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Abstract—Modern communication networks are intrinsically 

softwarised and programmable, hence essentially agile. 

However, critical functionality comes from legacy generations, 

limiting agility and posing performance and other 

considerations for demanding 5G services and - in the future - 

6G services. This paper discusses issues with legacy 

functionality and envisions high-level intrinsically intelligent 

design toward a 6G architecture. We focus on the case of 

machine learning model-based network functionality that can 

jointly optimise both user handover and service resource 

orchestration, rather than engaging in costly and uncertain 

prediction-based actions to accommodate the stringent 

requirements of 6G services. Moreover, we discuss this 

paradigm as a design pilot for other intrinsically intelligent 6G 

network functions. 

 
Index Terms—6G, Machine learning, SDN, Mobility  

I. INTRODUCTION 

Following the rising 5G era, future Sixth Generation (6G) 

communication networks will be characterised by an 

unprecedented need for intrinsic function and service-

hosting agility. The first steps towards this have already 

taken place in 5G by adapting the Software Defined 

Networking (SDN) and Network Function Virtualisation 

(NFV) paradigms for implementing network and service 

functions. Nevertheless, much of the supported functionality 

or design philosophy in 5G comes as a legacy from previous 

generations, posing considerations towards (even radically) 

redesigning Network Functions (NFs) in a future 6G 

architecture. 

One notable example of such a legacy NF is User 

Equipment (UE) HandOver (HO) with its design roots 

stemming from the 4G era, and with implications on 

contemporary 5G MANagement and Orchestration (MANO) 

of network resources, running services and even control 

decisions. The HO and MANO functions are clearly 

decoupled; in essence, they consider each other as a "mutual 

black box". To deal with this architecture design reality, the 

community has produced a significant body of research on 

solutions aiming to optimise 5G resource-related decisions 

from lower-network to application/service layers. Notable 

examples include Machine Learning (ML) model-based HO 

predictions [1][2][3][4] and/or purpose-built mobility 

patterns such for Virtual Network Function (VNF) [5], 

cache placement [6], favourable edge-node selection [7], 

multimedia content adaptation [8] or layer-3 wireless 

multicast [9]. 

Despite the significant exhibited benefits of such and 

other works1, the above "mutual black box" between HO 

and resource handling poses a gap as state of the art 

solutions come with certain costs in part due to prediction 

and other uncertainties. Notable examples include long-term 

forecasts (e.g., at the level of minutes [1]) necessary for 

spawning new or synching large states between existing 

service replica nodes like containers or virtual machines [1] 

[10] and so forth.  

Besides the time dimension uncertainties, other vital 

factors refer to space and other scalability aspects such as 

the number of cells or users or addressing important 

cost/performance dilemmas. The most evident dilemmas 

refer to adopting (deploying and maintaining) individualised 

ML models per user versus one model for a group of users, 

or a service versus a service type (such as a slice), or a cell 

versus a cellular region composed by many cells, and so 

forth.    

Finally, 6G services and technology leaps [11][12][13] 

will only aggravate the above issues, and pose new ones as 

well as new ways and opportunities to address them. 6G 

services should be expected to be largely interactive, include 

immersive environments, high and internment user mobility 

(physical or virtual), and in general combine the most 

stringent requirements [10][11] across all known 5G use 

case categories (eMBB, URLLC and mMTC). Moreover, 

6G extreme edge devices (IoT, smartphones, smartwatches, 

smartglasses, etc.) will be capable of much more. That 

includes not only hosting and running more resource-hungry 

models or leveraging multiple network access technologies 

at the same time (6G cellular/cell-less [11], device P2P, Wi-

Fi and other parallel path-link connections); but also 

improving functionalities in terms of QoS and QoE, and in 

ways assessed not only by Key Performance Indicators 

(KPIs) (e.g., resource capacity, access-latency or reliability) 

but also Key Value Indicators (KVIs) like privacy/security 

and social fairness (e.g., by fighting network resource 

starvation against privileged users).  

A. Contributions: a design vision for 6G architecture 

The current paper focuses on the HO-MANO "mutual 

black box" gap and the challenges discussed in Section II.A, 

and tries to propose appropriate design pillars towards a 6G 

architecture. At the heart of this lies a novel 6G NF 

 
1 Section II.A provides a more detailed discussion on critical problems 

and challenges motivating our interest. 
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approach to jointly and intelligently optimising resource 

MANO and UE HO:  

• Analysing and tearing down the HO-MANO "mutual 

black box" gap: move beyond standard legacy 

algorithmic HO processes such as the timer-based A3-

RSRP algorithm or algorithms A2-A4-RSRQ, described 

in 3GPP reference [13] to jointly decided and optimise 

HO and MANO actions. The goal is to avoid prediction 

uncertainties and related costs with reactive and/or 

proactive approaches based on real-time monitoring and 

"open box" access between HO and resource-handling 

policies. 

• Highlight the potential of ORAN in an envisioned 6G 

architecture: Actively involve the Multi-access Edge 

Computing (MEC) platforms and the large prospects of 

Open Radio Access Network (ORAN) RAN Intelligent 

Controller (RIC) on HO and resource handling 

decisions to improve resource usage efficiency and 

service KPI metrics. 

• Preliminary ML model-based results for HO 

predictions: The results support our argument for 

facilitating intelligent NFs ( in this case, the joint HO-

MANO) within the 6G architecture.  

• Other aspects of the envisioned 6G architecture: We 

discuss the joint HO-MANO as a pilot 6G function for 

design other NFs in the envisioned 6G architecture. We 

also discuss the role and engagement of the extreme 

edge (mobile devices) in future 6G NFs. 

In what follows, Section II discusses the issues posed by 

legacy NFs in 5G and future 6G, as well as the related work. 

Section III outlines a high-level design approach towards a 

6G architecture, emphasising the roles of ORAN RICs and 

MLOps. Section IV presents preliminary evaluation results 

for HO perdition supporting our argument that HO 

prediction is error-prone and should be abolished in a 6G 

architecture. Finally, Section V concludes this paper by 

wrapping up its main points and discussing how the joint 

HO-MANO can serve as a pilot for designing other 

intelligent 6G NFs or extending NFs and processes from 

ORAN to the extreme edge. 

II. BACKGROUND AND STATE OF THE ART  

Legacy NFs have been designed for a different landscape 

than what is gradually forming in 5G and in the future 

towards converging to a new 6G era [11] [12]. Nevertheless, 

NFs' algorithmic processes such as for UE HO, have been 

largely successful and able to handle user mobility as of 

very recently. As a result, they are still in use nowadays, 

gradually maturing 5G deployments to decide when a user 

will be handed over from one cell, S (namely, the source), to 

the next, D (namely, the destination).  

The most important aspects of these algorithms are time 

and signal quality [13][14][15]. The most notable examples 

include the A3-RSRP algorithm or algorithms A2-A4-

RSRQ, described in 3GPP reference [13], which decide 

handovers after parametrised monitoring of UE (i) Received 

Signal Strength Indicators (RSSI), specifically Reference 

Signal Received Power (RSRP) or Reference Signal 

Received Quality (RSRQ), and a Time To Trigger (TTT) 

duration along with the former measurement. In the case of 

A3-RSRP, for instance, if the RSRP from an adjacent cell 

rises above the one of the currently UE serving cell by a 

value equal or greater than a HO hysteresis threshold, then a 

HO event is triggered if the RSRP difference remains this 

for a TTT period. 

In this paper we use the HO-MANO relation as a 

paradigm problem representing others from legacy NF 

designs. Though largely successful in practice, still HO NFs 

ignore the MANO function or higher-level service aspects 

simply because these dimensions were not considered for 

designing former network generations. Back at the time, 

services where not demanding today's agility, where much 

more static, where less resource-hangry and stringent, and 

not designed or expecting to integrate into (or have 

privileged access to) the network itself such as in the case of 

service slices. 

A. Challenges from past generation architectures 

The following subsections use the HO-MANO paradigm 

to outline the most critical challenges of today's and future 

NFs that a 6G architecture must address. 

1) The HO-MANO "mutual black box" gap: The 

"mutually black box" is a critical gap identified even in 

today's 5G between service MANO and HO operations. It 

can be immediately identified by the lack of HO internal-

parameter knowledge or APIs exposed to service MANO 

and vice versa. Without such knowledge or any way to 

access any information via APIs or notification processes, 

5G/6G services can merely try to predict imminent HO 

events with significant uncertainty and other costs (see 

Section II.A.4). 

2) Legacy HO ignores 5G/6G landscape: The 

fundamentals of the handover procedure have remained the 

same from legacy networks (LTE) even in the 5G era: a UE 

reports monitoring measurements to its source cell S about 

neighbouring - hence, candidate destination D – cells, i.e. 

the physical layer Cell Identifiers – (PCIs) and RSSI 

measurements. Then, S decides to start the HO to "best" cell 

D, and UE and D complete the HO. More details can be 

found in the relevant 3GPP specification (Sec 4.9) [14] and 

[15] with variations including direct or not preparatory 

commutation between S and D.  

a) Ignoring technology leaps: Legacy HO ignores 

technology leaps and the opportunities of (i) more 

distributed HO decisions in the context ORAN [25] (by 

central or distributed units); and (ii) by extreme edge 

devices themselves that could have a role part (even 

individually decide) about their connectivity and HO 

status (e.g., leveraging multiple interfaces and/or P2P 

inter-connectivity). 

b) Lack of Intelligence: Lack of intelligence in A3-

RSRP or A2-A4-RSRQ is evidently a problem for 6G and 

even 5G. Stativity of rules, parameters and even 

parameter update processes cannot capture a 

programmable network's dynamicity and volatility. 

Examples include, and are not limited to, user and service 

mobility (physical or virtual), network composition with 

continuously added newly-spawned nodes, altered nodes 

and link network or VNF composition regarding resource 

allocation.  
 



  

3) Increased complexity of everything: Programmable 

networks pose a far more complex and dynamic landscape 

where there is no "one static algorithm matches all" 

solution. NFs such as HO must be intelligent (i.e., ML-

based) to capture and address a non-static landscape of (i) 

cells and other network resource/components; (ii) UE and 

service expectations (QoS/QoE) or dynamic behaviour 

(arbitrary mobility or failure/churn) and (iii) their reflection 

on training data2; (iv) resource congestion and starvation 

risks (v) especially against non-privileged users and 

services; (vi) more adaptive to dynamics SLAs. 

4) Significant costs of Intelligent HO predictions: Given 

the existing HO processes, there is a need to predict UE HO 

for MANO and even Radio Access Network (RAN) control 

operations. But that comes at a series of costs, spanning 

from (i) prediction uncertainty and its impact on uncertain 

resource allocation decisions; to (ii) significant use of 

resources, including human-involved effort and compute 

resources for full ML life cycles (from gathering training 

data to retraining/deploying/maintaining a model). And all 

that, of course, at the cost of (iii) energy consumption which 

is high for ML model training and runtime [16]. 

B. Impact of challenges 

Without intelligent control or any means to access or 

influence HO, the state of the art (see Section II.C) tries to 

predict handover in order to take proactive MANO actions 

that improve/guarantee service quality, such as in the case of 

[1]. Such proactive actions include aggressive resource 

allocation, such as in [10] setting up Kubernetes nodes at the 

handover destination network edge and proactively syncing 

the service state there to avoid delay-critical service 

downtime after handover. Other examples include service 

migration [7].  

Nonetheless, HO prediction potential comes with 

challenges: handover accuracy, time-to-handover accuracy, 

exposure/availability of necessary monitoring data [17], 

scalability of ML models regarding the number of users and 

cells, etc. Moreover, there is consideration regarding the 

time it takes for MANO and/or container orchestration 

actions to happen and guarantee optimised seamless service 

delivery.  

For delay-critical services, actions must occur as soon as 

possible after predictions for imminent handover events 

[10]. And even if the model decision and/or action time after 

a prediction is considered solved, there may be implications 

regarding input data staleness such as for Radio Resource 

Control (RRC), e.g., for assigning Resource Blocks (RBs) to 

users for which the combined time for model access to 

current monitoring and decision is at sub-millisecond scales 

[18].  

On the very contrary, there are other service types for 

which predictions must refer to farther in the future (e.g., in 

the scale of minutes [10] instead of 10s of milliseconds). For 

the latter, as well as for necessary MANO/container actions 

that take long, such as spawning a new container (1-2 

minutes), handover predictions tend to be less accurate.  

 
2 This is known in the literature as the “dataset shift” problem, analysed 

extensively here: https://mitpress.mit.edu/books/dataset-shift-machine-

learning. 

C. State of the Art  

1) HO prediction: State of the art in UE mobility and HO 

prediction aims predominantly at two goals, often combined 

together: (i) seamless mobility, i.e. no/zero service 

interruption upon HOs, and (ii) node selection for 

application/service/function placement. The most popular 

techniques include UE profiling [19][20], exploiting 

handover history patterns and user trajectory prediction 

[6][9][20], radio link characteristics  and cross-layer 

optimization [7][21][22], and finally, ML model-based 

[1][2][3][4] solutions. Out of all the above, ML model-based 

approaches and particularly those integrated into MEC 

platform solutions, fall within the scope of this paper and are 

analysed further below.  

The authors of [1] use intelligent handover prediction 

models between radio 5G Base Stations. Specifically, they 

apply a Transfer Learning (TL) technique by conducting 

aligned simulation and actual testbed training using a 

combination of (i) Long Short-Term Memory (LSTM) or 

gradient boost regression with classification models 

(N/XGBoost) for filtering out any received signal power and 

compute resource prediction input outliers to (ii) predict the 

destination serving Multi-access Edge Computing (MEC) 

point and cell (hence, cellular handovers) that takes over 

UE's service after handover. Posing similar research traits, 

the work of [3] uses prediction assisted handover based on 

multilayer perception neural networks to reduce the 

handover time delays. 

Next, the work of [10] covers that of [1] from a broader 

MEC perspective in high-mobility scenarios. The work 

leverages predictions from models like in [1] as the means 

to identify favourable edge nodes for hosting service 

replicas for handover UEs. As a result, the experienced 

service downtime after handovers should be non-

perceivable.  

Another work that focuses on the MEC side is [2], 

specifically on decentralised 5G deployments with services 

in distributed resources in the MEC architecture to locate 

services topologically close to UEs. The authors explore 

Recurrent Neural Networks (RNN) using LSTM for UE 

mobility prediction for automotive scenarios. Handover 

prediction integrated with service migration in 5G systems 

is studied in [7] by using two prediction mechanisms to 

forecast mobile UE's handover events by exploiting user-

network association patterns. Just like [1], [10] and [2], this 

work refers to MEC scenarios for identifying favourable 

edge nodes. Last, likewise to [7], the work of [23] aims at 

efficient handovers by using mobility pattern history and 

user trajectory prediction.  

2) MEC and RAN adaptation: Regarding MEC and radio 

access platforms with ML model-hosting capabilities, Low-

Latency MEC [24] is a 3GPP fully compliant open-source 

platform offering multiple APIs that align to ETSI MEC 

specifications. The platform is SDN programmable using 

the OpenFlow protocol while fully integrated with the 

FlexRAN [18] SD-RAN controller. As a result, LL-MEC 

addresses three types of latency: (i) user transport latency, 

(ii) underlying network (control) latency between MEC-

hosted apps and MEC-performed actions; and (iii) 

application latency. All these types of latencies are relevant 

for hosting ML-models at the edge, which according to [10] 



  

need (ultra) low-latency access to monitoring data as well as 

to transmitting decided model actions. 

ORAN [25][26] is widely considered as the most viable 

solution for next generation RAN. It offers disaggregated 

RAN functionality composed of Open Centralised Units (O-

CUs), Open Distributed Units (O-DU), and Open Radio 

Units (O-RUs) units, using open interface specifications 

between elements implemented over vendor-neutral 

hardware using open, programmable interfaces and 

standards. The most important element of ORAN is its RAN 

Intelligent Controller (RIC), i.e. an SDN architecture 

component responsible for controlling and optimising RAN 

functions. Section III discusses ORAN in more detail. 

III. ARCHITECTURAL VISION 

The diagram and discussion below present a high-level 

adaptation of our architectural vision, which largely 

involves ORAN aspects and capabilities. The vision tries to 

capture our background discussion, and particularly the 

multi-facet role(s) of integrated ML models into a 6G 

architecture. Moreover, it has certain design features that try 

can intrinsically address the critical challenges identified in 

Section II.A., particularly the "mutually black box" gap that 

we discuss as a representative problem and pilot solution 

within the architecture.  

 

Fig. 1. Leveraging ORAN RIC for ML model-based joint or 

cooperative MANO and control decisions. 

In more detail, Fig. 1 shows the relationship between 

ORAN and its internal components, emphasising Near-RT 

(near real-time) and non-RT Radio Interface Controls 

(RICs), MEC, the Core, and an external ML model lifecycle 

framework. Services can be running at the MEC (especially 

delay-critical ones), or the Core or ORAN as Network Apps. 

Notice the interfaces. A1 allows communication between 

management and orchestration rApps and control xApps, 

while E2 connects xApps to E2 node elements for 

controlling purposes such as HO. An E2 node has a one-to-

one relationship with a near real-time RIC, but one RIC can 

connect to multiple E2 nodes. The protocols that go over E2 

allow controlling and optimising the E2 node elements and 

resource usage. O1 is the interface between management 

entities in the MANO/O-RAN parts. Last, N2 connects the 

E2 nodes to the Core. 

A joint MANO-HO solution can be native to this 

architecture via ML models running as xApps over the Near-

RT RIC by being responsible for monitoring HO critical 

data and for taking optimised HO decisions. Near-RT RIC 

offers a platform hosting microservice-based applications 

called xApps. Such ML models implemented as xApps can 

have near real-time access to data for taking near real-time 

control decisions such as HO. Besides HO control decisions, 

xApp ML models can take other types of control decisions 

like wireless resource block scheduling.  

On the one hand, xApp ML models can work closely with 

rApps (discussed below) in more than ways, such as for 

detecting monitoring anomalies (e.g., with LSTM-like 

models); or by updating rApps regarding imminent or 

longer-term control decisions likewise to HO (namely, 

"control stream-1" Fig. 1).  

On the other hand, MANO optimisation ML models can 

be fed with xApp input over interface A1 to take optimised 

orchestration decisions. One or more of such models, each 

baring single or multi-objective resource optimisation goals, 

can be running as Non-RT rApps as part of a centralised 

ORAN Service Management and Orchestration (SMO) 

Framework. Examples of such models include 

Reinforcement Learning (RL) model-based solutions like 

[27][28][29] or other supervised ML models like those 

analysed in [30] or for performance profiling in [31]. As 

defined by the ORAN specification, this is non-real-time, 

i.e. takes more than a second. Therefore, any MANO 

decisions will be taken based on constantly fed HO xApp 

input, including updates on imminent or long-term HO. This 

implies either a particular element of HO prediction or 

HO/MANO coordination to jointly decide and optimise both 

HO and resource handling.  

A major difference compared to traditional HO 

predictions lies in continuous real-time access to HO data, 

which is currently not available but instead guessed or 

extracted implicitly, leading to prediction uncertainty. Also, 

xApps can explicitly schedule HOs based on feedback input 

from SMO rAPPs, hence following a reverse approach 

("control stream-2" in  Fig. 1) compared to "control stream-

1" above.  

Finally, note that a major advantage of xApps and rApps 

lies in being third-party software, enabling 6G services to 

control or influence MANO and HO, assuming this is 

allowed by a corresponding SLA.  

A. The distinct MLOps component 

The Machine Learning Operations (MLOps) component 

is an external component of the poposed architecture, using 

external interfaces with MEC, both ORAN RICs and the 

Core. MLOps is a core ML function that takes continuously 

fed data analytics and raw monitoring data for executing the 

complete ML models life cycle. The latter includes 

developing, (re-)training/maintaining and deploying models, 

and then continuously monitoring/reviewing their 

performance in order to replace them with others or 

retrain/improve them. In our previous works, a complete 

approach to MLOps is provided in [17], while preliminary 

                       
                            

          

           

        

    

               

  

                              

  

 

 

      

 

     

                        

                            

     

   
             

       

          

                     

 
 
 
 

  

  

  

  

         
            
               

 
 

 
  

 
  
 
  

 
 

 
  

 
 

 
   

   
   

 
 

  



  

data pipelining with offline or online model (re-)training is 

provided in works [28] [30][31] and [1][27], respectively. 

B. ML models and data for the intelligent NFs  

We aim to explore and combine the following data 

analytics (stats and raw input) with training, deploying and 

maintaining appropriate ML models. Again, we use the joint 

HO-MANO intelligent NF as a paradigm:  

• State of Network resources: nodes for hosting the 

service and local resources like GPU, CPU, memory, 

NIC buffers, number of UEs per node/cell, etc.   

• UE monitoring: utilise everything from the physical 

wireless to higher network layer(s): Reference Signal 

Received Power (RSRP), Reference Signal Received 

Quality (RSRQ), link/path statistics at all layers, 

including capacity, latency, availability, jitter, etc.  

• TTT and hysteresis: these parameters stem from the 

events considered by A1-A4 3GPPP HO specs. Get 

such input from live monitoring and associate it with 

a need for proactive control [9] or MANO actions 

like path steering for switching to alternative service 

points [10]. 

• Leverage service/app data regarding service-level 

performance extending to user QoE metrics and other 

sources of information (possibly with user privacy 

approval like GPS location). 

• Energy-awareness: monitor and consider the 

consumption of UE battery, O-RU energy, and all 

network components utilised, such as MEC 

resources. 

IV. PRELIMINARY SIMULATIONS ON ML HO PREDICTIONS 

AGAINST A3 

Next, we present our preliminary simulation results for 

assessing the uncertainty of HO predictions in support of our 

position for coordinating HO and MANO optimisation, 

rather than predicting the behaviour of the HO NF for 

enhancing MANO.  

A. Setup 

Our simulations were done with the well-known C++ ns-3 

simulation environment and the ns3-gym framework3 that 

enables ML model integration to 5G simulations.  

We trained a Long Short-Term Memory (LSTM) model 

and an XGBoost (decision tree) model. These models were 

used to live forecast a UEs' RSRP values and finally to 

predict the serving cell physical identity (S-PCI) using the 

XGBoost model with the former forecasted values as its 

input. The latter forecasted RSRP, as well as S-PCI 

predictions, were fed back to the simulation environment as 

actions.  

All simulations were carried out to assess the performance 

of the system under different circumstances, including a 

scalability study and corresponding assessment using 

different arrangements of either 2 or 4 microcells to provide 

high-speed connectivity, even in built-up urban areas.  

 
3 https://apps.nsnam.org/app/ns3-gym/. 

To emulate realistic mobility, we utilised real taxi 

mobility traces from a publicly available San Francisco taxis 

mobility traceset [33]. 

 

B. Results and conclusions 

 

 
Fig. 2. Mean Absolute Error results (y axis) of LSTM models 

trained for different forecast lengths in 2-cell and 4-cell network 

scenarios. Time periods on the x-axis refer to now (t) plus some 

delta (δ) for the prediction period (~0.5 sec., ~1 sec., … ~0.5  mins, 

1 min). 

 

Fig. 2 shows Mean Absolute Error (MAE) results of 

LSTM models trained for different forecast t+δ periods in a 

2-cell and 4-cell network scenarios. The metric expresses 

the magnitude of the difference between real and predicted 

RSRP values in dB. 
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As seen in the graph, MAE is lowest when predicting 

imminent RSRP in just one δ (~0.5 sec.) step ahead. 

However, it increases as the forecast δ increases, for both 2-

cell and 4-cell scenarios, without the scale of cell number 

affecting this behaviour.  

• Conclusion 1: There is uncertainty in RSRP 

predictions. The uncertainty gets aggravated with 

longer future period predictions despite the exhibited 

robustness of LSTM. For instance, MAE is 1.79 dB 

for a 60-sec forecast, which is 2.3% higher than that 

of a t+ 8.16s forecast (1.75 dB) in the 2-cell scenario. 

Moreover, an increased number of cells (i.e., four) seems 

to have a negative impact on MAE, yet with a small 

difference compared to the case of two cells. Therefore, we 

cannot safely conclude on the exact implications or their 

extent of cell scalability on RSRP predictions.  
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Fig. 3. Αccuracy results of XGBoost S-PCI classifiers trained for 

different forecast lengths in 2-cell and 4-cell network scenarios. 

 

Fig. 3 shows the accuracy of service cell predictions as a 

percentage of correct predictions overall predictions. 

Remember that the predictions are based on corresponding 

LSTM RSRP predictions passed as input to the XGBoost 

model.  

The XGBoost model shows fair or good accuracy scores 

for S-PCI prediction, particularly for the 2-cell scenario. The 

absence of confidence intervals denotes the use of realistic 

traces, rather than conducting randomised mobility 

simulation repeats. In both scenarios, the accuracy reduces 

as the forecast length increases. This is because LSTM-

based input is more error-prone due to greater uncertainty, 

which then propagates to the classification which is based 

on these values. 

• Conclusion 2: HO prediction suffers from a 

significant uncertainty, particularly for longer-term 

predictions. Despite the LSTM robustness, the final 

HO classification-prediction is error-prone due to the 

"amplified" propagation of otherwise seemingly 

small errors in RSRP predictions by the LSTM first 

layer. 

It is worth noting that these results are in accordance with 

the results of [1], which were conducted over a custom 

simulation plus a real testbed environment. The current 

results stem from a standardised simulation environment, 

including a further scalability study and realistic vehicle 

mobility traces over a real wide-area realistic use case, as 

opposed to human walking mobility over an urban square 

used in [1]. 

 

• Overall conclusion: HO prediction is error-prone. A 

6G should facilitate a different HO NF to avoid 

erroneous predictions. This is important for both 

imminent or longer-term forecasts, i.e. (according to 

[1][9] and other works from the literature) for cases 

where service state must be rapidly synced prior to 

HO or for cases of transferring an entire 

service/creating a consistent replica, respectively.  

 

V. HANDOVER AND BEYOND FUTURE WORK PLAN 

The joint HO-MANO 6G function and its place in the 

high-level architecture of Fig. 1 are discussed in this paper 

as a feasibility proof of concept for integrating intelligence 

in a future 6G architecture. Intrinsic ML model-based 

intelligence in a future 6G design stems from the currently 

developing state of the art technologies like ORAN.  

Moving beyond the discussed HO-MANO 6G paradigm 

case and the corresponding pilot NF proposition for 

addressing the "mutual black box" gap (see Section II), 

integrating ML model-based intelligence for other NFs is 

feasible and can address the increased complexity in 6G in 

more than one ways:  

• First, by jointly optimising multiple objectives under 

dynamic and possibly unforeseen conditions.  

• Secondly, by minimising – if not entirely removing – 

static rules and any remaining elements of 

traditional human administration. Both of the latter 

make approaching optimisation goals and 

conducting timely actions infeasible under dynamic 

conditions, especially for delay-critical use cases.  

• On the very contrary, a design along the lines of the 

high-level architecture of Fig. 1 complies with the 

3GPP-defined Zero-touch network and Service 

Management (ZSM) vision [32]. 

• As discussed and verified by our preliminary 

simulation-based evaluation results, predictions 

come at the cost of uncertainty and other 

implications, particularly when forecasting network 

behaviour for longer times in the future. Unlike that, 

the architecture of Fig. 1 eliminates the need for HO 

predictions to enhance MANO; and by induction, 

the need for predictions regarding other NF actions 

(e.g., new UE or service registration) that currently 

also suffer from a "mutual black-box" gap with 

MANO.  

• The previous point highlights the need to allow NF 

actions to be co-decided or coordinated with MANO  

such as via control streams 1 and 2 in Fig. 1. Given 

the nature or an ORAN RIC environment, near-RT 

control xApps and non-RT rApps such as for 

MANO operations can adapt a pub/sub model of 

communication such as proposed in Information 

Centric Architectures [34][35]. The latter use 

dynamic naming and name resolutions schemes that 

allow scalable, secure and scoped-based 

communication among x/rApps via unicast, 

multicast/broadcast and concast via pub/sub 

messages. This can benefit the purposes of an 

extendable 6G service-based architecture over an 

infrastructure that leverages ORAN and NWDAF 

(e.g., for monitoring [36] and ML models 

execution).  

Regarding our future work, this includes exploring the 

join HO-MANO solution along the lines of the posed 

architecture, including the MLOps component discussion.   

In addition, we plan to focus on possible extensions that 

can strengthen the above design and specifically engage the 

so-called extreme edge. We may replace the sole global 

view of intelligent NFs deployed in ORAN RIC with a more 

UE-peer approach. Engaging the mobile devices (aka the 

"extreme edge") for NF decisions such as autonomously 

decided HO can come with pros, cons and trade-offs. 

Depending on the NF and the exact approach taken (model 

type, protocol architecture such as for control messaging, 
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etc.), energy consumption needs may be low or high for 

running autonomous ML models over the (usually) power-

restricted UE devices.  

On the other hand, engaging the extreme edge comes with 

a lot of advantages and options. It can be done (fully/semi-) 

autonomously with peer UE relations or under an ORAN 

hierarchy. This may allow individualised (e.g., user 

personalised) model training that optimises user-specific 

KPIs for improving their QoE. Moreover, individualised 

models have intrinsic privacy and security advantages 

expressed by KPIs and/or KVIs, thus can improve social 

welfare by avoiding resource starvation from a centralised 

authority. One notable example includes the ability of 

modern devices to exploit multiple wireless interfaces and 

technologies for P2P connections and corresponding 

network access. Under such scenarios, the centralised 

ORAN is alleviated by HO and other NFs, and of course, 

from consuming RAN and other resources. Alternatively, 

intelligence may be "shared" between both the extreme and 

ORAN RIC apps, e.g., via federated learning schemes, 

which can combine the benefits of both worlds.  
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