cos χa)

2 sin3 χa

, (4.13)

with χa = π
√

ω
(1+3ω) . Which for ω = 1

3 leads to Rc ≃ 0.086. Different values are obtained
using different methods but in general it seems that Rc lies between 0.07 ≲ Rc ≲ 1.3 [50].

4.2 Gravitational waves induced by primordial per-
turbations

In linear perturbation theory, tensor and scalar perturbations are decoupled and evolve
separately but at second order this is not the case. Gravitational waves induced by the pri-
mordial scalar perturbations are a consequence of the coupling of the scalar perturbations
at second order. In the scales of PBH formation the enhancement of the power spec-
trum during USR might cause the induced gravitational waves to have a more significant
contribution when compared to the primordial tensor perturbations.

4.2.1 The metric

The perturbed metric can be decomposed as [7]

gαβ = ḡαβ + δgαβ + δ2gαβ , (4.14)
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where ḡαβ is the FLRW background, δgαβ has purely scalar degrees of freedom and δ2gαβ

has in general scalar,vector and tensor modes induced by δgαβ. However, as we are only
interested in the induced tensor modes we drop any scalar and vector modes at second
order. We then write the perturbed metric as [53]

ds2 = a2(η)
{

−(1 + Φ)dη2 +
[
(1 − 2Ψ)δij + 1

2hij

]
dxidxj

}
, (4.15)

where Φ and Ψ are the Bardeen potentials that describe scalar perturbations at first
order [58], for which in the absence of anisotropic stress Φ = Ψ, and hij represents the
induced second order tensor perturbations. Due to the traceless and transverse nature of
the tensor perturbations ∂ihij = 0 and hi

i = 0.

4.2.2 Induced gravitational waves

The Fourier transform of hij can be written as [7]

hij(x, η) = 1
(2π)3/2

∫
d3keik·x

[
h+(k, η)q+

ij(k) + h×(k, η)q×
ij(k)

]
, (4.16)

where q+
ij and q×

ij denote the polarization tensors that have non-zero components in the
plane perpendicular to the direction of the propagation and are expressed in terms of
orthonormal basis vectors e and ē orthogonal to k

q+
ij = 1√

2
[ei(k)ej(k) − ēi(k)ēj(k)] (4.17)

q×
ij = 1√

2
[ei(k)ēj(k) + ēi(k)ej(k)] . (4.18)

Orthonormality leads to the normalization condition: qλ
ij(k)qλ′,ij = δλλ′ , where λ and λ′

can be either + or ×.
The modes we are interested in re-enter the Hubble radius during the radiation

dominated era. The equation of motion of the Fourier modes can be derived using the
Einstein equations perturbed to second order that describes the induced tensor pertur-
bation hij and the Bardeen equation that is a differential equation that describes the
scalar perturbations when Φ = Ψ [36]. During radiation domination in Fourier space the
amplitude of the tensor mode, for each polarization, follow the equation [7]

d2h(k⃗, τ)
dτ 2 + 2

τ

dh(k⃗, τ)
dτ

+ k2h(k⃗, τ) = S(k⃗, τ) , (4.19)

where the source term S is [22]

S =
∫ d3k̃

(2π)3/2 k̃2

1 −

 k⃗ · k⃗

kk̃

2
{12Φ(k⃗ − ⃗̃k, τ)Φ(⃗̃k, τ)

+ 8
τΦ(k⃗ − ⃗̃k, τ) + τ 2

2
dΦ(k⃗ − ⃗̃k, τ)

dτ

 dΦ(⃗̃k, τ)
dτ

}
,

(4.20)
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where the Bardeen potential Φ = 2R/3 satisfies the equation [22]

d2Φ
dτ 2 + 4

τ

dΦ
dτ

+ 1
3k2Φ = 0 (4.21)

Solving the first equation using the Green function method allows us to relate the current
relative energy density of the gravitational waves with the power spectrum as [22]

ΩGW (k, η0) = 10P2
Raeq , (4.22)

where aeq is the value of the scale factor at the matter radiation equality and the current
scale factor a0 = 1, aeq = a0

3.1×104ΩM h2 [25], h ≡ H0/(100km/s/Mpc).

4.2.3 Relation to PBH mass

The production of the gravitational waves by the second order effect happens at the
same time as PBH formation i.e. when the modes re-enter the Hubble radius. Once the
gravitational waves have been produced they propagate freely during the later epochs of
the Universe due to their low interaction rate. The frequency of the gravitational waves
produced is comparable to the Hubble mass at the time and given that the mass of PBH
is also proportional to the Hubble mass, we can relate the PBH mass to the frequency of
the gravitational waves at the present time as [53]

fGW ≃ 10−9Hz

(
MP BH

30M⊙

)− 1
2

. (4.23)

From this we can see that the production of solar mass PBH generate ultra-low frequency
GWs in the nHz band.



5. Primordial black holes as a dark
matter candidate

Due to the detection of binary black hole pairs by LIGO, Virgo and KAGRA, the idea
that primordial black holes could constitute most of the dark matter in the Universe
has acquired more momentum. The colliding pairs can also be astronomical black holes
instead of primordial ones due to their mass and merging rate [51] but if one can find a
black hole with mass less than Chandrasekhar limit that would be direct evidence for the
existence of PBHs.

The benefit of the idea that PBHs constitute all of dark matter is that it requires no
new physics beyond the SM to exist in addition to inflation as a production mechanism
for the PBHs.

The frequently used parameter for parametrizing the fraction of PBH as dark matter
is

f ≡ ρP BH

ρDM

, (5.1)

where ρDM is the energy density of dark matter and f = 1 means that all of dark matter
is made out of PBHs.

5.1 Mass scales

Different models for PBH production predict a wide range of possible masses for PBH.
There exist multiple observational constraints for massive black holes but there currently
is a sizable mass window where f = 1 is a possibility. It is between 1017 − 1022 g or
in terms of solar mass 10−16 − 10−12M⊙ and is called the asteroid mass window [13].
The masses of the PBH created by the gravitational collapse caused by the primordial
density perturbations are model dependent and the constraints can be used to constrain
possible inflation models and to suggest new models. The most significant observational
constraints that we will consider are shown in figure 5.1.

34
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Figure 5.1: All current major limits on different PBH masses is presented in this figure. Figure made
with PBH bounds given in [28].

5.2 Planck mass relics

Due to the Hawking radiation masses below around 1015 g have evaporated by the present
day but when the PBH comes close to evaporating and the mass becomes comparable to
Planck mass, it is possible that the semi-classical physics used to derive Hawking radiation
fail and the evaporation halts at the Planck scale. In this case the evaporated PBH could
leave behind a stable relic that could constitute all of dark matter.

Because of the possibility that the evaporation of PBH could change the elements of
baryogenesis, the PBH must form at early times with mass less than 106 g. Evaporating
ones larger than this would dominate the total energy density before evaporation in which
case the final cosmological photon-to-baryon ratio is determined by the baryon asymmetry
of the emissions of the PBH [14]. The mass 106 g using (4.6) corresponds to ∆N ≳ 49,
meaning that the perturbations must leave the Hubble radius near the end of inflation.

The energy density at matter-radiation equality is approximately

Ωrel = Mrelic

MP BH

k

keq

βk ≈ Mrel

Mpl

e3∆N−123 , (5.2)

for values Mrelic = Mpl and ∆N = 50 this is of the order of unity for β ∼ e−30 which
corresponds to PR ≈ 10−2R2

c ∼ 10−4 − 10−2. If the spectrum can be enhanced to this
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range at the end of inflation, it is possible for the relics to constitute all of dark matter.
This scenario could be considered a nightmare dark matter scenario as it is possible

that the relics can’t be detected with any known technology. Although there have been
suggestions that the relics could carry a random electric charge and could be detected
that way [38]. It has also been suggested that the relics gain a significant velocity (of the
order ≈ 10−1c) from the decay process which would rule them out as a cold dark matter
candidate [35]. The current observations seem to favor cold, meaning non-relativistic,
dark matter.

5.3 Observational limitations

There exist several different types of observational limitations for the mass spectrum of
possible existing PBH and on the primordial power spectrum. We will go through the
most important ones in this section utilizing [28].

5.3.1 Microlensing constraints

Microlensing is a phenomenon that occurs if a sufficiently compact object (with mass in
the range 5×10−10M⊙ ≲ M ≲ 10M⊙) crosses the line of sight of a distant luminous object.
The light of the source will be gravitationally focused and thus enhanced. The duration
of the microlensing event is proportional to M

1
2 , so the range of masses constrained by a

microlensing survey depends on its cadence i.e. the interval between observations. For a
object with mass 10−6M⊙ the time is a few hours and for a 10M⊙ object the timescale is
of the order of months.

The EROS-2 survey of the Magellanic clouds found the constraint fP BH ≲ 0.1 for the
mass range 10−6 − 1M⊙ [56]. The constraint weakens above M ≈ M⊙ reaching fP BH ≲ 1
for M ≈ 30M⊙. Additionally a MACHO collaboration search for long duration events
(longer than 150 days) places similar constraints for masses 1M⊙ ≲ M ≲ 30M⊙ [3]. In this
case the uncertainties in density and velocity distribution of the PBH have a significant
impact of the microlensing constraints and the constraints change if the compact objects
were to be clustered.

Tighter constraints have been obtained using OGLE microlensing survey of the
Galactic bulge for M ∼ 10−3M⊙ with fP BH ≲ 10−2. The constraints lessen to fP BH ≲ 0.1
for masses M ≲ 10−5M⊙ and 10−2M⊙ [45, 47].

A one night high cadence scan by the Hyper-Supreme Cam (HSC) on Subaru tele-
scope of M31 improved constraints in the mass range 5 × 10−10M⊙ ≲ M ≲ 10−8M⊙ with
fP BH ≲ 10−2 and ruled out fP BH = 1 for mass range 10−12M⊙ ≲ M ≲ 10−6M⊙ [19, 48].
Once accounting for the finite source and wave optics effects, the constraints are weaker
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than initially thought. Finite source meaning that once the apparent size in the sky of the
lensing object is comparable to the apparent size of the object lensed the lensing is only
effective on the part of the surface of the lensed star and not the entire surface making
the enhancement of luminosity too small to be detectable. The Schwarzschild radius of a
PBH with mass M ≲ 10−10M⊙ is comparable to, or less than, the wavelength of the light
observed. So the wave optics effects (interference and diffraction effects) that reduce the
amplification have to be taken into account [55].

5.3.2 Accretion

The high energy radiation emitted by the gas accretion onto PBHs can be detected. This
has been demonstrated by the recent images taken by the Event Horizon Telescope of two
supermassive black holes. The constraints can be divided into ones from the time of the
formation of the CMB and the ones from the present day.

The present day constraints come from the accretion of interstellar gas onto PBH
with mass M ≳ 10M⊙. Such an accretion leads to observable x-ray and radio wave
emission [24]. Comparing the prediction of numerical simulations and the observational
data gained from the Chandra and VLA Galactic centre survey lead to a constraint of
f ≲ 10−3 for M ∼ (30 − 100)M⊙ [42]. From gas heating in dwarf galaxies we get a
constraint f ≲ 10−4 for M ∼ 103M⊙ which weakens to f ≲ 1 for the masses M ∼ M⊙

and M ∼ 107M⊙ [40].
The constraints from accretion happening at the formation of the CMB are based

on the modification of the recombination history which affects the anisotropies and the
spectrum of the CMB.

Assuming the accretion disk is spherical the constraints are f ≲ 1 for M ≳ few
M⊙. The constraints are much tighter for larger masses, f ≲ 10−4 for M ≳ 102M⊙ and
f ≲ 3 × 10−9 for M ∼ 104M⊙ [54].

Accretion is not expected to be significant for PBH with an initial mass much below
10M⊙. The PBH below that mass and above the mass where Hawking radiation becomes
significant are considered to have around a constant mass.

5.3.3 Discreteness effects or dynamical constraints

Discreteness effects or sometimes called dynamical constraints are caused by very massive
PBHs not being distributed as a smooth field on small scales. As two-body interactions
equalize the kinetic energies of different mass populations in a system that is made of stars
and more massive compact object (e.g. PBHs), the stars would gain energy causing their
distribution to expand. Ultra-faint dwarf galaxies are sensitive to this effect and it has
been found by the observed sizes of such systems place constraints of f ≲ 0.002 − 0.004
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for M ∼ 104M⊙ weakening to f ≲ 1 for M ∼ 10M⊙ [12].
Another system of interest are wide binaries as the energy of the system is increased

by multiple encounters with compact objects. These encounters could lead to a disruption
of the system. The separation distribution of wide binaries can be then used to constrain
the abundance of compact objects. Though a radial measurement is required to confirm
that the binaries are genuine and not spurious binaries. Using 25 wide binaries from
[5] that spend least time in the galactic disk so that they are not as often effected by
encounters with stars it was found that f ≲ 0.1 for M ≳ 70M⊙ with the limit weakening
to f ≲ 1 for M ∼ 3M⊙ [44].

5.3.4 Evaporation constraints

The emission of the black hole will increase at lower mass, so the emission of black holes
of mass M∗ < M ≲ 1017g is sufficient that their abundance can be constrained using their
evaporation products. The lower limit M∗ refers to the mass for which the PBH would
have already completely evaporated.

The effect of black holes evaporating during the time of BBN on the abundances of
light elements formed during it also places restrictions on those masses. The abundance
of black holes that evaporate before the BBN (M ≲ 1010g) is difficult to constrain using
any observations. There are certain signals that could limit these [53]. Production of
the lightest supersymmetric particles, gravitinos and neutralinos by the evaporation of
PBH (assuming they exist) in the early Universe could constrain part of that range.
Neutralinos and gravitinos set the constraint for M < 109g and the constraint set by the
lightest supersymmetric particles is dependant on its mass (M < 1011(mLSP /100GeV)−1

g) [14].

5.3.5 Constraints from the power spectrum

The constraints for the power spectrum come from two sources, the CMB and the scalar-
induced gravitational waves.

The CMB constraint comes from the lack of spectral distortions in the CMB. One of
the types of spectral distortion is the µ-type. It is a thermal distortion from the black body
distribution characterized by non-zero chemical potential µ. COBE FIRAS instrument
confirmed that the CMB photons follow a black body distribution and theoretically it
has been found that the damping of large amplitude density perturbations during certain
redshifts cause energy injections and a deviation from the black body spectrum [13]. Due
to the lack of the detection of a cosmic-µ distortion the constraint for the power spectrum
becomes PR ≲ 10−4 in the range k ∼ 104 Mpc−1 in which the smallest constrained mass
is ∼ 104M⊙ [13].
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The gravitational wave based constraint comes form pulsar timing arrays (PTA).
Pulsars are rapidly rotating neutron stars that emit beams of radio waves. The possible
change in the pulse arrival times of certain pulsars (millisecond pulsars) and can be used to
probe for low-frequency gravitational waves. The stochastic background of scalar induced
gravitational waves created by the scale corresponding to a Hubble mass MH ∼ 1M⊙ has a
frequency that can be probed with PTAs. Although these constraints are inflation model
dependent, some of the constraints found are f < 1 for 10−2M⊙ ≲ M ≲ 1M⊙ and with the
data from NANOGrav, f < 1 for M ≈ 0.1M⊙ and f < 10−6 for 0.002M⊙ < M < 0.4M⊙

[15].

5.3.6 Gravitational wave constraints

The gravitational wave constraints are currently based on the observations of the gravi-
tational wave observatories LIGO and Virgo of merging compact objects.

The standard calculation of the mergers assumes that PBHs form binary pairs in
the very early Universe and that many remain undisturbed until today. Estimating the
disruption rate is numerically challenging and is often model dependent (though it is
normally agreed upon that disruption is very important when f ≃ 1 but can be neglected
for f ≲ 10−2). Given no clustering and no disruption of the binaries the merging rate
should be several orders of magnitude higher than measured by LIGO-Virgo and that
places the constraint of the order f ≲ 10−3 for 10M⊙ ≲ M ≲ 300M⊙ [4, 33]. A dedicated
LIGO-Virgo search for sub-Solar mass mergers places a constraint of the order f ≲ 10−1

down to M ∼ 0.2M⊙ [2]. LIGO and Virgo are most sensitive in the 1 − 102M⊙ region
and while they can detect the sub solar range the microlensing constraints are stronger
on these scales.

There exists tight constraints on the existence of PBH of mass range M ∼ 1013−15

g from the induced gravitational waves detectable by LIGO. Such masses should have
evaporated from Hawking radiation but if this process is not realized in reality, the PBH
would be stable and viable as dark matter.

5.3.7 Future constraints for the asteroid mass range

Possible methods for constraining the asteroid mass range (1017g < M < 1022g) have been
suggested. The asteroid mass range and the suggested constraints are shown in figure 5.2.

The most stringent constraint would come from the measurement of the lensing
parallax of gamma ray bursts [32]. Meaning measuring the relative brightness of a source
measured by multiple telescopes at large spatial separations. If the spatial seperation is
large enough the lensing caused by the PBH on the gamma ray burst will be detected by
the two detectors as different lensing magnifications.
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Figure 5.2: Possible future constraints for the asteroid-mass range are shown in this figure. Figure
made with PBH bounds given in [28].

It has been proposed that compact object of this mass could be probed by femtolens-
ing of gamma-ray bursts, especially through oscillatory features in photon spectrum of the
gamma-ray bursts. The basic assumption of femtolensing is that a gamma-ray emitted by
a point-like source is split into two rays by the lens each of which is delayed with respect to
the unlensed ray by a time shift. Assuming the two rays cannot be resolved in space and
time they will interfere and produce characteristic fringes in the spectrum. However most
gamma-ray bursts are too wide to be modelled as point sources and wave-optics effects
need to be taken into account. Currently there are no constraints from femtolensing but
a small subset of gamma-ray bursts with fast variability have small sizes and are suitable
for femtolensing [40]. This could be used to probe the mass range 1017g ≲ M ≲ 1019.

The gravitational wave detectors LISA and DECIGO could in theory detect the
scalar-induced gravitational waves created during inflation for some of the mass range as
shown in figure 5.2.
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5.4 Future gravitational wave detectors

5.4.1 LISA

LISA (Laser Interferometer Space Antenna) is a collaboration between ESA and NASA
and is set to launch in the early 2030s [6].

It is planned to consist of three drag-free spacecraft with a distance of around
2.5 × 106 km between them in a equilateral triangle configuration in the same orbit as
the Earth. Some of the aims are the detection of compact object binaries and to study
their evolution and formation, study of the origin of massive black holes and to explore
the fundamental nature of gravity and black holes [6].

LISA is optimized to detect gravitational waves in the 10 mHz region and in general
would be able to detect the range of 0.1 mHz-1 Hz (scales k = 6.456 × 1010Mpc−1 to k =
6.456 × 1015Mpc−1). It could be then used to probe the induced stochaistic gravitational
waves induced by the re-entry of these scales corresponding to PBH masses of around
M ≃ 10−12M⊙ [9].

5.4.2 DECIGO

DECIGO (Deci-hertz Interferometer Gravitational Wave Observatory) [34] is a planned
Japanese space mission in order to detect gravitational waves of the frequency band 0.1
Hz and 10 Hz (scales k = 6.456 × 1014Mpc−1 to k = 6.456 × 1016Mpc−1). This closes the
gap between LISA 0.1 mHz-1 Hz) and LIGO (10 Hz- 10 kHz [43]).

It is planned to consist of four clusters of observatories put into a heliocentric orbit
in such a way that two of the cluster are placed at the same position in the orbit.

The aim is for example to detect the gravitational waves produced during the in-
flationary period and gauge the acceleration of the expansion of the Universe through
neutron star binaries. The mission is hoped to launch after a pathfinder mission B-
DECIGO that is to be launched in the 2030s to demonstrate and test the technologies
necessary for DECIGO.



6. Conclusion

The detection of even a single PBH would have significant impact on our understanding
of the Universe. Since PBH require a large amplitude of density perturbations to be
generated during inflation, it would tell us that some special conditions e.g. a period of
USR is required in order to produce them. The detection could also explain part or the
entirety of dark matter.

Even the non-detection of PBH is of interest due to the constraints placed on the
primordial power spectrum on the widest range of scales. These constraints could then
be used to rule out possible inflation scenarios and design new ones.

The future detection of primordial gravitational waves would give for the first time
a direct probe into the time before the birth of the CMB. This would be of a great utility
in understanding the first moments of our Universe.

We have gone over some of the inflation scenarios where PBH production is possible
in an interesting quantity. The future for the verification or falsification of these models
is bright as there are different possible future observations that could be used for the
detection of the produced PBH and gravitational waves. The future searches are sure to
answer important questions independent of the possible outcomes of the search.
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