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index and site-specific cancer risk using tissue-partitioned
Mendelian randomisation
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BACKGROUND: Body mass index (BMI) is known to influence the risk of various site-specific cancers, however, dissecting which
subcomponents of this heterogenous risk factor are predominantly responsible for driving disease effects has proven difficult to
establish. We have leveraged tissue-specific gene expression to separate the effects of distinct phenotypes underlying BMI on the
risk of seven site-specific cancers.
METHODS: SNP-exposure estimates were weighted in a multivariable Mendelian randomisation analysis by their evidence for
colocalization with subcutaneous adipose- and brain-tissue-derived gene expression using a recently developed methodology.
RESULTS: Our results provide evidence that brain-tissue-derived BMI variants are predominantly responsible for driving the
genetically predicted effect of BMI on lung cancer (OR: 1.17; 95% CI: 1.01–1.36; P= 0.03). Similar findings were identified when
analysing cigarettes per day as an outcome (Beta= 0.44; 95% CI: 0.26–0.61; P= 1.62 × 10−6), highlighting a possible shared
aetiology or mediator effect between brain-tissue BMI, smoking and lung cancer. Our results additionally suggest that adipose-
tissue-derived BMI variants may predominantly drive the effect of BMI and increased risk for endometrial cancer (OR: 1.71; 95% CI:
1.07–2.74; P= 0.02), highlighting a putatively important role in the aetiology of endometrial cancer.
CONCLUSIONS: The study provides valuable insight into the divergent underlying pathways between BMI and the risk of site-
specific cancers.

British Journal of Cancer; https://doi.org/10.1038/s41416-022-02060-6

INTRODUCTION
Body mass index (BMI) is an important risk factor for multiple
types of cancer. Mendelian randomisation (MR) [1] studies have
been integral in elucidating evidence of causal relationships
between variation in BMI and site-specific cancer risk [2], although
further granular insight is required to clarify the specific
mechanistic and biological pathways which may explain these
effects. While BMI is a commonly used proxy for excess adiposity
in population studies, it retains a high degree of heterogeneity
and therefore captures multiple phenotypes [3].
Recently, we have developed a novel multivariable MR

approach to separate the effects of phenotypic subcomponents
of BMI on complex traits and disease risk. This is implemented
through fractionation of the genetic variants associated with BMI
according to whether the BMI signal colocalises with gene
expression in the brain or subcutaneous adipose tissue [4]. In
this framework, ‘adipose-’ and ‘brain-tissue instrumented BMI’

were analysed as separate exposures in a one-sample multi-
variable MR analysis using genetic risk scores (GRS) based on
subsets of adipose and brain expression colocalizing BMI
variants. We found that these distinct tissue-dependent expo-
sures related differentially to measures of fat distribution and
visceral adiposity, with brain-tissue colocalizing variants driving
the effect of BMI on cardiometabolic disease outcomes and
subcutaneous adipose-tissue colocalizing variants predomi-
nantly being responsible for the effect of BMI on measures of
heart structure [4].
In this study, we sought to adapt this tissue-partitioned MR

approach such that it can be applied in a two-sample MR setting,
allowing us to leverage findings from large consortia. Next, we
applied this approach to investigate the putatively independent
effects of adipose- and brain-tissue instrumented BMI on the risk
of seven site-specific cancer outcomes. Lastly, we conducted
further analyses using additional datasets to evaluate the
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robustness of potential independent effects highlighted in our
primary analysis.

METHODS
Tissue-partitioned genetic instruments for adult BMI
Full details on the genetic instruments identified for MR analyses in this
study have been reported previously [4] and are explained in further
detail in Supplementary Note 1. In brief, we incorporated gene
expression data to identify genetic variants whose robust effects on
BMI are putatively mediated via the expression of a nearby gene in
either subcutaneous adipose and neural tissues. This was assessed by
conducting extensive genetic colocalization analyses using the method
‘coloc’ [5] where a posterior probability for colocalization (PPA4) ≥0.8
was applied to formally define instrument sets, as recommended by the
authors of the method.
Genetic colocalization analyses were performed systematically at 915

independent loci robustly associated with adult BMI (i.e., P < 5 × 10−08 &
r2 < 0.01) from a meta-analysis GWAS from the Genetic Investigation of
Anthropometric Traits (GIANT) consortium and the UK Biobank (UKB)
(n= 681,275) [6]. To ensure that the highest SNP coverage available was
implemented for colocalization analyses, we combined these data with the
summary statistics from a BMI GWAS involving participants of European
ancestry from the UK Biobank only (n= 463,005) to obtain summary
statistics for SNPs not included in the meta-analysis with GIANT. The
combined BMI datasets provided summary statistics on a total of
12,322,387 SNPs. To minimise the incorporation of findings which may
potentially be influenced by strong regional linkage disequilibrium (LD)
structure we omitted variants which reside within the human leukocyte
antigen (HLA) region (chr6:25 Mb–35Mb).
In total, 86 genetic variants provided evidence of colocalization between

BMI and proximal subcutaneous adipose-tissue-derived gene expression
using meta-analysed expression quantitative loci (eQTL) data derived from
subcutaneous adipose (n= 1257). Similarly, 140 genetic variants with
evidence of colocalization were found between BMI and proximal brain-
tissue-derived gene expression data using meta-analysed brain-tissue
samples (n= 1194). These two instrument sets were used as proxies for
what we refer to as 'adipose-' and 'brain-tissue instrumented BMI',
respectively. These tissues were selected due to their important biological
relevance for adiposity and resulting instruments were subject to various
robustness evaluations such as ensuring that both resulting instrument
sets have very similar average effect estimates on BMI (adipose= 0.0148
and brain= 0.0149 standard deviation change in BMI per effect allele)
(Supplementary Note 1). Full details of the genetic variants incorporated
into adipose- and brain-tissue instrumented BMI exposures are provided in
Supplementary Table S1.
Robust simulation studies in the literature have suggested that sample

sizes of eQTL studies over n= 1000 should maintain a high true positive
and low false-positive rate for the majority of common variants identified
by GWAS [7]. We additionally assessed how the number of instruments
may influence exposure strength in the multivariable model. Randomly
sampling pools of adipose- and brain-tissue instruments suggested that
even when 30 BMI instruments for both tissues are available our
multivariable approach is capable of separating these two exposures
(Fadipose= 30.6 & Fbrain= 29.9).

Tissue-partitioned childhood body-size instruments
In this study, we additionally applied our instrument derivation pipeline as
described above to GWAS results from a measure of childhood body size
using recall data from the UK Biobank study at age 10 [8]. UKB participants
completed recall questionnaires asking if they were ‘thinner’, ‘plumper’ or
‘about average’ when they were aged 10 years old compared to the
average. These GWAS results have been previously validated using
measured childhood BMI in three independent cohorts which found that
they predict BMI at this early stage in the lifecourse more strongly
compared to adult BMI genetic variants [9–11]. In addition, the childhood
BMI phenotype has been shown to directly influence outcomes measured
during childhood such as vitamin D levels [12], but have an indirect effect
after accounting for genetically predicted adulthood adiposity on the same
outcome when measured in adulthood. There were 56 and 53 childhood
body-size-associated variants which colocalized with adipose- and brain-
tissue eQTL, respectively. A list of these genetic variants can be found in
Supplementary Table S2.

Genome-wide association study data on site-specific cancers
GWAS estimates were obtained on the following seven site-specific cancer
outcomes: colon, breast, endometrial, lung, ovarian, kidney and prostate
cancer [13–17]. All site-specific cancers investigated in the present analysis
have previously been shown to be causally influenced by adiposity in MR
analyses [18–20]. If a particular SNP was not present in the outcome
summary data extracted from the MRC-IEU OpenGWAS database using MR-
base [21, 22], a proxy SNP in LD with the requested SNP was provided by
default. LD proxies were determined using the 1000 genomes of European
ancestry sample data. To maximise statistical power for cancer outcomes
where reported parental history of disease in the UK Biobank study provided
a larger number of cases compared to accessible datasets (i.e., colon and
lung cancer), we obtained estimates based on a GWAS by proxy approach
previously shown to be highly genetically correlated with findings from
GWAS of diagnosed cases [23, 24]. A summary of the outcome datasets used
in this study is provided in Supplementary Table S3.

Univariable Mendelian randomisation to estimate the total
effect of BMI
We firstly estimated the total effect of genetically predicted adult BMI
using the full set of 915 instruments (i.e., without considering their tissue-
dependent effects on gene expression) on the seven site-specific cancer
outcomes which have previously been shown to be influenced by
adiposity [18–20]. Analyses were conducted using two-sample Mendelian
randomisation (MR) with the inverse-variance weighted (IVW) method [25]
and repeated using the MR Egger, weighted median and MR penalised
weighed median methods, which are typically more robust to horizontal
pleiotropy [26]. All analyses were conducted using the ‘TwoSampleMR’ R
package. Estimates for instruments when analysing cancer endpoints
based on GWAS of sex-stratified populations (i.e., breast, endometrial and
ovarian cancers in female-only populations, prostate cancer in a male-only
population) were obtained from previously conducted sex-stratified GWAS
analyses of BMI [27]. MR analyses were conducted using exposure and
outcome data from non-overlapping samples where possible to avoid
overfitting bias [28].

Tissue-partitioned Mendelian randomisation
Next, we used the sets of adipose and brain expression variants which
colocalized with BMI based on PPA4 ≥ 0.8 as instrumental variables within
the MR framework. When using the adipose colocalized variants as genetic
proxies for BMI, we refer to this exposure as ‘adipose-tissue instrumented
BMI’ hereafter, whereas when using the subset of brain colocalized variants
as instruments, we refer to this exposure as ‘brain-tissue instrumented
BMI’. We conducted univariable MR as above to estimate the total effect of
adipose and brain-expressed BMI separately on all seven site-specific
cancers.
We next employed a multivariable MR (MVMR) approach to estimate the

direct effects of these tissue-partitioned exposures on each outcome by
simultaneously estimating their effects in the same model. We previously
demonstrated the use of MVMR to separate the effects of adipose- and
brain-tissue instrumented BMI in a one-sample MR setting for various
cardiovascular disease traits [4]. Due to the current limited availability of
individual-level data with large numbers of cancer cases, we adapted the
methodology to leverage GWAS summary statistics for which there are
publicly available data from highly powered meta-analyses studies
conducted by consortia. Simulations were conducted using the ‘simula-
teGP’ R package to evaluate the relative power of this approach across a
range of effect sizes (0.1, 0.125 and 0.15), outcome sample sizes (10,000,
25,000, 50,000, 75,000 and 100,000) and proportion of variance explained
by tissue-partitioned instruments (0.5%, 1%, 1.5%, 2%, 2.5% and 3%)
derived from a simulated GWAS of n= 700,000 with a pool of 915
independent genetic instruments (based the BMI GWAS by Yengo used in
our applied analysis).
The independent effects of adipose- and brain-tissue instrumented

BMI were estimated using MVMR by weighting the beta effect estimates
of the SNP-exposure associations by their PPA4 values assessed by
colocalization for each tissue, respectively. This weighting scheme was
devised to incorporate the evidence that genetic instruments putatively
influence BMI due to their expression in either adipose or brain tissues
(i.e., SNPs with a very small PPA4 value were down-weighted using our
approach as they are unlikely to influence BMI via gene expression in
adipose or brain tissue). A schematic diagram of this approach is
illustrated in Fig. 1.
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We next applied our novel two-sample MVMR approach to investigate
whether the effect of BMI on the seven cancer types is predominantly
attributed to genetic variants exerting their effects via subcutaneous adi-
pose- or brain-tissue-related pathways. Importantly, we emphasize that the
effect estimates derived using tissue-partitioned instruments should not
be interpreted as causal effects in the same manner as more conventional
risk factors when analysed using MR. Instead, we have developed this
approach to investigate the separate contributions of genetic instruments
that relate to different forms of a given trait, applied in this study using BMI
and adipose/brain-tissue-derived gene expression as an exemplar. To this
end, our framework provides a novel approach to dissect disease pathways
between risk factors and endpoints by leveraging genetic instruments
under the principles of MR.
In addition, we assessed the sensitivity of this weighted two-sample

MVMR approach by analysing the same cardiovascular disease endpoints
and measures of cardiac structure investigated in our previous study [4]
(Supplementary Tables S4 and S5). Doing so suggested that the more
widely applicable two-sample approach was capable of recapitulating
findings from its application in a one-sample MVMR setting (Supplemen-
tary Note 2). Instrument strength in MVMR analyses was evaluated using
conditional F-statistics as derived with the ‘MVMR’ R package with F > 10
used as an indication that weak instrument bias was not influencing our
findings [29] (Supplementary Table S6). Conditional F-statistics were
particularly important to evaluate within our MVMR framework to
demonstrate that the two molecular forms of BMI being analysed could
be instrumented as two separate exposures in our model. In order to
maximise the number of reliable instruments incorporated in exposure
variables, we demonstrated the effect of varying the PPA threshold for
eQTL instrument identification on conditional F-statistics in an analysis on
coronary artery disease (Supplementary Fig. S1). Lowering the PPA
threshold in our inclusion criteria resulted in weaker instruments as
indicated by their conditional F-statistics. We therefore advocate that the
recommended PPA4 threshold proposed by the method developers (i.e
PPA4 > 0.8) be used when identifying tissue-partitioned instruments.

RESULTS
Univariable MR analyses of BMI effects on cancer outcomes
MR analyses were first carried out to estimate the total effect of
genetically predicted BMI using all 915 independent variants and
each of the 7 cancer endpoints. The MR estimates reproduced
findings from previously published MR studies of the relationship
between adiposity and site-specific cancers (i.e., without consider-
ing tissue-dependent effects on gene expression) [18–20]
(Supplementary Table S7 and Supplementary Fig. 2a). Univariable
MR analyses of BMI instrumented with the adipose- and brain-
tissue colocalized variants found strong evidence of an effect
on the risk of outcomes such as endometrial (adipose: OR= 1.84;
95% CI= 1.35–2.51; P= 9.88 × 10−5; brain: OR= 1.61; 95%
CI= 1.32–1.97; P= 3.7 × 10−6) and lung (adipose: OR= 1.07; 95%
CI= 0.95–1.19; P= 0.27; brain: OR= 1.17; 95% CI:1.07–1.27;
P= 0.0003) cancer. Evidence of a genetically predicted effect

using tissue-partitioned BMI was also found on a lower risk of
prostate cancer (adipose: OR= 0.79; 95% CI= 0.6–0.98; P= 0.03;
brain: OR= 0.77; 95% CI= 0.65–0.91; P= 0.002).

Multivariable MR analyses of tissue-partitioned BMI effects on
cancer outcomes
Applying our weighted two-sample MVMR approach to
separate the ‘independent’ effects of adipose- and brain-
tissue instrumented BMI highlighted instances where these
tissue-partitioned sets of variants may contribute differentially
to site-specific cancer risk (Fig. 2). For example, the indepen-
dent effect of brain-tissue instrumented BMI on risk of
endometrial cancer attenuated when analysed simultaneously
with adipose-tissue instrumented BMI (OR= 1.20; 95%
CI= 0.81–1.78; P= 0.36), whereas the effect of adipose-tissue
instrumented BMI remained strong (OR= 1.71; 95%
CI= 1.07–2.74; P= 0.02). Conversely, evidence of an indepen-
dent effect of adipose-tissue instrumented BMI on lung cancer
risk attenuated in the MVMR model (OR= 0.98; 95%
CI= 0.82–1.17; P= 0.83) and the effect of brain-tissue instru-
mented BMI remained strongly positive (OR= 1.17; 95%
CI= 1.01–1.36; P= 0.03). A comparison of all univariable and
multivariable estimates for each site-specific cancer outcome is
provided in Supplementary Table S8.
Weak evidence of an independent effect was detected for

both adipose- (OR= 1.03; 95% CI= 0.78–1.37; P= 0.80) and
brain-tissue (OR= 0.85; 95% CI= 0.67–1.07; P= 0.17) instrumen-
ted BMI and breast cancer. Given the emerging role of childhood
obesity in breast cancer risk [9], we re-applied our entire
instrument derivation pipeline using results from a large-scale
GWAS of childhood body size based at age 10 in the lifecourse.
In total, 56 variants provided strong evidence of colocalization
with proximal gene expression derived from subcutaneous
adipose tissue, and 53 variants using gene expression data
from brain-derived tissue (Supplementary Table S2). The mean
absolute effect for each subset of these tissue-partitioned
instruments on childhood body size were similar (adipose=
0.013, brain= 0.013). Although both adipose- and brain-tissue
instrumented childhood body size effects provided evidence of
an effect on breast cancer risk in a univariable setting (adipose:
OR= 0.59; 95% CI= 0.41–0.87; P= 0.007; brain: OR= 0.58; 95%
CI= 0.42–0.81; P= 0.001), only weak evidence of an indepen-
dent effect was found in the multivariable MR analysis for
adipose-tissue instrumented childhood body size (OR= 0.98;
95% CI= 0.55–1.73; P= 0.93). In contrast, the central estimate
for genetically predicted childhood body size when instrumen-
ted using brain-tissue colocalized variants remained robust in a
multivariable setting (OR= 0.57; 95% CI: 0.33–0.98; P= 0.04)
(Supplementary Table S9).

Mendelian
Randomisation

a
b Multivariable

Mendelian
Randomisation

Counfounding
factors

Brain expressed
BMI SNPs

BMI
(using brain

weighted
estimates)

BMI
(using adipose

weighted
estimates)

Adipose
expressed BMI

SNPs

Outcome
(e.g., CRC)

Exposure
(BMI)

915 BMI SNPs

Outcome
(e.g., CRC)

Counfounding
factors

Fig. 1 Schematic diagram of Mendelian randomisation (MR) analyses. The total effect of BMI (a) was estimated using univariable MR
analysis. The independent effect of adipose- and brain-tissue instrumented BMI was estimated using a multivariable MR approach (b) by
weighting the beta effect estimates of the SNP-exposure associations by their PPA4 values assessed by colocalization for each tissue
respectively.
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Replication and negative control analyses
As a further analysis, we incorporated additional datasets to
investigate the replicability of the findings for endometrial and
lung cancer, and we advocate similar validation analyses for any
future applications of our MVMR approach. The independent
effect of adipose-tissue instrumented BMI on endometrial cancer
risk is supported by an analysis using data obtained from the UK
Biobank (UKB) and the Kaiser Permanente Genetic Epidemiology
Research on Adult Health and Aging (GERA) cohorts [30] (OR=
3.03; 95% CI: 1.42–6.47; P= 0.004), despite the small case
numbers in this dataset. We were unable to replicate the
independent effects of brain-tissue instrumented BMI on lung
cancer using an additional case–control GWAS study [31] (OR=
1.10; 95% CI: 0.78–1.55; P= 0.57). However, we were able to
provide evidence that brain-tissue instrumented BMI is predomi-
nantly responsible for driving the relationship between BMI and
‘cigarettes smoked per day’ when analysed as an outcome
(adipose: Beta= 0.03; 95% CI= –0.18–0.24; P= 0.76; brain: Beta=
0.44; 95% CI= 0.26–0.61; P= 1.62 × 10−6) (Supplementary Table
S8), which is noteworthy given the strong causal effect that
smoking has on lung cancer risk. Detailed results of all replication
analyses are provided in Supplementary Table S10.
As a final sensitivity analysis, we repeated our entire instrument

derivation pipeline using gene expression data from tissues which
are unlikely to be biologically relevant for the BMI-associated
genetic variants (e.g., minor salivary gland and ovary tissues
[32, 33] (Supplementary Note 3)). In contrast to findings from our
primary analysis, there was very weak evidence to suggest that
partitioning variants from these putatively non-causal tissues for
BMI leads to robust evidence of an effect on the site-specific
cancer endpoints analysed previously (Supplementary Table S11).
In addition, we sought to evaluate the effects where adipose- and
brain-tissue instruments provided evidence of an independent
effect on cancer outcomes using data from the eQTLGen
consortium [34] (n= 31,684) to assess the sensitivity of the
findings to gene expression data derived from whole blood that
may not capture tissue-specific effects (Supplementary Note 3).
The independent effect of brain-instrumented BMI on lung cancer
risk remained robust when analysed simultaneously with
whole blood instrumented BMI (OR= 1.14; 95% CI= 1.00:1.30;
P= 0.04), while the whole blood BMI effect attenuated (OR= 1.09;
95% CI= 0.96:1.23; P= 0.18). Similarly, the independent effect of

adipose-instrumented BMI on endometrial cancer replicated when
analysed simultaneously with whole blood instrumented BMI
(OR= 2.33; 95% CI= 1.06:5.12; P= 0.03), while weak evidence of
an independent effect was obtained for whole blood instrumen-
ted BMI (OR= 1.07; 95% CI= 0.58:1.96; P= 0.83) (Supplementary
Table S12).
Lastly, we attempted to partition genetic instruments using the

adipose- and brain-tissue-derived datasets used in our primary
analysis for a phenotype where these tissues are unlikely to be
functionally important. We selected a GWAS of psoriasis for this
purpose previously conducted in the UKB (n= 462,933) which
further reinforced that tissue types need to be carefully selected
for our approach to produce meaningful results, given that we
identified only 2 variants with evidence of colocalization with
adipose-tissue-derived gene expression and only 1 variant with
brain-derived gene expression (Supplementary Note 3).

DISCUSSION
The role of obesity in cancer aetiology is highly complex. In this
study, we have applied the principles of MR to estimate the effects
of separate tissue-partitioned subcomponents of BMI on the risk
of seven site-specific cancer outcomes which have previously
been shown to be influenced by adiposity [18–20]. We firstly
demonstrated that the results generated using our two-sample
MVMR approach to detect distinct adipose- and brain-tissue BMI-
mediated effects provide concordant results with a recently
conducted one-sample multivariable MR analysis on cardiovas-
cular disease and cardiac structure phenotypes [4]. Application of
this novel extension of multivariable MR to cancer outcomes
provides mechanistic insight into the distinct pathways underlying
variation in BMI and risk of developing certain cancer types,
particularly endometrial, lung and breast cancer.
Endometrial cancer is more strongly associated with obesity

than any other cancer [35, 36]. Adipose-tissue accumulation is an
important driver of endometrial cancer progression via three main
mechanisms: excess oestrogen exposure [37, 38], insulin resis-
tance [39], and the induction of pro-inflammatory phenotypes as a
result of hypoxia following adipose-tissue expansion [40, 41]. The
variation in gene expression captured by the subcutaneous adi-
pose-tissue instrumented BMI exposure in this study may have
several molecular consequences which can be postulated to

1.0

Prostate cancer

Ovarian cancer

Lung cancer

Kidney cancer

Endometrial cancer

Colon cancer

Breast cancer

Prostate cancer

Ovarian cancer

Lung cancer

Kidney cancer

Endometrial cancer

Colon cancer

Breast cancer

1.2

BMI

1.4

Odds ratio per 1-SD change in risk factor (95% Cl) Odds ratio per 1-SD change in risk factor (95% Cl)

Total BMI estimates (sex-stratified effects) Independent BMI estimates using tissue-partitioned instruments (MVMR)ba

1.6 1.8 0.5 0.7 1.0 2.0 3.0

Brain Adipose

Fig. 2 Forest plot summarising the results of Mendelian randomisation analyses. Summary of Mendelian randomisation results for BMI on
7 site-specific cancers based on (a) univariable analyses using the total set of BMI variants and (b) analyses instrumented in a multivariable
setting with tissue-partitioned variants. Forest plots illustrating the odds ratios per change in risk factor and 95% confidence intervals (CIs) for
each outcome analysed by MR are shown. The effect estimates of BMI instrumented with all 915 BMI SNPs is illustrated in (a) (red), and the
independent effect estimates of BMI instrumented by adipose- (blue) and brain (orange)-tissue-derived instruments in the multivariable MR
model are illustrated in (b).
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differentially influence disease aetiology. For instance, adipose
tissue is a major source of multipotent mesenchymal stem cells
(MSCs) which have significant proliferative capacity [42, 43]. The
characteristic migration of MSCs towards sites of injury [44, 45]
includes the sites of several tumour types and has been shown to
contribute to cell growth in tumour microenvironments [46–48].
Regional differences in proliferation and differentiation may
favourably impact metabolic phenotypes, explaining the attenu-
ated effect observed between adipose-BMI on common obesity
comorbidities such as T2D [4, 49, 50]. A plausible explanation for
this has been attributed to variation in fat distribution, whereby
adiposity-increasing alleles are associated with a greater capacity
to store fat subcutaneously as opposed to viscerally are protective
[50].
On the other hand, our results suggest that adipose-tissue BMI

may capture a particular phenotype which is more susceptible to
inducing endometrial tumorigenicity. Genetic loci incorporated
into the adipose-tissue BMI exposure included several regulators
of adipogenesis which may be of prognostic importance for
endometrial cancer. For example, FST encodes the adipokine
follistatin which has been shown to regulate adipocyte differ-
entiation [51–53] and is also a marker of polycystic ovary
syndrome (PCOS) [54]. The developmental transcription factor
TBX15 influences adipogenesis [55–57] and has recently been
identified as a key regulator of co-expression networks regulating
central adiposity [58]. Furthermore, the expression of CADM1 has a
role in extracellular matrix adhesion [59] and has been shown to
promote endometrial cancer progression [60–62]. These findings
help to establish an important link between the regulation of body
composition and endometrial cancer risk and warrant further
functional investigation.
The epidemiological evidence for the relationship between

obesity and lung cancer is complicated, with some studies
reporting seemingly paradoxical findings [63–66]. This can most
likely be attributed to the strong potential for confounding caused
by smoking status and the effect of smoking on body weight. Our
results are consistent with a positive causal effect of genetically
predicted higher BMI on lung cancer risk, which has been reported
in earlier MR studies [18, 19]. The results of the multivariable MR
analysis suggest that BMI when instrumented using the brain-
tissue BMI exposure independently increases risk of lung cancer
when the effect of adipose-tissue BMI is accounted for. This is
further supported by the independent effect observed for brain-
tissue BMI on cigarette smoking shown in our sensitivity analysis.
A potential limitation of the analysis to detect supporting
evidence of the brain-tissue instrumented BMI effect in our
replication dataset may have been introduced by covariate
adjustment amongst the contributing consortia for variables
including alcohol dependence. Investigating the effect of our
tissue-partitioned instruments on alcohol intake frequency sug-
gests that the brain-tissue-derived variants relate more strongly to
this behavioural trait (Supplementary Table S8). As such, this
finding therefore requires further investigation by future studies.
Previously, we postulated that the brain-tissue BMI exposure

may relate to a molecular phenotype which predominantly
influences BMI through a genetic predisposition for increased
adiposity, likely arising from variation in appetite and energy
intake [4]. In addition, our findings contribute to our under-
standing of the positive relationship between BMI and smoking.
BMI has been shown to bi-directionally associate with smoking
[67]; whereby having a higher BMI is positively associated with
smoking [67–69], and smoking heaviness inversely effects BMI
[70–72]. The overall positive relationship between BMI and
smoking behaviour has been well replicated, likely influenced
both by behavioural [73–76] and physiological factors [77], while
the inverse relationship between smoking heaviness and BMI may
be mediated by the effect of nicotine on energy balance [2]. The
brain-tissue BMI exposure reflects the BMI phenotype leading to

smoking, suggesting that smoking may be a mediator between
BMI and lung cancer, or may be partly influenced by a shared
aetiology for BMI and smoking [78, 79]. For example, adiposity
genes incorporated into the brain-tissue BMI exposure such as
BDNF and OPRL1, have each been shown to contribute to energy
intake [80–82], binge eating [83–85], and smoking initiation
[86–89]. Furthermore, association studies have identified a positive
relationship between sensitivity to sweet-tasting stimuli and
impulsive behaviour [90]. Among the loci incorporated into the
brain-tissue BMI exposure are several genes which are highly
represented within the sweet taste signalling pathway (e.g.,
KCNK3, PLCD4, PRKCD) [91]. Taken together, these findings
highlight compelling parallels between the impact of variation
in neuroregulatory pathways on energy intake, smoking beha-
viour, and lifetime risk of lung cancer which will be important to
delineate further.
Our univariable MR results align with studies which have

established strong evidence indicating that a larger body size in
childhood is protective against breast cancer risk [9, 92, 93]. The
results of the multivariable MR suggest that the independent
effect of childhood body size when instrumented using the brain-
tissue BMI exposure may contribute to the protective effect on
breast cancer. Nutritional status and higher adiposity in childhood
are important drivers of earlier pubertal onset [94, 95], which is a
demonstrated risk for breast cancer [96, 97]. Further exploration of
the molecular characteristics of higher childhood BMI phenotypes
on key developmental stages, such as age of menarche, may
provide important insight on potential preventative measures.
Previous MR studies [18, 93], including the results presented here,
have also reported an inverse relationship between lifetime BMI
and breast cancer risk. However, observational studies have
suggested that higher adiposity is an important driver of breast
cancer susceptibility in post-menopausal women [36, 98, 99]. As
such, additional analyses stratified by pre- and post-menopause
are needed to further investigate the independent effects of BMI
via distinct tissue types on breast cancer risk.
This study has noteworthy limitations. In all MR analyses, a null

effect was observed for the relationship between BMI and colon
cancer (based on a GWAS by proxy study). While GWAS
ascertained from a family history of the disease has demonstrated
utility [23, 100], these resources are liable to have attenuated
effect sizes and reduced statistical power relative to conventional
GWAS datasets. Repeated analyses will be needed to determine
these effects should the summary statistics from large-scale cohort
studies on colon cancer become publicly available. Similarly, we
do not report evidence for independent effects of adipose- or
brain-tissue BMI on kidney cancer. Simulations suggest that our
approach is adequately powered as long as tissue-partitioned
instruments explained at least 1% of the variance in the exposure
trait, as well as analysing outcome GWAS datasets based on at
least 75,000 participants (Supplementary Fig. S2). As such, our
approach should be repeated to evaluate the independent effects
of tissue-partitioned instruments on kidney cancer once sufficient
sample sizes become accessible. Furthermore, another important
aspect to address in future studies will be the different aetiological
subtypes of several of the cancer types assessed in the present
study. For example, BMI is heterogeneously associated with the
development of the histological subtypes of renal cell carcinoma
(RCC) [101, 102], which may potentially influence attenuation of
the observed associations between the tissue-stratified BMI
exposures and kidney cancer. Lastly, the present study is focused
on the effects of BMI mediated predominantly by neural and
subcutaneous adipose gene expression, due to both sample size
availability and biological relevance to BMI. Future analyses
incorporating gene expression data from additional tissue types
will likely yield further insight on important aetiological effects for
site-specific cancers once sufficiently powered datasets are
available.
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In summary, we have demonstrated a novel application of
multivariable MR which allowed us to investigate the genetically
predicted effects of distinct molecular subcomponents of BMI on
the risk of site-specific cancers. By extending this approach into a
two-sample setting, we envisage that this will have wide
applicability on a spectrum of disease outcomes where
individual-level data obtained in highly powered cohort studies
is not currently publicly available. Furthermore, our findings
provide important insight into the divergent underlying pathways
between body mass index and risk of site-specific cancers.
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