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Abstract
We study families of multivariate orthogonal polynomials with respect to the sym-
metric weight function in d variables 

for 𝛾 > −1 , where �(t) is an univariate weight function in t ∈ (a, b) and 
� = (x1, x2,… , xd) with xi ∈ (a, b) . Applying the change of variables xi, 
i = 1, 2,… , d, into ur, r = 1, 2,… , d , where ur is the r-th elementary symmetric 
function, we obtain the domain region in terms of the discriminant of the polynomi-
als having xi, i = 1, 2,… , d, as its zeros and in terms of the corresponding Sturm 
sequence. Choosing the univariate weight function as the Hermite, Laguerre, and 
Jacobi weight functions, we obtain the representation in terms of the variables ur for 
the partial differential operators such that the respective Hermite, Laguerre, and Jac-
obi generalized multivariate orthogonal polynomials are the eigenfunctions. Finally, 
we present explicitly the partial differential operators for Hermite, Laguerre, and 
Jacobi generalized polynomials, for d = 2 and d = 3 variables.

Keywords Multivariate orthogonal polynomials · Symmetric polynomials · 
Elementary symmetric functions

B𝛾 (�) =

d∏

i=1

𝜔(xi)
∏

i<j

|xi − xj|2𝛾+1, � ∈ (a, b)d,
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1 Introduction

In 1974 (see [8, 9]), Koornwinder considered the family of orthogonal polynomi-
als p

�,�,�

n,k
(u, v) , with n ⩾ k ⩾ 0 , obtained by orthogonalization of the sequence 

1, u, v, u2, uv, v2, u3, u2v,… with respect to the weight function (1 − u + v)�(1 + u + v)� (u2 − 4v)� for 
𝛼, 𝛽, 𝛾 > −1, 𝛼 + 𝛾 + 3∕2 > 0, 𝛽 + 𝛾 + 3∕2 > 0 , on the region bounded by the lines 1 − u + v = 0 and 
1 + u + v = 0 and by the parabola u2 − 4v = 0 (see Fig. 1). In the special case � = −1∕2 , 
orthogonal polynomials p�,�,−1∕2

n,k
(u, v) can be explicitly obtained by the identity

and the change of variables u = x + y, v = xy , where P(�,�)
n

(x) are Jacobi polynomials 
in one variable. The author obtained two explicit linear partial differential opera-
tors D�,�,�

1
 and D�,�,�

2
 of order two and four, respectively, such that the polynomials 

p
�,�,�

n,k
(u, v) are their common eigenfunctions. In fact, D�,�,�

1
 and D�,�,�

2
 were the gen-

erators of the algebra of differential operators having the polynomials p�,�,�
n,k

(u, v) as 
eigenfunctions. The polynomials p�,�,�

n,k
(u, v) are not classical in the Krall and Sheffer 

sense [10] since the corresponding eigenvalues of D�,�,�

1
 depend on n and k.

In several variables, we find different extensions of Koorwinder’s polynomials 
connected with symmetrical multivariate weight functions constructed from classical 
univariate weights. In fact, the so-called generalized classical orthogonal polyno-
mials are multivariable polynomials which are orthogonal with respect to the weight 
functions

with �(t) being one of the classical weight functions (Hermite, Laguerre, or Jacobi) 
on the real line.

p
�,�,−1∕2

n,k
(u, v) = P(�,�)

n
(x)P

(�,�)

k
(y) + P

(�,�)

k
(x)P(�,�)

n
(y)

B𝛾 (�) =

d∏

i=1

𝜔(xi)
∏

i<j

|xi − xj|2𝛾+1,

Fig. 1  Domain Ω in the Jacobi 
case for d = 2
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The multivariable Hermite, Laguerre, and Jacobi families associated with the 
weight functions B� (�) were introduced by Lassalle [11–13] and Macdonald [16] 
as a generalization of a previously known special case in which the parameter � 
is being fixed at the value 0, [7]. Later, these multivariable generalizations of the 
classical Hermite, Laguerre, and Jacobi polynomials occur as the polynomial part 
of the eigenfunctions of certain Schrödinger operators for Calogero-Sutherland-
type quantum systems [1]. In fact, if we denote by

the second-order differential operator having the classical orthogonal polynomials as 
eigenfunctions then the multivariable Hermite, Laguerre, and Jacobi are eigenfunc-
tions of the differential operators

Lassalle expressed the generalized classical orthogonal polynomials in terms of 
the basis of symmetric monomials

with � ∈ ℤd satisfying �1 ⩾ �2 ⩾ … ⩾ �d ⩾ 0 . Here the summation in (1.1) is over 
the orbit of � with respect to the action of the symmetric group Sd which permutes 
the vector components x1, x2,… , xd (see [11–13]).

Rather than study the eigenfunctions of H� in terms of the monomial symmet-
ric polynomials, in some previous studies (see [16]), it has been shown that it is 
convenient to change basis from the monomial symmetric polynomials to the Jack 
polynomials, that is, the unique (up to normalization) symmetric eigenfunctions 
of the operator

In this work, we will consider �(t) a univariate weight function in t ∈ (a, b) . For 
𝛾 > −1 , we define a symmetric weight function in d variables on the hypercube 
(a, b)d as

where � = (x1, x2,… , xd) , with xi ∈ (a, b), i = 1, 2,… , d. Next, we apply the change 
of variables

L(p(t)) = �(t)p��(t) + �(t)p�(t)

H� =

d∑

i=1

(
�(xi)�

2

i
+ �(xi)�i + (2� + 1)

∑

k≠i
�(xi)

xi − xk
�i

)
.

(1.1)m�(x) =
∑

�∈Sd(�)

x
�1

�(1)
⋯ x

�d

�(d)
,

J� =

d∑

i=1

(
x2
i
�
2

i
+

2

�

∑

k≠i
x2
i

xi − xk
�i

)
.

B𝛾 (�) =

d∏

i=1

𝜔(xi)
∏

i<j

|xi − xj|2𝛾+1, � ∈ (a, b)d.

� = (x1, x2,… , xd) ↦ � = (u1, u2,… , ud)
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where ur are the r-th elementary symmetric functions defined by

In [2], the change of variables � = (x1, x2,… , xd) ↦ � = (u1, u2,… , ud) was con-
sidered to construct multivariate gaussian cubature formulae in the case � = ±

1

2
 . 

This construction is based on the common zeroes of multivariate quasi-orthogonal 
polynomials, which turns out to be expressed in terms of Jacobi polynomials (see 
also [3]).

Our main goal is the study of multivariate orthogonal polynomials in the variable 
� associated with the weight function W� (�) obtained from the change of variables 
� ↦ � . Obviously, generalized classical orthogonal polynomials are included in our 
study.

To this end, in Section  2, some basic definitions will be introduced and some 
properties of the derivatives of elementary symmetric functions will be obtained.

In Section 3, we analyze the structure of the domain of the weight function W� (�) , 
that is, the image of the map � ↦ � . Orthogonal polynomials with respect to W� (�) 
are defined in Section 4.

Finally, in Section  5, generalized classical orthogonal polynomials are consid-
ered. Our main result states that, under the change of variables � ↦ � , the differen-
tial operators HH

�
,H

L
�
 and HJ

�
 can be represented as linear partial differential opera-

tors in the form

where ars(�)  for r, s = 1,… , d are polynomials of degree 2 in � and br(�)  for 
r = 1,… , d are polynomials of degree 1 in � . Those operators have the multivariate 
orthogonal polynomials with respect to W� (�) as eigenfunctions. In particular, we 
explicitly give the representation of these operators in the cases d = 2 and d = 3.

2  Definitions and first properties

Let d ⩾ 1 denote the number of variables. If � = (�1, �2,… , �d) ∈ ℕd
0
 , 

ℕ0 ∶= ℕ ∪ {0} , is a d-tuple of non-negative integers �i , we call � a multi-index 
which has degree |�| = �1 + �2 +⋯ + �d . We order the multi-indexes by means of 
the graded reverse lexicographical order, that is, 𝛼 ≺ 𝛽 if and only if |𝛼| < |𝛽| , 
and in the case |�| = |�| , the first entry of � − � different from zero is positive.

A multi-index � = (�1, �2,… , �d) ∈ ℕd
0
 will be called a partition if 

�1 ⩾ �2 ⩾ … ⩾ �d ⩾ 0.
Observe that for every multi-index � = (�1,�2,… ,�d) there exists a unique parti-

tion � = (�1, �2,… , �d) satisfying

ur =
∑

1⩽k1<k2<⋯<kr⩽d

xk1xk2 ⋯ xkr , 1 ⩽ r ⩽ d.

d∑

r=1

d∑

s=1

ars(�)
�2

�ur�us
+

d∑

r=1

br(�)
�

�ur
,
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If � is a multi-index and � = (x1, x2,… , xd) ∈ ℝd , we denote by �� the monomial 
x
�1

1
x
�2

2
… x

�d

d
 which has total degree |�| . A polynomial P in d variables is a finite lin-

ear combination of monomials P(�) =
∑

�
c��

� . The total degree of P is defined as 
the highest degree of its monomials.

Following [14], the r-th elementary symmetric function ur is the sum of all 
products of r different variables xi , i.e.,

and u0 = 1 . The elementary symmetric functions ur and r = 1, 2,… , d are harmonic 
homogeneous polynomials of degree r and can be obtained from the generating pol-
ynomial of degree d on the variable t, P(t), defined by

For a given multivariate function f, we will denote by �kf  the partial derivative of 
f with respect to de variable xk . In this work, we are going to deal frequently with 
partial derivatives of the elementary symmetric functions. The following lemma 
provides some recursive and closed expressions for �kur.

Lemma 2.1 For r = 1, 2,… d , partial derivatives of the elementary symmetric func-
tions satisfy

Proof Taking partial derivatives in (2.2), we get

Next, multiply by (1 + xkt) in the above equality to obtain

�1 = �1 − �2,�2 = �2 − �3,… ,�d = �d.

(2.1)ur =
∑

1⩽k1<k2<⋯<kr⩽d

xk1xk2 ⋯ xkr , 1 ⩽ r ⩽ d,

(2.2)P(t) ∶=

d∏

i=1

(1 + xit) =

d∑

r=0

urt
r.

(2.3)�kur =ur−1 − xk�kur−1, k = 1, 2,… d,

(2.4)�kur =

r−1∑

i=0

(−1)ixi
k
ur−1−i, k = 1, 2,… d,

(2.5)�i�kur = −
�iur − �kur

xi − xk
, k ≠ i, k, i = 1, 2,… d.

�kP(t) ∶= t

d∏

j = 1

j ≠ k

(1 + xjt) =

d∑

i=0

�kuit
i.
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and (2.3) follows equating coefficients in both sides of the last equality. Next, (2.4) is 
obtained iterating (2.3).

Finally, taking partial derivatives in (2.3), for k ≠ i , we get

changing the role of k and i we obtain

and therefore, (2.5) follows.

3  The domain

Given a univariate weight function �(t) on t ∈ (a, b) (where a = −∞ and b = ∞ are 
allowed) consider the variable � = (x1, x2,… , xd) , with xi ∈ (a, b). For 𝛾 > −1 , we 
define a weight function in d variables on the hypercube (a, b)d as

Since B� is obviously symmetric in the variables x1, x2,… , xd , it suffices to consider 
its restriction on the domain Δ given by

Let E(t) be the monic polynomial of degree d on the variable t, having 
xi, i = 1, 2,… , d as its roots, From (2.2), E(t) satisfies

Let us consider the mapping

and the corresponding Jacobian matrix

Using (2.4) and subtracting suitable combinations of columns in |T| , we get

(1 + xkt)�kP(t) ∶= t

d∏

j=1

(1 + xjt) = (1 + xkt)

d∑

r=0

�kurt
r,

�k�iur+1 = �kur − xi�k�iur,

�i�kur+1 = �iur − xk�i�kur,

(3.1)B𝛾 (�) =

d∏

i=1

𝜔(xi)
∏

i<j

|xi − xj|2𝛾+1, � ∈ (a, b)d.

Δ = {� ∶ a < x1 < x2 < ⋯ < xd < b}.

(3.2)E(t) ∶=

d∏

i=1

(t − xi) =

d∑

r=0

(−1)rurt
d−r.

� = (x1, x2,… , xd) ↦ � = (u1, u2,… , ud)

T =
(
�kur

)
1⩽k,r⩽d

.
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the Vandermonde determinant. Thus, the determinant of the matrix TTt can be given as

It turns out that D(�) coincides with the discriminant (see [17, p. 23]) of the 
polynomial E(t). In this way, D(�) can be expressed in terms of the elementary sym-
metric functions since the discriminant can be obtained from the resultant (see [17, 
section 1.3.1]) of E and its derivative E′ in the following way:

with

where ai = (−1)iui for i = 0,… , d, and bi = (−1)i(d − i)ui for i = 0, … , d − 1.
As it is well known, the existence of d different roots of the polynomial E(t) as 

defined in (3.2) ( xi for i = 1,… , d ) is equivalent to the positivity of D(�) , the discri-
minant of E(t). Moreover, that all these different roots are contained in the interval 
(a, b) can be characterized in terms of the corresponding Sturm sequence (see [17, 
p. 30]). Consider the polynomials p0(t) = E(t) and p1(t) = E�(t) and let us construct 
a sequence {pk(t)}dk=0 with the help of Euclid’s algorithm to seek the greatest com-
mon divisor of E and E′

(3.3)

V ∶= |T| =
||||||

r−1∑

i=0

(−1)ixi
k
ur−1−i

||||||1⩽k,r⩽d
=
|||(−1)

i−1xi−1
k

|||1⩽i,k⩽d
=

∏

1⩽i<k⩽d

(xi − xk),

D(�) ∶= V2 = det(TTt) =
∏

1⩽i<k⩽d

(xi − xk)
2.

D(�) = (−1)
d(d−1)

2 R(E,E�).

R(E,E�) =

|||||||||||||||||

a0 a1 … ad
a0 a1 … ad

⋱ ⋱ ⋱

a0 a1 … ad
b0 b1 … bd−1

b0 b1 … bd−1
⋱ ⋱ ⋱

b0 b1 … bd−1

|||||||||||||||||

.

p0(t) =E(t),

p1(t) =E
�(t),

⋯

pk−1(t) =qk(t)pk(t) − mkpk+1(t),

⋯

pd−1(t) =qd(t)pd(t),
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where mk is a positive constant for k = 1,… , d − 1.
Since the roots of E(t) are simple, pd(t) is a nonzero constant. Sturm’s theorem 

states that if v(t) is the number of sign changes in the sequence

then the number of roots of p0(t) (without taking multiplicities into account) 
confined between a and b  is equal to v(a) − v(b) . If all the roots of E(t) satisfy 
a < x1 < x2 < ⋯ < xd < b then, according to Sturm’s theorem the sequence 
{p0(b), p1(b),… , pd(b)} has no sign changes and {p0(a), p1(a),… , pd(a)} has exactly 
d sign changes.

In [4], explicit expressions for the polynomials in a Sturm sequence were pro-
vided. These explicit representations were given in terms of the d different roots of 
the first polynomial in the sequence p0(t) ( xi for i = 1,… , d in our case). In particu-
lar, the author shows that the constant value of pd(t) coincides with the discriminant 
of p0(t) up to a positive multiplicative factor. Therefore, the condition D(�) > 0 is 
equivalent to pd(t) > 0.

Consequently, the following result holds.

Proposition 3.1 The region

is the image of Δ under the mapping � = (x1, x2,… , xd) ↦ � = (u1, u2,… , ud) 
defined by (2.1).

As a consequence, the orthogonality measure and its support in terms of the coor-
dinates u1, … , ud can be obtained explicitly using the determinant R(E,E�) com-
bined with a simple algorithm.

3.1  The case d = 2

Let � be a weight function defined on (a, b). For 𝛾 > −1 , let us define a weight func-
tion of two variables,

defined on the domain Δ given by

Let us consider the mapping � ↦ � defined by

Then, E(t) = t2 − u1t + u2 and the Jacobian of the change of variables is |x1 − x2|.
Expressed in terms of the variable � , the discriminant of the polynomial E(t) is

{p0(t), p1(t),… , pd(t)},

Ω = {� ∶ D(�) > 0, pk(b) > 0, (−1)d−kpk(a) > 0, k = 0, 1,… , d − 1},

B� (x1, x2) ∶= �(x1)�(x2)|x1 − x2|2�+1,

Δ ∶= {(x1, x2) ∶ a < x1 < x2 < b}.

u1 = x1 + x2, u2 = x1x2.
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And the Sturm sequence reads

In the Jacobi case, we have (a, b) = (−1, 1) and �(t) = (1 − t)�(1 + t)� , with 
𝛼 > −1, 𝛽 > −1 . In fact, this is the case originally considered by Koornwinder (see 
[8]). Then, using Proposition 3.1, the mapping � ↦ � is a bijection between Δ and 
the domain Ω given by

which is depicted in Fig. 1.
In the Laguerre case, we have (a, b) = (0,+∞) and �(t) = t�e−t , with 𝛼 > −1 . 

Therefore, using again Proposition 3.1, the domain Ω is given by

the region described in Fig. 2.
In the Hermite case, we have (a, b) = (−∞,+∞) and �(t) = e−t

2 . The domain 
Ω is

as we show in Fig. 3.

D(�) = −

||||||

1 − u1 u2
2 − u1 0

0 2 − u1

||||||
= u2

1
− 4u2.

p0(t) =t
2 − u1t + u2,

p1(t) =2t − u1

p2(t) =
1

4
(u2

1
− 4u2).

Ω ∶= {(u1, u2) ∶ 1 + u1 + u2 > 0, 1 − u1 + u2 > 0, 2 > u1 > −2, u2
1
> 4u2}

Ω ∶= {(u1, u2) ∶ u1 > 0, u2 > 0, u2
1
> 4u2},

Ω ∶= {(u1, u2) ∶ u2
1
> 4u2}

Fig. 2  Domain Ω in the 
Laguerre case for d = 2.
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3.2  The case d = 3

For d = 3 , we set � = (x1, x2, x3) and � = (u1, u2, u3) , with

Then, E(t) = t3 − u1t
2 + u2t − u3 and the discriminant D(�) can be expressed in 

terms of the elementary symmetric functions

The Sturm sequence reads

And finally, the region Ω for d = 3 can be described by the following inequalities

u1 =x1 + x2 + x3,

u2 =x1x2 + x1x3 + x2x3,

u3 =x1x2x3.

D(�) = −

||||||||||

1 − u1 u2 − u3 0

0 1 − u1 u2 − u3
3 − 2u1 u2 0 0

0 3 − 2u1 u2 0

0 0 3 − 2u1 u2

||||||||||
=u2

1
u2
2
− 4u3

1
u3 − 4u2

2
− 27u2

3
+ 18u1u2u3.

p0(t) =t
3 − u1t

2 + u2t − u3,

p1(t) =3t
2 − 2u1t + u2

p2(t) =
1

9

(
(2u2

1
− 6u2)t − u1u2 + 9u3

)

p3(t) =
9

4
(
u2
1
− 3u2

)2
(
u2
1
u2
2
− 4u3

1
u3 − 4u2

2
− 27u2

3
+ 18u1u2u3

)
.

Fig. 3  Domain Ω in the Hermite 
case for d = 2
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The region Ω is depicted in Fig.  4. This picture has been obtained from the 
parametric representation of the images under the map defined by (2.1) of the 
four triangular faces of the domain Δ given by

Ω is a solid limited by two flat faces and two curved faces. The first 
thing we have to notice is that Ω is invariant under the change of varia-
bles (u1, u2, u3) → (−u1, u2,−u3) . In the image, the brown face is part of the 
plane p0(1) = 0 . There is another symmetrical flat face contained in the plane 
−p0(−1) = 0 . The two flat faces intersect in the line segment from A = (1,−1,−1) 
to B = (−1,−1, 1) . The other line segment bounding the brown region (which is 
the intersection of the planes p0(1) = 0 and p1(1) = 0 ) is the line segment from 
A = (1,−1,−1) to C = (3, 3, 1) . The third boundary part of the brown region is the 
part from B to C of a parabola touching at the endpoints A and C of the boundary 

D(�) =u2
1
u2
2
− 4u3

1
u3 − 4u3

2
− 27u2

3
+ 18u1u2u3 > 0,

p0(1) =1 − u1 + u2 − u3 > 0,

−p0(−1) =1 + u1 + u2 + u3 > 0,

p1(1) =3 − 2u1 + u2 > 0,

p1(−1) =3 + 2u1 + u2 > 0,

p2(1) =2u
2

1
− 6u2 − u1u2 + 9u3 > 0,

−p2(−1) =2u
2

1
− 6u2 + u1u2 − 9u3 > 0.

Δ = {� ∶ −1 < x1 < x2 < x3 < 1}.

Fig. 4  The domain Ω in the case 
d = 3
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line segments. The orange curved faces are the part of the quartic surface D(u) = 0 
which is bounded by the line segments AC and BD (where the surface touches the 
planes p0(1) = 0 and −p0(−1) = 0 , respectively), and by the parabola segments CB 
(where the surface intersects the plane p0(1) = 0 ) and DA (where the surface inter-
sects the plane −p0(−1) = 0).

Figure 5 shows the projection of Ω on the u1u3 plane. Notice the two triangles, 
sharing one edge, and each having one parabolic side, namely, part of the parabo-
las u3 =

1

4
(u1 − 1)2 and u3 = −

1

4
(u1 + 1)2.

4  Orthogonal polynomials

Under the mapping defined by (2.1), the weight function B� , given in (3.1), becomes 
a weight function defined on the domain Ω by

Now, it is possible to define the polynomials orthogonal with respect to W� (�) on 
Ω.

Proposition 4.1 Define monic polynomials P(�)
� (�) under the graded reverse lexico-

graphic order ≺,

that satisfy the orthogonality condition

(4.1)W� (�) =

d∏

i=1

�(xi)D(�)
� , � ∈ Ω.

(4.2)P(𝛾)

𝜇
(�) = �

𝜇 +
∑

𝛼≺𝜇

�
𝛼

∫
Ω

P(�)

�
(�)��W� (�)d� = 0,

Fig. 5  The projection of domain 
Ω on the u1u3 plane
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for 𝛼 ≺ 𝜇 , then these polynomials are uniquely determined and are mutually orthog-
onal with respect to W� (�).

Proof Since the graded reverse lexicographic order ≺ is a total order, applying the 
Gram–Schmidt orthogonalization process to the monomials so ordered, the unique-
ness follows from the fact that P(�)

� (�) has leading coefficient 1.

In the cases � = ±1∕2 , a family of orthogonal polynomials in the variable � can 
be given explicitly in terms of orthogonal polynomials of one variable (see [2] and 
[3, p.155]).

Proposition 4.2 Let {pk}k⩾0 be the sequence of monic orthogonal polynomials with 
respect to w on (a,  b). For � = −1∕2 , n ∈ ℕ0 , and � = (�1,�2,… ,�d) satisfying 
0 ⩽ �1 ⩽ �2 ⩽ … ⩽ �d = n , we define

where � and � are related by (2.1), and the sum in the right-hand side of (4.3) runs 
over all distinct permutations � in the symmetric group Sd . Then, P(−1∕2)

� (�) is an 
orthogonal polynomial of degree n in the variable �.

For � = 1∕2 , n ∈ ℕ0 , and � = (�1,�2,… ,�
d
) satisfying 0 ⩽ 𝜇1 < 𝜇2 < … < 𝜇

d
= n + d − 1 , we 

define

where � and � are related by (2.1). Then, P(1∕2)
� (�) is an orthogonal polynomial of 

degree n in the variable �.

5  Generalized classical orthogonal polynomials

In this section, multivariable orthogonal polynomials are considered associated with 
the weight functions

(4.3)P(−1∕2)

�
(�) =

∑

�∈Sd

p�1
(x�(1))p�2

(x�(2))⋯ p�d
(x�(d))

P(1∕2)

�
(�) =

1

V

|||||||||

p�1
(x1) p�1

(x2) ⋯ p�1
(xd)

p�2
(x1) p�2

(x2) ⋯ p�2
(xd)

⋮ ⋮ ⋮

p�d
(x1) p�d

(x2) ⋯ p�d
(xd)

|||||||||

,
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with 𝛼, 𝛽, 𝛾 > −1.
Under the change of variables � ↦ � defined by (2.1) the corresponding weight 

functions W� (�) , as defined in (4.1), are given by

with 𝛼, 𝛽, 𝛾 > −1.
The multivariable Hermite, Laguerre, and Jacobi families associated with the 

weight functions BH
�
(�),BL

�
(�) , and BH

�
(�) (see [1, (2.1)]), respectively, are eigen-

functions of the differential operators

with 𝛼, 𝛽, 𝛾 > −1.
We are going to obtain the representation of the differential operators HH

�
,H

L
�
 and 

H
J
�
 , under the change of variables � ↦ �.
For h = 0, 1, 2 , let us define the operators

BH
𝛾
(�) =

d∏

i=1

e−x
2

i

∏

i<j

|xi − xj|2𝛾+1, � ∈ ℝd,

BL
𝛾
(�) =

d∏

i=1

x𝛼
i
e−xi

∏

i<j

|xi − xj|2𝛾+1, � ∈ (0,+∞)d,

BJ
𝛾
(�) =

d∏

i=1

(1 − xi)
𝛼(1 + xi)

𝛽
∏

i<j

|xi − xj|2𝛾+1, � ∈ (−1, 1)d,

WH
�
(�) =e−u

2

1
+2u2D(�)� ,

WL
�
(�) =u�

d
e−u1D(�)�

WJ
�
(�) =(1 − u1 + u2 +…+ (−1)dud)

�(1 + u1 + u2 +…+ ud)
�D(�)� ,

H
H
�
=

d∑

i=1

(
�
2

i
− 2xi�i + (2� + 1)

∑

k≠i
1

xi − xk
�i

)
,

H
L
�
=

d∑

i=1

(
xi�

2

i
+ (� + 1 − xi)�i + (2� + 1)

∑

k≠i
xi

xi − xk
�i

)
,

H
J
�
=

d∑

i=1

(
(1 − x2

i
)�2

i
+ (� − � − (� + � + 2)xi)�i + (2� + 1)

∑

k≠i
1 − x2

i

xi − xk
�i

)
,

Dh =

d∑

i=1

xh
i
�
2

i
,

Eh =

d∑

i=1

xh
i
�i,

Fh =

d∑

i=1

∑

k≠i
xh
i

xi − xk
�i,
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then

Under the change of variables � ↦ � , we get

and since �2
i
ur = 0 we obtain

Proposition 5.1 The operator Eh satisfies

Proof From (5.1), we have

For h = 0 , using (2.3) and Euler’s identity for homogeneous polynomials, we get

which gives (5.2). Identity (5.3) follows in the same way, since for h = 1 we get

Proposition 5.2 The operator Dh can be represented as

H
H
�
=D0 − 2E1 + (2� + 1)F0,

H
L
�
=D1 + (� + 1)E0 − E1 + (2� + 1)F1,

H
J
�
=D0 −D2 + (� − �)E0 − (� + � + 2)E1 + (2� + 1)(F0 − F2).

(5.1)�i =

d∑

r=1

�iur
�

�ur
,

�
2

i
=

d∑

r=1

d∑

s=1

�iur�ius
�2

�ur�us
,

(5.2)E0 =

d∑

r=1

(d − r + 1)ur−1
�

�ur
,

(5.3)E1 =

d∑

r=1

rur
�

�ur
.

Eh =

d∑

i=1

xh
i
�i =

d∑

r=1

(
d∑

i=1

xh
i
�iur

)
�

�ur
.

d∑

i=1

�iur =

d∑

i=1

ur−1 −

d∑

i=1

xi�iur−1 = (d − r + 1)ur−1,

d∑

i=1

xi�iur = rur.

Dh =

d∑

i=1

xh
i
�
2

i
=

d∑

r=1

d∑

s=1

ah
rs
(�)

�2

�ur�us
.
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where the coefficients

satisfy

taking into account that ah
rs
(�) = 0 , for r ⩽ 0 , s ⩽ 0 , r > d , or s > d . Obviously, we 

have ah
rs
(�) = ah

sr
(�) so we may assume that r ⩽ s.

Proof For h = 0 , using (2.3) and (5.2), we deduce

and the recurrence formula (5.4) follows. Expression (5.5) can be obtained iterating 
(5.4).

For h = 1 , from (2.3) and (5.2), we obtain

Hence, (5.6) follows.
For h = 2 , (5.7) can be obtained in the same way

ah
rs
(�) =

d∑

i=1

xh
i
�iur�ius,

(5.4)a0
rs
(�) =(d − s + 1)ur−1us−1 − (d − r + 2)ur−2us + a0

r−1 s+1
(�),

(5.5)a0
rs
(�) =(d − s + 1)ur−1us−1 +

r∑

j=2

(r − s − 2j + 2)ur−jus+j−2,

(5.6)a1
rs
(�) =(d − s + 1)urus−1 − a0

r+1 s
(�),

(5.7)a2
rs
(�) =(−d + r + s)urus + a0

r+1 s+1
(�),

a0
rs
(�) =

d∑

i=1

�iur�ius =

d∑

i=1

(ur−1 − xi�iur−1)�ius

=(d − s + 1)ur−1us−1 −

d∑

i=1

�iur−1xi�ius

=(d − s + 1)ur−1us−1 −

d∑

i=1

�iur−1(us − �ius+1)

=(d − s + 1)ur−1us−1 − (d − r + 2)ur−2us +

d∑

i=1

�iur−1�ius+1,

a1
rs
(�) =

d∑

i=1

xi�iur�ius =

d∑

i=1

(ur − �iur+1)�ius

=(d − s + 1)urus−1 −

d∑

i=1

�iur+1�ius.
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To obtain the representation of the operator Fh , let us consider the Vander-
monde determinant V defined in (3.3). One can see that

and therefore

since every element 1∕(xi − xk) in the above sum appears twice with opposite sign.
On the other hand, since V is an homogeneous symmetric polynomial of total 

degree d(d − 1)∕2 , again Euler’s identity for homogeneous polynomials gives

Lemma 5.3 For r = 1, 2,… , d , we have

Proof Using (2.5) and �2
ii
ur = 0 for i = 1, 2,… , d , we get

Finally, using (5.2) twice, we conclude

a2
rs
(�) =

d∑

i=1

xi�iurxi�ius =

d∑

i=1

(ur − �iur+1)(us − �ius+1)

=durus − (d − s)urus − (d − r)urus + a0
r+1 s+1

(�).

1

V
�iV =

d∑

k = 1

k ≠ i

1

xi − xk

(5.8)
1

V

d∑

i=1

�iV =

d∑

i=1

d∑

k = 1

k ≠ i

1

xi − xk
= 0,

(5.9)
1

V

d∑

i=1

xi�iV =

d∑

i=1

d∑

k = 1

k ≠ i

xi

xi − xk
=

d(d − 1)

2
=

(
d

2

)
.

1

V

d∑

i=1

�iV�iur = −

(
d + 2 − r

2

)
ur−2.

1

V

d∑

i=1

�iV�iur =

d∑

i=1

d∑

k = 1

k ≠ i

�iur

xi − xk
=

d∑

i=1

d∑

k = i + 1

�iur − �kur

xi − xk

= −

d∑

i=1

d∑

k = i + 1

�i�kur = −
1

2

d∑

i=1

d∑

k = 1

�i�kur.
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Proposition 5.4 The operator Fh satisfies

where 
(
d − r

2

)
= 0 , for r = d or r = d − 1.

Proof First, for h = 0 , we have

For h = 1 , using (2.3) and (5.8), we have

1

V

d∑

i=1

�iV�iur = −
1

2

d∑

i=1

�i

(
d∑

k=1

�kur

)
= −

1

2

d∑

i=1

�i

(
(d − r + 1)ur−1

)

= −

(
d + 2 − r

2

)
ur−2, r = 1, 2,… , d.

F0 = −

d∑

r=1

(
d + 2 − r

2

)
ur−2

�

�ur
,

F1 =

d∑

r=1

(
d + 1 − r

2

)
ur−1

�

�ur
,

F2 =

d∑

r=1

((
d

2

)
−

(
d − r

2

))
ur

�

�ur
,

F0 =

d�

i=1

d�

k = 1

k ≠ i

1

xi − xk
�i =

d�

r=1

⎛
⎜
⎜
⎜
⎜
⎜
⎝

d�

i=1

d�

k = 1

k ≠ i

1

xi − xk
�iur

⎞
⎟
⎟
⎟
⎟
⎟
⎠

�

�ur

=

d�

r=1

�
1

V

d�

i=1

�iV�iur

�
�

�ur
= −

d�

r=1

�
d + 2 − r

2

�
ur−2

�

�ur
.
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Finally, for h = 2 , using (2.3) and (5.9), we have

where 
(
d − r

2

)
= 0 , for r = d or r = d − 1 . For the last equality, the two last equali-

ties in the proof for h = 1 were used.

In this way, we have shown that, under the change of variables � ↦ � defined by 
(2.1), the differential operators HH

�
,H

L
�
 and HJ

�
 can be represented as linear partial dif-

ferential operators in the form

F1 =

d�

i=1

d�

k = 1

k ≠ i

xi

xi − xk
�i =

d�

r=1

⎛
⎜
⎜
⎜
⎜
⎜
⎝

d�

i=1

d�

k = 1

k ≠ i

xi

xi − xk
�iur

⎞
⎟
⎟
⎟
⎟
⎟
⎠

�

�ur

=

d�

r=1

�
1

V

d�

i=1

�iVxi�iur

�
�

�ur

=

d�

r=1

�
1

V

d�

i=1

�iV(ur − �iur+1)

�
�

�ur

=

d�

r=1

�
d + 1 − r

2

�
ur−1

�

�ur
.

F2 =

d�

i=1

d�

k = 1

k ≠ i

x2
i

xi − xk
�i =

d�

r=1

⎛
⎜
⎜
⎜
⎜
⎜
⎝

d�

i=1

d�

k = 1

k ≠ i

x2
i

xi − xk
�iur

⎞
⎟
⎟
⎟
⎟
⎟
⎠

�

�ur

=

d�

r=1

�
1

V

d�

i=1

xi�iVxi�iur

�
�

�ur

=

d�

r=1

�
1

V

d�

i=1

xi�iV(ur − �iur+1)

�
�

�ur

=

d�

r=1

��
d

2

�
ur −

1

V

d�

i=1

xi�iV�iur+1)

�
�

�ur

=

d�

r=1

��
d

2

�
−

�
d − r

2

��
ur

�

�ur
,

M� =

d∑

r=1

d∑

s=1

ars(�)
�2

�ur�us
+

d∑

r=1

br(�)
�

�ur
,
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where ars(�) , for r, s = 1,… , d are polynomials of degree 2 in � and br(�) , for 
r = 1,… , d are polynomials of degree 1 in �.

Remark 5.5 It is well known that, in the � variable, it is possible to derive formulas 
for Laguerre and Hermite cases by taking limits of formulas in the Jacobi case (see 
[1, (2.18)–(2.19)]. Similar results hold for the � variable.

Next, it will be proved that the polynomials defined in (4.2) are eigenfunctions of 
M� . The proof is based on two lemmas.

Lemma 5.6 Let �� = u
�1

1
… u

�d

d
 a multivariate monomial then

where l.o.m. stands for lower order degree monomials in the graded reverse lexico-
graphical order. Here c(�) ∈ ℝ.

Proof This result easily follows from Propositions 5.1, 5.2, and 5.4.

Lemma 5.7 For arbitrary polynomials p(�) and q(�) , it holds that

Proof Integration by parts provides the self-adjoint character of the differential oper-
ators HH

�
,H

L
�
 and HJ

�
 for symmetric polynomials in the corresponding domains (see 

[16]). The result follows after the change of variables � ↦ �.

Theorem  5.8 Let the p�(�) one of the monic orthogonal polynomials defined by 
(4.2). Then,

Proof By Lemma 5.6, the function M�p�(�) is a polynomial in � whose leading 
term is c(�)�� . Let 𝜇′ ≺ 𝜇 , then it follows from Lemmas 5.6 and 5.7 that

Hence, M�p�(�) is a polynomial whose leading term is c(�)�� orthogonal to all pol-
ynomials of lower degree, so M�p�(�) = c(�)p�(�).

Remark 5.9 If we write � = (�1 − �2, �2 − �3,… , �d) then the expression l.o.m. 
in Lemma 5.6 can stand for lower in the dominance partial ordering of the � , i.e., 
�′ ⩽ � if and only if ��

1
⩽ �1, �

�
1
+ ��

2
⩽ �1 + �2,… , ��

1
+⋯ + ��

d
⩽ �1 +⋯ + �d.

Accordingly, the orthogonal polynomials p� can also be characterized as 
p� = u� + l.o.m. (with l.o.m. having the same meaning as above) such that they 
are orthogonal to all p�′ with corresponding �′ less than �  (corresponding to � ) in 

M��
� = c(�)�� + l.o.m.,

∫
Ω

M�p(�) q(�)W� (�) d� = ∫
Ω

p(�)M�q(�)W� (�) d�.

M�p�(�) = c(�) p�(�).

∫
Ω

M�p(�) �
��

W� (�) d� = ∫
Ω

p(�)M��
��

W� (�) d� = 0.
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the dominance partial ordering. Since the dominance partial ordering is not a total 
order, a priori, the polynomials p� defined in this way could seem different from the 
polynomials p� defined in (4.2). However, that they are still equal was first proved 
by Heckman [5, Theorem 8.3] by using very deep methods. Much easier proofs were 
given by Macdonald [15, (11.11)] and Heckman [6, Corollary 3.12].

5.1  The case d = 2

For d = 2 , using Propositions 5.1, 5.2, and 5.4, we can easily deduce the explicit expres-
sion of the differential operators HH

�
,H

L
�
 and HJ

�
 , under the change of variables � ↦ �.

In the Jacobi case, the operator

for d = 2 , can be written as follows

and therefore we recover the differential operator given by Koornwinder in [8].
Denoting the corresponding orthogonal polynomial, for d = 2 , by 

P
(�,�,�)

n−k,k
(�) = un−k

1
uk
2
+⋯ , we get

In the Hermite case, the explicit expression of the differential operator

for d = 2 , is given by

Denoting the orthogonal polynomial, for d = 2 , by H(�)

n−k,k
(�) = un−k

1
uk
2
+⋯ , we 

get

In the Laguerre case, the explicit expression of the differential operator

H
J
�
= D0 −D2 + (� − �)E0 − (� + � + 2)E1 + (2� + 1)(F0 − F2),

H
J
�
=(−u2

1
+ 2u2 + 2)

�2

�u2
1

+ 2u1(1 − u2)
�2

�u1�u2
+ (u2

1
− 2u2

2
− 2u2)

�2

�u2
2

+ [−(� + � + 2� + 3)u1 + 2(� − �)]
�

�u1

+ [(� − �)u1 − (2� + 2� + 2� + 5)u2 − (2� + 1)]
�

�u2
,

H
J
�
P
(�,�,�)

n−k,k
(�) = −[n(n + � + � + 2� + 2) + k(k + � + � + 1))]P

(�,�,�)

n−k,k
(�).

H
H
�
= D0 − 2E1 + (2� + 1)F0,

H
H
�
= 2

�2

�u2
1

+ 2u1
�2

�u1�u2
+ (u2

1
− 2u2)

�2

�u2
2

− 2u1
�

�u1
− (4u2 + 2� + 1)

�

�u2
.

H
H
�
H

(�)

n−k,k
(�) = −2(n + k)H

(�)

n−k,k
(�).
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for d = 2 , is given by

Again, denoting the orthogonal polynomial, for d = 2 , by L(�)
n−k,k

(�) = un−k
1

uk
2
+⋯ , 

we get

5.2  The case d = 3

For d = 3 , using Propositions 5.1, 5.2, and 5.4, we can easily deduce the explicit 
expression of the differential operators HH

�
,H

L
�
  and HJ

�
 , under the change of vari-

ables � ↦ �

In the Jacobi case, the operator

for d = 3 , can be written as follows

In the Hermite case, the explicit expression of the differential operator

for d = 3 , is given by

H
L
�
= D1 + (� + 1)E0 − E1 + (2� + 1)F1,

H
L
�
=u1

�2

�u2
1

+ 4u2
�2

�u1�u2
+ u1u2

�2

�u2
2

+
[
2� + 2� + 3 − u1

] �

�u1

+
[
(� + 1)u1 − 2u2

] �

�u2
.

H
L
�
L
(�)

n−k,k
(�) = −(n + k)L

(�)

n−k,k
(�).

H
J
�
= D0 −D2 + (� − �)E0 − (� + � + 2)E1 + (2� + 1)(F0 − F2),

H
J
�
=(−u2

1
+ 2u2 + 3)

�2

�u2
1

+ 2(2u1 − u1u2 + 3u3)
�2

�u1�u2

+ 2(u2 − u1u3)
�2

�u1�u3
+ 2(u2

1
− u2

2
− u2 + u1u3)

�2

�u2
2

+ 2(u1u2 − 3u3 − 2u2u3)
�2

�u2�u3
+ (u2

1
− 2u1u3 − 3u2

3
)
�2

�u2
3

+
[
−(� + � + 4� + 3))u1 + 3(� − �)

] �

�u1

+
[
−(2� + 2� + 6� + 7)u2 + 2(� − �)u1 − 3(2� + 1)

] �

�u2

+
[
−(3� + 3� + 6� + 9)u3 + (� − �)u2 − (2� + 1)u1

] �

�u3
.

H
H
�
= D0 − 2E1 + (2� + 1)F0,
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In the Laguerre case, the explicit expression of the differential operator

for d = 3 , is given by
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